
FirmSmith

Test Generation for Compiler

Optimizations

Bachelor’s Thesis of

Je� Wagner

at the Department of Informatics

Institute for Program Structures and Data Organization (IPD)

Reviewer: Prof. Gregor Snelting

Second reviewer: Prof. Jörg Henkel

Advisor: Andreas Zwinkau

1. October 2016 – 31. January 2017

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

Karlsruhe, 30.01.2017

. .

(Je� Wagner)

Abstract

Compilers transform intermediate representations of source code using target machine

independent optimizations to improve the performance of the resulting machine code as

much as possible, but are at the same time confronted with the requirement of producing

correct code. Therefore, exhaustive testing is mandatory for ensuring the quality and

correctness of compilers.

In this thesis, we present a random test case generator named FirmSmith for libFirm, which

is an implementation of the intermediate representation FIRM that was developed at the

University of Karlsruhe. Our test case generator improves the testing of libFirm, target

independent optimizations by directly constructing test cases in FIRM and striving for

covering a maximum of language semantic combinations. Thereby we are able to bypass

the constraints on producible semantics a libFirm-based compiler front end could empose.

This thesis concludes that our test case generator produces a competitive coverage of

optimizations, which is similar to relying on a libFirm-based compiler an existing test case

generator. During the evaluation we compared FirmSmith to Csmith and determined that

out of 37 tested optimizations, FirmSmith was able to trigger bugs in 12 and Csmith only

in 6 optimizations.

i

Zusammenfassung

Compiler verbessern die E�zienz des erzeugten Maschinencodes indem sie zielarchitektu-

runabhängige Optimierungen auf einer Zwischendarstellung des Quelltextes anwenden.

Gleichzeitig zur Anforderung Optimierungen immer e�zienter zu gestalten, wird auch

auch von Compilern erwartet, dass sie jederzeit korrekten Maschinencode erstellen.

In dieser Arbeit, präsentieren wir unseren Generator für zufällige Testfälle namens FirmS-

mith den wir für libFirm, eine Implementierung der an der Universität Karlsruhe entwi-

ckelten graphenbasierten Zwischensprache FIRM. Ziel unseres Testgenerator ist es, die

Testabdeckung von libFirm zu verbessern und mögliche Fehler in der Implementierung auf-

zudecken. FirmSmith erstellt Programme direkt in der FIRM Darstellung und versucht eine

möglichst hohe Anzahl an Kombinationen unterschiedlicher FIRM Semantik zu realisieren.

Dadurch, dass FirmSmith direkt Graphen in FIRM erstellt, werden Einschränkungen durch

das Compiler-Frontend bei der Erstellung von FIRM Graphen umgangen.

Die Schlussfolgerung dieser Arbeit stellt fest, dass wir eine Abdeckung der Optimierun-

gen erreichen, die vergleichbar mit derer ist, die man mit bestehenden Testgeneratoren

erreichen kann. Zudem stellen wir jedoch weiter fest, dass FirmSmith uns erlaubt Bugs in

Optimierung zu �nden, die Csmith entweder aufgrund der Struktur der Testfälle gefunden

hat oder durch Einschränken des verwendeten Compiler-Frontends unmöglich �nden

konnte. Aus insgesamt 37 getesteten Optimierungen hat FirmSmith Bugs in 12 und Csmith

in 6 Optimierungen gefunden.

iii

Contents

Abstract i

Zusammenfassung iii

1 Introduction 1

2 Background 3

2.1 FIRM . 3

2.1.1 Control Flow . 4

2.1.2 Data Flow . 4

2.1.3 Graph Uniformity . 7

2.1.4 Modes . 7

2.1.5 Types . 8

2.2 Random Testing . 8

2.2.1 Existing Test Case Generators . 8

3 Design 11

3.1 Control Flow . 11

3.1.1 Reducibility . 12

3.1.2 Inversed Reducibility . 12

3.1.3 Graph Construction . 14

3.2 Data Flow . 16

3.3 FIRM Types . 17

3.4 Bug Classi�cation . 17

4 Implementation 19

4.1 Control Flow . 19

4.2 Type Generation . 21

4.3 Data Flow . 21

v

Contents

5 Evaluation 25

5.1 Fuzzer . 25

5.2 Results . 26

5.2.1 Coverage . 27

5.3 Mux Failure . 28

6 Conclusion 31

6.1 Future Work . 31

6.1.1 Memory Dependency Graph . 31

6.1.2 Feedback control . 31

Bibliography 33

vi

1 Introduction

Compilers transform code written in high-level languages into semantic equivalent machine-

level languages through analysis and subsequent transformations. First, the compiler uses

syntax and semantical analysis to convert the source code into an intermediate repre-

sentation, which is independent from the source language and may be modi�ed in an

optimization phase. Finally, the transformation phase of the intermediate representation

produces the representation in the target language. [1]

FIRM [11] is a graph-based intermediate representation that was developed for compilers

and the research thereof at the University of Karlsruhe. The library libFirm [4] implements

FIRM and provides an interface to be used in compilers to create FIRM graphs representing

the source code, to optimize FIRM graphs and to derive code for di�erent target machines

from them. [1]

Software, which is not written in assembler code for a speci�c target machine, relies on

the correct implementation of compilers to ensure its correctness. Unfortunately, the

process of source code analysis, optimization and code generation in compilers cause an

increase of complexity and the likelihood of faults and wrong behavior. Therefore the

implementation of compilers and their components has to be subject to rigorous testing to

guarantee a maximum of reliability. In addition to hand-crafted test cases to detect bugs

in compilers, random test case generators can be used to �nd bugs, as they can produce

hundreds or thousands of bug inducing test cases. The University of Utah displayed the

e�ciency of test case generators with the inception of Csmith, a generator producing

random C programs to test C compilers, which was able to lead to the discovery of more

than 325 previously undetected bugs across multiple compilers. [12]

In order to ensure the FIRM implementation’s quality and performance and to mitigate

regressions in newer versions, the libFirm team maintains a �exible test suite. The test

suite uses the libFirm-based C compiler Cparser to compare the processing of a collection

of C programs known to be problematic with expected results and behavior, and thereby

1

1 Introduction

the implementation of libFirm is indirectly tested. Existing random test case generators

producing C programs, have been used by the libFirm team to create some of the test cases

for the suite and to uncover bugs in their implementation.

