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ABSTRACT

KABA is an innovative system for refactoring Java class duier
chies. It uses the Snelting/Tip algorithm [13] in order téetdmine
a behavior-preserving refactoring which is optimal witegect to
a given set of client programs. KABA can be based on dynamic
as well as static program analysis. The static variant wédkprve
program behavior for all possible input values; the dynareision
guarantees preservation of behavior for all runs in a gigenduite.
KABA offers automatic refactoring as well as manual refaictp
using a dedicated editor.

In this contribution, we recapitulate the Snelting/Tipaithm,
present the new dynamic version, and explain new extensgibith
allow to handle full Java. We then present five case studieshwh
discuss the KABA refactoring proposals for programs sugheasac
andant | r . KABA proved thatj avac does not need refactoring,
but generated semantics-based refactoring proposadsitdrr .

1. INTRODUCTION

Refactoring transforms a given class hierarchy in ordento i
prove its structure and evolution. Refactoring and, moresgally,
program transformation has been a popular research tapsofoe
time, and has recently gained much interest due to the emezged
light-weight design methodologies such as Extreme Progniaign
[2] that advocate continuous refactorings. The book by Eoyd]
presents a comprehensive list of refactoring transfonativhich
has been implemented in some refactoring tools.

But while refactorings are well-understood, automatedegen
tion of refactoring proposals is still in its infancy. Onetbe key
limiting factors is the fact that verifying the precondit®for many
refactorings (in order to ensure that program behaviordsgnved)
may involve non-trivial program analysis. Another limgjifac-
tor is the fact that refactoring is a manual process even toibh
support: the refactorer must know which refactorings tdyppd
why.

In this paper, we present a different approach to refaagjoiie
assume that a hierarchy is given together with a sefieft pro-
gramsusing this hierarchy. We generate a refactoring proposal
automatically and this proposal is based on thsageof the hi-
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erarchy by the client programs. The refactoring is guasshte
be semantically equivalent to the original program (witbpect to
client behavior).

The transformed hierarchy can then be subject to further man
ual refactorings, while preservation of semantics is sfilaran-
teed. Eventually, code can be generated. The new code gentai
the same statements as the original code, except that treedfig
has changed and for all variables a new type (i.e. class) &as b
computed.

Preservation of semantics is achieved by a combinationaf pr
gram analysis, type constraints and concept lattices. gutrue
value of the technique lies in the possibility to automalycaefac-
tor with respect to a givepurpose- represented by a given set of
client programs. For the given clients, the refactoredanity is
optimalin the sense that every object contains only those methods
or fields it really accesses. In fact, we determine the most fin
grained refactoring which still preserves behavior of héirts.

The refactoring editor KABA offers two variants of this ap-
proach. The static approach requires static program daaysl
guarantees behavior preservation for all analyzed clisvgrams.
The dynamic approach requires dynamic program analysigaeud
antees behavior preservation for all client runs of a giest $uite.

Of course, the static analysis is a conservative approiomaf any
dynamic analysis. KABA also offers semantic support for man
ual refactoring, intended not only for post-processing @tomatic
refactoring, but for refactoring any class hierarchy.

Organization of this paper

The primary purpose of this contribution is the presentatibthe
innovative KABA refactoring system, as well as the discosf
case studies for its application. But in order to make KABArkvo
for full Java, the original refactoring algorithm had to lmnsider-
ably expanded. Thus we had to decide how the presentatiahdsho
reconcile the technical and the practical aspects of oukwor

We have chosen a non-standard organization: the main paper
presents KABA from an application-oriented, software eegr-
ing view. All technical and algorithmic details and inndeats are
presented in a series of appendices.

2. THE REFACTORING ALGORITHM

In this section, we describe the Snelting/Tip algorithnrmfra
user’s viewpoint. The algorithm has been described in Hatai
[13]. Appendix 1 presents a more technical recapitulatibthe
most important steps of the algorithm, as well as techniefrf
ences.

'KABA stands for “KlassenAnalyse mit BegriffsAnalyse” (s
analysis by concept analysis). KABA is also a popular chateol
drink in Germany.



2.1 Basic steps of the algorithm

2.1.1 Collection of member accesses

The first analysis step collects all field and method accesses
the given source hierarchy and its client set. The algorikts up
a table, where the rows are labeled with variable namesugrcl
ing parameters, this-pointers etc), and the columns aetddlwith
fields and methods from the hierarchy. An access() from an
object will lead to a table entry fqo, C':: m) (whereC'is the static
class form).

There are two variants of the collection process, one based o
dynamic program analysis and one based on static progralhn ana
ysis. In the dynamic variant, the JVM is instrumented sudt th
every callo.m() at runtime leads to a corresponding table entry.
In the static variantpoints-to analysiss used to approximate the
effects of dynamic dispatch. For an object referenciés points-to
setpt(xz) = {o1,...,0,} is used to collect possible method calls
by z.m(): a table entry is generated for afy;, C'::m).

