
Institut für Programmstrukturen
und Datenorganisation (IPD)

Lehrstuhl Prof. Dr.-Ing. Snelting

Simple Verification of Rust
Programs via Functional

Purification

Masterarbeit von

Sebastian Ullrich

an der Fakultät für Informatik

Erstgutachter: Prof. Dr.-Ing. Gregor Snelting
Zweitgutachter: Prof. Dr. rer. nat. Bernhard Beckert

Bearbeitungszeit: 11. Juli 2016 – 6. Dezember 2016

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Einfache Verifikation von Rust-Programmen

Imperative Programmiersprachen sind in der modernen Softwareentwick-
lung allgegenwärtig, ihre Verwendung von veränderbaren Variablen und Ob-
jekten stellt aber ein Problem für formale Softwareverifikation dar. Pro-
gramme in diesen Sprachen können normalerweise nicht direkt auf die un-
veränderliche Welt von Logik und Mathematik zurückgeführt werden, son-
dern müssen in eine explizit modellierte Semantik der jeweiligen Sprache
eingebettet werden. Diese Indirektion erschwert den Einsatz von interak-
tiven Theorembeweisern, da sie die Entwicklung von neuen Werkzeugen,
Taktiken und Logiken für diese “innere” Sprache bedingt.

Die vorliegende Arbeit stellt einen Compiler von der imperativen Pro-
grammiersprache Rust in die pur funktionale Sprache des Theorembeweisers
Lean vor, der nicht nur generell das erste allgemeine Werkzeug zur Ver-
ifikation von Rust-Programmen darstellt, sondern dies insbesondere auch
mithilfe der von Lean bereitgestellten Standardwerkzeuge und -logik er-
möglicht. Diese Transformation ist nur möglich durch spezielle Eigenschaften
von (der “sicheren” Teilsprache von) Rust, die die Veränderbarkeit von
Werten auf begrenzte Geltungsbereiche einschränken und statisch durch
Rusts Typsystem garantiert werden. Die Arbeit demonstriert den Einsatz
des Compilers anhand der Verifikation von Realbeispielen und zeigt die Er-
weiterbarkeit des Projekts über reine Verifikation hinaus am Beispiel von
asymptotischer Laufzeitanalyse auf.

Abstract

Imperative programming, and aliasing in particular, represents a major
obstacle in formally reasoning about everyday code. By utilizing restrictions
the imperative programming language Rust imposes on mutable aliasing, we
present a scheme for shallowly embedding a substantial part of the Rust lan-
guage into the purely functional language of the Lean theorem prover. We
use this scheme to verify the correctness of real-world examples of Rust code
without the need for special semantics or logics. We furthermore show the
extensibility of our transformation by incorporating an analysis of asymp-
totic runtimes.

Contents
1 Introduction 1

2 Related Work 3

3 Background 5
3.1 Rust . 5
3.2 Lean . 9

4 The Basic Transformation 13
4.1 The MIR . 13
4.2 Identifiers . 14
4.3 Programs and Files . 14
4.4 Types . 15

4.4.1 Primitive Types . 15
4.4.2 Structs and Enums . 16
4.4.3 References . 16

4.5 Traits . 16
4.5.1 Default Methods . 17
4.5.2 Associated Types . 19
4.5.3 Trait Objects . 20

4.6 The Semantics Monad . 20
4.7 Statements and Control Flow . 21

4.7.1 The Loop Combinator . 23
4.8 Expressions . 26

4.8.1 Arithmetic Operators . 26
4.8.2 Bitwise Operators . 27
4.8.3 Index Expressions . 27
4.8.4 Lambda Expressions . 27

5 Case Study: Verification of [T]::binary_search 30
5.1 The Rust Implementation . 30
5.2 Prelude: Coping with Unsafe Dependencies 34
5.3 Formal Specification . 35
5.4 Proof . 36

6 Transformation of Mutable References 38
6.1 Lenses as Functional References . 38
6.2 Pointer Bookkeeping . 40
6.3 Passing Mutable References . 40
6.4 Returning Mutable References . 41

7 Case Study: Partial Verification of FixedBitSet 42
7.1 The Rust Implementation . 42
7.2 Prelude: Axiomatizing collections::vec::Vec 42
7.3 Formal Specification . 45
7.4 Proof . 46

8 Asymptotic Complexity Analysis 48
8.1 Classifying Asymptotic Complexity 48
8.2 Verifying the Complexity of [T]::binary_search 49

9 Evaluation 54

10 Conclusion and Future Work 56

Acknowledgements 57

References 58

1 INTRODUCTION 1

1 Introduction
Imperative programming languages are ubiquitous in today’s software develop-
ment, making them prime targets for formal reasoning. Unfortunately, their se-
mantics differ from those of mathematics and logic – the languages of formal meth-
ods – in some significant details, starting with the very concept of “variables”. The
problem of mutability is only exacerbated for languages that allow references to
alias, or point to the same memory location, enabling non-local mutation.

The standard way of verifying programs in such languages with the help of an
interactive theorem prover is to explicitly model the semantics of the language in
the language of the theorem prover, then translate the program to this represen-
tation (a “deep” embedding), and finally prove the correctness of its formalized
behavior. This general approach is very flexible and allows for the verification of
meta programs such as program transformations. The downside of the approach
is that the theorem prover’s tools and tactics may not be directly applicable to the
embedded language, defeating many amenities of modern theorem provers. Al-
ternatively, programs can be “shallowly” embedded by directly translating them
into terms in the theorem prover’s own language without the use of an explicit
inner semantics. This simplifies many semantic details such as the identification
and substitution of bound variables, but it is harder to accomplish the more the
semantics of the source language differs from that of the theorem prover. Finally,
if a function’s specification is given directly in the code using some sort of anno-
tation, a verification condition generator can directly export the proof obligation
as a formula instead of as another program. However, inserting and maintaining
the annotations for a preexisting project may be troublesome and the specification
language is often severely limited because the verification condition generator has
to parse and analyze specifications.

Regardless of the type of embedding, an explicit heap that references can point
into must generally be modeled and passed around in order to deal with the aliasing
problem. References in this model may be as simple as indices into a uniform heap,
but various logics such as separation logic [21] have been developed to work on a
more abstract representation and to express aliasing-free sets of references.

Languages with more restricted forms of aliasing do exist, however. Rust [17],
a new, imperative systems programming language, imposes on mutable references
the restriction of never being aliased by any other reference, mutable or immutable.
This restriction eliminates the possibility of data races and other common bugs
created by the presence of mutable sharing such as iterator invalidation. It fur-
thermore enables a memory-safe version of manual memory management and more
aggressive optimizations.

While the full Rust language also provides raw pointers, which are not bound
by the aliasing restriction, and other “unsafe” operations, a memory model for

2 1 INTRODUCTION

Rust (informal or formal) has yet to be proposed. We therefore focus on the
“safe” subset of Rust that has no unsolved semantic details.

We utilize safe Rust’s aliasing restriction to design a monadic shallow embed-
ding of a substantial subset of Rust into the purely functional language of the
Lean [7] theorem prover, without the need for any heap-like indirection. This al-
lows us to reason about unannotated, real-world Rust code in mostly the same
manner one would reason about native Lean definitions. The monadic approach
gives us further flexibility in modeling additional effects such as function runtime.

We first discuss the simpler cases of the translation, notably excluding mutable
references, in Section 4. We show their application by giving a formal verification
of Rust’s [T]::binary_search method in Section 5. Section 6 discusses the trans-
lation of most usages of mutable references, which is used in Section 7 for a partial
verification of the FixedBitSet data structure. We develop a Lean library for
asymptotic analysis in Section 8 and use it to verify the asymptotic runtime of
[T]::binary_search. Lastly, we present some empirical data about our coverage
of the Rust language via its standard library in Section 9.

2 RELATED WORK 3

2 Related Work
While this thesis presents the first general verification tool for Rust programs,
tools for many other imperative languages have been developed before.

The Why3 project [2] is notable for its generality. It provides an imperative
ML-like language WhyML together with a verification condition generator that
can interface with a multitude of both automatic and interactive theorem provers.
While WhyML supports advanced language features such as type polymorphism
and exceptions, it does not support higher-order functions, which are ubiquitous
in Rust code. WhyML provides a reference type ref that can point to a fresh
cell on the heap and is statically checked not to alias with other ref instances,
but cannot point into some existing datum like Rust references can. For example,
the first of the following two WhyML functions fails to type check because the
array elements are not known to be alias-free, while the second one will return a
reference to a copy of a[i].

let get_mut (a : array (ref int)) (i : int) : ref int = a[i]
let get_mut (a : array int) (i : int) : ref int = ref a[i]

In contrast, Rust can provide a perfectly safe function with this functionality.

fn get_mut<T>(slice: &mut [T], index: usize) -> &mut T

WhyML is also being used as an intermediate language for the verification of
programs in Ada [13], C [5], and Java [9]. For the latter two languages, aliasing is
reintroduced by way of an explicit heap.

The remarkable SeL4 project [16] delivers a complete formal verification of an
operating system microkernel by way of multiple levels of program verification
and refinement steps. The C code that produces the final kernel binary is ver-
ified by embedding it into the theorem prover Isabelle/HOL [18], using a deep
embedding for statements and a shallow one for expressions. The C memory
model used allows type-unsafe operations by use of a byte-size heap, but as with
WhyML, higher-order functions are not supported. The AutoCorres tool [11, 12]
then transforms this representation into a shallow monadic embedding, dealing
with the “uninteresting complexities of C” [12] on the way. The result is an ab-
stracted representation that is quite similar to ours (and in fact inspired it in part,
as we shall note below), but does not go the last mile of completely eliminating
the heap where possible. Thus the user still has to worry and reason about (the
absence of) aliasing manually or through a nested logic such as separation logic.
Without explicit no-alias annotations, the semantics of C would allow eliminating
the heap in far fewer places than those of Rust in any case.

4 2 RELATED WORK

It should be noted that our work, like most verification projects based on either
embedding or code extraction, relies on both an unverified compiler and an unver-
ified transformation tool, effectively making both part of the trusted computing
base. SeL4 is a notable exception in this, providing (at lower optimization levels)
a direct equivalence proof [22] between the produced kernel binary and the verified
embedded code, thus completely removing the original C code from the trusted
computing base.

While not an imperative language, the purely functional, total Cogent lan-
guage [19] uses linear types in the style of Wadler [25] for safe manual memory
management, much like Rust. The language is designed both to be easily verifiable
(by building on AutoCorres) and to compile down to efficient C code. As we shall
see in Subsection 3.1, the biggest differences between Wadler-style purely func-
tional linear languages and Rust are the existence of mutable references as well
as sophisticated interprocedural reference tracking in the latter. For example, an
immutable version of the aforementioned get_mut function can only be expressed
as a higher-order function in Cogent.

Finally, while arguably too specific to be called a general verification tool, we
have recently been made aware of the Rustproof student project1, which can be
used to verify Rust functions consisting of integer arithmetics, boolean expressions,
assertions, and if expressions. The function specification is given as an annotation
using Rust’s attribute syntax, which is then processed by a verification condition
generator and passed to the Z3 SMT solver [6].

1https://github.com/Rust-Proof/rustproof

https://github.com/Rust-Proof/rustproof

3 BACKGROUND 5

3 Background
We start by giving a basic introduction to our source and target languages, focusing
on the parts relevant to our work. We will discuss finer semantic details where
needed in Section 4 and Section 6.

3.1 Rust
Rust [17] is a modern, multi-paradigm systems programming language sponsored
by Mozilla Research and developed in an open-source community effort. Rust is
still a quite young language, with its first stable version having been released on
May 15, 2015. The two biggest Rust projects as of this writing are the Servo2 [1]
web browser engine and the Rust compiler rustc3 itself.

As a partly functional language, Rust is primarily inspired by ML and shares
much of its syntax, as evidenced in Listing 1. However, the syntax also shows
influences by C, the dominant systems programming language at present. Finally,
Rust also features a trait system modeled after Haskell’s type classes.

Many features of Rust other than the syntax can be explained by Rust’s desire
to feature an ML/Haskell-like abstraction level while still running as efficiently as
C, even on resource-constrained systems that may not allow dynamic allocation
at all. Most prominently, Rust uses manual memory management just like C
and C++, but guarantees memory safety through its ownership and borrowing
systems. Rust also features an unsafe language subset that allows everything-goes
programming on the level of C, but which is usually reserved for implementing
low-level primitives on which the safe part of the language can then build. In

2https://github.com/servo/servo
3https://github.com/rust-lang/rust

struct Point { x: u32, y: u32 }
enum Option<T> { None, Some(T) }

fn map<S, T, F: Fn(S) -> T>(opt: Option<S>, f: F) -> Option<T> {
match opt {

Option::None => Option::None,
Option::Some(s) => Option::Some(f(s)),

}
}

Listing 1: A first example of functional programming in Rust, showing algebraic
data types, polymorphic and higher-order functions, pattern matching, type infer-
ence and the expression-oriented syntax

https://github.com/servo/servo
https://github.com/rust-lang/rust

6 3 BACKGROUND

general, safe Rust is (thought to be) a type-safe language like ML and Haskell and
unlike either of C or C++. We focus on safe Rust in the following and in our work
in order to peruse these guarantees.

