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Abstract

We apply feature logic to the problem of incremental configuration management. Feature
logic has originally been developed in computer linguistics as a knowledge representation and
inference mechanism. It offers a uniform formalism for the description of variants and revisions,
where sets of versions rather than single versions are the basic units of reasoning. Feature logic
thus opens a whole algebra of version sets, which includes specific configurations as special
cases. Our approach allows for interactive configuration management, where a configuration
thread is constructed by adding or modifying configuration constraints until either a complete
configuration or an inconsistency can be deduced. A set of versions of a software component
can be represented and processed as a single source file enriched with preprocessor statements.
Thus, our tool can be used as an intelligent front end to more traditional techniques.

Key words: software configuration management, version control, deduction and theorem
proving, knowledge representation formalisms and methods.

1 Introduction

Software Configuration Management (CM) is a discipline for controlling the evolution of software
systems. CM provides support for problems such as identification of components and systems [LM88,
LCD+89, Nar89, Nic91], revision and variant control [Tic85, Rei89], or consistency checking
[Est88, PF89]. Available tools are however not completely satisfying, since often they are neither
interactive nor incremental or force the programmer to explicitly specify redundant details, until a
configuration thread can be determined or inconsistencies can be detected.

In order to overcome these shortcomings, we present a unified approach to configuration man-
agement based on feature logic [Smo92]. Feature terms are boolean expressions over (name: value)-
attributions, called features, where values may be atomic constants, variables or nested feature terms.
We use feature logic to identify components by their features. A feature term represents an (infinite)
set of variable-free ground terms. Therefore, feature logic allows us to operate on arbitrary version
sets, specified by the common features of the versions and providing intersection, union and com-
plement operations. Feature unification is used to implement intersection of infinite version sets,
allowing for deduction of configuration threads from incomplete specifications and early detection
of inconsistencies. Feature terms can be transformed into graphical panels, allowing for interactive
configuration management.
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Figure 1: Incremental selection of a configuration

As a simple example, consider figure 1, where the big bubbles denote software components and
the boxes inside denote variants. Starting with an unspecified configuration, we can specify more
and more features of the configuration we want. For instance, we can select all versions with the dos
operating system and ega screen; this is done by clicking buttons on a feature panel. Feature logic is
used to deduce which versions may still be included in the configuration. Once a specific version has
been deduced for all components in question, the configuration thread is complete. For example, if
we add the constraint that screen type and device driver type must be equal (this is expressed by use
of the variable D), the set of possible configurations collapses to a specific configuration, namely
the “dos-ega-dumb” configuration.

Feature logic guarantees consistency of configurations with respect to their features. If the user
selects contradictory features, this will be detected as soon as a consistent configuration is no longer
possible (that is, the set of possible versions has become empty). Finally, feature logic allows to
model changes in time as well, resulting in a unified scheme to incrementally select and configure
arbitrary consistent sets of revisions and variants.

We have implemented a tool, called Incremental Configuration Engine (ICE), which realizes
the above approach. In order to “plug in” ICE into the standard UNIX environment, version sets
as selected by the user or deduced by ICE can be transformed to more traditional representations.
A widely used representation of a set of versions of a software component is a single source file
enriched with preprocessor statements, where configuration-dependent code pieces are enclosed in
#if … #endif brackets. Our tool can produce and process such representations; #ifs will only be
used for ambiguities which could not be resolved by ICE.

ICE is part of the inference-based software development environment NORA1. NORA aims at
utilizing unification theory and inference technology in software tools; concepts and preliminary
results can be found in [SGS91, GS93, SFG+94, KS94].1NORA is a play by the Norwegian writer Henrik Ibsen. Hence, NORA is NO Real Acronym.
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2 Basic Notions of Feature Logic

We begin with a short overview of feature logic. Feature terms and feature unification have originally
been developed for semantic analysis of natural language [SUP+83, Kay84]. Later, they were used
as a general mechanism for knowledge representation [BL84, NS90], and as a basis for logic pro-
gramming [KR86, SAK90]. In our presentation, we will concentrate on an intuitive understanding,
more formal descriptions including semantic aspects can be found elsewhere [Smo92]. Note that we
use full feature logic including — besides the “basic” intersection — unions as well as complements.
By use of Skolem functions, full feature logic is equivalent to first order predicate logic, but for many
purposes (including configuration management), the feature: value notation is much more natural
and appropriate.