2.1.2 Incorporation of type constraints

In order to guarantee preservation of behavior, a set ofd¢ppe
straints is extracted from the source which must also besteg
in the refactored hierarchy. For example, every assignraent
b; in the original source requires th&pe(a) > type(d), and
this must hold in the refactored hierarchy as well. Furtr@amif
A > B are classes which both define a methodthe constraint
type(A::m) > type(B::m) must sometimes be retained in order
to avoid ambiguous accesses in the refactored hierarchy.

Once all type constraints have been extracted, they aregoco
rated into the table from phase 1: more entries are added, unt
a minimal table is obtained which respects all constraiits. not
obvious that this is always possible, and even less obviaishese
constraints are enough to guarantee preservation of ehavie
details of constraint generation and incorporation areeqomplex
(see appendix 1).

2.1.3 Generation of concept lattice

Tables are nice, but the true reason for extracting a tabta fr
the source is that a class hierarchy can be generated aitaltyat
from the table using the well-known methodroathematical con-

cept analysis Concept analysis (see appendix 1) generates a lat-

tice from the table, which represents exactly the same rimdition
as the table, but organized into a completely differentranighi-
cal view. Concept lattices are natural inheritance strastuevery
lattice element represents a class, and common fields orod®th
are factored out into super-classes. The refactored bleras thus
obtained as a concept lattice generated from the final table.

The statements in this refactored hierarchy are the same as i
the original hierarchy. But every variable or object obgainnew
type, and this type (i.e. refactored class) will contairfialds and
methods needed by the variable. More precisely: every btijat
might be generated at runtime has a new type containing di-me
ods and fields it may access at runtime; while methods or fields
not accessed by an object resp. variable are not membessrait
type.

Thus the original lattice provides fine-grained insighoirhe
member access patterns of all objects and variables — adaaity
valuable for program analysis and understanding.

2.1.4 Simplification of concept lattice

For practical refactoring purposes, the lattice must bekiied
in order to be useful. Typically the lattice size can be cosee
by 80% without affecting preservation of behaviour. Therusay

contribute background knowledge during lattice simplifima in
order to control the structure of the final refactoring.

Even the simplified lattice may contain multiple inheritaAcAs
an option, automatic elimination of multiple inheritan@de ap-
plied (see appendix 1). From a software engineering viemtptiie
resulting final refactorings are the most useful ones.

2.2 Properties of the algorithm

The algorithm has several outstanding properties, whichbea
summarized as follows:

e it generates a refactoring proposal automatically;

e it guarantees preservation of behavior (for all possiblesru
in the static variant, for the given test suite in the dynamic

variant);

it refactors with respect to a given purpose, that is, with re
spect to a given set of clients;

it thus implements a certain form of program specialization
— but as the number or size of clients grows, the refactorings
will be more general in nature;

it is optimal with respect to member distribution: all olfec
can access only members they really need (thus they usually
become smaller);

it identifies dead methods or fields as a by-product;

it provides two levels of granularity: the raw lattice, acfi
like a “spectral analysis” tool allows remarkable insigtioi
program behavior; the simplified lattice provides pradtica
refactoring proposals.

We will illustrate the algorithm by a small example in the hex
subsection, and will discuss various case studies latéweipaper.
Right here, we would like to point out an important obsexwati
The Snelting/Tip algorithm is not a software engineer. #nsanal-
ysis tool which showsvhat can be done without destroying behav-
ior. KABA refactorings are proposals, and the software enginee
decides about their application.

2.3 Anexample

As a simple example, consider the program in figur&lbeing
a subclass of, redefinesf() and accesses the inherited fietds
y. The main program creates two objects of typand two objects
of type B, and performs some field accesses and method calls.

Figure 2 presents the KABA refactoring proposal, that ig th
simplified concept lattice (the intermediate tables as aslithe
raw lattice are shown in appendix 1; in fact the simplifiedidat
is only a partial order). Lattice elements are the classélseohew
hierarchy. They are marked with class members above, arfd wit
variables or objects below. The members above an element(i.
new class) define the new class’ members; variables belokean e
ment will obtain this element as their new type.

The refactoring basically reacts to the different membeeas
patterns of the objects in the program. Typically, a claspii into
new unrelated classes if there are objects which accessubsets
of its members, and other objects which access anotheqiris;j
subset of its members. New subclasses and inheritancienslare
introduced if there are objects accessing only a subset céra-m
ber set accessed by other objects. In the example, we oltherve
following:

2The Snelting/Tip algorithm was originally designed with-€in
mind, where occasional multiple inheritance does not pgz@e:
tical problem.



class A {

int x, y, z;
voi d_f(? { class dient {
y =X public static void
} mai n(String[] args) {
} Aal = newA();: // Al
class B extends A { Qﬁfzﬂixg\gg H gi
VOIdlf() { B b2 = new B(); /1l B2
y++;
} al.x = 17;
voi d g() { a2 x = 42:
]3<++z if (...) { a2 = b2; }
} () a2.f();
) b1. ;
voi d h() { bz_ggg
£O); } ’
X-- }
}

}

Figure 1: A small example program

b2 B2

b1 B1

Figure 2: KABA refactoring for figure 1

e The two objects of original typ® have different behavior,
as one callg and the other call&. Therefore, the original
B class is split into two unrelated classes.