Ownership describes the application of linear types to memory management
as proposed by Wadler [25]. The owner of a Rust object is the binding that
is responsible for freeing the object’s resources (by calling a method of the Drop
trait), which generally happens at the end of the binding’s scope. Because an object
managing resources should only ever have one owner, types that implement Drop
are linear types: A value may only be used once, at which point it is consumed and
ownership is transferred to its new binding.4 In the following example, we extract
the first element from the tuple type (S, T), which is assumed to be linear when
not given specific instantiations for S and T. After passing the tuple to the function,
we are not permitted to use it again.

fn first<S, T>((s, _): (S, T)) -> S {
s

}
...

let p: (S, T) = ...;
let s = first(p);
// let t = second(p); // error[E0382]: use of moved value: `p`

In general, one way to retain access to a linear data structure would be to also
return its remainder from the function, which in this specific case would simply
give us the identity function. A much better alternative is to use references, which
provide standard pointer indirection. Because a reference does not take ownership
of the pointee, creating it is also called borrowing.

fn first<S, T>(&(ref s, _): &(S, T)) -> &S {
s

}
...

let p: (S, T) = ...;
let s: &S = first(&p);
let t = second(&p);

Here &(S, T) represents an immutable reference to (S, T), which we destruc-
ture in the function header and then obtain a reference to the substructure via
the ref keyword. Note that the compiler would stop us if we tried to extract s by
value:

4Technically, because leaking resources (i.e. not consuming the object at all) is a safe operation
in Rust, such types are merely affine. However, the distinction is not relevant for our purposes.

3 BACKGROUND 7

error[E0507]: cannot move out of borrowed content

Still, coming from other languages with manual memory management, borrow-
ing might look like a potentially unsafe thing to do: The function signature does
not tell the callee that the returned reference is only valid as long as the tuple.
Even Wadler tells us that a temporary reference to a linear value must be checked
not to escape from the local scope. Indeed, it seems like the following program
should produce a dangling pointer.

fn dangling() -> u32 {
let s: &u32 = {

let p: (u32, u32) = (0, 0);
first(&p)
// p will be (logically) freed here

};
*s

}

However, the Rust compiler will stop us from doing this, printing an elaborate
error message:

error: `p` does not live long enough
| first(&p)
| ^ does not live long enough
| };
| - borrowed value only lives until here
| *s
| }
| - borrowed value needs to live until here

The compiler must have had some information about the relationship of p and
s in order to deduce this without resorting to inter-procedural analysis. It turns
out that the explicit signature of the first function is as follows:

fn first<'a, S, T>(_: &'a (S, T)) -> &'a S

'a is called a formal lifetime parameter. It specifies that the returned reference
is indeed valid only as long as the first argument. By integrating lifetimes into the
type system like this, Rust can reason about references even when confronted with
complex, inter-procedural reference lifetime relations.

While we have avoided memory safety problems with immutable references,
mutability as so often aggravates the problem.

fn reset(x: &mut Box<u32>) {
// replaces and frees the old pointee of `x`
*x = Box::new(0);

8 3 BACKGROUND

}

fn dangling2() -> u32 {
let mut p: (Box<u32>, u32) = (Box::new(0), 0);
// 'reborrows' the inner value of the Box
let s: &u32 = &*first(&p);
reset(&mut p.0);
*s

}

Box is a data type that manages a single heap-allocated value. By replacing
the first Box instance with a new one via a mutable reference, s should again be a
dangling pointer – even though this time, p itself outlives s. Fortunately, the Rust
compiler will again stop us:

error[E0502]: cannot borrow `p.0` as mutable because `p` is also borrowed
as immutable↪→

|
| let s: &u32 = &*first(&p);
| - immutable borrow occurs here
| reset(&mut p.0);
| ^^^ mutable borrow occurs here
| *s
| }
| - immutable borrow ends here

We have finally arrived at the aliasing problem: In a language with manual
memory management, we can create unsafety through the mere existence of two
references, at least one of them mutable, that allow access to the same datum at
the same time. Thus, Rust detects and forbids occurrences of mutable aliasing, as
shown above.

The beauty of forbidding mutable aliasing is that it solves many sources of bugs
in imperative programs even outside of manual memory management. In fact, as
Wadler notes, it makes mutable references safe even in a referentially transparent
language: “In order for destructive updating of a value to be safe, it is essential
that there be only one reference to the value when the update occurs” [25]. While
Rust does introduce APIs, such as for I/O, that break referential transparency,
the absence of mutable aliasing still provides safety guarantees that are usually
only attributed to purely functional languages, first and foremost among them the
elimination of data races. By focusing on a subset of Rust and its APIs that is
truly referentially transparent (but includes passing mutable references), we obtain
a sufficiently narrow gap between Rust and the purely functional language Lean
that our transformation between them becomes feasible.

3 BACKGROUND 9

3.2 Lean
The Lean theorem prover [7] is an open source dependently typed, interactive
theorem prover developed jointly at Microsoft Research and Carnegie Mellon Uni-
versity. The first official release of Lean was announced at CADE-25 in August
2015, making it just a few months younger than Rust.

The current version of Lean supports two different interpretations of Martin-Löf
type theory: a purely constructive one based on Homotopy Type Theory [24], and
one based on the Calculus of Inductive Constructions [4, 20] as championed by the
Coq theorem prover [8], which supports both constructive and classical reasoning.
We use the latter in our work.

The primitive type in dependent type theory is the dependent function (or
product) type Πx : A, B, where x may occur in B; if it does not, we obtain the
standard function type A → B. Function abstraction and application extend
naturally to dependent functions, as perhaps best described by their formal typing
rules.

Γ, x : A ` e : B

Γ ` (λx : A, e) : Πx : A, B

Γ ` f : Πx : A, B Γ ` e : A

Γ ` fe : [e/x]B

The Calculus of Inductive Constructions extends basic dependent type theory
with a type scheme for inductive types, which are described by a set of (possibly
dependent) functions, their constructors. Listing 2 shows basic inductive defini-
tions from the Lean standard library.

As we can see in Listing 2, inductive types themselves are instances of a type,
namely Type, though this turns out to be a slight syntactical simplification. More
specifically, Lean has a whole hierarchy of indexed types or universes Type.{i},
where Type.{i} : Type.{i+1}.5 The universe hierarchy is needed to avoid the
type theoretic equivalent of Russell’s paradox. When we write just Type for the
type of an inductive definition like in Listing 2, a correct universe level i ≥ 1
(possibly dependent on argument universe levels) will automatically be inferred.
The reason for skipping Type.{0} is that it has a special function that is suggested
by its more common name, Prop: It is the universe we normally declare types in
that are to be interpreted as propositions.

Under the Curry-Howard correspondence, an object of a type can be interpreted
as a proof of a proposition. The reason Lean uses a separate universe for this
interpretation is that Prop is given a specific property that would not make sense
for the other universes: By proof irrelevance, any two objects of a type in Prop
are definitionally equal. In other words, proofs are irrelevant for computation.

5The hierarchy is, however, not cumulative: It is not true that Type.{i} : Type.{i+2}.

10 3 BACKGROUND

inductive empty : Type

inductive unit : Type :=
star : unit

inductive prod (A B : Type) : Type :=
mk : A → B → prod A B

inductive sum (A B : Type) : Type :=
| inl : A → sum A B
| inr : B → sum A B

-- the dependent sum type
inductive sigma (A : Type) (B : A → Type) : Type :=
mk : Π (x : A), B x → sigma A B

inductive bool : Type :=
| ff : bool
| tt : bool

inductive option (A : Type) : Type :=
| none : option A
| some : A → option A

inductive list (T : Type) : Type :=
| nil : list T
| cons : T → list T → list T

inductive nat : Type :=
| zero : nat
| succ : nat → nat

Listing 2: The most basic inductive types as well as some basic types from
functional programming in Lean

3 BACKGROUND 11

type name (notation)
in Type in Prop

empty false
unit true
prod (×) and (∧)
sum (+) or (∨)
sigma (Σ x : A, B) Exists (∃ x : A, B)
Π x : A, B ∀ x : A, B
A → B A → B

Table 1: The basic Curry-Howard correspondence. The table lists types from
Listing 2 and the corresponding types from the standard library with the same
constructors, but declared in Prop. We also show their notations as well as the
special universal quantifier notation for dependent functions into Prop. Nonde-
pendent functions and implications are not distinguished by notation.

Finally, Prop is also impredicative: If B : Prop, then also (Π x : A, B) : Prop
for any A. This property ensures that predicates and universal quantifications are
still propositions.

The separation of inductive types and inductive propositions can lead to some
duplication, which however turns out to be very useful in ensuring suggestive
names and notations for each side (Table 1).

On top of its interpretation of dependent type theory, Lean includes many
notational amenities. On the type level, in addition to basic and inductive defini-
tions, it features syntactic abbreviations as well as structures. The latter are
single-constructor inductive types that automatically define projections to each of
their constructor parameters (or fields) and furthermore support inheriting fields
from other structures.
structure point2 :=
(x : ℕ)
(y : ℕ)

structure point3 extends point2 :=
(z : ℕ)

example : point2 := ⦃point2, x := 0, y := 1⦄
check point3.x -- point3.x : point3 → ℕ

In addition to the standard parameter syntax (x : A), Lean also supports
two more binding modes, {x : A} and [x : A]. In the first one, x is an implicit
parameter and will be inferred from other parameters or the expected result type,
such as in the constructor of the ubiquitous type eq modeling Leibniz equality:

12 3 BACKGROUND

inductive eq {A : Type} (a : A) : A → Prop :=
refl : eq a a -- explicit form: `@eq A a a`

The binding mode [x : A] instructs Lean to infer x by type class inference.
Type classes are arbitrary definitions annotated with the [class] attribute. Type
class inference synthesizes instances of a class by a Prolog-like search through
definitions of the class type marked with [instance].

structure inhabited [class] (A : Type) : Type :=
(value : A)

definition default (A : Type) [inhabited A] : A :=
inhabited.value A

definition nat.is_inhabited [instance] : inhabited ℕ :=
⦃inhabited, value := 0⦄
definition prod.is_inhabited [instance] (A B : Type)
[inhabited A] [inhabited B] : inhabited (A × B) :=

⦃inhabited, value := (default A, default B)⦄

eval default (ℕ × ℕ) -- (0, 0)

In order to keep definition signatures short, we will also make use of Lean’s
section mechanism that allows us to fix common parameters for a set of defini-
tions.

section
-- in this section, implicit in signatures and in use sites
parameter (A : Type)
-- implicit in signatures but explicit in use sites
variable (x : A)

definition f : A := x
check f -- f : A → A

end

check f -- f : A : Type, A → A

The namespace <prefix> mechanism works like section, but additionally
prepends a namespace qualifier to each definition declared inside it.

4 THE BASIC TRANSFORMATION 13

4 The Basic Transformation
In this section, we describe the basic translation from Rust to Lean that includes
pure code as well as mutable local variables and loops, but not mutable references
(see Section 6). We focus on the parts that are unique to Rust or are nontrivial
to translate. We roughly follow the structure of the Rust Reference.6 Because
our translation output is not optimized for readability, all sample translations in
this section have been prettified manually without changing their semantics. An
non-prettified feature-by-feature breakdown is also available online.7

4.1 The MIR
Because Rust makes extensive use of inference algorithms for types, lifetimes, and
traits, correctly parsing Rust code is no small feat. Therefore, we use the Rust
Compiler rustc itself as a frontend and work on the much more explicit and simple
mid-level intermediate representation (MIR) (Figure 1). By writing our translation
program in Rust, we can import the rustc libraries to gain access to the MIR and
many convenient helper functions.

The MIR is a control flow graph (CFG) representation where a basic block
consists of a list of statements followed by a terminator that (conditionally or

6https://doc.rust-lang.org/reference.html
7http://kha.github.io/electrolysis/

source

AST

HIR

MIR

LLVM IR

Lean

macro expansion
name resolution

lifetime resolution
validity checks

optimizations
borrow checking

our work

Figure 1: Overview of the Rust compiler pipeline and our work in that context

https://doc.rust-lang.org/reference.html
http://kha.github.io/electrolysis/

14 4 THE BASIC TRANSFORMATION

unconditionally) transfers control to other basic blocks. For readability, this sec-
tion will mostly argue on the Rust source level, but the graph structure will be
important for translating control flow.

4.2 Identifiers

Working on top of the MIR, we do not have to worry about the lexical structure of
Rust. We do, however, have to make sure we emit lexically correct Lean code. This
is only a problem with identifiers, which we would like to transfer with minimal
changes. Both languages are based on segmented identifiers, just with different
separators (a::b::c in Rust versus a.b.c in Lean). However, some identifier parts
in Rust such as [T] or <F<T> as S> are not valid in Lean. To retain readability,
we have therefore extended Lean with a general escaping syntax for identifiers
that allows arbitrary symbols by surrounding them with « and »: The identifier
«[T]».«a.b» is now a valid Lean identifier consisting of the parts «[T]» and «a.b».

4.3 Programs and Files

Rust’s unit of compilation is called a crate. A crate consists of one or more .rs
files and can be compiled to an executable or library. Files inside a crate may
freely reference declarations between them. On the other hand, Lean files may
only import other files non-recursively and declarations must be strictly sorted
in order of usage for termination checking. We therefore translate a crate into a
single Lean file and perform a topological sort on its declarations. While Lean does
support explicit declarations of mutually recursive types and functions, we have
not yet encountered such declarations in Rust code as part of our formalization
work and thus have not implemented support for them so far.

