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Abstract

We apply feature logic to the problem of incrementa configuration management. Feature
logic has originally been developed in computer linguistics as a knowledge representation and
inference mechanism. It offersauniformformalism for the description of variantsand revisions,
where sets of versions rather than single versions are the basic units of reasoning. Feature logic
thus opens a whole agebra of version sets, which includes specific configurations as special
cases. Our approach alows for interactive configuration management, where a configuration
thread is constructed by adding or modifying configuration constraints until either a complete
configuration or an inconsistency can be deduced. A set of versions of a software component
can be represented and processed as a single source file enriched with preprocessor statements.
Thus, our tool can be used as an intelligent front end to more traditional techniques.

Key words. software configuration management, version control, deduction and theorem
proving, knowledge representation formalisms and methods.

1 Introduction

Software Configuration Management (CM) isadisciplinefor controlling the evolution of software
systems. CM providessupport for problems such asidentification of componentsand systems[LM 88,
LCD*89, Nar89, Nic9l], revision and variant control [Tic85, Rei89], or consistency checking
[Est88, PF89]. Available tools are however not completely satisfying, since often they are neither
interactive nor incremental or force the programmer to explicitly specify redundant details, until a
configuration thread can be determined or inconsistencies can be detected.

In order to overcome these shortcomings, we present a unified approach to configuration man-
agement based on featurelogic [Smo92]. Feature termsare bool ean expressionsover (name: value)-
attributions, called features, where values may be atomic constants, variables or nested featureterms.
We use featurelogic to identify components by their features. A feature term represents an (infinite)
set of variable-free ground terms. Therefore, feature logic alows us to operate on arbitrary version
sets, specified by the common features of the versions and providing intersection, union and com-
plement operations. Feature unification is used to implement intersection of infinite version sets,
allowing for deduction of configuration threads from incompl ete specifications and early detection
of inconsistencies. Feature terms can be transformed into graphical panels, alowing for interactive
configuration management.
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Figure 1. Incremental selection of aconfiguration

Asasimple example, consider figure 1, where the big bubbles denote software components and
the boxes inside denote variants. Starting with an unspecified configuration, we can specify more
and more features of the configuration we want. For instance, we can select al versionswith the dos
operating system and ega screen; thisisdone by clicking buttonson afeature panel. Featurelogicis
used to deducewhich versionsmay still beincludedin the configuration. Once aspecific version has
been deduced for al components in question, the configuration thread is complete. For example, if
we add the constraint that screen type and device driver type must be equal (thisis expressed by use
of the variable D), the set of possible configurations collapses to a specific configuration, namely
the “ dos-ega-dumb” configuration.

Feature logic guarantees consistency of configurationswith respect to their features. If the user
sel ects contradictory features, thiswill be detected as soon as a consistent configuration isno longer
possible (that is, the set of possible versions has become empty). Finaly, feature logic alows to
model changes in time as well, resulting in a unified scheme to incrementally select and configure
arbitrary consistent sets of revisions and variants.

We have implemented a tool, caled Incremental Configuration Engine (ICE), which realizes
the above approach. In order to “plug in” ICE into the standard UNIX environment, version sets
as selected by the user or deduced by ICE can be transformed to more traditional representations.
A widely used representation of a set of versions of a software component is a single source file
enriched with preprocessor statements, where configuration-dependent code pieces are enclosed in
#f ... #endif brackets. Our tool can produce and process such representations; #ifs will only be
used for ambiguities which could not be resolved by ICE.

ICE is part of the inference-based software development environment NORA'. NORA ams at
utilizing unification theory and inference technology in software tools; concepts and preliminary
results can be found in [SGS91, GS93, SFG* 94, KS94].

!NoRa isaplay by the Norwegian writer Henrik Ibsen. Hence, NORA is NO Real Acronym.



2 Basic Notionsof FeatureLogic

Webeginwithashort overview of featurelogic. Featureterms and feature unification haveoriginally
been devel oped for semantic analysis of natural language [SUP* 83, Kay84]. Later, they were used
as a general mechanism for knowledge representation [BL84, NS90], and as a basis for logic pro-
gramming [KR86, SAK90]. In our presentation, we will concentrate on an intuitive understanding,
more formal descriptionsincluding semantic aspects can be found € sewhere[ Smo092]. Notethat we
usefull featurelogicincluding— besidesthe“basic” intersection— unionsaswell ascomplements.
By use of Skolemfunctions, full featurelogicisequivaenttofirst order predicatelogic, but for many
purposes (including configuration management), the feature: value notation is much more natural
and appropriate.