e The two objects of original typdl have related behavior, as
A2 accesses everything accessedddy plus A. f(). There-
fore, the originalA class is split into a class and a subclass.

e Al does only contaim.z and notA.y. A.z is dead any-

3.1 Program analysis

The static analysis can handle full Java byte-code anddeslu
a full points-to analysis. Intraprocedural points-to gs# is flow-
sensitive and can be parametrized to be context- and obgestitive®

Stubs are necessary to simulate the behaviorati’e methods.
Stubs are provided for the most commonly used native funstio
of JDK 1.3, additional stubs can be added easily. The arsatysi
handle reflection features like thel ass operator precisely, and
uses a heuristic if a program loads classes @ithss. f or Nane.
The techniques used to deal with this aspects of reflectiolildme
extended to handle all of reflection.

Although mainly tested with class files generatedjdyac and
jikes KABA should be able to handle other Java and non-Java com-
pilers as well. Besides the class files, the analysis neezlsranore
starting methodsn@i n). All code reachable from these methods
is included in the analysis. The main limitation of the as#ys its
memory requirement. With 2GB of memory programs ljagac
(as of JDK 1.3, 28000 LOC) can be analyzed. Unfortunately 2GB
is a technical barrier not easily overcome on most systems.

The dynamic analysis consists of the J\Haffe*, whose byte-
code interpreter has been modified to track all member aesess
during program execution. It supports the same amount afaefl
tion as the static analysis. No stubs for native programs baen
provided because experience with the static analysis dstnadad
that stubs are important for correct control flow, but notrfeem-
ber accesses. For the instrumented JVM, control flow is cbrre
without stubs.

The output from different program runs are merged into the ta
ble format used by the static analysis. We have not obsemgd a
limitations in terms of program size, however general latigns of
automated testing apply.

3.2 The refactoring editor

The KABA editor computes the (raw or simplified) concept lat-
tice and displays it graphically. Figure 3 presents théckattor
figure 1 in form of a KABA screen shot. Every box represents one
class, its name is printed in bold font in the center (hodedain-
ing only members from the same original cl&ssare named>’'n;
users have the option to manually rename classes).

Members are displayed above the class name, variables kielow
To reduce the screen space requirements, attributes aectohbje
not displayed by default; little arrows next to the class aathow
to expand them if necessaty.

In contrast to the simplified lattice in figure 2 this screentsh
features all the ugly details necessary in practice: fullhoe sig-
natures, constructors, and unique object identifiers. Atgizeable
are two different displays of methods, as method names afis@d

way, as it does not appear in the refactored hierarchy. Thus  ejtherdcl or def Thedcl represents an abstract declaration of
objects become smaller in general, as unused members arey" method, whereas def represents the implementation (see Ap-

physically absent in objects of the new hierarchy.

One might think of simplifying even further by merging theotw
topmost elements in figure 2, but that would make bigger than
necessary by including.y as a member. Itis the refactorer’s deci-
sion whether this disadvantage is out-weighted by a siniateéce
structure. If so, the refactoring editor must guaranteekibhavior
of all clients is still preserved after simplification.

3. THE KABA SYSTEM

KABA is an implementation of the approach described so far.
KABA currently consists of four components: the static ga,
the dynamic analysis, the class hierarchy editor and the-tytle
transformation tool KRS.

pendix 1). In the example, a methodlsl anddef are always at
the same node, but this need not be the case if interfaceswaab
methods are present.

Additional views help users to browse and refactor the hiera
chy. The first view (figure 4 upper) shows what “happened” to an
original class. It shows all members and their new “homesela
making it easy to see how a class was restructured. Additidita

3By default, context-sensitive analysis is used only foeebgon-
structors, while object-sensivity is used for the Javaemibn
classes. These parameters can be tuned individually te\achest
performance.

“http://ww. kaffe. org/

SWe plan to use UML notation in the future, but right now these i
no UML layouter satisfying KABA's needs.



R xample - kaba concept editor
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Figure 4: Browser for original types (upper);

[«

Browser for class content (lower).

Figure 3: KABA screen-shot for figure 1

ity functions to mark certain members are also provided.

The second view (figure 4 lower) gives an overview of a new
class. In addition to members located in the class itseffaiuides
members from parent classes. KABA displays all members of a
class; for inherited members, their new “home class” is mgiveor
every object shown in the class hierarchy, the source codes of
creation site can be seen on mouse click.

Besides browsing, the user may modify the class hierarchg. T
following basic operations are provided:

e Attributes and objects can be moved in a cut-and-paste fash-

ion. Any number of them can be selected (cut) and moved to
any class (paste).

A class can be split into two. Incoming edges are attached

to the first new class, outgoing edges are attached to the sec-

ond, and the second inherits from the first. All members are
moved to the first, all variables to the second class; they may
be redistributed later.

made a subclass of another class.

These operations should be sufficient to refactor the cless h
archy in every possible way. Additional convenience funrtsi are
provided to make common tasks more easy (e.g. applicatitimeof
lattice simplification algorithm).