The main goal of this thesis is to create a new test case generator to improve the quality

of libFirm. The secondary objective is to increase durableness of bug inducing test cases.

Instead of relying on compiler front ends to generate the FIRM graphs from a source

language, we directly create FIRM graphs to test libFirm’s optimization and code generation

routines. The hypothesis is that generating the FIRM graphs directly achieves a higher

coverage of libFirm by relying on features not currently used by compiler front ends and

that test cases triggering libFirm bugs are una�ected by compiler front end changes.

2

2 Background

Compilers process code written in a programming language and translate it to a seman-

tically equivalent representation, which is executable on a speci�c target machine. The

compilation process may be split into three di�erent parts, namely the front, middle and

back end. First, the front end analyzes the source code and converts it to an intermedi-

ate representation (IR). Subsequently the IR may be subjected to an optimization phase

in which the middle end performs target machine independent optimizations on the IR.

Finally, the back end generates the code for the target machine from the IR emitted by

the middle end. [1]

2.1 FIRM

The intermediate representation results from the analysis of source code, and must be

able to describe the di�erent semantics found in one or multiple source languages. The

semantics in objective and imperative languages can be modeled using control and data

�ow, which express constructs such as conditionals, loops, branches, method calls and

data dependencies. The IR is also the subject of optimizations in the compiler’s middle

end. Therefore the data structure implementing the IR must allow to e�ciently perform

program optimizations. The IR must furthermore be resembling the target machine code,

as it is converted by the code generating back end of compiler software into the target

language. [5].

FIRM is an intermediate representation for object oriented and imperative languages

that was developed for compilers and the research thereof at the University of Karlsruhe.

The name FIRM stands for Fiasco’s intermediate representation mesh, as it was inititally

conceived as part of the Fiasco compiler before its implementation was extracted into the

open source library libFirm.

FIRM organizes the code representation hierarchical. At the top of the hierarchy is the

representation of the entire program with all its available methods, types and entities.

Methods describe the control and data �ow using explicit dependency graphs, which are

3

2 Background

directed, marked graphs. [4] The nodes have ordered inputs and outputs and an associated

operation. The edges represent either control �ow, data �ow or memory dependencies and

thereby form reversed �ow graphs. An example of a complete FIRM graph is displayed in

Figure 2.1.

2.1.1 Control Flow

The control �ow of a function describes the order in which instructions of a program

are executed. Graphs modeling the control �ow are referred to as control �ow graphs

(CFGs). The nodes in a CFG represent basic blocks. Basic blocks are implicitly de�ned

by the source code and contain the representation of instructions, which are bound to be

executed before the control �ow is changed. Therefore branches directing the control �ow

from one basic block to another must only be conducted after all other non-branching

operations have been performed. The edges in a CFG represent the transfer of control

induced by these branches. Each CFG consists of at least one entry and one exit block,

which identify the start and end of a function’s control �ow. Entry blocks must not have

any incoming edges and exit blocks must not have any outgoing edges. [1]

As FIRM uses dependencies to express the relation between di�erent control �ow blocks,

its dependency graph equals a reversed control �ow graph, where the dependency edges

point into the opposite direction of the �ow edges. Furthermore FIRM refers to Entry and

Exit nodes as Start and End blocks. In order to traverse the control �ow blocks in FIRM,

the End block is used as a starting point for the traversals of the predecessors. Blocks

which are unreachable by the traversal will be removed during dead code elimination. In

order to preserve endless loops that prevent the �ow from reaching the end node, an edge

referred to as keep alive edge has to be introduced to connect the end node with a node

belonging to the loop.

2.1.2 Data Flow

FIRM’s data representation adheres to the Static Single-Assignment (SSA) property, which

ensures that every variable in the program is only assigned once, in order for variable

uses to always relate to exactly one de�nition. As values of variables might depend on

the control �ow, a special Phi-function is introduced by SSA, which references values

inside the predecessor control �ow blocks. Reverting a data �ow graph yields a data

dependency graph, in which the data dependency edges are in the opposite director of the

�ow edges. Every node in the data dependency graph represents a value and references

the nodes representing the values it depends on. Due to the SSA-form the reference to

4

2.1 FIRM

fib

Start Block 201

Proj X true 214

Proj M M 206

Proj X false 215

Cond 213

Cmp b less_equal 212

Const 0x1 Is 211Proj Is Arg 0 208

Proj T T_args 205

Start 203

End Block 199

End 200

Block 217

Jmp 225

Block 235

Return 243

Block 216

Return 218

#LOOP-8

Block 226

Phi[loop] 227 Phi Is 242

Const 0xFFFFFFFF Is 223

Phi Is 236

Const 0x0 Is 219 Phi Is 237

Const 0x1 Is 211

Proj X false 233 Proj X true 232

Cond 231

Cmp b less_equal 230

Phi Is 228

Const 0x2 Is 209

Block 234

Add Is 238

Jmp 241

Add Is 240

Const 0x1 Is 211

0

0

0

00

0

0 1

0 1 1 0

11 1

0 1 01

1

0 0 1

0 1

01

0 0

0

0 1

01

0

1 00 11

1

0

0

0

0

0 1

0

0

0

1

0

1

1

1

Figure 2.1: FIRM graph of method calculating Fibonacci number

5

2 Background

1 in t i s P r i m e (in t x) {

2 in t r = 1 ; / / (En t r y)
3 in t i = 2 ; / / (En t r y)
4 while (i < x && r == 1) { / / (a)
5 i f (x % i == 0) { / / (b)
6 r = 0 ; / / (c)
7 }

8 i ++ ; / / (d)
9 }

10 return r ; / / (e)
11 } / / (E x i t)

Entry

a

b

c

d

e

Exit

Figure 2.2: This �gure shows a sample C function, which determines whether x is prime

and its corresponding control �ow graph. The entry node takes care of the

variable initialization performed in line 1 and 2. Block a represents the loop

header, which directs the control �ow either to node b, the body of the loop, or

to e the next block after the loop. Block b represents the If-statement which

leads to c if the condition is ful�lled or otherwise to d , where the loop counter

is increased and the �ow is redirected to the loop header. After c modi�ed the

result variable, the �ow is also directed to d . From e the exit node is reached

and the function call is ended.