Feature terms are record-like structures, which are used to collect descriptions or attributes of
certain objects. In their simplest form they consist of alist of named features, where each feature
represents an attribute of an object. Slots may have values; values may be (atomic or integer)
constants, variables (which can be used to state that certain yet unknown va ues must be equal) and
(nested) features. Asan example, consider the following feature term V', which expresseslinguistic
properties of a piece of natural language:

tense: present,

pred: [verb: sing, agent: X, what: Y],
subj: [ X', nunt sg, person: 3rd] ,

obj: Y

Thisterm saysthat the language fragment isin present tense, third person singular, that the agent of
the predicateis equal to the subject etc.: V isarepresentation of the sentencetemplate“ X singsY”.

The syntax of feature termsis given in table 1. In thistable, « denotes an atomic value or an
integer constant (first-order termsasin Prolog may alsobeused), X, Y, 7 denotevariables, f denotes
aslot name, S and T’ denote featureterms, and A denotesasort name. The basic elements of feature
terms are name-value pairs, where f: X isread as“feature f hasvalue X”.

Feature descriptions can be combined using intersection, union, and complement operations.
IfS =X T=g¢gY, thenSNT =[f:X,g:Y], whichisread as“ f hasvaue X and g has
vadueY”. Similarly, SUT = {f: X,g:Y}, whichisread as“ f hasvalue X or g hasvaueY".
Notethat f: { X, Y} isequivalentto { f: X, f: Y} andisread “ f hasvalue X or Y. Sometimes it
is necessary to specify that a feature exists (i.e. is defined, but without giving any value), or that a
feature does not exist in afeature term. Thisiswritten f: T resp. ~f: T (abbreviated as f 1).

The possibility to specify complements greatly increases the expressive power of thelogic. For
example, the term ~[compiler: gcc| denotes all objects whose feature compiler is either undefined
or hasanother valuethan gcc. Theterm [compiler: ~gcc] however denotes al objects whosefeature
compiler is defined, but with a value different from gcc. All laws for Boolean agebras (e.g.
de Morgan’s law) hold for feature terms as well.

Feature terms denote infinite sets of variable-free feature terms, namely those terms which can
be obtained by substituting variables or adding more features. A feature term can thus beinterpreted
as a representation of the infinite set of all ground terms which are subsumed by the original term
(for an exact definition of subsumption, see below).



Notation Name Interpretation

a literal

X variable

T universe Ignorance

1 empty set Inconsistence

f:8 selection Thevaueof fisS
[T existence f isdefined

fr divergence | f isundefined
SOT or [S,7] | intersection | Both.S and 7" hold
SuT or {S, T} | union S or T holds

~S complement | 5 does not hold
AS sort Alisthesort of S
A=S definition Sort A isdefined as 5

Table 1: The operations of feature logic

Feature terms can be grouped into sorts. A sort comprises feature terms with asimilar structure
and hence is itself given in form of a feature term. Sorts impose constraints on feature terms by
requiring that certain slots must be present and must have specific values. For us, sorts serve as
templates for certain feature terms.

The characteristic property of feature terms isfeature consistency: the value of any feature must
be unique. Hence the term [os: dos, 0s: unix] isinconsistent and equivalent to L. When computing
an intersection of feature terms, feature unification is used to ensure consistency. For terms without
unions and complements, feature unification works similar to classical unification of first-order
terms; the only differenceisthat subtermsare not identified by position (asin Prolog), but by feature
name. Adding unions forces unification to compute a (finite) union of unifiers as well, whereas
complements are usually handled by constraint solving (similar to negation as failure).

As an example of feature unification, consider the terms

S=1f:t(X),{9: X, h:b}] T =[~hY, fit(a), i:c]

The unification problem S M 7" follows the general pattern (A U B) M ~A = B. Furthermore,
X =amusthold, hence ST = [f:t(a), g:a, i:c].

IfSNT =T,wesay S subsumes T, writtenT' C 5. The set of dl feature terms is partially
ordered by C; moreover, it forms a complete lattice, the so-called subsumption lattice. In the
subsumption lattice, the infimum is computed by unification, and the supremum is given by the
“inverse” operation, namely the most specific generalization of two terms.