Modification of the class hierarchy is only allowed if it wilbt
affect client behavior. The user is given detailed feedbdekcer-
tain refactoring is not allowed. Figure 5 shows an examplerder
to merge classe& 1 andA’ 6 from figure 3, the user tried to move
the pointeral from classA’ 1 to the subclass. KABA refused as
A’ 1 also contains an objecAR in terms of figure 2) and there is an
assignment between the pointer and the object in the program
proposed pointer move would make this assignment typesiecb
It would however be valid to move pointer and object to the-sub
class in one step or just to merge the two classes.

As refactored hierarchies can contain multiple inherigaribe
KABA editor will (on demand) mark classes which really inter

Two classes can be merged into one class, and a class can b

: SmallExample_kaba concepteditor
File Edit View Selection Global Mark Help

]

ef(A.<init>(->))
x

i

lient, 3173
lient. main(java.lang, String[]->). <#05/*A

HeliAf=)
def(A.f->))
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A'e

(Client,a2/A

Client. main(java.lang. String[l->). <#a>/*A

&

Error

The requested operation would cause the following problem:
The assignment Eliental/A — Client,main(ava.lang.stingll->).
<#0>/*A is not type correct

lient.alfA is at node A'5,
Client. main(java.lang.String[]->). <#0> /*A is at node Al
and A'6 is not above Al

Bl .ht=)

Hef(B.h->))

B'10

Iclient b2/8

[Client. main(java lang. String]

&P oK

kil

[l 1

Figure 5: KABA reaction to an illegal refactoring

method definitions from different superclassel offers to move
method definitions from one of these superclasses furthar the
hierarchy, thereby eliminating multiple inheritance.

3.3 Code generation

The final part of KABA is the byte-code transformation tool 8R
[12]. Using transformation instructions generated by ttikoe, it
transforms the original byte-code into a new set of classdsinimg
the new hierarchy. The byte-code can be run directly or fexidne
of the various byte-code decompilers to regain Java sourde. c

Code generation consists of two major tasks: first, all fields

5Note that the type constraints prevent thatshememethod is in-
herited from different superclasses



methods must be reordered according to the new class Higrarc
The second task is more subtle: Every class name in the pnogra
must be replaced by a new one. This affevéswv expressions as
well as types of local variables, method parameters, fiélds,

t anceof operators, type casts and exception handlers. For re-

flection calls, parameters passed to certain methods arédiesod
to match the new class names. In addition to the type chaafies,
dead code must be removed as it becomes non-typeable irafjener

Currently only the static analysis provides all the infotioa
required for code generation, as the dynamic analysis dnids
mation about pointers.

3.4 Application of KABA

KABA is most useful when a library is analyzed together with
all clients using this library. It guarantees preservatibbehavior
for the clients (static analysis) or all test runs (dynammalgsis):
for any input, visible program output remains the sdme€lient
code which was not analyzed by KABA may still work with the
refactored version, but there is no guarantee. It is howeessible
to automatically check for preservation of behavior.

For both variants of the analysis, the full byte code mustad-a
able. If some methods are implementednative methods, stubs

4 subclasses, 3 of them have further subcla$s&ar this case
study, the rest of the compiler is considered to be clienecod

Figure 7 shows the KABA refactoring of the symbol table. The
overall structure of the hierarchy is not affected by thedfar-
mation: there is still one top class with four subclassesiwia
cases even their subclasses remain unchanged (2, 3, 15). The
class 4 has some of is members moved into new subclasses 11 and
17 . Class 11 also contains members that were previouslyein th
top class. Hence these examples illustrate automaticdexttass”
and “move member” / “move method” refactorings.

Something similar happens to the two subclasses of 6 . They
are split into a hierarchy containing members of the samgi-ori
nal class. Additionally members of the former top class aoged
down. For these members multiple inheritance is introduesd
they are used by different subclass branches, but not inc¢bai-
mon ancestor class. Only multiple inheritance can visaalids
phenomenon in the hierarchy.

But for a practical Java refactoring, multiple inheritarea be
easily removed by merging class 8 and 13 with their supes@as
The Result can be seen in figure 8.

In general, refactored objects become smaller. The ofiglaas
Synbol had 27 members, only 14 are left in class 1 . Thus the

are necessary which emulate member access in the same way theumber of members in the top class was reduced by about 50 per-

native methods would. The static analysis already contstinss
for the most commonly used native methods of JDK 1.3.

The user must decide which code is subject to refactorisgr(
code and which part must remain unchangébréry codg. Usu-
ally the analyzed program is user code and the classes feodDi
are library code. If a program requires third party librarighey are
most likely to be included in the library code. Library codeish
be self-contained, it may not contain references to the ecsde.