In detail, our tool creates a file called generated.lean in a separate folder
for each crate and connects them using Lean’s import directive according to the
inter-crate dependencies. The user can additionally create a pre.lean file that
will automatically be imported and can be used for axiomatizations as well as a
config.toml file that can influence the translation (see below for examples). We
use a third Lean file thy.lean per crate for the proofs, which will import both the
generated code of the crate and proof files from other crates.

4 THE BASIC TRANSFORMATION 15

4.4 Types
4.4.1 Primitive Types

Rust’s primitive types are the boolean type, machine-independent and machine-
dependent integer types, floating point types, tuples, arrays, slices, and function
types.

Following AutoCorres’ design (see Section 2), we map the primitive integer
types to Lean’s native arbitrary-sized types and instead handle overflow explicitly
during computation (Subsection 4.8.1).

abbreviation u8 := nat
abbreviation u16 := nat
abbreviation u32 := nat
abbreviation u64 := nat
abbreviation usize := nat

abbreviation i8 := int
...

definition u8.bits : ℕ := 8
...

definition usize.bits : ℕ := 16
lemma usize.bits_ge_16 : usize.bits ≥ 16 := dec_trivial
attribute usize.bits [irreducible]

For the machine-size integer types usize and isize, we only expose the con-
servative assumption that their bit sizes are at least 16. We still define usize.bits
to be exactly 16 so that it is computable, but by then marking the definition as
[irreducible], this fact is only accessible in proofs when explicitly unfolding the
definition.

When a proof does rely on the bounds of an integer parameter, we can add
a separate hypothesis, for which we make use of type classes. The bounds of an
expression can often be determined just from partial information, such as with
unsigned division.

definition is_bounded_nat [class] (bits x : ℕ) := x < 2^bits
abbreviation is_usize := is_bounded_nat usize.bits

lemma div_is_bounded_nat [instance] (bits x y : ℕ)
[is_bounded_nat bits x] : is_bounded_nat bits (x / y) := ...

We use the same approach for arrays ([T; N]) and slices (&[T]), mapping
both to the arbitrary-length list type. While Rust arrays have a constant length
encoded in the type, slices are dynamic views into contiguous sequences like arrays

16 4 THE BASIC TRANSFORMATION

and bounded only by the memory size. More specifically, they (and any Rust type)
are assumed to be no larger than isize::MAX bytes so that the pointer difference
of any two elements can be represented by an isize value.

abbreviation array (A : Type₁) (n : ℕ) := list A
abbreviation slice := list

definition is_slice [class] {A : Type₁} (xs : slice A) :=
length xs < 2^(isize.bits-1)

We do not support floating point types, for which we would first need a rea-
sonably complete formalization of the corresponding IEEE standard in Lean.

4.4.2 Structs and Enums

Because Rust does not feature inheritance, struct types and enumerated types are
true Algebraic Data Types and can directly be translated to their Lean equivalents
(structure and inductive, respectively).

4.4.3 References

An immutable reference &'a T is checked by the Rust compiler not to alias with
any mutable reference and thus can be safely replaced with the translation of T
itself. We drop all lifetime specifiers in general because we trust the Rust compiler
to already have made all memory safety checks.

We will discuss mutable references in Section 6.

4.5 Traits
Rust’s trait system is similar to Haskell’s type classes, but borrows some syntax
from more object-oriented interface systems. In particular, in addition to func-
tions, a trait may also contain methods that can be called on any object of a type
the trait is implemented on. This is implemented via an implicit type parameter
Self that is used for the type of the self parameter and is specified in the for
clause when implementing the trait via an impl block.

The translation of basic traits into Lean type classes is straightforward (Fig-
ure 2). We will discuss the details of the function-level translation and the sem
monad below. While impl blocks in Rust are anonymous, we need to name all defi-
nitions in Lean and do so using a naming scheme similar to rustc’s own internal
representation.

4 THE BASIC TRANSFORMATION 17

struct S { i: i32 }

trait Trait<T> {
fn f(self) -> T;

}

impl Trait<i32> for S {
fn f(self) -> i32 {

self.i
}

}

fn g<T : Trait<i32>>
(t: T) -> i32 {
t.f()

}

fn h() -> i32 {
g(S { i: 0 })

}

structure S := (i : i32)

structure Trait [class] (Self T : Type₁) :=
(f : Self → sem T)

definition «S as Trait<i32>».f (self : S) :
sem i32 :=

return (S.i self)

definition «S as Trait<i32>» [instance] :=
⦃Trait S i32, f := «S as Trait<i32>».f⦄

definition g {T} [Trait T i32] (t : T) :
sem i32 :=

sem.incr 1 (Trait.f _ t)

definition h : sem i32 :=
sem.incr 1 (g (S.mk 0))

Figure 2: A parametric trait in Rust and its translation.

4.5.1 Default Methods

As shown in Figure 2, we generate separate definitions for functions in trait im-
plementations before assembling them into a type class instance. This way, and
by eliminating the type class indirection in calls to a statically known implemen-
tation, we can allow trait implementation functions to call each other using our
standard topological dependency ordering:

18 4 THE BASIC TRANSFORMATION

struct S;

trait Trait {
fn f(self);
fn g(self);

}

impl Trait for S {
fn f(self) {
self.g()

}
fn g(self) {}

}

structure S := (i : i32)

structure Trait [class] (Self : Type₁) :=
(f : Self → sem unit)
(g : Self → sem unit)

definition «S as Trait».g (self : S) :
sem unit :=

return unit.star

definition «S as Trait».f (self : S) :
sem unit :=

sem.incr 1 («S as Trait».g self)

definition «S as Trait» [instance] :=
⦃Trait S, f := «S as Trait».f,

g := «S as Trait».g⦄

However, just like Haskell, Rust also allows default implementations of trait
methods that may arbitrarily call and be called from other trait methods that will
only be defined in some implementation of the trait later on. This makes static
ordering of dependencies impossible in general.

In essence, a default method in a trait takes as input an instance of that trait
to call other trait methods with, but at the same time has to be a slot in the very
same trait because it may be overridden in an implementation.

There are multiple potential ways to deal with that depdendency cycle. We
could simply create a specialized copy of the default method implementation for
each instantiation, but then we could also only do specialized proofs about it
instead of one instance independent proof. We could try to dynamically solve the
cycle in a general way, computing its least fixed point by use of the Knaster-Tarski
theorem [23] as usual in denotational semantics. Or we can restrict ourselves to
special cases that break the cycle. If we remove the trait instance as an input to
the default method, it cannot call other trait methods. If, on the other hand, we
do not make default methods part of the trait, it cannot be overridden or be called
from inside implementations of the trait. We could even mix these two approaches,
incrementally building up the trait instance by alternating between default and
non-default methods.

We could implement all of these approaches and automatically or manually
choose between them on a case-by-case basis. It turns out, however, that at least
in the Rust standard library, default methods are often just convenience wrappers
around other trait methods, like in the PartialEq trait.

4 THE BASIC TRANSFORMATION 19

pub trait PartialEq<Rhs> {
fn eq(&self, other: &Rhs) -> bool;
fn ne(&self, other: &Rhs) -> bool { !self.eq(other) }

}

Therefore, as of now we have only implemented the third approach of declaring
default methods outside of their trait, which turned out to be sufficient for our
verification work so far.

structure PartialEq [class] (Self Rhs : Type₁) :=
(eq : Self → Rhs → sem bool)

definition PartialEq.ne {Self Rhs : Type₁} [PartialEq Self Rhs]
(self : Self) (other : Rhs) : sem bool :=

do t5 ← sem.incr 1 (PartialEq.eq self other);
return (bool.bnot t5)

4.5.2 Associated Types

There is one further advanced trait feature Rust shares with Haskell called asso-
ciated types: trait members that are not functions, but types.

pub trait Add<RHS> {
type Output;
fn add(self, rhs: RHS) -> Output;

}

Making Output an associated type instead of a type parameter fundamentally
changes type class inference: Instead of being an input parameter to the inference
like Self and RHS, Output is determined by the inferred trait instance. This means
that inference on add can succeed even if the expected return type is unknown.

As a dependently typed language, Lean has no problem with representing such
traits as type classes. What it cannot represent, however, is a special class of trait
bounds Rust supports: T : Add<RHS, Output=RHS> asserts a definitional equality
on the associated type; but definitional equality exists only as a judgment in Lean,
not as a proposition we could pass as a parameter. Instead, we follow the original
paper [3] on associated types in Haskell that translates type classes with associated
types into System F by turning them into type parameters.

structure Add [class] (Self RHS Output : Type₁) :=
(add : Self → RHS → sem Output)

This transformation does weaken type class inference, which means that in the
generated Lean code, we have to resort to passing type class arguments explicitly
using the @ notation. We might be able to regain inference in a potential future
version of Lean that supports functional dependencies [15].

20 4 THE BASIC TRANSFORMATION

4.5.3 Trait Objects

Lastly, Rust’s trait system exhibits a feature that does not directly exist in Haskell.
In Haskell, type classes are not types - they cannot explicitly be passed as values,
only implicitly through inference. In Rust, traits are dynamically sized types,
which means they can be used as values, but only behind some indirection like
&Trait. These trait objects are represented as a pointer to a vtable of the trait
implementation and another pointer to the Self value.

This “fat pointer” representation would translate quite naturally to an existen-
tial type Σ (Self : Type), (Trait Self × Self). What is not apparent in this
natural definition, however, is the fact that it necessarily lives in a higher universe
than Self. This is the only construct currently in Rust that can give rise to a
type not in Type₁ (but, in fact, to a type in an arbitrarily high universe through
nesting). It is an open problem in the Lean community if and how a monad over
types of different universes can cleanly work given Lean’s non-cumulative universe
hierarchy. Fortunately, trait objects are a rare feature in Rust code that we do
not expect to find on the algorithmical level of our current verification work, so
we have not investigated this issue any further for now.

4.6 The Semantics Monad

The core part for representing Rust’s dynamic semantics is the monadic embed-
ding. While higher-order unification issues in the current Lean version prevent us
from outright parameterizing the embedding by an arbitrary monad instance, we
still try to keep the interface of our specific monad abstract so that the monad can
be extended in the future.

We currently model abnormal termination8 and nontermination as well as an
abstract step counter for asymptotic run time analysis.

definition sem (A : Type₁) := option (A × ℕ)

We provide the standard monadic operations on the type, including a do no-
tation. The model-specific operations are mzero indicating abnormal termina-
tion/nontermination, and sem.incr, which increments the step counter (if any).
An increment of one is emitted around every Rust function call and before each
loop iteration.

8unspecified behavior like integer overflow and panics from out-of-bounds array accesses or
explicit panic! calls. Rust does not have exceptions.

4 THE BASIC TRANSFORMATION 21

definition mzero {A : Type₁} : sem A := none
definition return {A : Type₁} (x : A) : sem A := some (x, 0)

definition sem.incr {A : Type₁} (n : ℕ) : sem A → sem A
| (some (x, k)) := some (x, k+n)
| none := none

definition sem.bind {A B : Type₁} (m : sem A) (f : A → sem B)
: sem B :=

option.bind m (λs, match s with
| (x, k) := sem.incr k (f x)
end)

infixl ` >>= `:2 := sem.bind

The semantics monad follows the usual monad laws, which we will make use
of in proofs.

lemma return_bind {A B : Type₁} {a : A} {f : A → sem B}
: (return a >>= f) = f a := ...

lemma bind_return {A : Type₁} {m : sem A} : (m >>= return) = m := ...
lemma bind.assoc {A B C : Type₁} {m : sem A} {f : A → sem B}
{g : B → sem C} : (m >>= f >>= g) = (m >>= (λx, f x >>= g)) := ...

When reasoning about a function’s behavior, we most often want to assert
termination and a predicate on the return value.

definition sem.terminates_with {A : Type₁} (H : A → Prop) : sem A → Prop
| none := false
| (some (x, k)) := H x

4.7 Statements and Control Flow
The local state of a Rust function consists of its arguments, variables, and tempo-
raries (variables introduced by the compiler). Without mutable references, these
locals can only be manipulated by assignments, the single statement kind available
in the MIR. In linear code, keeping track of assignments is as easy as transforming
them to redeclarations.

p.x += 1; let p = Point { x = p.x + 1, ..p };

Nonlinear control flow is introduced by Rust’s if and match constructs as well
as its three loop constructs (which have a single common representation in the
MIR). We map the first two cases to Lean’s corresponding constructs of the same
names.

22 4 THE BASIC TRANSFORMATION

let x = if b {1} else {0};
x & 1

if b

x = 0;

false

x = 1;

true

ret = x & 1; return

if b = bool.tt then
let x := 1 in
x & 1

else
let x := 0 in
x & 1

As can be seen, we currently translate each branch of a conditional block termi-
nator independently, which can lead to code duplication if those branches converge
again. While this has not manifested any problems in our verification work so far,
we may want to mitigate it in the future by factoring out the common translated
code into a separate definition.

We do need to factor out common code in the case of loops. There is no
special terminator signifying loops in the MIR; instead, we have to search for
(nontrivial) strongly connected components (SCCs) of basic blocks (Figure 3).
Because Rust’s control flow is reducible (notably, lacking a goto instruction), we
may assume that such an SCC can only be entered from a single node (dominating
the SCC). With this, we can describe the semantics of the SCC in more traditional
terms of iteration: The dominating node is the loop header, while the rest of the
SCC is the body. Jumping back to the header signifies a new iteration, while
jumping out of the SCC means breaking the loop. By breaking up the SCC at the
header, we can thus translate a single iteration to a function of type

State → sem (State + Res)

that takes a tuple State of loop variables and either returns the new state for the
next iteration, or a value of the source function’s return type Res when breaking

fn f() {
let mut x = 0;
while x < 10 {

x += 1;
}

}

x = 0;
if x < 101

return2

false

x = x + 1;3

true

Figure 3: A while loop and the corresponding (simplified) MIR graph. Blocks 1
and 3 from a strongly connected component, which is dominated by block 1, the
loop header.