6

2.1 FIRM

the dependency is unambiguous and unique, in contrast to non-SSA-form, where multiple

de�nitions of a variable might exist.

FIRM nodes are always associated with prede�ned operations, which can be divided in two

groups. The �rst group represents constructs as found on target machines, e.g. constants,

comparisons, branches, algebraic or memory operations, whereas the second group relates

to FIRM internal logic allowing to model blocks, synchronization, memory and tuples.

Throughout this paper, nodes associated with an operation named op will be referred to as

op-node.

Nodes consume di�erent amounts of inputs and outputs depending on the associated

operation. The output is always a single value, but may be a tuple to combine multiple

output values. Proj-nodes can be used to extract individual results from tuples. As FIRM

adheres to the Static Single-Assignment property, which ensures that every variable in the

program is only assigned once, uses of variables always relate to exactly one de�nition,

which can be referenced by the node. Nodes can directly reference their dependencies as

they have exactly one de�nition.

2.1.3 Graph Uniformity

FIRM’s explicit dependency graphs allow to describe both the control and data �ow of

methods in a single uniform graph. In order to achieve uniformity, control �ow blocks are

represented by Block-nodes. All nodes referring to non-block operations belonging to a

block have the Block-node as input. Thereby the nodes in a block only become executable

once the corresponding Block-node becomes available. The Block-nodes themselves have

branching operations as input and become executable once one of possibly multiple inputs

are available. The branch nodes are only marked executable once all data dependencies

have been resolved.

2.1.4 Modes

Modes in FIRM relate to data types, which can be directly mapped to a representation on

the target machine, e.g. integers, �oating point types and pointers. FIRM also has special

boolean and memory modes, which are used as the result of comparisons and memory

operations respectively.

All FIRM nodes are typed with modes and have requirements on their inputs’ modes. The

nodes representing a certain operation may have a �xed modes or modes deduced from

7

2 Background

the inputs. The restrictions on allowed input modes and the deduction rules to determine

a node’s mode specify how di�erent nodes of di�erent operations can be connected with

each other.

2.1.5 Types

The type representation in FIRM is closely linked together with the code representation

and gives information about the types’ memory layout, their size and composition.

Primitive types are made up of integers, �oating points and characters and are always

associated with a mode that speci�es how the type will be represented on the target

machine. Compound types such as structs and unions are composed of possibly multiple

members, which form a named relation between the compound type and the member type

it encloses. Method types represent the types of methods, functions and procedures. They

contain a list of the parameter and result types, as these are part of the type description

Furthermore there are also types for modeling arrays.

2.2 Random Testing

Test case generators rely on di�erent techniques to create test cases. Random test case

generators create random inputs for the programs or functions to be tested[8]. grammar-

based test case generators create input by randomly applying productions of a grammar

and genetic test case generators repeatedly mutate a corpus of inputs and incorporate

mutations triggering interesting or new behavior in the test subject.

2.2.1 Existing Test Case Generators

libFuzzer The LLVM Project [10] aggregates a set of compiler technologies and is most

famous for the LLVM Core and the clang compiler. Both technologies revolve around an

intermediate representation (IR) of program code. The LLVM Core provides architecture

independent optimizations, which can be applied on the IR, as well as a code generation

backend to translate the IR to assembly for the target architecture. The clang compiler is a

frontend to translate C(++) and Object-C code to the IR.

In January 2015 the LLVM Project introduced libFuzzer [9], a tool to randomly test its

subprojects. libFuzzer is an instrumenting and generative fuzzer for LLVM components.

It uses a set of input �les, referred to as corpus, as a starting point and mutates them

8

2.2 Random Testing

to test the components. Mutations which increase the code coverage are included in

the the corpus and will be used to derive from in future mutations in order to strive for

maximum code coverage. The testing of the components is made possible by the creation

of entrypoints, which take the random input from the fuzzer and use it in the interaction

with APIs. The random input can also be generated by other fuzz engines, such as AFL[13]

or Radamsa[7]. Furthermore libFuzzer may be supplied with a dictionary of input related

keywords to be used in the generation of mutations. It also supports the detection of

CMP instructions and mutations based on their operands, as well as sanitizers to uncover

memory leaks.

Multiple entrypoints have been created for libFuzzer to independently fuzz the di�erent

LLVM components, such as the clang compiler and LLVM’s assembly and machine code

processing implementations.

Csmith Csmith[12] is a randomized-test generation tool developed at the University

of Utah. It creates random C programs, which cover most of the language’s features.

Unspeci�ed behavior is avoided by Csmith in order to ensure that compilations of same

C program with di�erent compilers always produce the same output. The determinism

of the output binaries allow to use di�erential-testing, which compares the output of the

executables generated by di�erent compilers, and thereby to discover wrong-code bugs.

The random C programs generated by Csmith were used to test many di�erent C compilers

and discovered over 325 previously unknown bugs.

KTH The random-test case generator developed at the KTH Royal Institute of Technology

in Stockholm as part of the thesis "Random Testing of Code Generation in Compilers" uses

a grammar-based approach to create an intermediate representation to the test LLVM’s

code generation. [3]

9

3 Design

In this chapter, we �rst detail the design goals and the limitations to the scope of the thesis.

test case generator FirmSmith. Afterwards we present our grammar based approaches to

generate both control and data �ow for FirmSmith’s test cases.

FirmSmith’s main objective is to enable the detection of previously undetected bugs in

libFirm, which are either impossible or very unlikely to be found by relying on speci�c

libFirm-based compilers. It should also serve as an exhaustive tool allowing to test new

library features even before they are being used by compilers. Furthermore should Firm-

Smith be able to repeatedely produce indentical FIRM graphs and be una�ected by changes

in libFirm-based compilers. Otherwise test cases could result in di�erent FIRM graphs,

which do not trigger the same behavior and bug in libFirm.

In the pursuit of the above mentioned goals, we chose to let FirmSmith directly build FIRM

graphs instead of relying on the transformation of source code by front end. Thereby

we can exhaust all of the available FIRM semantics are theoretically able to create every

possible graph.

In order to reduce the extent of this thesis, we partially exclude FIRM semantics in the

generation of test cases. We limit ourselves to the generation of reducible control �ow

graphs and a linear memory dependency model. Furthermore we do not generate test cases

to check the handling of exceptions and we focus on the testing of libFirm’s middle end,

which performs target independent optimizations. The testing of the library’s handling of

invalid FIRM graphs is omitted and out of scope for FirmSmith.