Once the analysis is complete, the KABA editor can be used
to browse and modify the transformed class hierarchy. Isthéc
analysis was used, the original byte code can be autonigticats-
formed into code conforming to the refactored classes fihya

4. CASE STUDIES

We have applied KABA to several real world programs. We use
a condensed view for the resulting hierarchies in the figbees
low. Nodes will only contain the names of the original clasem
which it contains members. Numbers at the left hand side ofie@n
are used to reference a specific class. The right hand sidaicsn
two numbers: the number of pointers (upper half) and the mumb
of objects (lower half) who have that specific type. Commockpa
age names are abbreviated “...". The presented hieraraieéamt
the raw lattices, but have been processed with the algoffitbm
appendix 1 to reduce their complexity without changing béra
Interfaces consisting only of constants are omitted.

4.1 Thejavac compiler

Our first example is the Java compiler from Sun’s JDK 1.3.1. It
was analyzed using the dynamic analysis. The Java libragjf it
was used as test suite, creating 1878 individual compiles.rill
refactorings shown below are guaranteed to preserve dttleas
behavior of these 1878 test cases.

4.1.1 The symbol table

Figure 6 presents a specific sub-hierarchy fijoavac, namely
the symbol table. The topmost symbol table clasSyigbol with

"As objects become smaller, KABA may act as a space optimizer;
as the number of classes usually increases, some runtimeecawk
may be introduced. Both effects have not yet been evaluated.

cent. The number could be further reduced if the construetadd
not initialize all data members.

Let us now discuss the KABA refactoring proposal from a soft-
ware engineering viewpoint. Even after removal of multipleeri-
tance, new subclasses are proposed in the KABA refactdritrgp-
ducing new subclasses will in general improve informatiatirty,
as certain “secrets” are moved into less-visible subctas§on-
sidering class cohesion, KABA will introduce new classely éh
their methods are executed together and thus improvesidnatt
cohesion. But the source code may provide other argumeatssig
splitting classes. Remember: KABA shows what can be dorte wit
out affecting behavior, but is not a software engineer. TRBK
editor is used to modify a refactoring proposal accordingdfi-
ware engineering criteria.

In the example, the new subclasses are certainly justifimd fr
a software engineering viewpoint, as functional cohessomiuch
improved. But the more fundamental insight from this caselyst
is that KABA basically reproduced the overall hierarchysture.
We therefore conclude that the origifjahvac design was quite
good. This example demonstrates that KABA can also be used as
a design metrics: it is good if the original hierarchy is more
less reproduced, it is bad if the original hierarchy is caetedly
refactored.

4.1.2 The tree visitor

The second example frojravac is shown in figure 9; it is the
tree visitor sub-hierarchy. The refactored KABA versionhef sub-
hierarchy (figure 10) is completely unchanged. However theve
member” / “move method” refactoring has been applied: sdver
members have been moved into subclasses. The new class 1 con-
sists of only 3 methods, 6 other methods from the originaschre
distributed to classes 8 ,9 ,10 and 11 , while 28 methods are pr
sumed dead. As this is a very high number, we manually inedect
the code and found that the original class is an abstratowisith
one method overloaded for 36 different syntactical unitst @&ly
8 of them are actually called, the used versions are usugéy-o
written in a subclass.

If the dead (!) code is removed, the program produces a me-ti

8synbol $Var Synbol indicates this class is an inner class of
Synbol . Aninner class may be a subclass of its outer class.



...code.Symbol$VarSymbol

‘ Object H 1‘ ,..code.Symboltﬁ

...code.Symbol$MethodSymbol ...code.Symbol$OperatorSymbol
| —
Object ...code.Symbol
S
...comp.Resolve$ResolveError ...comp.Resolve$AmbiguityError
...code.Symbol$TypeSymbol = ...code.Symbol$ClassSymbol
...code.Symbol$PackageSymbol
Figure 6: Original class hierarchy for j avac symbol table
‘ 2 ‘ ...code.Symbol$VarSymbol }E{
15‘ ...comp.Resolve$AmbiguityError
‘ 3 ‘ ...comp.Resolve$ResolveError

B
5
5 ‘ ...code.Symbol$0peralorsymbolH
...code.Symbol$MethodSymbol 7
...code.Symbol
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‘ 16 ‘ ...code.Symbol$PackageSymbolH

T 12‘ ...code.Symbol$PackageSymbolH—+ 14‘

...code.symbol

Figure 7: KABA refactoring for figure 6

’ 2 ‘ ...code.Symbol$VarSymbol }E{

’ 12‘ ...comp.Resolve$AmbiguityError
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Figure 8: Final refactoring for figure 6 after automatic elimination of multiple inheritance
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Figure 9: Original class hierarchy for j avac tree visitor H.

ccmpTransTypes

.tree. TreesForLuop
1

6| ..comp.TransinnerSFreeVarCollector
1 12| ..tree.TreeSReturn|—
B tree TreeTranslator ||
..comp.Transinner$ClassMap| 1 |
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...comp.Enter$MemberEnter

e TreeVisitor|_|
..comp.Flow

Figure 10: KABA refactoring for figure 9

error! This design seems questionable. Having dead codettoe
extensibility may be ok, but having dead code which breaks th
program if removed, is a pitfall for programmers not fullyrféiar
with the code. The visitor pattern should be implementedighsa
way that removing dead code produces a compile-time erstaaal
of throwing an exception.
In general, it must be decided individually weather theusin
of dead code for future extensibility is a good idea. In soses
it will cause maintenance problems, as unused code is edlyeci
hard to maintain. In other cases omitting it may preventulife
extensions (e.g. removing the only public or protected tantor).
Thus KABA replicated the given hierarchy, assuring that the
original design was basically good. But KABA still uncovdre
minor design problem, as KABA identifies dead members as a by-
product.