Feature terms are record-like structures, which are used to collect descriptions or attributes of
certain objects. In their simplest form they consist of a list of named features, where each feature
represents an attribute of an object. Slots may have values; values may be (atomic or integer)
constants, variables (which can be used to state that certain yet unknown values must be equal) and
(nested) features. As an example, consider the following feature term V , which expresses linguistic
properties of a piece of natural language:V = 26664 tense: present;

pred: [verb: sing; agent:X;what: Y ] ;
subj: [X; num: sg; person: 3rd] ;
obj: Y 37775

This term says that the language fragment is in present tense, third person singular, that the agent of
the predicate is equal to the subject etc.: V is a representation of the sentence template “X sings Y”.

The syntax of feature terms is given in table 1. In this table, a denotes an atomic value or an
integer constant (first-order terms as in Prolog may also be used),X; Y; Z denote variables, f denotes
a slot name, S and T denote feature terms, and A denotes a sort name. The basic elements of feature
terms are name-value pairs, where f :X is read as “feature f has value X”.

Feature descriptions can be combined using intersection, union, and complement operations.
If S = f :X; T = g: Y , then S u T = [f :X; g: Y ], which is read as “f has value X and g has
value Y ”. Similarly, S t T = ff :X; g:Y g, which is read as “f has value X or g has value Y ”.
Note that f : fX; Y g is equivalent to ff :X; f : Y g and is read “f has value X or Y ”. Sometimes it
is necessary to specify that a feature exists (i.e. is defined, but without giving any value), or that a
feature does not exist in a feature term. This is written f :> resp. �f :> (abbreviated as f ").

The possibility to specify complements greatly increases the expressive power of the logic. For
example, the term �[compiler: gcc] denotes all objects whose feature compiler is either undefined
or has another value than gcc. The term [compiler:�gcc] however denotes all objects whose feature
compiler is defined, but with a value different from gcc. All laws for Boolean algebras (e.g.
de Morgan’s law) hold for feature terms as well.

Feature terms denote infinite sets of variable-free feature terms, namely those terms which can
be obtained by substituting variables or adding more features. A feature term can thus be interpreted
as a representation of the infinite set of all ground terms which are subsumed by the original term
(for an exact definition of subsumption, see below).
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Notation Name Interpretationa literalX variable> universe Ignorance? empty set Inconsistencef :S selection The value of f is Sf :> existence f is definedf " divergence f is undefinedS u T or [S; T ] intersection Both S and T holdS t T or fS; Tg union S or T holds�S complement S does not holdA S sort A is the sort of SA � S definition Sort A is defined as S
Table 1: The operations of feature logic

Feature terms can be grouped into sorts. A sort comprises feature terms with a similar structure
and hence is itself given in form of a feature term. Sorts impose constraints on feature terms by
requiring that certain slots must be present and must have specific values. For us, sorts serve as
templates for certain feature terms.

The characteristic property of feature terms is feature consistency: the value of any feature must
be unique. Hence the term [os: dos; os: unix] is inconsistent and equivalent to ?. When computing
an intersection of feature terms, feature unification is used to ensure consistency. For terms without
unions and complements, feature unification works similar to classical unification of first-order
terms; the only difference is that subterms are not identified by position (as in Prolog), but by feature
name. Adding unions forces unification to compute a (finite) union of unifiers as well, whereas
complements are usually handled by constraint solving (similar to negation as failure).

As an example of feature unification, consider the termsS = [f : t(X); fg:X; h: bg] T = [�h: Y; f : t(a); i: c]
The unification problem S u T follows the general pattern (A t B) u �A = B. Furthermore,X = a must hold, hence S u T = [f : t(a); g: a; i: c].
If S u T = T , we say S subsumes T , written T v S. The set of all feature terms is partially

ordered by v; moreover, it forms a complete lattice, the so-called subsumption lattice. In the
subsumption lattice, the infimum is computed by unification, and the supremum is given by the
“inverse” operation, namely the most specific generalization of two terms.