3.1 Control Flow

The advantage of a graph based representation of a function’s control �ow is that its

mathematical structure allows to formalize the �ow and transformations applied upon

it. Hecht[6] gives a formalization of a �ow graph in De�nition 1, which will be used

subsequently as basis to de�ne transformations.

11

3 Design

De�nition 1 A �ow graph is a triple G = (N ,E,n0), where:
(1) N is a �nite set of nodes.
(2) E is a subset of N x N called the edges. The edge (n1,n2) enters node n2 and leaves node
n1. We say that n1 is a predecessor of n2, and n2 is a successor of n1. A path from n1 to nk
is a sequence of nodes (n1, ..,nk) such that (ni ,ni+1) is in E for 1 < i < k. The path length of
(n1, ..,nk) is k − 1. If n1 = nk , the path is a cycle.
(3) n0 in N is the initial node. There is a path from n0 to every node.

3.1.1 Reducibility

CFGs of goto-less programs possess the reducibility characteristic, as de�ned by Allen [2].

Hecht[6] proved that these CFGs may be reduced to a single node by iteratively applying

two simple graph transformations T1 and T2, as formalized in De�nition 2 and De�nition 3,

in an arbitrary order.

De�nition 2 LetG = (N ,E,n0) be a �ow graph. Let (n,n) be an edge ofG . Transformation
T1 is the removal of this edge.

De�nition 3 Let n2 not be the initial node and have a single predecessor, n1. Transformation
T2 is the replacement of n1, n2 and (n1,n2) by a single node n. Predecessors of n1 become
predecessors of n. Successors of n1 or n2 become successors of n. There is an edge (n,n) if and
only if there was formerly an edge (n2,n1) or (n1,n1).

T1 may be applied on a node n in the CFG, which has a self-loop, an edge pointing to

itself, T1 removes that edge, whereas T2, if applied to a node n2 is merged together with

its single predecessor n1, into a uni�ed node n. The resulting node n has exactly one edge

to the successors of the previous nodes n1 and n2. Figure 3.1 shows an example of how

the application of the transformations T1 and T2 can be combined to reduce a control �ow

graph to a single node.

3.1.2 Inversed Reducibility

The reducibility characteristic is useful for the generation of random control �ow graphs, as

demonstrated by Hansson[3], inasmuch as that if we are inversing the process of reducing

the graph into a single node, we can generate any arbitrary reducible graph by applying

graph transformations on an initial graph containing a single node. As any reducible

graph can be reduced into a single node, the transformations T1 and T2 cannot possibly

be injective and the reverse images projected by the inversed transformationsT 1−1 and/or

12

3.1 Control Flow

S

a

b

c

d

e

E

G0

S

a

bc

d

eE

G1 = T 2(G0,E)

G2 = T 2(G1, c)

S

a

bcdeE

G3 = T 2(G3,d)

S

abcd

e, E

G4 = T 2(G3,bcd)

S

abcd

eE

G5 = T 1(G4,abcd)

S

abcdeE

G6 = T 2(G5,abcdeE)

SabcdeE

G7 = T 2(G6,abcdeE)

Figure 3.1: Reducing the control �ow graph of prime-testing method presented in

Figure 2.2 using the transformations speci�ed in De�nition 2 and De�nition 3.

13

3 Design

T 2−1 must be a set with multiple graphs. As a matter of convenience, we will denote the

inversed transformations T 1−1 and T 2−1 as I1 and I2 respectively.

Applying I1 to a node n results in adding the edge (n,n) and underlies the condition that

the edge (n,n) does not already exist, I2 if applied on a node n with l successors, adds a

new node nnew . Every successor of n may result in either a successor of n1, n2 or both.

As there are these three possible choices for the successors, the image of I2 contains of

3
l

di�erent graphs. I2 must not be applied on the start node in order to ensure that we

always have a valid start node.

De�nition 4 Let G = (N ,E,n0) be a �ow graph. Let n be a node of G where (n,n) < E.
Then the transformation I1 adds the edge (n,n).

I1(G,n) = (N ,E ∪ (n,n),n0)

De�nition 5 LetG = (N ,E,n0) be a �ow graph andn , n0 ∈ N with l successors {s0, . . . , sl−1}
and Ens = {(n,x) | x ∈ N)} the set of edges connecting the node n with its successors. Then
we de�ne the transformation I2 as adding a node nnew as follows:

I2(G,n) = {I2w (G,n) | w ∈ {0, 1, 2}
l }

I2w (G,n) = (N ∪ {nnew },m(w),n0)

wherem : {0, 1, 2}l → P (N × N), l ∈ N and e : {0, 1, 2} → P (N × N) are de�ned as:

m(w) = (E \ Ens) ∪ *
,

⋃
0≤i< |w |

e (si ,wi)+
-

and

e (z,x) =




{(n,x)} if z = 0

{(nnew ,x)} if z = 1

{(n,x), (nnew ,x)} if z = 2

3.1.3 Graph Construction

FirmSmith constructs the control �ow graph by applying a random sequence of the

transformations presented in section 3.1.2 until the necessary number of blocks is reached.

14

3.1 Control Flow

1

G0

1

2

G1 = I2ϵ (G0, 1)

1

2

3

G2 = I2ϵ (G1, 2)

1

2

3

G3 = I1(G2, 2)

=⇒ Succ (2) = {3, 2}

1

2

43

G4 = I201(G3, 2)

1

2

4

5

3

G5 = I21(G4, 4)

1

2

4

6

5

3

7

G6 = I22(G5, 4)

G7 = I2ϵ (G6, 3)

Figure 3.2: Construction of the control �ow graph of prime-testing method presented in

Figure 2.2 using the transformations speci�ed in De�nition 4 and De�nition 5.

15

3 Design

The blocks have forward edges pointing to their successors as well as backward edges to

their predecessors in order to allow both top-down and bottom-up traversal of the graph.

The construction of the control �ow graph is succeeded by the conversion to a FIRM

graph by introducing Block-nodes and branch nodes. Conditional branch nodes depend

on temporary placeholder values, whose replacement is discusses in section 3.2.