3 Featuresof Versions, Components, and Systems

3.1 Featuresof Versions

L et usnow return to configuration management. Here, wehave auniverse of components, where each
component is given in one or more versions. According with Winkler [Win87], our version concept
encompasses both revisions and variants; revisions supersede an existing version, while variants do
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not. For purposes of configuration management, every version is assigned afeature term describing
its features and uniquely identifying both version and component. Note that we are not restricted
to a pure enumeration of features — we may use complements such as ~[operating-system dos|
to express that a version must not be used under the DOs operating system, variables such as
[host-arch: X, target-arch: ~ X | to describe a cross-compiler (host and target architecture must not
be equal), or unionslike [state: { experimental, revised}] to specify aternatives.

3.2 Featuresof Components

We assume that at most one version of a component can be used in a system. Thus, we model the
features of a component as alternatives or as union of the version features. For instance, if we have
acomponent printer in two versions

printer, = [print-language postscript, print-bitmaps true
printer, [print-language ascii, print-bitmaps fal se]

the feature term describing the component is

. I : |} [print-language postscript, print-bitmaps true,
printer = printer, L printer, = { [print-language ascii, print-bitmaps false
Formally, if we have acomponent 7" inn versions Ty, 15, . . ., T,,, the features of T" are given by

T=TuT,u---uT,=]T;
i=1

Note that features of the component itself (for instance, the component name) are the same
across all versions, and hence can be factored out through (AN B)U (AN C)=AN(BUC).

To retrieve a specific version, we specify a selection key S giving the features of the desired
version. For any selection key 5 and a set of versionsT’, we can identify the versions satisfying 5
by caculating T’ = T ' S —that is, the set of versionsthat arein S aswel asinT. If T/ = L, or
if 77 does not denote any existing version, selection fails.

In our example, selecting S = [print-language postscript] from printer returns printer,, since
printer 1.5 = (printer, Uprinter,)n.5 = (printer, 1.5) U (printer,M5) = printer, Ll L = printer; .
Here, printer, M 5 = L holds since the print-language feature may have only one value.

Note that 7" is just another set of versions, which need not be singleton. We may now give a
second selectionkey 5" and select 7”7 = 7' 11 .57, giveathird selection key .S, and so on, narrowing
the choice set incrementally until a singleton set is selected.

3.3 Featuresof Systems

A system, in our setting, isaset of component versions. The crucia point when compaosing systems
from versions is to ensure that al versions fit together. For instance, we cannot incorporate two
versions with the features [operating-system windows-nt] and [operating-system unix] in a system,
sinceasystemisusualy built for only one operating system. Thus, we model thefeatures of asystem
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Figure 2: Consistent configurationsin atext/graphic editor

as intersection of the version features.? Formally, if we have asystem of n versions T, T, ..., T,

the features of the system 5 are given by
S=nnrn---nl,=[]T;

A systemiscalled consistentif 5 = [ |_, T; # L.

Let usillustrate consistency by an example. Infigure 2, we see three components of atext editor,
where each component comes in several versions. We can choose between two operating systems
(Dosand Unix), four screen types(Ega, Tty, X11 and News) and two screen devicedrivers(Dumb and
Ghostscript). The Dumb driver assumes that the screen type can handle the data directly (expressed
through variable D); the Ghostscript driver isaseparate processthat can convert postscript datainto
a bitmap. Note that the features of the versions imply that at most one version of each component
be chosen.

We shall how compose a consistent system, beginning by selecting the operating system, and
choose the Dos version. This implies that we cannot choose the X11 or News screen types, since
(in our example), Dos does not support them. (Formally, we cannot use X11 or News screen types,
since X111 News = [os: dos, screen-type: {ega, tty} ] M [screen-type: {news, x11}] = L). We can,
however, choose Ega or Tty, as indicated by plain lines. Now, we must choose the screen device
driver. Ghostscript cannot be chosen, since it would imply that concurrent be true, which is not
the case under Dos. The Dumb driver remains; D isinstantiated to bitmap or ascii, depending on

?Featuresirrelevant for consistency, such as author or last-change-date, are ignored.