3 Features of Versions, Components, and Systems

3.1 Features of Versions

Let us now return to configuration management. Here, we have a universe of components, where each
component is given in one or more versions. According with Winkler [Win87], our version concept
encompasses both revisions and variants; revisions supersede an existing version, while variants do
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not. For purposes of configuration management, every version is assigned a feature term describing
its features and uniquely identifying both version and component. Note that we are not restricted
to a pure enumeration of features — we may use complements such as �[operating-system: dos]
to express that a version must not be used under the DOS operating system, variables such as[host-arch:X; target-arch:�X ] to describe a cross-compiler (host and target architecture must not
be equal), or unions like [state: fexperimental; revisedg] to specify alternatives.

3.2 Features of Components

We assume that at most one version of a component can be used in a system. Thus, we model the
features of a component as alternatives or as union of the version features. For instance, if we have
a component printer in two versions

printer1 = [print-language: postscript; print-bitmaps: true]
printer2 = [print-language: ascii; print-bitmaps: false]

the feature term describing the component is

printer = printer1 t printer2 = ( [print-language: postscript; print-bitmaps: true];[print-language: ascii; print-bitmaps: false] )
Formally, if we have a component T in n versions T1; T2; : : : ; Tn, the features of T are given byT = T1 t T2 t � � � t Tn = nti=1 Ti

Note that features of the component itself (for instance, the component name) are the same
across all versions, and hence can be factored out through (A uB) t (A u C) = A u (B t C).

To retrieve a specific version, we specify a selection key S giving the features of the desired
version. For any selection key S and a set of versions T , we can identify the versions satisfying S
by calculating T 0 = T u S — that is, the set of versions that are in S as well as in T . If T 0 = ?, or
if T 0 does not denote any existing version, selection fails.

In our example, selecting S = [print-language: postscript] from printer returns printer1, since
printeruS = (printer1tprinter2)uS = (printer1uS)t(printer2uS) = printer1t? = printer1.
Here, printer2 u S = ? holds since the print-language feature may have only one value.

Note that T 0 is just another set of versions, which need not be singleton. We may now give a
second selection key S 0 and select T 00 = T 0uS0, give a third selection key S00, and so on, narrowing
the choice set incrementally until a singleton set is selected.

3.3 Features of Systems

A system, in our setting, is a set of component versions. The crucial point when composing systems
from versions is to ensure that all versions fit together. For instance, we cannot incorporate two
versions with the features [operating-system:windows-nt] and [operating-system: unix] in a system,
since a system is usually built for only one operating system. Thus, we model the features of a system
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Figure 2: Consistent configurations in a text/graphic editor

as intersection of the version features.2 Formally, if we have a system of n versions T1; T2; : : : ; Tn,
the features of the system S are given byS = T1 u T2 u � � � u Tn = nui=1 Ti
A system is called consistent if S =uni=1 Ti 6= ?.

Let us illustrate consistency by an example. In figure 2, we see three components of a text editor,
where each component comes in several versions. We can choose between two operating systems
(Dos and Unix), four screen types (Ega, Tty, X11 and News) and two screen device drivers (Dumb and
Ghostscript). The Dumb driver assumes that the screen type can handle the data directly (expressed
through variableD); the Ghostscript driver is a separate process that can convert postscript data into
a bitmap. Note that the features of the versions imply that at most one version of each component
be chosen.

We shall now compose a consistent system, beginning by selecting the operating system, and
choose the Dos version. This implies that we cannot choose the X11 or News screen types, since
(in our example), Dos does not support them. (Formally, we cannot use X11 or News screen types,
since X11 u News = [os: dos; screen-type: fega; ttyg] u [screen-type: fnews; x11g] = ?). We can,
however, choose Ega or Tty, as indicated by plain lines. Now, we must choose the screen device
driver. Ghostscript cannot be chosen, since it would imply that concurrent be true, which is not
the case under Dos. The Dumb driver remains; D is instantiated to bitmap or ascii, depending on2Features irrelevant for consistency, such as author or last-change-date, are ignored.
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Feature term CPP expression[gcc: 2] gcc � 2[optimize: false] :optimize[unix:>] defined(unix)[bugs"] :defined(bugs)[lang: fc; pascalg] lang � c _ lang � pascal[sin:�proc] sin 6� proc�[sin: proc] :(sin � proc)[host:X; target:X ] host � X ^ target � X
Table 2: Translating feature terms into CPP constraints

the screen type, making our choice complete. As an alternative, consider the choice [os: unix], as
indicated by dashed lines. Again, each path stands for a consistent configuration.