3.2 Data Flow

FirmSmith iteratively builds the FIRM data dependency graph. First we create placeholders

for FIRM nodes and link them to control �ow blocks. The data �ow graph is gradually

expanded by replacing these placeholders by more complex expressions. The operands to

these expressions might themselves be placeholders. Thereby we are able to expand the

data �ow graph to a desirable size.

As variables in SSA-form are always unambiguously de�ned by the result of a single

operation, FIRM mostly omits the notion of variables. FIRM nodes simply represent an

operation, the result thereof and the mode of the result. The operands of these operations

are other nodes, representing other operands. FirmSmith reintroduces the notion of

variables as combinations of a FIRM node and a FIRM type. Furthermore, these variables

inherit the properties of FIRM nodes, in particular, the SSA-property. They are also always

linked to a control �ow block.

FirmSmith uses dummy variables as placeholders for future data. Dummy variables are

variables with a �xed type and a Dummy-node. In subsequent steps, the Dummy-node

can be replaced by any FIRM operation, which supports the variable’s type. We refer to

the process of replacing Dummy-nodes as resolving a variable.

Replacing a variable either creates new dummy variable, which need to be resolved, in

the same CFB or in case of a Phi-node in the predecessor CFBs. Therefore we traverse

the blocks in the CFG from bottom to top and resolve the variables for every CFB. When

replacing a dummy variable and �ll in an actual FIRM node, we must to consider the mode

of the FIRM node. Hence we categorize the strategies to resolve variables depending on

their ability to replace a FIRM node with a certain mode. Operand consuming operations

expand the size of the graph and are chosen with decreasing probability, as the graph is

reaching the desired size. On the contrary, operations which consume no operands limit

the size and chosen with increasing probability. The probability of choosing semantics

16

3.3 FIRM Types

that are expanding the graph decrease as the graph grows in order to force the number of

variables to converge to zero.

3.3 FIRM Types

Supporting multiple types in FirmSmith is essential to create diverse randomized programs

and to stress a higher portion of the FIRM implementation. Therefore we generate random

FIRM types to be used in our test case generation. The construction of these random

types is strated by creating an initial set of primitive types, which will be used to compose

compound types. The set of generated types may then be used in the construction of

random method types.

3.4 Bug Classification

Random test generators are able to always create new test cases, which trigger software

bugs, as long as they run. Inspecting hundreds or thousands of failed test cases is unfeasible

and ine�cient for a human operator. Therefore we need to reduce the amount of test cases

to be evaluated and to classify the test cases in groups relevant to a speci�c bug together,

so that only test cases the most favorable to analyses may be inspected in order to �nd the

fault.

Software bugs may manifest as di�erent symptoms, crashes, early abortions, wrong

results or non-termination. [12] The manifested symptoms are used to group the failure

inducing test cases into di�erent categories. We work under the presumption, that di�erent

bugs show di�erent symptoms, and that the same bugs show the same symptoms. This

represents a trade-o�, as the symptom resulting from one bug may hide another and

multiple bugs may indeed result in the same symptom, especially in case of abortions due

to constraint violations in the software.

In order to isolate the e�ects of bugs from each other, we reduce the covered by each

compiler run. We investigate speci�c optimizations one by one and thereby prevent bugs

in previously run optimizations to a�ect subsequently run ones. Furthermore we analyze

the assertion and veri�cation messages, as well as the stacktrace to classify bugs.

17

4 Implementation

This chapter describes the implementation details our test case generator and gives an

overview over the construction of test cases.

We decided to separate the test runner from the actual test case generartion, which we

made the sole concern of FirmSmith. Therefore FirmSmith’s only task is the generation of

random FIRM graphs. Its responsibility is to accept a seed for its Pseudorandom number

generator and options for constraining the FIRM graph. In order to test libFirm with

random generated graphs, we created a fuzzer, which takes the output from a random test

case generator and uses it as an input to a program interfacing libFirm’s optimization and

code generation functionality.

4.1 Control Flow

As FIRM requires that every graph has at least a Start and an End block, we �rst create a

CFG with two connected nodes. In order to expand the graph, we randomly choose a node

from the current version of the CFG and pick either the transformation I1 or I2. If the

node does violate the constraints underlying the application of the chosen transformation,

we start over again and choose a new node and a new transformation. Otherwise the

graph is enlarged by applying the chosen transformation to the chose node.

The transformation I1 does not increase the number of the nodes, but does increase the

amount of edges. I1 can always be applied to the nodes of the CFG, if they have not already

a self-loop. As a measure to ensure that the CFG has always one start block and at least

one exit block, we disallow applying I1 to either the initial start block or to exit blocks.

The transformation I2 does increase the number of nodes exactly by one and the number

of edges at least by one. Therefore in order for our CFG to reach a designated amount

of c nodes to ensure a certain size, we need to apply I2 exactly c − 2 times to the initial

version of the CFG. I2 may also create new exit blocks, if the node it is applied on has no

19

4 Implementation

CFBs = [startBlock, endBlock] ;

for i = 0; i ≤ c - 2; i++ do
N = NULL ;

while N == NULL do
T = pick random ∈ {I1, I2} ;

B = pick random ∈ CFBs ;

if T appliable on B then
if T == I1 then

I1(B)

else
N = I2(B) ;

B.append(N) ;

end
end

end
end

Figure 4.1: Construction graphs using the transformations detailed

in De�nition 4 and De�nition 5

successors or none of them are chosen to be added to the new node. The algorithm for the

generation of the control �ow graph is displayed in Figure 4.1.

Once the CFG construction is completed, we need to translate it from FirmSmith’s internal

representation to FIRM’s representation, which requires us to translate the nodes in the

CFG to FIRM blocks and create FIRM branching operations inside these blocks and register

them as predecessors to the blocks corresponding to our nodes. Therefore we traverse

the nodes in the CFG beginning at the start node, create blocks for every successor node,

create the branching operations for the block belonging to the currently traversed node,

and add these operations as predecessor to the blocks belonging to the successor nodes.

This traversal results in a new FIRM graph, where the nodes are de�ned by blocks and

the edges by the blocks pointing to the branching operation in the predecessor. Blocks

always require at least as many branching operations as they have successor nodes. The

references from blocks to the branching operations in their predecessors correspond to the

edges in our CFG. Therefore for a block with a single successor, we create an unconditional

jump operation. For a block with two successors, we create two Proj-nodes depending on

20

4.2 Type Generation

a boolean condition, for which we add a dummy variable to the graph. For more than two

successors, we use a switch to determine to which successor to redirect the control �ow.