Feature term CPP expression

[gce: 2] gcc =2

[optimize false] —optimize

[unix: T] defined(unix)

[bugst] —defined(bugs)

[lang: {c, pascal}] | lang = cV lang = pascal
[sin: ~proc] sin # proc

~[sin: proc] —(sin = proc)

[host: X, target: X] | host = X A target = X

Table 2: Tranglating feature terms into CPP constraints

the screen type, making our choice complete. As an dternative, consider the choice [0s: unix|, as
indicated by dashed lines. Again, each path standsfor a consistent configuration.

The composition process may a so beinterpreted as a selectionin the set of possiblesystems, as
shown in figure 1 (omitting the UNIX versions for clarity). By giving more and more features, the
choice set is subsequently narrowed until we get the system we want. Thisresultsin aconfiguration
scheme where whol e systems are determined uniquely by their features.

4 Representing Version Sets

Version setsneed not be an abstract concept. Infact, many programmersare aready handling version
sets, although they would not call it so. Conditional compilation, using the C preprocessor (CPP),
for instance, represents all versions of a component in a single source file. Code pieces relevant for
certain versionsonly are enclosed in #if C' ... #endif pairs, where C' expresses the condition under
which the code piece isto be included. Upon compilation, cpPp selects a single version out of this
set, feeding it to the compiler front end.

The obvious advantage of conditional compilationisthat the programmer may perform changes
simultaneously on a whole set of versions. Unfortunately, code containing #if-directives becomes
guite unreadabl e beyond a certain number of versions. Thisis the drawback of the cpp “one-from-
al” approach — we can either handle al versions at once (the source file) or one version (the crp
output). In our approach, thisis different. We can represent arbitrary version sets as cpp files,
making the choice between “one version” and “all versions” but special cases of awide spectrum of
possible selections, and giving the user a familiar, well-understood representation.

In our cPP representation, the feature terms governing code pieces are mapped to boolean crp
expressions, where feature names are expressed as cPP symbols. In table 2, we give some examples
catching the transformation spirit®.

All version set operators can be applied to cpp files. Union is implemented by computing the
textual difference for arbitrary disjunct version sets. Selecting a subset 5 (that is, intersection) is
doneby unifyingthecprp expressionsT with S; if T11.S = 1, theappropriate code pieceisexcluded;
if 'S =9,the#if directiveis removed.

?For better readability, the C tokens==, ! =, &&,| | , and! arerepresentedas=, #, A, Vv, and —, respectively.



get_load.c [os: unix]
. void InitLoadPoint()
get_load.c [os: unix, hcx 1] {
void InitLoadPoint() - extern void nlist();
{ get-load.c[os unix, hex: T] #f defined(AIXV3) A —defined(hcx)
extern void nlist(); void InitLoadPoint() knlist(namelist, 1, . ..)
#f defined( AIXV3) { felse
knlist(namelist, 1, .. .) extern void nlist(); nlist(KERNEL_FILE, namelist);
#else L] nlist(KERNEL_FILE, namelist); | __ |#endif
nlist(KERNEL_FILE, namelist); if (namelist]...].ntype=0 A #if defined(hcx)
#endif namelist]. . .].n.value = 0) { if (namelist]...].ntype=0 A
if (namelist]...].ntype= 0 Vv xload_error(. . .); #else
namelist[.. .].n_-value = 0) { exit(—1); if (namelist]...].ntype=0 Vv
xload_error(. . .); } #endif
exit(—1); namelist[.. .].n_-value = 0) {
} xload_error(. . .);
exit(—1);

Figure 3: Uniting version sets represented as cpp files

An exampleis shownin figure 3.* Here, two version sets [0s: unix, hcx 1] and [os: unix, hex: T
aremerged to form anew version set [os: unix|. Thetwo original setscan be sel ected from [0s: unix|
by giving selection keys S = [hcxt] or S = [hex: T, respectively — or, in CPP representation,
S = —defined(hex) and S = defined(hex). Again, refinement is possible until we have a singleton
set — that is, aversion without #if-directives.

Since conversion worksbothways, extending the original cpp semantics, our system can directly
handleexisting crpfiles, providing simplere-use of existing variant repositoriesand all owing smooth
embedding into common industry standards.’

5 Interactive Configuration Selection

With cpp, we have deliberately chosen a representation for hard-core programmers, in order to
introduce theoretical foundations into solving of practical problems. In this section, we shall
address the promoters of interactive environments. It turns out that every feature term has a
canonical graphical representation in form of a panel. Therefore we generate interactive panelsfor
selecting and modifying configurations.