The composition process may also be interpreted as a selection in the set of possible systems, as
shown in figure 1 (omitting the UNIX versions for clarity). By giving more and more features, the
choice set is subsequently narrowed until we get the system we want. This results in a configuration
scheme where whole systems are determined uniquely by their features.

4 Representing Version Sets

Version sets need not be an abstract concept. In fact, many programmers are already handling version
sets, although they would not call it so. Conditional compilation, using the C preprocessor (CPP),
for instance, represents all versions of a component in a single source file. Code pieces relevant for
certain versions only are enclosed in #if C … #endif pairs, where C expresses the condition under
which the code piece is to be included. Upon compilation, CPP selects a single version out of this
set, feeding it to the compiler front end.

The obvious advantage of conditional compilation is that the programmer may perform changes
simultaneously on a whole set of versions. Unfortunately, code containing #if-directives becomes
quite unreadable beyond a certain number of versions. This is the drawback of the CPP “one-from-
all” approach — we can either handle all versions at once (the source file) or one version (the CPP

output). In our approach, this is different. We can represent arbitrary version sets as CPP files,
making the choice between “one version” and “all versions” but special cases of a wide spectrum of
possible selections, and giving the user a familiar, well-understood representation.

In our CPP representation, the feature terms governing code pieces are mapped to boolean CPP

expressions, where feature names are expressed as CPP symbols. In table 2, we give some examples
catching the transformation spirit3.

All version set operators can be applied to CPP files. Union is implemented by computing the
textual difference for arbitrary disjunct version sets. Selecting a subset S (that is, intersection) is
done by unifying the CPP expressionsT withS; ifT uS = ?, the appropriate code piece is excluded;
if T u S = S, the #if directive is removed.3For better readability, the C tokens ==, !=, &&, ||, and ! are represented as �, 6�, ^, _, and :, respectively.
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get load.c [os: unix; hcx "]
void InitLoadPoint()f

extern void nlist();
#if defined(AIXV3)

knlist(namelist; 1; : : :)
#else

nlist(KERNEL FILE; namelist);
#endif

if (namelist[: : :]:n type � 0 _
namelist[: : :]:n value � 0) f
xload error(: : :);
exit(�1);g t get load.c [os: unix; hcx:>]

void InitLoadPoint()f
extern void nlist();
nlist(KERNEL FILE; namelist);
if (namelist[: : :]:n type � 0 ^

namelist[: : :]:n value � 0) f
xload error(: : :);
exit(�1);g = get load.c [os: unix]

void InitLoadPoint()f
extern void nlist();

#if defined(AIXV3) ^ :defined(hcx)
knlist(namelist; 1; : : :)

#else
nlist(KERNEL FILE; namelist);

#endif
#if defined(hcx)

if (namelist[: : :]:n type � 0 ^
#else

if (namelist[: : :]:n type � 0 _
#endif

namelist[: : :]:n value � 0) f
xload error(: : :);
exit(�1);g

Figure 3: Uniting version sets represented as CPP files

An example is shown in figure 3.4 Here, two version sets [os: unix; hcx"] and [os: unix; hcx:>]
are merged to form a new version set [os: unix]. The two original sets can be selected from [os: unix]
by giving selection keys S = [hcx "] or S = [hcx:>], respectively — or, in CPP representation,S = :defined(hcx) and S = defined(hcx). Again, refinement is possible until we have a singleton
set — that is, a version without #if-directives.

Since conversion works both ways, extending the original CPP semantics, our system can directly
handle existing CPP files, providingsimple re-use of existing variant repositories and allowingsmooth
embedding into common industry standards.5
5 Interactive Configuration Selection

With CPP, we have deliberately chosen a representation for hard-core programmers, in order to
introduce theoretical foundations into solving of practical problems. In this section, we shall
address the promoters of interactive environments. It turns out that every feature term has a
canonical graphical representation in form of a panel. Therefore we generate interactive panels for
selecting and modifying configurations.