4 THE BASIC TRANSFORMATION 23

out of the loop. We tie this function into a single value of type sem Res by use of
a general loop combinator.

4.7.1 The Loop Combinator

The loop combinator has the signature

noncomputable definition loop {State Res : Type₁}
(body : State → sem (State + Res)) (s : State) : sem Res

Its task is to apply body repeatedly (starting with s) until some Res is returned;
if the loop does not terminate, it returns mzero (which body may also return
by itself). Termination for arbitrary values of body obviously is not a decidable
property. Therefore we will have to leave the constructive subset of Lean, as
signified by the noncomputable specifier. The translation of the Rust code in
Figure 3 via loop is as follows:

definition f.loop_1 (x : i32) : sem (i32 + unit) :=
if x < 10 then
let x := x + 1 in
return (sum.inl x)

else
return (sum.inr unit.star)

definition f : sem unit :=
let x := 0 in
loop f.loop_1 x

As a total, purely functional language, Lean cannot express iteration directly,
and the only primitive kind of recursion available in Lean is structural recursion
over an inductive datatype. On top of structural recursion, the Lean standard
library defines the more general concept of well-founded recursion: A relation R :
A → A → Prop on a type A is well-founded if every element of A is accessible through
the relation, which is defined inductively as all predecessors of the element under
the relation being accessible.

inductive acc {A : Type} (R : A → A → Prop) : A → Prop :=
intro : ∀ x, (∀ y, R y x → acc R y) → acc R x

inductive well_founded [class] {A : Type} (R : A → A → Prop) : Prop :=
intro : (∀ a, acc R a) → well_founded R

Using structural recursion over the acc predicate, the standard library defines a
fixpoint combinator for functionals respecting a well-founded relation, and proves
that the combinator satisfies the fixpoint equation.

24 4 THE BASIC TRANSFORMATION

namespace well_founded
section
variables {A : Type} {C : A → Type} {R : A → A → Prop}

definition fix [well_founded R] (F : Πx, (Πy, R y x → C y) → C x)
(x : A) : C x := ...

theorem fix_eq [well_founded R] (F : Πx, (Πy, R y x → C y) → C x)
(x : A) : fix F x = F x (λy h, fix F y) := ...

end
end well_founded

We use well-founded recursion to define loop: If repeatedly applying body to
s yields a sequence of states, this sequence will terminate iff there exists a well-
founded relation on State such that the sequence is a descending chain. This is
true because descending chains in well-founded relations are finite, and conversely
a finite sequence s1 = s, . . . , sn is a descending chain in the trivial well-founded
relation R = {(si+1, si)|1 ≤ i < n}.

In the formalization, given a well-founded relation R on State, we first have to
take care of lifting it to a well-founded relation R' on State + Res.

section
parameters {State Res : Type₁}
parameter (body : State → sem (State + Res))
parameter (R : State → State → Prop)

definition State' := State + Res

definition R' : State' → State' → Prop
| (inl s') (inl s) := R s' s
| _ _ := false

lemma R'.wf [instance] [well_founded R] : well_founded R' := ...

We can then wrap body in a functional respecting R' that we can pass to
well_founded.fix.

definition F (x : State') (f : Π (x' : State'), R' x' x → sem State') :
sem State' :=↪→

match x with
| inr _ := mzero -- unreachable
| inl s :=
do x' ← sem.incr 1 (body s);
match x' with
| inr r := return (inr r)
| x' := if H : R' x' x then f x' H else mzero
end

end

4 THE BASIC TRANSFORMATION 25

definition loop.fix [well_founded R] (s : State) : sem Res :=
do x ← well_founded.fix F (inl s);
match x with
| inr r := return r
| inl _ := mzero -- unreachable
end

Finally, we implement loop by choosing any well-founded relation R that makes
the loop terminate, if any, or else returning mzero.
definition terminating (s : State) :=
∃ Hwf : well_founded R, loop.fix s ≠ mzero

noncomputable definition loop (s : State) : sem Res :=
if Hex : ∃ R, terminating R s then

@loop.fix (classical.some Hex) _ (classical.some (classical.some_spec
Hex)) s↪→

else mzero

Here we make use of the dependent if-then-else notation that allows us to test for
a property and then bind a name to a proof of it in case it holds. We then destruc-
ture that proof object to obtain the relation and its well-foundedness proof so that
we can pass them to loop.fix. The classical.some and classical.some_spec
definitions are based on Hilbert’s epsilon operator.
noncomputable definition classical.some {A : Type} {P : A → Prop}
(H : ∃x, P x) : A := ...

theorem classical.some_spec {A : Type} {P : A → Prop} (H : ∃x, P x) :
P (some H) := ...

The use of classical.some as well as the undecidable conditional ∃ R, terminating
R s make loop non-computable.

When verifying loops, we will first verify the corresponding application of
loop.fix using a specific well-founded relation, for which we can prove a con-
venient fixpoint equation.
theorem loop.fix_eq
{R : State → State → Prop} [well_founded R] {s : State} :
loop.fix R s =

do x' ← sem.incr 1 (body s);
match x' with
| inl s' := if R s' s then loop.fix R s' else mzero
| inr r := return r
end := ...

If the application of loop.fix terminates, we can show that the original appli-
cation of loop will do so too with the same return value, via a helper lemma that
says that all terminating loop.fix applications are equal.

26 4 THE BASIC TRANSFORMATION

lemma loop.fix_eq_fix
{R₁ R₂ : State → State → Prop} [well_founded R₁] [well_founded R₂]
{s : State}
(hterm₁ : loop.fix R₁ s ≠ mzero)
(hterm₂ : loop.fix R₂ s ≠ mzero) :
loop.fix R₁ s = loop.fix R₂ s := ...

theorem loop.fix_eq_loop
{R : State → State → Prop} [well_founded R]
{s : State}
(hterm : loop.fix R s ≠ mzero) :
loop.fix R s = loop s := ...

4.8 Expressions
4.8.1 Arithmetic Operators

Rust’s arithmetic semantics is based on the premise that in most circumstances,
arithmetic overflow is unintended by the programmer,9 and constitutes a bug in
the program. Therefore, in debug builds, the built-in arithmetic operators will
panic on any overflow. In release builds, overflows for both signed and unsigned
types will wrap for performance reasons.

We thus regard arithmetic overflow in those operators as unspecified and return
the bottom value mzero in such cases, using the predicate is_bounded_nat from
Subsection 4.4.1.
definition sem.guard {a : Type₁} (p : Prop) [decidable p] (s : sem a) :
sem a :=

if p then s else mzero

definition check_unsigned (bits : ℕ) (x : nat) : sem nat :=
sem.guard (is_bounded_nat bits x) (return x)

definition checked.add (bits : ℕ) (x y : nat) : sem nat :=
check_unsigned bits (x+y)

...

We can avoid the check in operations that cannot overflow, such as unsigned
division. We still have to check for division by zero, of course.
definition checked.div (bits : ℕ) (x y : nat) : sem nat :=
sem.guard (y ≠ 0) (return (div x y))

The signed implementations are equivalent, except that we do have to check
for overflow during signed division by −1.

9When overflowing is indeed intended, the programmer may use special methods such as
u8::wrapping_add.

4 THE BASIC TRANSFORMATION 27

4.8.2 Bitwise Operators

We implement all bitwise operations on integral types by converting them to and
from the bitvec type, which we adapted from the Lean standard library and
expanded significantly.

abbreviation binary_bitwise_op (bits : ℕ) (op : bitvec bits → bitvec bits
→ bitvec bits) (a b : nat) : nat :=↪→

bitvec.to ℕ (op (bitvec.of bits a) (bitvec.of bits b))

definition bitor bits := binary_bitwise_op bits bitvec.or
...

Some care must be taken when implementing bitwise shift: Shifting by a type’s
bitsize or more bits has the same unspecified behavior in Rust as overflows.

definition checked.shl [reducible] (bits : ℕ) (x : nat) (y : u32) :
sem nat :=

sem.guard (y < bits)
(return (bitvec.to ℕ (bitvec.shl (bitvec.of bits x) y)))

4.8.3 Index Expressions

While indexing is desugared to a call to the Index trait for most types, it is a
primitive operation on arrays. Out-of-bounds accesses will panic in Rust (in any
build configuration). By identifying arrays with Lean lists (Subsection 4.4.1), we
can use the existing list.nth function and lift its result into the semantics monad.

definition sem.lift_opt {A : Type₁} : option A → sem A
| none := mzero
| (some a) := return a

let y = x[i];
...

do y ← sem.lift_opt (list.nth x i);
...

4.8.4 Lambda Expressions

Each lambda expression in Rust has a unique type that represents its closure, the
set of variables captured from the outer scope. As necessitated by its ownership
and mutability tracking, Rust files each closure type into one of three traits that
together form a hierarchy:

28 4 THE BASIC TRANSFORMATION

pub trait FnOnce<Args> {
type Output;
fn call_once(self, args: Args) -> Output;

}

pub trait FnMut<Args> : FnOnce<Args> {
fn call_mut(&mut self, args: Args) -> Output;

}

pub trait Fn<Args> : FnMut<Args> {
fn call(&self, args: Args) -> Output;

}

Rust will automatically infer the most general trait based on the lambda ex-
pression’s requirements: If it has to move ownership of a captured variable, it can
only implement FnOnce; if it needs a mutable reference to a variable, it can only
implement FnMut; otherwise, it will implement Fn.

Because we lose the restrictions of linear typing during our translation, we can
simplify the hierarchy: FnOnce can be implemented using FnMut, if implemented,
which in turn can be implemented using Fn (because the closure must be immutable
in that case).

structure FnOnce [class] (Self Args Output : Type₁) :=
(call_once : Self → Args → sem Output)

structure FnMut [class] (Self Args Output : Type₁) :=
(call_mut : Self → Args → sem (Output × Self))

definition FnMut_to_FnOnce [instance] (Self Args Output : Type₁)
[FnMut Self Args Output] : FnOnce Self Args Output :=

⦃FnOnce, call_once := λ self args, do x ← FnMut.call_mut _ self args;
return x.1⦄

structure Fn [class] (Self : Type₁) (Args : Type₁) (Output : Type₁) :=
(call : Self → Args → sem Output)

definition Fn_to_FnMut [instance] (Self Args Output : Type₁) [Fn Self Args
Output]↪→

: FnMut Self Args Output :=
⦃FnMut, call_mut := λ self args, do x ← Fn.call _ self args;
return (x, self)⦄

Translating a lambda expression means declaring a closure type according to
the captured environment and creating a trait implementation according to the
closure kind as reported by the compiler. Calling a lambda expression, on the
other hand, is no different from other trait method calls and does not need any
special casing.

4 THE BASIC TRANSFORMATION 29

fn f(x: i32) -> i32 {
let l = |y| x + y;
l(x)

}

structure f.closure_7 := (val : i32)

definition f.closure_7.fn (c : f.closure_7) (y
: i32) : sem i32 :=↪→

let t4 := f.closure_7.val c in
checked.sadd i32.bits t4 y

definition f.closure_7.inst [instance] : Fn
f.closure_7 i32 i32 :=↪→

⦃Fn, call := f.closure_7.fn⦄

definition f (x : i32) : sem i32 :=
let l := f.closure_7.mk x in
sem.incr 1 (Fn.call _ l x)

30 5 CASE STUDY: VERIFICATION OF [T]::BINARY_SEARCH

5 Case Study: Verification of [T]::binary_search
As a first test of the translation tool, we set out to verify the correctness of the
binary search implementation in the Rust standard library, an algorithm of medium
complexity.

5.1 The Rust Implementation
Before we can even tackle the algorithmic complexity, we have to cope with
the design complexity of a real-world library. The public implementation of
the binary_search method implemented on any slice type can be found in the
collections crate.

use core::slice as core_slice;

impl<T> [T] {
...

/// Binary search a sorted slice for a given element.
///
/// If the value is found then `Ok` is returned, containing the
/// index of the matching element; if the value is not found then
/// `Err` is returned, containing the index where a matching
/// element could be inserted while maintaining sorted order.
///
/// ...
pub fn binary_search(&self, x: &T) -> Result<usize, usize>
where T: Ord {
core_slice::SliceExt::binary_search(self, x)

}
}

As we can see from its documentation and signature, the method is very general:
It works on all slices whose element type implements the Ord trait, and it returns
information in both the success and the failure case. The implementation, however,
turns out to be merely a redirection to a trait method in the base crate core. This
trait has a single implementation, for the slice type.

pub trait SliceExt {
type Item;

fn binary_search(&self, x: &Item) -> Result<usize, usize>
where Item: Ord;

fn len(&self) -> usize;
fn is_empty(&self) -> bool { self.len() == 0 }
...

}

5 CASE STUDY: VERIFICATION OF [T]::BINARY_SEARCH 31

impl<T> SliceExt for [T] {
type Item = T;

fn binary_search(&self, x: &T) -> Result<usize, usize> where T: Ord {
self.binary_search_by(|p| p.cmp(x))

}
fn len(&self) -> usize { ... }
...