The di�erent switch cases depend on an integer, for which we add a corresponding dummy

variable. If a block has no successor, we encounter a possible a exit of the functions an

create a Return-node and dummy variables for the di�erent return values.

4.2 Type Generation

Primitive as well as random compound types to be used in the test case are created during

initialization process and is based on three subsequent steps.

The �rst step is to create primitive types, which all other randomized types will be based

on. We create primitive types for numbers, booleans and pointers and add them to a type

pool. This pool contains all the types available to the type generation algorithm.

After the initial pool of primitive types has been established, we create the desired amount

of compound types and randomly pick either a struct or union type to be created. The

compound type may be composed of an arbitrary number of types which are then referred

to as entities of the compound type. The entities’ types may either be already de�ned

types, pointers to these, or pointers to the enclosing type, thereby forming a recursive type.

Beside the type information, the entities also store the o�set of that type in the compound

type, so that in a lowering phase, the correct pointer arithmetic can be deduced. After

the compound type was constructed, it is added to the pool of available types and can

therefore be included as an entity by following compound type constructions.

In a third an �nal step, we create a given number of method types for the functions we

want to generate. The method types describe the prototype of a method and thereby the

types of the parameters and results. The returning of multiple result values is supported,

but must also be made possible by the used calling convention. The di�erent types referred

to by the method types are randomly picked from the pool. Method types are not added to

the previously �lled type pool, as we do not support the passing of functions as parameters

or results.

4.3 Data Flow

The generation of the data �ow relies on the incremental replacement of placeholders as

already explained in section 3.2. Additional to the set of dummy variable created during the

21

4 Implementation

Operation Number Pointer Boolean

Constant 3

Algebraic 3

Convert 3

Minus 3

Memory Allocation 3

Memory Load 3

Member 3

Compare 3

Existing 3 3

Mux 3 3 3

Phi 3 3 3

Function call 3 3 3

Figure 4.2: Table shows the supported operations for the di�erent kinds of variables

control �ow graph conversion described in section 4.1, we add already resolved variables

to the start block to represent parameters passed to the function.

For every control �ow block the replacement of a dummy variable is subdivided in three

steps. First, a resolver class is chosen based on the dummy variable’s type. Three resolver

classes exist for distinguishing the replacement of numbers, pointers and booleans, which

are listed in Figure 4.2 together with the strategies they support. Second, the probabilities

for each replacement strategy are calculated. Finally, a replacement strategy is picked

according to the computed probability distribution. If the dummy variable’s type is not

supporting the chosen strategy, a new one is randomly picked using the same distribution.

The probability for each replacement strategy depends on an interpolation of a start

and end weight using the ratio of the actual block size to the desired size as parameter.

The weights can individually be de�ned for every strategy. After the weights have been

calculated the probability of choosing a strategy equals the ratio of its weight to the total

weight.

22

4.3 Data Flow

Preserving SSA-form If we replace a variable with an existing FIRM node, we must ensure

that the node does not directly or indirectly depend on the the variable’s uses. This is in

particular important when replacing dummy variables with already resolved variables.

We determine whether a variable depends on another by traversing all its predecessors

inside the control �ow block. If we encounter the dummy variable during the traversal

of the predecessors, the variable depends on the dummy variable and cannot be used as

replacement. Figure shows a valid replacement of a graph with dummy variables followed

by a replacement violating the SSA-property.

+

? ?

+

? -

? ?

+

? -

?

Figure 4.3: SSA-form violating replacement. First an operand of the Add-node with two

dummy variables is resolved by placing a Sub-node and introducing two new

dummy variables. Second, an operand for the Minus-node is replaced by the

existing Add-node, which is an SSA-violation as the Add-node already depends

on the Minus-operand.

23

5 Evaluation

This chapter describes the evaluation of our implementation through inspecting and

comparing the e�ciency FirmSmith’s generated test case to those of Csmith. First, we

introduce the evaluation setup followed by the results of the evaluation and a discussion

thereof.

5.1 Fuzzer

In order to methodically run the generated test cases against libFirm, we developped a

generic fuzzer that allows to switch between multiple FIRM graph producing test case

generators, as well as between multiple libFirm entry points. Therefore we seperated

the fuzzer conceptually in a front and a backend as shown Figure 5.1. The frontend runs

the test case generators and provides the test case. The test case is then used as an

input to test the di�erent optimizations exposed by the backend. The backend wraps

the programs serving as entry points to the libFirm implementation. In order to isolate

bugs stemming from the optimization functions, the backend should allow to perform

optimizations individually. Furthermore the fuzzer is a able to create reports for failed or

crashing backend executions and assists with categorizing the bugs.

Seed

FirmSmith

Csmith Cparser

test case

custom

entry point

Cparser

Report

Figure 5.1: Architecture of test runner

For our test setup we created two frontends to run FirmSmith and Csmith respectively. As

Csmith produces random C programs and not FIRM graphs, the Csmith frontend relies

on Cparser to convert the C program to a FIRM graph while ensuring that Cparser does

25

5 Evaluation

not already perform any optimizations on the test case before it is passed to the backend.

Furthermore we wrote two backends to wrap both CParser and a custom entry point. The

custom entry point allows to directly run libFirm’s optimization functions on the FIRM

graphs represented in the test cases.

5.2 Results

We tested 37 di�erent optimizations, of which 6 and 12 crashed when confronted with

test cases genereated by the Csmith and FirmSmith frontend respectively. However the

number of optimizations does not directly correlate with the number of distinct bugs,

as the optimizations depend on shared code to gather information and to transform the

the graph. Only further manual analysis can help to clarify, whether multiple crashes

are related. For example, our fuzzer’s bug classi�er grouped the several crashes found

in the local, deconv, if-conversion and shape-blocks together, because they failed with the

veri�cation message, that a block was unreachable.