For each feature occurring in the term describing a component, we generate a menu or a button
for selecting the possible values. Additionally, a menu for the feature f contains two entries Any
and None, standing for [f :>] and [f "], and an Other entry for entering arbitrary values.4The code shown is taken from the xload program, a tool to display the system load for several architectures.5Even better than re-use of existing CPP files is restructuring using the consistency notion of feature logic. Consider
the CPP attributes dos and unix, for example. Obviously, these attributes are meant to be mutually exclusive. But this
is better stated explicitly using the feature terms [os: dos] and [os: unix]. Where such knowledge about the semantics of
CPP attributes is missing — for instance, are hcx and AIXV3 really mutually exclusive? — concept analysis, as shown by
Krone and Snelting [KS94], may help to infer the attribute relations.
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Figure 4: Configuration selection using panels

In figure 4, some panels for the example from figure 2 are shown. The upper window shows the
NORA graph editor, displaying the components and their variants. All three components are selected
for configuration. The middle and lower windows are configuration panels in different states.

To ensure consistency, menu items are made insensitive (that is, they cannot be selected), if
choosing them would lead to an inconsistency with features already chosen. Checking sensitivity is
straight-forward: if the system features are T , and T 0 has already been selected, each item [f : x] is
sensitive iff T u T 0 u [f : x] 6= ?. In our example, the items news, x11, and None are insensitive
(shown as “greyed out”), because we have already selected the dos operating system. To choose
one of these screen types, we first must revoke our choice for the operating system (by resetting the
menu to Any). Then, we can select an arbitrary screen type — which, in turn, may determine the
operating system. All this leads to an interactive exploration scheme of the configuration universe,
where the global effects of choice refining and revoking are immediately visualized.

In practice, it often suffices to give but a few features of the desired system to see all other
features be deducable. In such a case, the user need do no more than acknowledge the remaining
features — all other possibilities having been excluded by ICE.

6 A Unified Approach to Variants and Revisions

In this last section, we shall show how changes in time can be handled using feature logic. Tradition-
ally, the concepts of variants and revisions have been strictly separated, often resulting in two-layered
systems — for instance, a combination of RCS and CPP, where first the revision is chosen, then the
specific variant; or multi-workspace development, where each variant has its own revision history.

Using feature logic, we propose a unified approach allowing arbitrary selection of variants and
revisions. Assuming that revisions are created by applying a change (or delta) to an already existing
revision, we may distinguish the old and the new revision by checking whether the change has been
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Figure 6: Evolution as subsumption lattice

applied or not — which we represent by absence or presence of a delta feature standing for the
change application.

In the following, we shall denote the individual revisions of a component by �0;�1;�2; : : :6
The change leading up to a revision�i is denoted by �i. A linear evolution of revisions may thus be
depicted as an evolution diagram:�0 �1�! �1 �2�! � � � �i�! �i �i+1�! �i+1 � � �

To every �i revision except �0, we assign a delta feature [�i:>]. Each �i revision also inherits
the delta features of all revisions it is based upon, such that a �2 revision based on the �1 revision
has the features [�1:>; �2:>] — that is, �2 is the result of the �1 and �2 changes applied to �0.

As a more complex example, consider figure 5. Here, we have a split evolution path: be-
sides �2, the �3 revision is also based on �1. Later, the two evolution paths are joined again,
resulting in a new revision �5. The �5 revision has the delta features of all its ancestors, namely[�1:>; �2:>; : : : ; �5:>], while the �4 revision does not include the [�2:>] and [�5:>] features.7