}

This indirection seems pointless at first, but follows from a technical restriction:
There may be at most one impl block for a primitive type like [T]. Because the
core crate does not depend on the existence of a heap allocator, but some methods
on [T] like its merge sort implementation do need dynamic allocation, the impl
block is declared only in the later collections crate. Since binary_search does
not need an allocator, it should still reside in core, and instead is associated to
the slice type via the helper trait.

This final version of binary_search, which we represent as core::<[T] as SliceExt>::binary_search,
is implemented by way of a more general method binary_search_by that takes a
comparison function instead of being constrained to Ord (Listing 3). This method,
finally, turns out to be much more abstract than one might expect: Instead of the
standard binary search implementation that iteratively reduces the search range
via two indices, the range is represented as a subslice and manipulated via high-
level slice methods such as split_at. The reasoning behind this is a great show
case for Rust’s zero-cost (or even negative-cost, in this case) abstractions philoso-
phy – the abstract implementation actually surpasses a direct implementation in
terms of efficiency because it helps the compiler eliminate all bounds checks in it.
It also elegantly avoids the common pitfall10 of a potential integer overflow in less
abstract code like mid = (low + high) / 2.

10https://research.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html

32 5 CASE STUDY: VERIFICATION OF [T]::BINARY_SEARCH

fn binary_search_by<'a, F>(&'a self, mut f: F) -> Result<usize, usize>
where F: FnMut(&'a T) -> Ordering

{
let mut base = 0usize;
let mut s = self;

loop {
let (head, tail) = s.split_at(s.len() >> 1);
if tail.is_empty() {

return Err(base)
}
match f(&tail[0]) {

Less => {
base += head.len() + 1;
s = &tail[1..];

}
Greater => s = head,
Equal => return Ok(base + head.len()),

}
}

}

Listing 3: Implementation of the binary_search_by method. A subslice s
of self is iteratively bisected until it is empty or the element has been found.
The tail[1..] slicing syntax is syntax sugar for calling the Index::index trait
method with a RangeFrom argument.

5 CASE STUDY: VERIFICATION OF [T]::BINARY_SEARCH 33

<[
T]
 a
s
sl
ic
e:
:S
li
ce
Ex
t>
::
bi
na
ry
_s
ea
rc
h

<[
T]
 a
s
sl
ic
e:
:S
li
ce
Ex
t>
::
bi
na
ry
_s
ea
rc
h:
:{
{c
lo
su
re
}}

cm
p:
:O
rd
er
in
g

<[
T]
 a
s
sl
ic
e:
:S
li
ce
Ex
t>
::
bi
na
ry
_s
ea
rc
h_
by

cm
p:
:O
rd

re
su
lt
::
Re
su
lt

op
s:
:F
nM
ut

sl
ic
e:
:<
[T
]
as
 o
ps
::
In
de
x<
op
s:
:R
an
ge
<u
si
ze
>>
>:
:i
nd
ex

<[
T]
 a
s
sl
ic
e:
:S
li
ce
Ex
t>
::
le
n

<[
T]
 a
s
sl
ic
e:
:S
li
ce
Ex
t>
::
sp
li
t_
at

<[
T]
 a
s
sl
ic
e:
:S
li
ce
Ex
t>

sl
ic
e:
:S
li
ce
Ex
t:
:i
s_
em
pt
y

op
s:
:R
an
ge
Fr
om

sl
ic
e:
:<
[T
]
as
 o
ps
::
In
de
x<
op
s:
:R
an
ge
Fr
om
<u
si
ze
>>
>:
:i
nd
ex

cm
p:
:E
q

cm
p:
:P
ar
ti
al
Or
d

cm
p:
:P
ar
ti
al
Eq

op
ti
on
::
Op
ti
on

op
s:
:R
an
ge
To

sl
ic
e:
:<
[T
]
as
 o
ps
::
In
de
x<
op
s:
:R
an
ge
To
<u
si
ze
>>
>:
:i
nd
ex

sl
ic
e:
:S
li
ce
Ex
t

op
s:
:R
an
ge

Fi
gu

re
4:

A
co

m
pl

et
e

gr
ap

h
of

th
e

tra
ns

la
tio

n
de

pe
nd

en
cie

s
of

bi
na

ry
_s

ea
rc

h
in

th
e
co

re
cr

at
e,

di
st

in
gu

ish
in

g
be

tw
ee

n
fu

nc
tio

ns
,

ty
pe

s
,

tra
its

,a
nd

tra
it

im
pl

em
en

ta
tio

ns
.A

xio
m

at
ize

d
de

fin
iti

on
st

ha
tu

se
un

sa
fe

co
de

in
th

e
or

ig
in

al
im

pl
em

en
ta

tio
n

ar
e

m
ar

ke
d

by
da

sh
ed

bo
rd

er
s.

Be
ca

us
e

we
ea

ge
rly

re
so

lve
tra

it
m

et
ho

d
ca

lls
wh

er
e

po
ss

ib
le,

su
ch

as
to

th
e
in

de
x

m
et

ho
d

of
In

de
x<

Ra
ng

eF
ro

m<
us

iz
e>

>
fo

r[
T]

,w
e

ca
n

av
oi

d
so

m
e

de
pe

nd
en

cie
s

lik
e

th
e

fu
ll
In

de
x

im
pl

em
en

ta
tio

n
fo

r[
T]

,a
nd

ev
en

th
e

tra
it

its
elf

.

34 5 CASE STUDY: VERIFICATION OF [T]::BINARY_SEARCH

For our purposes, the abstract implementation primarily means a fair number
of additional dependencies we have to support and inspect (Figure 4). All in
all, binary_search turned out to be an ideal first test not only because of its
algorithmic complexity, but also because of its use of numerous Rust language
features including enums, structs, traits with associated types and default methods,
higher-order functions, and loops.

5.2 Prelude: Coping with Unsafe Dependencies
When trying to translate the binary_search method including its dependencies,
we will not get back a definition at first. Our tool refuses to translate some
dependencies because they use unsafe code, as marked in Figure 4. We will have
to translate these functions manually, basically adding the correctness of their
translation as axioms to the project.

Apart from our custom translation of FnMut we discussed in Subsection 4.8.4,
both axiomatized functions operate on slices and are straightforward to implement
using our identification of slices with Lean lists.

-- Returns the number of elements in the slice.
definition «[T] as core.slice.SliceExt».len {T : Type₁} (self : slice T) :
sem nat :=

return (list.length self)

-- Implements slicing with syntax `&self[begin .. end]`.
-- Returns a slice of self for the index range [`begin`..`end`).
-- This operation is `O(1)`.
-- Requires that `begin <= end` and `end <= self.len()`,
-- otherwise slicing will panic.
definition «[T] as core.ops.Index<core.ops.Range<usize>>».index {T : Type₁}
(self : slice T) (index : Range usize) : sem (slice T) :=

sem.guard (Range.start index ≤ Range.«end» index ∧

Range.«end» index ≤ list.length self)
(return (list.firstn (Range.«end» index - Range.start index)

(list.dropn (Range.start index) self)))

The latter method presents a small technical hurdle: It is dependent on other
translation products, specifically the Range structure. Instead of having to axioma-
tize that perfectly translatable definition too and adding both definitions manually
to the pre.lean file, we instruct the translator in the config.toml file to inject
our Lean definition of index as the translation of the Rust definition on-the-fly.

[replace]
"«[T] as core.ops.Index<core.ops.Range<usize>>».index" = "..."

5 CASE STUDY: VERIFICATION OF [T]::BINARY_SEARCH 35

5.3 Formal Specification
Going back to the original definition of [T]::binary_search, we translate the
documented behavior into a Lean predicate.

parameter {T : Type₁}
hypothesis [Ord T] -- a synonym for `parameter`
parameter self : slice T
parameter needle : T -- a more descriptive name for the parameter `x`

inductive binary_search_res : Result usize usize → Prop :=
| found : Πi, list.nth self i = some needle →
binary_search_res (Result.Ok i)

| not_found : Πi, needle ∉ self → sorted (list.insert_at self i needle) →
binary_search_res (Result.Err i)

It is specifications like these where the power of shallow embeddings really
shines: We can freely mix and match Rust types and standard Lean functions and
constructs. In fact, we will have to do some more mixing of these two worlds to
make the definition valid: While we have copied the assumption T : Ord from
the binary_search method, the sorted predicate expects T to implement Lean’s
own ordering type class. We therefore introduce a new type class Ord' that brings
both type classes together – or rather, in the Lean case, the subclass of decidable,
linear orders.

definition ordering {T : Type₁} [decidable_linear_order T] (x y : T) :
cmp.Ordering :=

if x < y then Ordering.Less
else if x = y then Ordering.Equal
else Ordering.Greater

structure Ord' [class] (T) extends Ord T, decidable_linear_order T :=
(cmp_eq : ∀ x y : T, Σ k, Ord.cmp x y = some (ordering x y, k))

After changing the hypothesis to [Ord' T], the specification typechecks. We
need two more (sensible) hypotheses before we can prove that binary_search
upholds the specification.

hypothesis Hsorted : sorted self
hypothesis His_slice : is_slice self

...

theorem binary_search.spec : sem.terminates_with
binary_search_res
(binary_search self needle) := ...

36 5 CASE STUDY: VERIFICATION OF [T]::BINARY_SEARCH

5.4 Proof
The full correctness proof is about 170 lines in Lean’s tactic mode. We will not
discuss the individual steps or the Lean tactic syntax here, but focus on the main
proof steps.

After unfolding the binary_search and binary_search_by definitions and
some simplifications, we quickly reduce the proof obligation down to the central
loop.

⊢ sem.terminates_with binary_search_res
(loop loop_4 (closure_5594.mk needle, 0, self))

Here loop_4 is the loop body extracted from binary_search_by, which is
passed to the loop combinator loop together with the initial loop state. The loop
state is the triple (f, base, s) of local variables mutated in the loop, initialized
to the closure from binary_search (capturing needle), 0, and self, respectively.
As described in Subsection 4.7.1, we can reduce the goal to one basing the loop
on a specific relation by use of the lemma loop.fix_eq_loop.

abbreviation f₀ := closure_5594.mk needle
abbreviation loop_4.state := closure_5594 T × usize × slice T
definition R := measure (λ st : loop_4.state, length st.2)
...

⊢ sem.terminates_with binary_search_res
(loop.fix loop_4 R (f₀, 0, self))

The measure function lets us create a well-founded relation on the loop state
triple by comparing the length of s. We will not be able to show the new goal di-
rectly via well-founded induction over R, instead we first have to generalize it.
For that we first declare the loop invariants (which we obtained by the non-
sophisticated method of repeated try-and-error).

variables (base : usize) (s : slice T)

structure loop_4_invar :=
(s_in_self : s ⊑ₚ dropn base self)
(insert_pos : sorted.insert_pos self needle ∈ '[base, base + length s])
(needle_mem : needle ∈ self → needle ∈ s)

These say that

1. s is a contiguous subsequence of the original slice self starting at base; here
⊑ₚ is a notation for the (non-strict) list prefix order that will come in handy
at multiple points in the proof.

5 CASE STUDY: VERIFICATION OF [T]::BINARY_SEARCH 37

2. inserting needle at the first position in self that will keep it sorted will
insert it inside or adjacent to s.

3. if needle is at all in the original slice, it will also be in s. If this is the
case, this invariant will imply the previous one, but in general they are
independent.

Because the invariants trivially hold for the initial state, we can generalize the
goal.

⊢ loop_4_invar base s → sem.terminates_with binary_search_res
(loop.fix loop_4 R (f₀, base, s))

There is no need to generalize f₀ because we know it is a non-modifying closure
and thus the variable f will always contain that value.

After applying well-founded recursion, we unroll one iteration of loop.fix via
the lemma loop.fix_eq from Subsection 4.7.1 and apply the induction hypothesis
on the loop remainder to reduce the goal to that single iteration.

inductive loop_4_step : loop_4.state → Prop :=
mk : Π base' s', loop_4_invar base' s' → length s' ≤ length s / 2 →
length s ≠ 0 → loop_4_step (f₀, base', s')

abbreviation loop_4_res := sum.rec (loop_4_step s) binary_search_res

⊢ loop_4_invar base s → sem.terminates_with
loop_4_res
(loop_4 (f₀, base, s))

If the iteration breaks the loop (returns some sum.inr), we need the result to
fulfill the top-level specification binary_search_res. Otherwise, if the loop pro-
duces some new loop state (f₀, base', s'), the loop invariants should be upheld
together with a loop variant saying that the length of s has at least halved. To-
gether with the information that length s ≠ 0, this implies length s' < length
s and ensures we can apply the induction hypothesis. We will need the former two
stronger statements for proving the function’s logarithmic complexity in Section 8.

The remainder of the proof, while tedious, uses mostly basic reasoning. We split
the goal according to the if and match branches in the original code and, depend-
ing on the return value in each case, show that loop_4_invar or binary_search_res
is upheld. We prove that neither of the two additions in the code overflows by
showing that they are bounded by list.length self, which by the assumption
is_slice self fits into the usize type.

38 6 TRANSFORMATION OF MUTABLE REFERENCES

6 Transformation of Mutable References
As the previous section showed, the basic transformation already allows us to
reason about mutability in form of local variables, including inside loops. The
next step is to support indirect mutability in form of mutable references. We will
develop a restricted but extendable transformation of mutable references in this
section and put it to use in the next section.