4.1.3 The syntax tree

Figure 11 shows the abstract syntax tree sub-hierarchy.el-
actly reproduced by KABA, even without automatic elimioatiof
multiple inheritance. The top class contains just data negmand
access methods for these members. The subclasses rephesent
36 syntactical units mentioned in the previous example.

1
[reeTree$Swllch
1
e
1
1

The exact hierarchy reproduction shows that the members are 1
used in the same way by all subclasses. Hence cohesion $or thi .
particular class is high. This indicates a good design whiasuld e eIV ]

be left unchanged. KABA confirms thaavac was designed by PO I—
experienced software engineers. .

37 .treeTree$Ass|gn0p1
4.2 TheantIr parser generator pES—

Our next case study snt | r, a popular parser generator. For  Figure 11: Original class hierarchy and KABA refactoring for
the dynamic analysis, all example grammars fromahel r dis- j avac syntax trees

tribution were used, creating 84 test runs. ®re | r Java run-
time classes were not analyzed.
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...OneOrMoreBlock

...AlternativeBlock

...ZeroOrMoreBlock

...RuleRefElement

...BlockEndElement

’ Object H ...GrammarElement H ...AlternativeElement H ...ActionElement

...CharLiteralElement

...StringLiteralElement
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Figure 12: Original hierarchy for a part of ant|r
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Figure 13: Fine-grained KABA refactoring proposal for figur e 12 using dynamic analysis

14 ‘ ...RuleEndElement H

12 ‘ ...BlockWithimpliedExitPath

2| ..RuleRefElement

...Alterr

.AlternativeBlock .
...GrammarElement [ 22 ...CharRangeElement
Object ...AlternativeElement
...AlternativeBlock
...AlternativeElement
‘ 6 ‘ " AlternativeBlock }——{ 7 ‘ ...AlternativeBlock H

20 ...AlternativeBlock 21 ...AlternativeBlock
...RuleBlock 1 ...RuleBlock 1

[

...GrammarAtom .
...TokenRefElement

15 ‘ ...WildcardElement H

8| ..GrammarAtom

‘18‘ ...StringLiteralElement H

1
23| ..CharliteralElement H
1

Figure 14: Final KABA refactoring proposal for figure 12 after removing multiple inheritance from figure 13




Object

...Token -

...CommonToken -

...CommonHiddenStreamToken

Figure 15: Original hierarchy for another part of ant | r

E

Object 1

Il

...Token

~Token = ...CommonToken

1
...Token —

N

...Token
...CommonToken

. o ...Token |
1| -.Token 4 2 ...CommonToken 3

i

...Token
...CommonToken | 2

...CommonToken = 5| ..Token 6

Figure 16: Fine-grained refactoring for figure 15 (upper); final refactoring after removal of multiple inheritance (lower).

4.2.1 First Example

Figure 12 shows part of the Antlr original hierarchy and fegui8
the fine-grained KABA refactoring. Itis obvious that thigtarchy
is much more changed than any of jhevac examples:

4.2.2 Second Example, Dynamic Variant

For our second example, the original hierarchy is shown uréig
15, the refactored version can be seen in figure 16. The afigin
erarchy consists of 3 classes, but the fine-grained refagttiples
this number:

1. 6 out of 20 classes have their members distributed to more

than one class; most noticeal#et er nat eBl ock, which
was splitinto 9 classed| t er nat i veEl enent (splitinto
6) andGr ammar El enment (split into 5).

2. The original hierarchy haa ammar El enent andAl t er -

nat i veEl ement as super classes of all other classes. In
the new hierarchy a topmost class still exists (1), but itcon
tains members from both classes. This indicates that the dis

tinction between the two classes is redundant.

3. OriginallyAl t er nati veBl ock was asubclass @f t er -
nat i veEl enent . This relation is weaker in the new hier-
archy, as a lot of members froM t er nat i veEl enent

1. No members of the original cla€snmonHi ddenSt r eam
Token are in the refactored version, revealing the original
class to be dead code.

2. Some members of the former top cldsken were moved
into subclasses 7 and 8 .
these members are methods catied Type andset Type,
which are accessor functions for a data mentbgre. This
indicates some functionality @foken concerning ype may
be moved to a subclassky pe itself however is contained in
class 1, as it is accessed by the default constructor.

The multiple inheritance introduced by KABA can be removgd b
collapsing the diamond of classes 4, 3,2 and 5. As a resalt, th

are no longer contained in the classes which have members efactored hierarchy will be a chain just like the originararchy,

from Al t er nat i veBl ock. This indicates that the inher-

but more fine grained (see figure 16). Thus the KABA refactprin

itance between these two classes is a candidate for furtherjmproves locality and cohesion.

inspection.