Unfortunately, in order to retrieve an individual revision, one has to exclude later changes
explicitly. For example, to retrieve the �4 revision, we must specify S = [�4:>; �5 "] so that our
set does not include the �5 revision. What is missing here, is a term saying “I want exactly these
features, and no others.” Therefore, ICE generates sort definitions for the common task of retrieving
previous revisions. In our example, sorts like �0 � [�1 "] and �1 � [�1:>; �2 "; �3 "] may be used
for directly retrieving the �0 revision or the �1 revision; the intuitive �0 t �1 correctly returns6Since the indices represent points in time, any ordered identification is possible — for instance the classical
major-version:minor-version scheme as used in RCS. In practice, however, revisions are named by assigning appro-
priate features.7This assignment of delta features makes evolution diagrams isomorphic to the subsumption lattice given by the
delta features. For example, in figure 6, an arrow S �! T implies that S w T . The set > includes all revisions; its
subset [�1:>] includes all revisions where the [�1:>] change has been applied — that is, all revisions except �0. Both[�2:>] and [�3:>] again are subsets of [�1:>] — that is, [�1:>] w [�2:>] t [�3:>]. Finally, the [�5:>] revision set
containing �5 is a subset of both [�2:>] and [�4:>] — that is, [�2:>] u [�4:>] w [�5:>]. In practice, the evolution
diagram can always be reconstructed by drawing the subsumption lattice of the delta features.
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[�2 "; �3 "] — the set of both revisions �0 and �1. These sort definitions are kept up to date after
each change to the revision set, so that the user need not bother about excluding later changes.

Using delta features, we may now select versions� according to their respective features (e.g. [f : function] — that is, a version with f being a
function), which leaves us the choice of the specific revision; or� according to the changes applied (e.g. [�1:>; �5 "] — that is, �1 or a descendant thereof, but
not �5 or one of its descendants), which leaves us the choice of the specific variants; or� according to both (e.g. [�4; f : procedure] — that is, the variant of the �4 revision where f is
a procedure).

The mechanisms introduced in previous sections apply to revisions as well: we may view
multiple revisions at a time, using the CPP representation, and incrementally select revisions and
variants using interactive panels. Anytime, we are free to choose and refine arbitrary version sets as
they evolve in the software process.

7 Related Work

Feature-like attribution schemes using name/value-pairs as attributes are widespread across CM sys-
tems. In the attributed file system (ATFS) of Lampen and Mahler [LM88], each component can have
an arbitrary conjunction of user-defined attributes; components are selected by a pattern containing
the desired values. The option space of Lie et al. [LCD+89], allows for storing and retrieving objects
giving a set of options, where each option can be either true or false. None of these approaches is
incremental by nature; ambiguities are not allowed. In contrast, Nicklin’s context model [Nic91]
allows undefined options and arbitrary boolean operations and can thus handle ambiguous and
incomplete specifications. However, incremental issues and deductive abilities are not mentioned.

For an attribution methodology, see the successful faceted classification scheme founded by
Prieto-Diaz in [PD87].

The ADELE system by Estublier [Est85, Est88] performs consistency checking for variants by
evaluating boolean constraints containing attribute equations. In contrast to our approach, ADELE

follows only one alternative by choosing the “best satisfying” variant; system consistency constraints
(called generic consistency rules) are given explicitly on a global level. The CMA system by Ploe-
dereder and Fergany [PF89] allows incremental consistency checking; the consistency notion must
be coded by the user.

Speaking of version sets, the variant-specific editor by Narayanaswamy [Nar89] gives indi-
vidual views on either individual versions or the whole set; versions are identified using CPP-like
@if-directives. There is no support for arbitrary version sets. In [SB93], Singleton and Brereton
mention CPP constraints as a potentially useful application of partial evaluation, but without going
into details of how this could be done.

The concepts of revisions and variants are usually strictly separated [Tic85, Rei89]. However,
Rich and Solomon, who use feature logic for system modelling [RS91], anticipated “version (i.e.
revision) selection as a further instantiation of object terms” — which is presented in this paper.

11



8 Conclusion

We have seen that use of feature logic and feature unification allows for incremental and interactive
configuration management; often, complete configuration threads can be deduced from incomplete
specifications, and inconsistencies are detected earlier than in conventional tools. Version sets can be
represented as CPP files; adaption to other configuration management formalisms (e.g. RCS [Tic85]
or shape [LM88]) is straight-forward and under way.

The Incremental Configuration Engine ICE is part of the inference-based software development
environment NORA, which aims at utilizing unification theory and inference technology in software
tools. In particular, NORA offers a tool for inferring configuration structures from source code, which
also detects suspicious interferences between configuration threads [KS94]; this tool, which is called
NORA/RECS, acts complementary to NORA/ICE.

A UNIX stand-alone versions of ICE is available via anonymous FTP from ftp.ips.cs.tu-bs.de:
/pub/local/softech/ice. RECS and other parts of NORA are found in the recs and nora directories.
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