6.1 Lenses as Functional References
In order to correctly translate mutable references, we will take a more careful look
at their structure in the MIR (Subsection 4.1). Mutable references are created by
the &mut x syntax, which in MIR operates on lvalues.

pub enum Rvalue<'tcx> {
/// &x or &mut x
Ref(&'tcx Region, BorrowKind, Lvalue<'tcx>),
...

}

An lvalue in Rust is either a local or static (global) variable, or inductively
some projection of another lvalue.

pub enum Lvalue<'tcx> {
Local(Local),
Static(DefId),
/// projection out of an lvalue (access a field, deref a pointer, etc)
Projection(Box<LvalueProjection<'tcx>>),

}

Because mutable static variables are not allowed in safe Rust, we may assume
that every lvalue is rooted in a local variable. We can describe a mutable reference
as focusing on some part of a local variable, which in functional programming can
represented by lenses [10] (also known as functional references). For our purposes,
a very simple presentation of lenses that allows us to get and set the focused part
is sufficient. We also specialize it to return our semantics monad.

structure lens (Outer Inner : Type₁) :=
(get : Outer → sem Inner)
(set : Outer → Inner → sem Outer)

Our lens type describes how some type Inner can be extracted from and re-
placed inside another type Outer. For the correct combinations of those two types,
we can give some general instances such as identity and composition.

6 TRANSFORMATION OF MUTABLE REFERENCES 39

definition lens.id {Inner : Type₁} : lens Inner Inner :=
⦃lens, get := return, set := λ o, return⦄

definition lens.comp {A B C : Type₁} (l₂ : lens B C) (l₁ : lens A B) :
lens A C :=

⦃lens, get := λ o,
do o' ← lens.get l₁ o;
lens.get l₂ o',

set := λ o i,
do o' ← lens.get l₁ o;
do o' ← lens.set l₂ o' i;
lens.set l₁ o o'⦄

infixr ` ∘ₗ `:60 := lens.comp

We can now translate the &mut x operation: We generate a lens per projection,
then compose them together to obtain a value of type lens A B where B is the
type of x, and A the type of the root variable of x. For the projection of indexing
into an array or slice we can give a generic definition, but for other projections
such as struct fields we will have to generate them at translation time.

definition lens.index (Inner : Type₁) (index : ℕ) :
lens (slice Inner) Inner :=

⦃lens,
get := λ o, sem.lift_opt (list.nth self o),
set := λ o i, sem.lift_opt (list.update o index i)⦄

There is one projection we have to special case: dereferencing an lvalue as in
*x. If x is an immutable reference, this is just the identity lens because &T and
T are translated to the same type (Subsection 4.4.3). If it is a mutable reference,
we compose with its lens to obtain a lens on the ultimate root variable. This
combination of referencing and dereferencing is also known as “reborrowing”.

let x: &mut [T] = &mut a;
let y = &mut (*x)[1];

let x := lens.id in
let y := lens.index _ 1 ∘ₗ x in
...

There is a final technicality involved with creating mutable references. Because
in Rust a reference is represented merely by an address, index projections are
checked to be in bounds when creating the reference, whereas lens.index will
return mzero only when its getter or setter is used. Therefore, we “probe” lenses
eagerly after creation by invoking their getter in order to make sure we exhibit the
same termination behavior as the original code.

40 6 TRANSFORMATION OF MUTABLE REFERENCES

6.2 Pointer Bookkeeping

In order to actually invoke lens.get or lens.set, we also need to pass it the
“outer” object, i.e. the root variable of the original borrow. This is not a kind of
information we can dynamically save alongside the lens in the mutable reference,
but we instead have to statically determine at translation time. For now, we
represent this information as a mapping from variable names to variable names.

let x: &mut [i32] = &mut a; // {'x' ~> 'a'}
// moving &mut
let x2 = x; // {'x2' ~> 'a'}
// reborrowing &mut
let y = &mut (*x2)[1]; // {'x2' ~> 'a', 'y' ~> 'a'}

While this simple mapping has proved sufficient so far, it does impose the
following limitations:

• Mutable references can only be stored directly in variables, not nested in
some structure. This also means that we do not have to worry about how to
represent mutable references in type declarations, yet.

• Whereas a completely static mapping works for linear code, it cannot work
for variables that are part of a loop state in general. We could lift this
restriction for the most common special case where the loop changes the
lens, but not the root variable of a reference.

6.3 Passing Mutable References

In Subsection 3.1, we introduced references as a more ergonomic (and efficient)
way of passing ownership of a value to some function and getting back the old
or (in the case of mutable references) new value from the function. While we do
not have to worry about ownership in Lean, we can still use the reverse pattern
for passing mutable references in Lean. For each mutable reference argument, we
read the current value through the lens, pass it to the function, get back the new
value as part of the return value, and write it back through the lens. Inside the
called function, we immediately re-wrap the value in the identity lens. This is only
correct because of the absence of mutable aliasing.

6 TRANSFORMATION OF MUTABLE REFERENCES 41

fn f(x: &mut T) -> R {...}
...

let x: &mut T =
&mut ...a...;

let y = f(x);

definition f : (xₐ : T) : sem (R × T) :=
let x := lens.id in -- {'x' ~> 'xₐ'}
...

let x = ... in
do tmp ← lens.get x a;
do ret ← f tmp;
match ret with
| (y, tmp) :=

do a ← lens.set x a tmp;
...

end

There is a small caveat with this approach: It does not work if a parame-
ter’s type is declared to be a type parameter, but then instantiated to a mutable
reference.

6.4 Returning Mutable References
While passing mutable references to functions has a rather simple desugaring,
returning them is a very different beast altogether: The caller has no idea where
the reference is pointing to. For now, we restrict ourselves to the special case of
returning mutable references that point into the first parameter, which in particular
covers all methods that return references pointing into their &mut self parameter.
We statically check this property when translating the callee, and then use that
knowledge in the caller to compose the returned lens with the lens of the first
argument. Note that we still have to return the new pointee for the first argument,
as by the previous subsection.

fn f(x: &mut T) -> &mut R {...}
...

let x: &mut T =
&mut ...a...;

let y = f(x);

definition f (xₐ : T) : sem (lens T R × T) :=
...

let x = ... in
do tmp ← lens.get x a;
do ret ← f tmp;
match ret with
| (y, tmp) :=

let y := y ∘ₗ x in
do a ← lens.set x a tmp;
...

end

42 7 CASE STUDY: PARTIAL VERIFICATION OF FIXEDBITSET

7 Case Study: Partial Verification of FixedBitSet
Whereas our first case study focused on algorithmic verification, for our second
study we chose the FixedBitSet data structure from the fixedbitset crate.11 It
can be thought of as a more efficient version of a boolean array that stores elements
packed at the bit level. While it is not a complex data structure, verifying it does
require reasoning about the following important parts:

• The ubiquitous Vec type from the Rust standard library, which FixedBitSet
uses internally, including mutable references into it

• Data structure invariants

• Bitwise operations

7.1 The Rust Implementation
FixedBitSet uses an internal Vec to store up to 32 bits per element.

type Block = u32;

pub struct FixedBitSet {
data: Vec<Block>,
/// length in bits
length: usize,

}

We will focus on three basic operations: creating (with_capacity), manipulat-
ing (insert), and querying (contains) a FixedBitSet. The Rust implementations
are shown in Listing 4.

7.2 Prelude: Axiomatizing collections::vec::Vec

Vec is the standard type for dynamically-sized arrays in Rust. It is implemented
on top of an unsafe abstraction called RawVec that handles allocating, resizing,
and deallocating the array memory. Vec provides a safe interface on top of that
type by additionally keeping track of ownership of individual items via a len field.
Elements after the first len items are not logically part of the Vec and must be
viewed as unitialized storage.

pub struct Vec<T> {
buf: RawVec<T>,
len: usize,

}

11https://docs.rs/fixedbitset/

7 CASE STUDY: PARTIAL VERIFICATION OF FIXEDBITSET 43

const BITS: usize = 32;
fn div_rem(x: usize, d: usize) -> (usize, usize) {
(x / d, x % d)

}

impl FixedBitSet {
pub fn with_capacity(bits: usize) -> Self {

let (mut blocks, rem) = div_rem(bits, BITS);
blocks += (rem > 0) as usize;
FixedBitSet {

data: vec![0; blocks],
length: bits,

}
}

pub fn insert(&mut self, bit: usize) {
assert!(bit < self.length);
let (block, i) = div_rem(bit, BITS);
unsafe {

*self.data.get_unchecked_mut(block) |= 1 << i;
}

}

pub fn contains(&self, bit: usize) -> bool {
let (block, i) = div_rem(bit, BITS);
match self.data.get(block) {

None => false,
Some(b) => (b & (1 << i)) != 0,

}
}
...

}

Listing 4: The Rust implementations of the three methods

Because Vec provides a safe interface, but is itself implemented using (predom-
inantly) unsafe code, we both can and have to axiomatize it. When axiomatizing
data structures, we are free to choose any abstraction as long as the operations on
it preserve their semantics. Just as with arrays and slices, Lean’s basic list type
is a natural representation for Vec.
structure Vec (T : Type₁) :=
(buf : list T)

We do lose information about the RawVec’s length (also called the Vec’s capac-
ity) here, but this information is not exposed by the Vec operations FixedBitSet
depends on. Listing 5 lists the Lean implementations of the needed Vec methods,
none of which should be surprising.

44 7 CASE STUDY: PARTIAL VERIFICATION OF FIXEDBITSET

namespace «Vec<T>»
parameter {T : Type₁}

definition new : sem (Vec T) :=
return (Vec.mk [])

-- note: only a runtime upper bound
definition push (self : Vec T) (value : T) : sem (unit × Vec T) :=
sem.incr (list.length (Vec.buf self))
(return (unit.star, Vec.mk (Vec.buf self ++ [value])))

-- note: `pop` never resizes the `Vec`, so it is always constant-time
definition pop (self : Vec T) : sem (Vec T × Option T) :=
match reverse (Vec.buf self) with
| x :: xs := return (Vec.mk (reverse xs), Option.Some x)
| [] := return (self, Option.None)
end

definition clear (self : Vec T) : sem (Vec T) :=
sem.incr (list.length (Vec.buf self)) new

definition len (self : Vec T) : sem usize :=
return (list.length (Vec.buf self))

end «Vec<T>»

Listing 5: Axiomatizations of relevant Vec methods

Vec also implements the Deref trait, which makes values of type &Vec<T> auto-
matically coerce to &[T] and is implicitly being used in FixedBitSet::contains.
This is easy enough to implement using our abstraction.

definition «collections.vec.Vec<T> as core.ops.Deref».deref {T : Type₁}
(self : Vec T) : sem (slice T) :=

return (Vec.buf self)

There is also a corresponding DerefMut trait that makes &mut Vec<T> coerce
to &mut [T]. The implementation is slightly more interesting because it has to
return a lens focusing on Vec.buf.

definition «collections.vec.Vec<T> as core.ops.DerefMut».deref_mut
{T : Type₁} (self : Vec T) : sem (lens (Vec T) (slice T) × Vec T) :=

return (⦃lens, get := return ∘ Vec.buf, set := λ old, return ∘ Vec.mk⦄,
self)

This trait implementation is being being used by FixedBitSet::insert to
access [T]::get_unchecked_mut, which in turn returns a mutable reference to a
single slice element.

7 CASE STUDY: PARTIAL VERIFICATION OF FIXEDBITSET 45

definition «[T]».get_unchecked_mut {T : Type₁} (self : slice T)
(index : usize) : sem (lens (slice T) T × slice T) :=

sem.guard (index < length self) (return (lens.index _ index, self))

This method is interesting in that it actually is unsafe to call in Rust – instead of
an explicit panic, an out-of-bounds access will silently invoke undefined behavior.

unsafe fn get_unchecked_mut(&mut self, index: usize) -> &mut T {
&mut *self.as_mut_ptr().offset(index as isize)

}

There is also a safe, panicking variant called [T]::get_mut, which we first men-
tioned in Section 2 as not being expressible in other verifiable languages. Because
our semantics monad does not currently differentiate between undefined behavior
and panics, both functions become semantically equivalent in our transformation
and we can translate calls to both of them, including the small bit of unsafe code
in FixedBitSet::insert.

7.3 Formal Specification
There is no useful abstract specification we could give contains without essen-
tially restating its implementation. Instead, we use it to build an abstraction: We
translate FixedBitSet to a Lean set of indices.

abbreviation sem.returns {A : Type₁} (x : A) :=
sem.terminates_with (λ a, a = x)

open FixedBitSet

definition to_set (s : FixedBitSet) : set usize :=
{bit | bit < length s ∧ sem.returns bool.tt (contains s bit)}

The additional constraint bit < length s may seem superfluous considering
that contains makes sure to always return false for indices after the last u32
block. However, indices between the length and the capacity may not necessarily
be false, as noted in the docstring for a different method:

/// View the bitset as a mutable slice of `u32` blocks. Writing past the
/// bitlength in the last block will cause `contains` to return
/// potentially incorrect results for bits past the bitlength.
pub fn as_mut_slice(&mut self) -> &mut [u32]

With to_set, we can give insert a natural specification using standard Lean
set operations.