4. Theisolated class 23 contains only a static member. Ais sta

4.2.3 Second Example, Static Variant
The fine-grained class hierarchy created by the static sisaly

members are not influenced by member accesses, they appeagan be seen in figure 17. The hierarchy has more than thrice as
as individual nodes in the new hierarchy and may be manu- many classes as the dynamic variant. It is not useful as diprac

ally moved to any other class.

The fine-grained refactoring proposal looks pretty comgled
is not realistic anyway, as it contains a lot of multiple iritence.
Still, KABA already demonstrated that the “natural” desigom
figure 12 does not stick to the principle of functional cobasiand
that refactoring as sketched in items 1.-4. can be done uttho
affecting behavior.

Figure 14 shows the result of automatically removing mietip
inheritance as described in appendix 1. Now the refactddoks
much more convincing! Note that preservation of behavieutiil
guaranteed; items 1.-4. above still apply, but the ovetalicture
is much more similar to the original hierarchy. But classaseh
been merged or splitted, new subclasses have been inthcard

cal refactoring, but presents a detailed “spectral arsilysfi true
object behaviour. This feature is valuable for various psrogun-
derstanding tasks. In particular, the static analysis &ulisn ar-
eas where automated testing is difficult or the transfornuetb ¢s
needed. The static variant also generates refactoringopadg for
interfaces which is not possible with the dynamic analysis.

For example, 10 classes are not beldlj ect . While in Java
everything is a subclass @bj ect , in KABA this need not al-
ways be the case. Classes not bel@w ect may contain data
members, but are never instantiated, as an instance waglitee
access to the constructor 8bj ect . Non-instantiated classes are
good candidates for the “create interface” refactoring.

The static variant, being a conservative approximationfaios
some additional lattice elements due to imprecision of tidedy-

members have been moved. The result is a dramatic increase inng points-to analysis. But the main reason for the highemiper of

functional cohesion.

classes in the static refactoring is the inclusion of pemtevhich

Manual inspection reveals that
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Figure 17: Fine-Grained KABA refactoring proposal for figur e 15 using static analysis

3 ...Token K
L ...CommonToken| 4
|14 Token 241 6
Object 1 c > 2| ...CommonToken —
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Figure 18: Final KABA refactoring for figure 15 using static analysis

objects 3 1| 1| 5| 1| 1| 1] 1| 1] 1
dynamic| 1| 1| 3| 5| 5| 5| 6| 8| 9|10
static 221231202032 (33|11|36|34]35

Figure 19: Position of objects in the dynamic and static analsis

are left out by the dynamic analysis). Often, lattice elerneme
created just because pointers of the same original typsadiféer-
ent member subsets, even though this does not hold for tkeetsbj
pointed to. This is the reason that including pointers iengsting
for program understanding, but not for practical refactgri

In order to compare precision of the static and dynamic a&mly
Figure 19 correlates individual objects for the static agdadnic
analysis. For example the first column means that 3 objecishwh
are located in class 1 in the dynamic analysis are in clasa #gi
static analysis. Remarkably, there is an example whereytiendic
analysis is more detailed (columns 3 and 4; these objectiare
the same class in the static analysis and in different cdassthe
dynamic analysis) as well as examples where the static sinaty
more detailed (columns 4 to 6). This means that the level tilde
of the refactored class hierarchy does not always stem ftatit s
vs. dynamic analysis, but may come from the analyzed codH.its

In rare cases, the conservative approximation generatects,
in particular if reflection is used. For example, the staéfac-
toring contains members @onmonHi ddenSt r eanToken in
class 37 , which were presumed dead by the dynamic analysis.
seems that the static analysis includes code which was netexb
by the test suite of the dynamic analysis. But this is not et
Class 37 (as well as 14 and 12 ) are results of the approximafio
Java’s reflection capabilitieant | r uses reflection, but not within
classes considered in this example. Thus the inclusion oflrees
from class 37 is an artifact of statically approximatingeefion.

The final static refactoring, based on agressive simplifinanf
figure 17, can be seen in figure 18. It is even more coarseegtain
than the dynamic version. In fact, the static refactoring loa ob-
tained from the dynamic variant by merging classes 1/2 re/).

which preserves behaviour. It is the engineers task to degidch
refactoring is more appropriate. In any case, the origirsirgttion
betweenToken and CormonToken was not designed properly,
and KABA shows how to improve the hierarchy.

4.3 Discussion

We have seen that KABA can distinguish designs which respect
actual member access patterns (and thus have high cohexion a
good locality) from designs where this is not the case; inaiter
situation, KABA provides practically useful proposals fefactor-
ing. For practical refactorings, aggresive lattice sifigdition and
automatic elimination of multiple inheritance must be usdthe
case studies have shown that the final refactorings definitel
prove the quality of the design.