For each feature occurring in the term describing a component, we generate a menu or a button
for selecting the possible values. Additionally, a menu for the feature f contains two entries Any
and None, standing for [ f: T] and [ f 1], and an Other entry for entering arbitrary values.

*The code shown is taken from the xload program, atool to display the system load for several architectures.

®Even better than re-use of existing cpp files is restructuring using the consistency notion of feature logic. Consider
the cpp attributes dos and unix, for example. Obviously, these attributes are meant to be mutually exclusive. But this
is better stated explicitly using the feature terms [os dos] and [os unix]. Where such knowledge about the semantics of
CPP attributes is missing — for instance, are hcx and AlXV3 really mutually exclusive? — concept analysis, as shown by
Krone and Snelting [KS94], may help to infer the attribute relations.
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Figure 4. Configuration selection using panels

In figure 4, some panels for the example from figure 2 are shown. The upper window showsthe
NORA graph editor, displaying the componentsand their variants. All three components are sel ected
for configuration. The middle and lower windows are configuration panelsin different states.

To ensure consistency, menu items are made insensitive (that is, they cannot be selected), if
choosing them would lead to an inconsistency with features already chosen. Checking sensitivity is
straight-forward: if the system features are 7', and 7" has aready been selected, each item [ f: 2] is
sensitiveiff 7'M 7" M [f:z] # L. Inour example, the items news, x11, and None are insensitive
(shown as “greyed out”), because we have already selected the dos operating system. To choose
one of these screen types, we first must revoke our choice for the operating system (by resetting the
menu to Any). Then, we can select an arbitrary screen type — which, in turn, may determine the
operating system. All thisleads to an interactive exploration scheme of the configuration universe,
where the global effects of choice refining and revoking are immediately visuaized.

In practice, it often suffices to give but a few features of the desired system to see al other
features be deducable. In such a case, the user need do no more than acknowledge the remaining
features — all other possibilitieshaving been excluded by ICE.

6 A Unified Approach to Variantsand Revisions

In thislast section, we shall show how changesin time can be handled using feature logic. Tradition-
ally, theconceptsof variantsand revisionshave been strictly separated, often resultingin two-layered
systems — for instance, a combination of RCs and cpPp, where first the revision is chosen, then the
specific variant; or multi-workspace devel opment, where each variant has its own revision history.
Using feature logic, we propose a unified approach alowing arbitrary selection of variants and
revisions. Assuming that revisionsare created by applying achange (or delta) to an already existing
revision, we may distinguishthe old and the new revision by checking whether the change has been
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Figure 6: Evolution as subsumption lattice

applied or not — which we represent by absence or presence of a delta feature standing for the
change application.

In the following, we shall denote the individual revisions of a component by Ay, A, A, .. .5
The changeleading up to arevision A; isdenoted by 4;. A linear evolution of revisions may thusbe
depicted as an evolution diagram:

52 52 5i+1
AO >A1 > e >Ai >Ai_|_1"'

To every A; revision except A, we assign adeltafeature [¢;: T]. Each A; revision also inherits
the deltafeatures of all revisionsit is based upon, such that a A, revision based on the A, revision
hasthefeatures [0,: T, d,: T] —that is, A, istheresult of the d; and ¢, changes applied to A,.

As a more complex example, consider figure 5. Here, we have a split evolution path: be-
sides A,, the A; revision is aso based on A;. Later, the two evolution paths are joined again,
resulting in a new revision A;. The Aj revision has the delta features of al its ancestors, namely
[01: T,d5: T,...,05: T], whilethe A, revision does not includethe[d.: T] and [d5: T] features.”

Unfortunately, in order to retrieve an individua revision, one has to exclude later changes
explicitly. For example, to retrieve the A, revision, we must specify S = [d4: T, d5 1] so that our
set does not include the A5 revision. What is missing here, is aterm saying “I want exactly these
features, and no others” Therefore, ICE generates sort definitionsfor the common task of retrieving
previousrevisions. In our example, sortslike Ay = [6; 1] and Ay = [6;: T, d> 1, 63 1] may be used
for directly retrieving the A, revision or the A; revision; the intuitive A, U A, correctly returns

Since the indices represent points in time, any ordered identification is possible — for instance the classical
major-version.minor-version scheme as used in RCS. In practice, however, revisions are named by assigning appro-
priate features.