46 7 CASE STUDY: PARTIAL VERIFICATION OF FIXEDBITSET

lemma insert.spec (s : FixedBitSet) (bit : usize) : bit < length s →
sem.terminates_with
(λ ret, to_set ret.2 = to_set s ∪ '{bit})
(insert s bit)

To prove this lemma, we will also need a data type invariant on FixedBitSet
relating its two fields: The Vec should always have the minimum length, that is,
the number of bits divided by 32, then rounded up. As with traits, we specify the
invariant as a type class.
structure FixedBitSet' [class] (self : FixedBitSet) : Prop :=
(length_eq :
nat.div_ceil (length self) 32 = list.length (Vec.buf (data self)))

This invariant should be fulfilled by the constructor, with_capacity.
lemma with_capacity_inv (bits : usize) [is_usize bits] :
sem.terminates_with FixedBitSet' (with_capacity bits)

After adding the hypothesis [FixedBitSet' s] to insert.spec, the lemma be-
comes provable. We also show that the invariant is upheld, i.e. that FixedBitSet'
s' holds.

7.4 Proof
We will focus on the correctness proof of insert. With 77 lines, it is quite shorter
(and simpler) than the binary search proof, so we will show some more details,
including some reasoning about bitwise operations.

We again start by unfolding definitions and simplifying the resulting goal. We
also eliminate some bounds checks, introducing bit_block for the u32 block bit
is part of, and l' and s' for the updated list and FixedBitSet, respectively.
...
bit_block : ℕ,
bit_block_eq : list.nth (Vec.buf (FixedBitSet.data s)) (bit / 32) = some

bit_block,↪→

l' : list ℕ,
l'_eq : list.update (Vec.buf (FixedBitSet.data s)) (bit / 32) (bit_block

||[32] 2 ^ (bit % 32)) = some l',↪→

s' : FixedBitSet,
s'_eq : s' = FixedBitSet.mk (Vec.mk l') (FixedBitSet.length s)
⊢ FixedBitSet' s' ∧ to_set s' = to_set s ∪ '{bit}

Here the notation ||[32] is an abbreviation for bitor 32. We show the data
type invariant by a helper lemma saying that list.length is invariant under
list.update. After unfolding to_set and some more simplifications, we are left
with a goal that asserts that some index bit' is in the new set iff it is in the old
set or is equal to bit.

7 CASE STUDY: PARTIAL VERIFICATION OF FIXEDBITSET 47

...
bit' : ℕ

⊢ bit' < FixedBitSet.length s ∧ sem.returns bool.tt (FixedBitSet.contains
s' bit') ↔↪→

bit' < FixedBitSet.length s ∧ sem.returns bool.tt (FixedBitSet.contains
s bit') ∨ bit' = bit↪→

If bit' is not a valid index (bit' ≥ FixedBitSet.length s), the goal reduces
to bit' ≠ bit, which holds because bit is assumed to be valid. If, on the other
hand, bit' is valid, we will have to reason about the two contains calls. After
unfolding them and some more simplifications, we are left with a bit-level goal
talking about the u32 block for bit' in the old set (bit'_block) and in the new
set (bit'_block'), respectively.

...
bit'_block bit'_block' : ℕ,
bit'_block_eq : list.nth (Vec.buf (FixedBitSet.data s)) (bit' / 32) = some

bit'_block,↪→

bit'_block'_eq : (if bit / 32 = bit' / 32 then some (bit_block ||[32] 2 ^
(bit % 32)) else some bit'_block) = some bit'_block'↪→

⊢ bit'_block' &&[32] 2 ^ (bit' % 32) ≠ 0 ↔
bit'_block &&[32] 2 ^ (bit' % 32) ≠ 0 ∨ bit' = bit

We proceed by splitting the goal according to the conditional in bit'_block'_eq.
In the case bit / 32 ≠ bit' / 32, we obtain bit'_block' = bit'_block and
bit' ≠ bit, closing the goal. In less formal words, bit' turned out to be in a
block entirely unaffected by the whole insertion.

In the other case, we get bit'_block = bit_block and the goal reduces to a
proposition about two bits in the same block.

⊢ (bit_block ||[32] 2 ^ (bit % 32)) &&[32] 2 ^ (bit' % 32) ≠ 0 ↔
bit_block &&[32] 2 ^ (bit' % 32) ≠ 0 ∨ bit' = bit

Assuming bit' = bit, we see that both sides of the equivalence become univer-
sally true. Otherwise, if bit' ≠ bit, but bit / 32 = bit' / 32 by the previous
assumption, we obtain bit' % 32 ≠ bit % 32. A helper lemma proves that this
cancels out the bitwise or and thus reduces both sides to the same term, concluding
the proof.

48 8 ASYMPTOTIC COMPLEXITY ANALYSIS

8 Asymptotic Complexity Analysis

Monads are known for their versatility in representing various semantics, including
side effects. So far, we have made use of our semantics monad for representing
partiality, i.e. nontermination and abnormal termination. We may in the future
extend the monad to reason about more effects such as (unsafe) mutable global
variables or I/O. In this section, we instead make use of the monad for verifying a
property different from functional correctness: runtime complexity.

8.1 Classifying Asymptotic Complexity

We start with a formalization of multiparametric asymptotic function analysis
based on the ideas and the Coq implementation from [14]. The main insight of
that report is that we can elegantly formalize the notation of “going to infinity”
for an arbitrary number of parameters using the mathematical concept of filters,
originally from topology.

We refer to the report for a detailed description of filters. Fortunately for us,
the Lean library already includes a definition of filters on sets. We will only need
the filter at_infty on natural numbers, the filter combinator prod_filter, which
we developed, and the “eliminator” eventually.

definition at_infty : filter ℕ := ...
notation `[at ` `∞]` := at_infty

definition prod_filter {A B : Type} (Fa : filter A) (Fb : filter B) :
filter (A × B) := ...

notation `[at ` `∞` ` × ` `∞]` := prod_filter [at ∞] [at ∞]

definition eventually {A : Type} (P : A → Prop) (F : filter A) : Prop :=
...

A proposition such as eventually P [at ∞ × ∞] then has the intuitive mean-
ing of holding iff there exists a pair of natural numbers such that P holds for all
(componentwise) larger pairs.

We can now formalize the notions of a function (into the natural numbers)
being non-strictly and strictly asymptotically bounded by another function, which
directly lead to the usual notations as classes of functions.

8 ASYMPTOTIC COMPLEXITY ANALYSIS 49

namespace asymptotic
parameters {A : Type} (F : filter A)
variables (f g : A → ℕ)

definition le : Prop := ∃ c : ℕ, eventually {a | f a ≤ c * g a} F
-- bring `c` to the other side of the inequality
-- so that we can remain within integer arithmetics
definition lt : Prop := ∀ c : ℕ, eventually {a | c * f a ≤ g a} F
definition equiv : Prop := le f g ∧ le g f

definition ub := {f | le f g}
definition sub := {f | lt f g}
definition lb := {f | le g f}
definition slb := {f | lt g f}

end asymptotic

notation `O(` g `) ` F := asymptotic.ub F g
notation `o(` g `) ` F := asymptotic.sub F g
notation `Ω(` g `) ` F := asymptotic.lb F g
notation `ω(` g `) ` F := asymptotic.slb F g
notation `Θ(` g `) ` F := asymptotic.equiv F g

With the notations in place, we can prove familiar lemmas about combining
complexity bounds for arbitrary functions and filters and lemmas about bounds
for some specific functions and filters.

lemma ub_subset_ub : f ∈ O(g) F → O(f) F ⊆ O(g) F := ...
lemma add_ub : f₁ ∈ O(g) F → f₂ ∈ O(g) F → f₁ + f₂ ∈ O(g) F := ...
lemma ub_add_left : O(g₂) F ⊆ f ∈ O(g₁ + g₂) F := ...
lemma ub_add_const : f₁ ∈ O(g) F ∩ Ω(λ x, k) F →
f₁ + (λ x, k) ∈ O(g) F ∩ Ω(λ x, k) F := ..

lemma const_ub_one : (λ x, k) ∈ O(1) F := ...
lemma ub_mul_prod_filter : f₁ ∈ O(g₁) F₁ → f₂ ∈ O(g₂) F₂ →
(λ p, f₁ p.1 * f₂ p.2) ∈ O(λ p, g₁ p.1 * g₂ p.2) (prod_filter F₁ F₂) :=

...

lemma log_unbounded {b : ℕ} (H : b > 1) : log b ∈ ω(1) [at ∞] := ...
lemma id_unbounded : id ∈ ω(1) [at ∞] := ...

8.2 Verifying the Complexity of [T]::binary_search

As described in Subsection 4.6, our semantics monad contains a step counter that
is incremented on each function call and loop iteration. Because only a constant
number of instructions can be executed between any such two events for a given
program, the step count of an execution is asymptotically equivalent to the in-
struction count, which in turn is usually assumed to be asymptotically equivalent
to the running time.

50 8 ASYMPTOTIC COMPLEXITY ANALYSIS

We extend our existing correctness proof of binary_search by introducing a
new predicate that tests both the return value and the step count.

inductive sem.terminates_with_in {A : Type₁} (H : A → Prop) (max_cost : ℕ)
:↪→

sem A → Prop :=
mk : Π {x k}, H x → k ≤ max_cost →
sem.terminates_with_in H max_cost (some (x, k))

Because we will only prove asymptotic upper bounds, we also use an upper
bound in the definition in order to simplify reasoning about specific cost functions.
If we wanted to use the predicate with operators other than O, we should turn the
inequality into an equality.

This time we analyze the function bottom-up, starting with a single loop it-
eration, i.e. an execution of loop_4. With all dependencies unfolded, we quickly
obtain a constant bound on the step count for everything except the trait call to
Ord.cmp, of whose complexity we have absolutely no information. If we wanted
to obtain the textbook bound of O(log n) for binary search, we would have to as-
sume that comparing two elements takes only constant time. That is certainly not
true for all implementations of the trait and such a restriction would be a shame
since for the correctness theorem we did a general proof for any decidable linear
order. Thus we instead introduce a more dynamic upper bound for the call: the
maximum of all execution costs of such comparisons.

-- recall our extension of `Ord` from Section 5.3
structure Ord' [class] (T : Type₁)
extends Ord T, decidable_linear_order T :=

(cmp_eq : ∀ x y : T, Σ k, cmp x y = some (ordering x y, k))

definition Ord'.cmp_max_cost {T : Type₁} [Ord' T] (y : T) (xs : list T) :=
-- extracts `k` from the above definition
Max x ∈ to_finset xs, sigma.pr1 (cmp_eq x y)

Now we can prove a specific upper bound of Ord'.cmp_max_cost needle self
+ 15 for the loop body. Finally, we abstract from this explicit cost function to
an asymptotic bound.

lemma loop_4.spec :
∃ c ∈ O(id) [at ∞],
∀ self needle s base, sorted le self → is_slice self →
loop_4_invar self needle s base →
sem.terminates_with_in

(loop_4_res self needle s)
(c (Ord'.cmp_max_cost needle self))
(loop_4 (closure_5642.mk needle, base, s)) :=

exists.intro (λ n, n + 15) ...

8 ASYMPTOTIC COMPLEXITY ANALYSIS 51

This lemma says that the execution cost of loop_4 is linearly bound by the
maximum comparison cost. In general, we have to separate the measure function
that reduces the input data to a natural number (here cmp_max_cost) and the
abstract cost function that describes the asymptotic behavior of the measure result,
since we cannot define the latter on arbitrary domains. The composition of both
then gives us the actual upper bound function.

We also have to make sure to introduce any parameters the measure depends
on only after the existential quantifier. This makes the definitions slightly more
verbose since we cannot use the convenient section mechanisms with them any
more.

Going up to the whole loop, we expect its asymptotic running time to be that
of the body multiplied with log₂ (length self). Formally, we again have to
split the measure function length from the asymptotic cost function log₂.

lemma loop_loop_4.spec :
∃₀ f ∈ O(λp, log₂ p.1 * p.2) [at ∞ × ∞],
∀ self needle, is_slice self → sorted le self → sem.terminates_with_in

(binary_search_res self needle)
(f (length self, Ord'.cmp_max_cost needle self))
(loop loop_4 (closure_5642.mk needle, 0, self)) := ...

As in the functional correctness proof, we can show this lemma by well-founded
recursion. However, proving that a loop is asymptotically bounded by an iteration
upper bound multiplied by an upper bound for the body should be a common
occurence, so we have extracted the proof into a general theorem.

theorem loop.terminates_with_in_ub
{In State Res : Type₁}
(body : In → State → sem (State + Res))
(pre : In → State → Prop)
(p : In → State → State → Prop)
(q : In → State → Res → Prop)
(citer aiter : ℕ → ℕ)
(miter : State → ℕ)
(cbody abody : ℕ → ℕ)
(mbody : In → State → ℕ)
(citer_aiter : citer ∈ O(aiter) [at ∞] ∩ Ω(1) [at ∞])
(cbody_abody : cbody ∈ O(abody) [at ∞] ∩ Ω(1) [at ∞])
(pre_p : ∀ args s, pre args s → p args s s)
(step : ∀ args init s, pre args init → p args init s →

sem.terminates_with_in (λ x, match x with
| inl s' := p args init s' ∧ citer (miter s') < citer (miter s)
| inr r := q args init r
end) (cbody (mbody args init)) (body args s)) :

∃ f ∈ O(λ p, aiter p.1 * abody p.2) [at ∞ × ∞], ∀ args s, pre args s →
sem.terminates_with_in (q args s) (f (miter s, mbody args s))

(loop (body args) s) := ...