Optimization Csmith FirmSmith

combo 3

deconv 3

gcse 3

gvn-pre 3

if-conversion 3

local 3

lower-mux 3

parallelize-mem 3 3

reassociation 3 3

remove-phi-cycles 3 3

shape-blocks 3 3

target-lowering 3

thread-jumps 3 3

Figure 5.2: Optimization bugs discovered by FirmSmith and Csmith

26

5.2 Results

5.2.1 Coverage

We use both FirmSmith and Csmith to generate 500 test cases each and collected informa-

tion about which code was covered in libFirm. We focused on analysing the code coverage

in libFirm’s optimization subfolder in order to analyze which code is run and what FIRM

graph constructions are not generated by FirmSmith. The code coverage is displayed in

Figure 5.3.

File Csmith FirmSmith

boolopt.c 46.8% 24.8%

cfopt.c 88.0% 94.9%

code_placement.c 96.2% 96.2%

combo.c 89.0% 91.1%

convopt.c 94.3% 92.2%

critical_edges.c 82.4% 82.4%

dead_code_elimination.c 100.0% 100.0%

funccall.c 69.7% 69.7%

garbage_collect.c 94.6% 68.9%

gvn_pre.c 95.7% 97.1%

ifconv.c 86.7% 89.3%

instrument.c 0.0% 0.0%

ircomplib.c 56.2% 56.2%

irgopt.c 99.0% 99.0%

iropt.c 69.2% 72.3%

iropt_t.h 100.0% 100.0%

jumpthreading.c 80.9% 86.4%

File Csmith FirmSmith

ldstopt.c 73.4% 58.2%

loop.c 23.4% 56.1%

occult_const.c 100.0% 100.0%

opt_blocks.c 95.0% 94.8%

opt_con�rms.c 2.3% 2.3%

opt_frame.c 100.0% 17.2%

opt_inline.c 76.3% 40.0%

opt_osr.c 84.9% 49.3%

parallelize_mem.c 100.0% 95.3%

proc_cloning.c 25.1% 24.7%

reassoc.c 76.9% 84.7%

return.c 93.1% 93.1%

rm_bads.c 33.3% 63.5%

rm_tuples.c 92.0% 92.0%

scalar_replace.c 87.2% 7.3%

tailrec.c 16.1% 89.6%

unreachable.c 81.1% 81.1%

Figure 5.3: Coverage report of libFirm’s optimization implementation after running tests

against both the FirmSmith and Cparser backend

FirmSmith realized 70% a coverage, whereas Csmith realized 84%. FirmSmith disadvantage

considering the code coverage mainly lies in the lacking support for arrays, a more complex

memory model and global variables. FirmSmith’s advantage stems from the fact that it

has more nesting and a more diverse combination of operations.

FirmSmith scores a lower code coverage in the boolean optimization, which to optimize

boolean conditions by transforming logical combinations of boolean conditions into a

27

5 Evaluation

more e�cient representation. FirmSmith does not produce these constructs, although

it is theoretically possible to do so, due to the probability distribution used in the data

�ow generation. Furthermore FirmSmith does not induce as many optimizations in the

Load/Store optimization, as it only allow linear memory dependencies.

5.3 Mux Failure

The Mux-node is a node available in FIRM to implement a multiplexer. It accepts a boolean

selector and takes two other inputs. Depending on the selector’s value being either false or

true, the �rst or second input is passed as output respectively. Compilers could for example

use the Mux-node to implement expressions or assignments using a ternary operator.

Additionally libFirm converts if-conditions into Mux-nodes in the optimization phase.

During the fuzzing of the Mux lowering optimization, we encountered an assertion fail

for almost every generated test case. The excerpt of the stacktrace in Figure 5.5 con�rms

that the failure is encountered, while the compiler is in the code generation phase and

trying to lower the Mux-nodes. The error output displayed in Figure 5.4 together with the

extended stacktrace shows that the failure is due to a node being a Proj-node instead of a

Phi-node as expected.

Assertion failed: (is_Phi_(phi)), function set_Phi_next_, file ./ir/ir/

irnode_t.h, line 671.

Figure 5.4: Failed assertion during Mux-node lowering

In the lowering phase FIRM replaces the Mux-node with a construction of conditional

jumps and a Phi-node if Mux operations are not supported by the target architecture. First,

the control �ow block containing the Mux-node is split into a lower and an upper part,

which are linked together with an unconditional jump from the upper to the lower block.

The lower part contains the Mux-node and all its successor nodes, whereas the upper part

contains all the predecessor nodes. Then the jump connecting the upper and lower block

is made conditional on the Mux-node’s selector node. The false jump directs the control

�ow to a newly created block, which is added as a predecessor to the lower block. The

Mux-node is then replaced with a Phi-node. The Mux-node’s inputs are then correctly

selected by the Phi-node, depending on the control �ow entering from the upper block or

the false block.

Looking at the plot of the control block containing the Mux-node in Figure 5.6, we notice

that the node’s inputs refer to the same node. This usage is permitted by the API, but

28

5.3 Mux Failure

set_Phi_next_ at irnode_t.h:671 ((ir_node *)phi=[432, Proj], (ir_node *)

set_Phi_next_ at irnode_t.h:671 ((ir_node *)phi=[432, Proj], (ir_node *)next

=[427, Phi])

add_Block_phi_ at irnode_t.h:686 ((ir_node *)block=[521, Block], (ir_node *)

phi=[432, Proj])

collect_new_phi_node at irgmod.c:115 ((ir_node *)node=[432, Proj])

lower_mux_node at lower_mux.c:73 ((ir_node *)mux=[433, Mux])

lower_mux at lower_mux.c:101 ((ir_graph *)irg, (lower_mux_callback *)cb_func

)

do_lower_mux at firm_opt.c:334 ((ir_graph *)irg)

do_irg_opt at firm_opt.c:441 ((ir_graph *)irg, (const char *)name)

do_firm_optimizations at firm_opt.c:596 ()

optimize_lower_ir_prog at firm_opt.c:757 ()

generate_code at firm_opt.c:772 ((FILE *)out, (const char *)input_filename)

Figure 5.5: Stacktrace at the time of the assertion failure displayed in �gure 5.4.

is rather rare as the usefulness of this construct is questionable. When we the lowering

algorithm tries to create the Phi-node consuming these inputs, lib�rm recognizes that the

Phi-node is super�uous and that the input nodes can be directly used. Therefore the Phi

creation API returns a reference to the Proj-node, instead of a Phi-node. Therefore the

attempt to collect the Phi-node in a next step fails, and triggers the assertion failure.