"This assignment of delta features makes evolution diagrams isomorphic to the subsumption lattice given by the
delta features. For example, in figure 6, an arrow S — T impliesthat S O 7. Theset T includes al revisions; its
subset [61: T] includes all revisions where the [4:1: T] change has been applied — that is, all revisions except A,. Both
[62: T] and [d3: T] again are subsets of [61: T] —that is, [61: T] O [d2: T]U [d3: T]. Finaly, the [5: T] revision set
containing As is asubset of both [§2: T] and [64: T] — that is, [62: T] M [d4: T] 3 [d5: T]. In practice, the evolution
diagram can always be reconstructed by drawing the subsumption lattice of the delta features.

10



[05 1, d31] — the set of both revisions A, and A;. These sort definitions are kept up to date after
each change to the revision set, so that the user need not bother about excluding later changes.
Using delta features, we may now select versions

e according to their respective features (e.g. [f: function] — that is, a version with f being a
function), which leaves us the choice of the specific revision; or

e according to the changes applied (e.g. [0,: T, d5 7] — that is, A, or a descendant thereof, but
not A5 or one of its descendants), which leaves us the choice of the specific variants; or

¢ according to both (e.g. [A4, f: procedurel — that is, the variant of the A, revisionwheref is
aprocedure).

The mechanisms introduced in previous sections apply to revisions as well: we may view
multiple revisions at a time, using the CPp representation, and incrementally select revisions and
variantsusing interactive panels. Anytime, we are free to choose and refine arbitrary version sets as
they evolvein the software process.

7 Related Work

Feature-like attribution schemes using name/val ue-pairs as attributes are widespread across CM sys-
tems. In the attributed file system (ATFS) of Lampen and Mahler [LM88], each component can have
an arbitrary conjunction of user-defined attributes; components are sel ected by a pattern containing
thedesired values. Theoptionspaceof Lieetal. [LCD*89], allowsfor storing and retrieving objects
giving a set of options, where each option can be either true or false. None of these approachesis
incremental by nature; ambiguities are not alowed. In contrast, Nicklin's context model [Nic91]
allows undefined options and arbitrary boolean operations and can thus handle ambiguous and
incompl ete specifications. However, incremental issues and deductive abilities are not mentioned.

For an attribution methodology, see the successful faceted classification scheme founded by
Prieto-Diaz in [PD87].

The ADELE system by Estublier [Est85, Est88] performs consistency checking for variants by
evaluating boolean constraints containing attribute equations. In contrast to our approach, ADELE
followsonly onealternative by choosingthe“ best satisfying” variant; system consistency constraints
(called generic consistency rules) are given explicitly on a global level. The cMA system by Ploe-
dereder and Fergany [PF89] allowsincrementa consistency checking; the consistency notion must
be coded by the user.

Speaking of version sets, the variant-specific editor by Narayanaswamy [Nar89] gives indi-
vidua views on either individual versions or the whole set; versions are identified using crp-like
@if-directives. There is no support for arbitrary version sets. In [SB93], Singleton and Brereton
mention CPP constraints as a potentially useful application of partia evaluation, but without going
into details of how this could be done.

The concepts of revisions and variants are usualy strictly separated [Tic85, Rei89]. However,
Rich and Solomon, who use feature logic for system modelling [RS91], anticipated “version (i.e.
revision) selection as a further instantiation of object terms” — which is presented in this paper.
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8 Conclusion

We have seen that use of feature logic and feature unification allows for incremental and interactive
configuration management; often, complete configuration threads can be deduced from incompl ete
specifications, and inconsi stenciesare detected earlier than in conventional tools. Version setscan be
represented as cpPp files; adaption to other configuration management formalisms (e.g. RCs [Tic85]
or shape [LM88]) is straight-forward and under way.

The Incremental Configuration EngineICE is part of the inference-based software devel opment
environment NORA, which aims at utilizing unification theory and inference technology in software
tools. In particular, NORA offersatool for inferring configuration structuresfrom source code, which
al so detects suspiciousinterferences between configuration threads[K S94]; thistool, whichiscalled
NORA/RECS, acts complementary to NORA/ICE.

A UNIX stand-alone versions of ICE is available via anonymous FTP from ftp.ips.cs.tu-bs.de:
/pub/local/softech/ice. RECS and other parts of NORA are found in the recs and nora directories.
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