52 8 ASYMPTOTIC COMPLEXITY ANALYSIS

This may very well be the most complex theorem of our work, at least by
signature. Going through the explicit parameters from top to bottom, we have
the loop body, the precondition, the invariant (which may depend on both the
initial and current state), the postcondition, the concrete and asymptotic bound
and measure function of the iteration count, and the same for the body. These
are followed by assumptions that the asymptotic bounds are correct, that the
precondition implies the invariant, and that a loop iteration either continues the
loop with the invariant upheld and the concrete iteration count reduced or breaks
the loop while satisfying the postcondition. In the end, the conclusion says that the
loop, measured by the product of the measure functions, is asymptotically bounded
by the product of the asymptotic bounds and terminates with the postcondition
fulfilled, as long as the precondition is satisfied.

When using this theorem to prove the previous lemma, we can transfer the
instantiations of and proofs about the precondition, invariant, and postcondition
directly from the correctness proof, and show the asymptotic behavior of the body
from the lemma loop_4.spec. We are left to prove that the iteration count is
asymptotically bounded by log₂. Because this is the more interesting bound, we
will show some more details of the proof.

We choose the concrete bound λ n, log₂ (2*n)+1 for the iteration count and
show that it is in O(log₂) [at ∞]. Because the underlying relation asymptotic.le
is transitive, we can make use of Lean’s calc blocks for this. By a second tran-
sitivity lemma, we can even combine it with the standard (pointwise) function
inequality operator.
local infix `≼`:25 := asymptotic.le [at ∞]
...

calc (λ n, log₂ (2 * n) + 1)
≤ (λ n, log₂ n + 2) : ...

... ≼ log₂ : add_ub asymptotic.le.refl (
calc (λ n, 2) ≼ (λ n, 1) : const_ub_one

... ≼ log₂ : asymptotic.le_of_lt (log_unbounded ...))

Finally, we show that the concrete iteration count is strictly decreasing. This
follows from the two premises length s' ≤ length s / 2 and length s ≠ 0 of
loop_4_step from the correctness proof, together with the fact that log₂ is mono-
tone.
calc log₂ (2 * length s') + 1

≤ log₂ (length s) + 1 : ...`length s' ≤ length s / 2`...
... = log₂ (2 * length s) : ...`length s ≠ 0`...
... < log₂ (2 * length s) + 1 : ...

Going up from the loop to binary_search, there is just a single call, leaving
the final asymptotic complexity unchanged.

8 ASYMPTOTIC COMPLEXITY ANALYSIS 53

theorem binary_search.spec :
∃ f ∈ O(λ p, log₂ p.1 * p.2) [at ∞ × ∞],
∀ (self : slice T) (needle : T), is_slice self → sorted le self →

sem.terminates_with_in
(binary_search_res self needle)
(f (length self, Ord'.cmp_max_cost needle self))
(binary_search self needle) := ...

Thus, in the most general way, the runtime of binary_search is asymptotically
bounded by the logarithm of the input slice’s length multiplied with the maximum
cost of comparing the needle with any element in the slice.

54 9 EVALUATION

9 Evaluation
During our verification work, we always focused on supporting just enough of the
vast Rust language as needed to successfully translate the definitions at hand and
instructed the translation tool to ignore other definitions. Still, in order to give a
more representative picture of our coverage of the language, we also had the tool
translate as many definitions from the core crate as possible. This was followed
by many iterations of fixing edge cases in the translation where it produced invalid
Lean code, which overall resulted in a much more robust implementation.

The end result is a single file of 75694 lines of valid Lean code, which is about
42% longer than the entire Lean standard library combined. It took 76 seconds
to parse and translate the Rust input and 29 seconds for Lean to type check it
on a standard laptop. With 6731 definitions, the file contains about 55% of all
definitions in core; see Table 2 for a detailed breakdown of the missing definitions.
While we cannot guarantee the semantic correctness of the successfully translated
definitions, we believe that the type correctness is a significant indicator for total
correctness.

9 EVALUATION 55

#definitions outcome (reason)
6731 succeeds and type checks
2761 succeeds, but some failed dependencies
2649 translation failed
713 overriding default method (Subsection 4.5.1)
388 &mut nested in type (Subsection 6.2)
360 variadic function signature (unsafe, used for C interoperability)
280 float (Subsection 4.4.1)
243 raw pointer
209 cast from function pointer to usize
173 unimplemented intrinsic function
45 error from rustc API during translation
40 unimplemented rvalue
33 resolving builtin trait impl
29 instantiating type parameter with &mut (Subsection 6.3)
28 manually excluded because of excessive generated code
23 trait object (Subsection 4.5.3)
19 returning mutable reference to argument other than the first
16 struct with associated type dependency
12 unimplemented lens kind
10 unable to resolve local trait reference to parameter
3 &[u8] byte string literal
1 &mut loop parameter

Table 2: Tabulated translation results per definition from the core crate. Only
the first error per definition is recorded. Curiously some supposed niche cases
like variadic functions and casting from function pointers to integral numbers are
prominently represented. It turns out that in both cases, these are almost exclu-
sively automatically generated trait implementations for all function arities up to
a certain bound.

56 10 CONCLUSION AND FUTURE WORK

10 Conclusion and Future Work
In this thesis, we presented the first general tool for formally verifying safe Rust
code and successfully used it to prove the correctness and asymptotic complexity
of a standard algorithm as well as the correctness of a data structure. The tool
translates imperative Rust code into purely functional code by making use of
special guarantees of Rust’s type system that are not exhibited by any other major
imperative programming language. Even before optimizing the coverage of the
language, the transformation is general enough to successfully translate 45% of the
base core library, all without the need for any input modifications or annotations.

Now that the basic tooling is in place, we hope to use it for the verification
of many more standard algorithms and data structures that Rust programmers
use and rely on daily. In order to do this, we will invariably have to revisit some
design restrictions mentioned in this thesis. On top of this, we would also like
to (carefully) broaden the semantics we can represent to include some reasoning
about unsafe code that does not depend on a full memory model of Rust. A
verification of the prominent Vec type that we still had to axiomatize in this work
may turn out to be a good first step in this direction.

Lastly, we are highly anticipating the next version of Lean focused on automa-
tion that will be released in the beginning of 2017. By combining general tactics
invoking automated provers and custom tactics that we can design in the new
monadic tactic framework for our purposes, we should be able to drastically lower
the verification cost when using our tool. We hope to continue contributing to the
Lean project in order to make it the best interactive theorem prover available for
program verification.

Acknowledgements
This thesis was written during a stay at Carnegie Mellon University, Pittsburgh,
USA, under Prof. Jeremy Avigad via the InterACT exchange program. I would like
to thank Jeremy, Prof. Gregor Snelting (KIT), and Prof. Alex Waibel (CMU/KIT)
for making this unique opportunity possible. My stay in Pittsburgh was in parts
kindly sponsored by Robert Bosch GmbH and Vector Informatik GmbH.

Even before departing for CMU, I had some fruitful discussions about the
eventual topic with Joachim Breitner, Sebastian Buchwald, Denis Lohner, Manuel
Mohr, and Max Wagner. Nevertheless, the idea was still very much in flux when
arriving in Pittsburgh. I am thankful to Jeremy for still supporting it over less
precarious subjects, being an excellent advisor during both formalizing and writing,
sponsoring a visit to Microsoft Research, and last but not least for making me feel
welcome from the start. His personal tour of the campus gave me a clear edge
over other visitors when navigating CMU’s maze of bridges. The welcome was
complemented by the other members of the Lean user group as well as the staff of
the Interactive Systems Lab. In particular – while it was not meant to be for long
– sharing an office with Gabriel Ebner created a ridiculously productive and fun
work environment, with not a single lunch break wasted with not talking about
how to contribute to making Lean even better.

References
[1] B. Anderson, L. Bergstrom, M. Goregaokar, J. Matthews, K. McAllister,

J. Moffitt, and S. Sapin. Engineering the Servo web browser engine using Rust.
In Proceedings of the 38th International Conference on Software Engineering
Companion, pages 81–89. ACM, 2016.

[2] F. Bobot, J.-C. Filliâtre, C. Marché, and A. Paskevich. Why3: Shepherd your
herd of provers. In Boogie 2011: First International Workshop on Intermediate
Verification Languages, pages 53–64, 2011.

[3] M. M. Chakravarty, G. Keller, S. P. Jones, and S. Marlow. Associated types
with class. In ACM SIGPLAN Notices, volume 40, pages 1–13. ACM, 2005.

[4] T. Coquand and G. Huet. The calculus of constructions. Information and
computation, 76(2-3):95–120, 1988.

[5] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and
B. Yakobowski. Frama-C. In International Conference on Software Engi-
neering and Formal Methods, pages 233–247. Springer, 2012.

[6] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In International
conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

[7] L. de Moura, S. Kong, J. Avigad, F. Van Doorn, and J. von Raumer. The
Lean theorem prover (system description). In International Conference on
Automated Deduction, pages 378–388. Springer, 2015.

[8] T. C. development team. The Coq proof assistant reference manual. LogiCal
Project, 2004. Version 8.0.

[9] J.-C. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus platform for
deductive program verification. In International Conference on Computer
Aided Verification, pages 173–177. Springer, 2007.

[10] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt.
Combinators for bi-directional tree transformations: a linguistic approach to
the view update problem. ACM SIGPLAN Notices, 40(1):233–246, 2005.

[11] D. Greenaway, J. Andronick, and G. Klein. Bridging the gap: Automatic
verified abstraction of C. In International Conference on Interactive Theorem
Proving, pages 99–115. Springer, 2012.

[12] D. Greenaway, J. Lim, J. Andronick, and G. Klein. Don’t sweat the small
stuff: formal verification of C code without the pain. ACM SIGPLAN Notices,
49(6):429–439, 2014.

[13] J. Guitton, J. Kanig, and Y. Moy. Why Hi-Lite Ada? In Boogie 2011: First
International Workshop on Intermediate Verification Languages, 2011.

[14] A. Guéneau. Formal verification of asymptotic complexity bounds for OCaml
programs. Technical report, Inria Paris-Rocquencourt, 2015.

[15] M. P. Jones. Type classes with functional dependencies. In European Sympo-
sium on Programming, pages 230–244. Springer, 2000.

[16] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, et al. seL4: For-
mal verification of an OS kernel. In Proceedings of the ACM SIGOPS 22nd
symposium on operating systems principles, pages 207–220. ACM, 2009.

[17] N. D. Matsakis and F. S. Klock II. The Rust language. In ACM SIGAda Ada
Letters, volume 34, pages 103–104. ACM, 2014.

[18] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: a proof assistant
for higher-order logic, volume 2283. Springer Science & Business Media, 2002.

[19] L. O’Connor, Z. Chen, C. Rizkallah, S. Amani, J. Lim, T. Murray, Y. Na-
gashima, T. Sewell, and G. Klein. Refinement through restraint: bringing
down the cost of verification. In Proceedings of the 21st ACM SIGPLAN
International Conference on Functional Programming, pages 89–102. ACM,
2016.

[20] F. Pfenning and C. Paulin-Mohring. Inductively defined types in the calculus
of constructions. In International Conference on Mathematical Foundations
of Programming Semantics, pages 209–228. Springer, 1989.

[21] J. C. Reynolds. Separation logic: a logic for shared mutable data structures. In
Logic in Computer Science, 2002. Proceedings. 17th Annual IEEE Symposium
on, pages 55–74. IEEE, 2002.

[22] T. A. L. Sewell, M. O. Myreen, and G. Klein. Translation validation for
a verified OS kernel. In Proceedings of the 34th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI ’13, pages
471–482, New York, NY, USA, 2013. ACM.

[23] A. Tarski et al. A lattice-theoretical fixpoint theorem and its applications.
Pacific journal of Mathematics, 5(2):285–309, 1955.

[24] The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. https://homotopytypetheory.org/book, In-
stitute for Advanced Study, 2013.

[25] P. Wadler. Linear types can change the world. In IFIP TC, volume 2, pages
347–359. Citeseer, 1990.

https://homotopytypetheory.org/book

Erklärung

Hiermit erkläre ich, Sebastian Andreas Ullrich, dass ich die vorliegende Master-
arbeit selbstständig verfasst habe und keine anderen als die angegebenen Quellen
und Hilfsmittel benutzt habe, die wörtlich oder inhaltlich übernommenen Stellen
als solche kenntlich gemacht und die Satzung des KIT zur Sicherung guter wis-
senschaftlicher Praxis beachtet habe.

Ort, Datum Unterschrift

	Introduction
	Related Work
	Background
	Rust
	Lean

	The Basic Transformation
	The MIR
	Identifiers
	Programs and Files
	Types
	Primitive Types
	Structs and Enums
	References

	Traits
	Default Methods
	Associated Types
	Trait Objects

	The Semantics Monad
	Statements and Control Flow
	The Loop Combinator

	Expressions
	Arithmetic Operators
	Bitwise Operators
	Index Expressions
	Lambda Expressions

	Case Study: Verification of [T]::binary_search
	The Rust Implementation
	Prelude: Coping with Unsafe Dependencies
	Formal Specification
	Proof

	Transformation of Mutable References
	Lenses as Functional References
	Pointer Bookkeeping
	Passing Mutable References
	Returning Mutable References

	Case Study: Partial Verification of FixedBitSet
	The Rust Implementation
	Prelude: Axiomatizing collections::vec::Vec
	Formal Specification
	Proof

	Asymptotic Complexity Analysis
	Classifying Asymptotic Complexity
	Verifying the Complexity of [T]::binary_search

	Evaluation
	Conclusion and Future Work
	Acknowledgements
	References