Fuzzing libFirm with IR graphs generated by Cparser’s frontend using random C programs

did not result in triggering this failure, as the current version of Cparser makes no use of

Mux-nodes to represent source code. The detection of this bug showcases FirmSmith’s

usefulness as bugs can be revealed in libFirm’s functionality even before frontends start

relying on it through automatic testing.

29

5 Evaluation

Figure 5.6: The block containing assertion fail provoking Mux-node.

30

6 Conclusion

We can conclude that FirmSmith achieves a competitive coverage of optimizations that is

comparable to the use of Csmith. Furthermore, we were able to use FirmSmith to create

test cases with bug triggering semantics, that would have been impossible to be found

with Csmith.

6.1 Future Work

Additions to FirmSmith’s graph generation algorithm could help to �nd new bugs, increase

test coverage and an easement of analyzing bug triggering test cases.

6.1.1 Memory Dependency Graph

The memory dependence graph inside a control �ow block is currently only a linear list,

but FIRM allows to specify partial memory blocks, which allow to parallelize independent

memory operations and to be merged for operations relying on multiple memory blocks.

FirmSmith could be expanded to generate these partial memory blocks.

6.1.2 Feedback control

Currently the test case construction is solely governed by the provided seed and the

speci�ed parameters. Information about how the test case impacted the execution inside

libFIRM is not considered by FirmSmith. FirmSmith could be extended by a feedback

control, which could both be used to reduce the test case size as well as for increasing the

invasiveness.

Test cases generated by FirmSmith might consist of thousands of nodes and despite a

best-e�ort to ease the detection of the fault inducing bug, it requires a lot of manual

e�ort to isolate the bug. A feedback loop could help FirmSmith to minify the test case,

by methodically removing functions, blocks and nodes, which do not lead to the bug

triggering.

31

6 Conclusion

The invasiveness by FirmSmith could be increased by feedback about which source code

during the test was covered and which control path was chosen. Furthermore FirmSmith

could try to avoid graph constructions which repeatedely lead to triggering already-

detected bugs.

32

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles, Techniques,
and Tools. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1986.

isbn: 0-201-10088-6.

[2] Frances E. Allen. “Control Flow Analysis”. In: SIGPLAN Not. 5.7 (July 1970), pp. 1–19.

issn: 0362-1340. doi: 10.1145/390013.808479. url: http://doi.acm.org/10.1145/

390013.808479.

[3] Hansson Bevin. Random Testing of Code Generation in Compilers. 2015.

[4] Sebastian Buchwald and Andreas Zwinkau. “Instruction Selection by Graph Trans-

formation”. In: Proceedings of the 2010 International Conference on Compilers, Archi-
tectures and Synthesis for Embedded Systems. CASES ’10. Scottsdale, Arizona, USA:

ACM, 2010, pp. 31–40. isbn: 978-1-60558-903-9. doi: 10.1145/1878921.1878926.

url: http://doi.acm.org/10.1145/1878921.1878926.

[5] Ron Cytron et al. “E�ciently Computing Static Single Assignment Form and the

Control Dependence Graph”. In: ACM Trans. Program. Lang. Syst. 13.4 (Oct. 1991),

pp. 451–490. issn: 0164-0925. doi: 10.1145/115372.115320. url: http://doi.acm.

org/10.1145/115372.115320.

[6] M. S. Hecht and J. D. Ullman. “Characterizations of Reducible Flow Graphs”. In: J.
ACM 21.3 (July 1974), pp. 367–375. issn: 0004-5411. doi: 10.1145/321832.321835.

url: http://doi.acm.org/10.1145/321832.321835.

[7] Aki Helin. Radamsa - a general-purpose fuzzer. https://github.com/aoh/radamsa.

[8] Roy P. Pargas, Mary Jean Harrold, and Robert R. Peck. “Test-Data Generation

Using Genetic Algorithms”. In: Software Testing, Veri�cation And Reliability 9 (1999),

pp. 263–282.

[9] LLVM Project. libFuzzer – a library for coverage-guided fuzz testing. http://llvm.

org/docs/LibFuzzer.html.

[10] LLVM Project. The LLVM Compiler Infrastructure. http://llvm.org/.

33

http://dx.doi.org/10.1145/390013.808479
http://doi.acm.org/10.1145/390013.808479
http://doi.acm.org/10.1145/390013.808479
http://dx.doi.org/10.1145/1878921.1878926
http://doi.acm.org/10.1145/1878921.1878926
http://dx.doi.org/10.1145/115372.115320
http://doi.acm.org/10.1145/115372.115320
http://doi.acm.org/10.1145/115372.115320
http://dx.doi.org/10.1145/321832.321835
http://doi.acm.org/10.1145/321832.321835
https://github.com/aoh/radamsa
http://llvm.org/docs/LibFuzzer.html
http://llvm.org/docs/LibFuzzer.html
http://llvm.org/

Bibliography

[11] Martin Trapp, Götz Lindenmaier, and Boris Boesler. Documentation of the Interme-
diate Representation FIRM. Tech. rep. 1999-14. Universität Karlsruhe, Fakultät für

Informatik, Dec. 1999. Chap. 3, pp. –40.

[12] Xuejun Yang et al. “Finding and Understanding Bugs in C Compilers”. In: SIGPLAN
Not. 46.6 (June 2011), pp. 283–294. issn: 0362-1340. doi: 10.1145/1993316.1993532.

url: http://doi.acm.org/10.1145/1993316.1993532.

[13] Michal Zalewski. american fuzzy lop. http://lcamtuf.coredump.cx/afl/.

34

http://dx.doi.org/10.1145/1993316.1993532
http://doi.acm.org/10.1145/1993316.1993532
http://lcamtuf.coredump.cx/afl/

	Abstract
	Zusammenfassung
	Introduction
	Background
	FIRM
	Control Flow
	Data Flow
	Graph Uniformity
	Modes
	Types

	Random Testing
	Existing Test Case Generators

	Design
	Control Flow
	Reducibility
	Inversed Reducibility
	Graph Construction

	Data Flow
	FIRM Types
	Bug Classification

	Implementation
	Control Flow
	Type Generation
	Data Flow

	Evaluation
	Fuzzer
	Results
	Coverage

	Mux Failure

	Conclusion
	Future Work
	Memory Dependency Graph
	Feedback control

	Bibliography