Still, the fine-grained lattice offers another important BAfea-
ture: the possibility to obtain fine-grained insight intonmeer ac-
cess patters. KABA can act as a “spectral analysis” for aahityy,
telling the engineer what the objects really do. Fine-grdianaly-
sis is also useful if the KABA lattice is used as a quality riostfor
old or new programs: simple lattices are better than compiess;
lattices replicating the original design are better thatickes intro-
ducing many new classes and inheritance relationships.néviee
KABA proposes a refactoring which substantially differsrfr the
manual design, classes and objects do not stick to the plénof
functional cohesion. During development of new code, desig

| can react to this lack of software quality by applying somelbr

KABA refactorings.

Let us finally repeat a fact which was mentioned before: a KABA
refactoring is just @roposal it presents changes whidan be ap-
plied without changing behaviohere may be good reasons not to
apply some or all of these changes, like future extensjtulitcohe-
sive grouping of members into classes. Similarly, subsetguan-
ual refactorings should obey software engineering catehivhat
can be done” is not always the same as “what should be done”.
Naturally, the decision to apply a refactoring requires raie fa-
miliarity with the code.
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Appendix 1: The Snelting/Tip Algorithm

In order to keep this contribution self-contained, thiseapgix ex-
plains the main steps of the refactoring algorithms in a nbece-
nical way. Full details can be found in [13].

Collecting member accesses

The algorithm is based on a fine-grained analysis of objeet ac
cesses. For all objects or object referengasdetermines whether
memberm from classC' is required ino. This information is ex-
tracted from a given hierarchy and its clients by (staticyorainic)
program analysis. The result is a binary relation, code@imfof
atableT.

For the example in figure 1, tablécontains rows for object ref-
erencesil, a2, bl, b2, A.f.this, B.f.this, B.g.this, B.h.this, as
well as for object creation site$1, A2, B1, B2.° Columns are la-
beled with fields and methods.x, A.y, A.z, A.f(), B.f(), B.g(),
B.h(). For methods, there is a distinction between declaratinds a
definitions (i.e. implementations), that is, betweki(C. f()) and
def (C.f()), which makes the analysis more precise [13].

Dynamic Variant

KABA offers two variants of table construction, a static andy-
namic one. The dynamic variant analyzes member accessas for
given test suite. The JVM is instrumented such that every beem
acces¥).x from a true objecO (resp. its creation site) gives rise
to a table entry

(0,C.m)

whereO = (C,m, 1) is the object creation site at instructiom
methodm of classC. Method callsO. f() give rise to table entry

(O, def(C.£()))

For references, no entries are generated.

Static Variant

In the static variant, points-to analysis is used to deteenfior an
object reference to which object creation sites it might point to at
runtime; this set is denoted

pt(0) = {O1,04,...}

pt(o) may be too big (i.e. imprecise), but never too small (.
is a conservative approximation). Today, reasonable efficand
precise points-to analysis exists for Java, e.g. [14, 11, 8]

Now let Type(o) = C' be the static type of, and let member
accesses.m resp.o.f() be given. Tablg” will contain entries

(0,C.m)
resp.
(0, dcl(C.f())

Furthermore, entries

(O, def(C.f()))

are added for alD € pt(o) whereC' = StaticLookup( Type(O), f).
For the above example, the resulting table is shown in figQre 2

Note that it contains some additional entries#fois-pointers which

are explained in [13]. In this simple example, static andasigit

®Program analysis usually does not distinguish runtimeatbjere-
ated by the samaew statement, so it is a standard technique to
identify objects with the same creation site. Thus in théfeing
“object” O in fact stands folO’s creation site, coded as a triple
O = (C,m, 1) of classC, methodm and instruction address

cceeBmS
Sdg0g2gad
*X2NTGT TG00 .0 0.0
KEKKSEEOEBEBEEE
al X
az X X
bl X
b2 X X
Al
A2 X
B1 X X
B2 X X
Afthis|| x| x X
B.f.this X X
B.g.this|| x X X
B.h.this|| x X X
Figure 20: Member access table for figure 1
cCceemdS T
<<on0dauada
X>NTFTEFT T80 00 o
KKKEEBEEBEBEEE
al X
az X X
bl X
b2 X X X X
Al X
A2 X | X X | X
B1 X | X X X | x| x| x
B2 X | X X X | X X | X
Afthis|| x| x X | X
B.f.this X X X | X
B.g.this|| x | x X NMEIEIES
B.h.this|| x | x X X | X X | X

Figure 21: Table after incorporating type constraints

table are identical, but in general this is of course not teecdue
to the principle of conservative approximation, the estrié the
static table are a superset of the entries of any dynamie.tabl

Type constraints

In a second step, a set of type constraints is extracted fham t
program, which are necessary and sufficient for preservafibe-
havior. The refactoring algorithm computes a new type @lass)

for every variable or class-typed member field, and a new ‘4fom
class for every member. Therefore, constraints for a viriab
field x are expressed over the (to be determined) new type of
in the refactored hierarchyype(z); constraints for a member or
methodC.m are expressed over its (to be determined) new “home
class”,def (C.m).

There are basically two kinds of type constraints. Firsly an
assignmenk = y; gives rise to a type constrainype(y) <
type(x). Such a constraint will be generated not only for explicit
assignments, but also for implicit assignments due to paranand
return values, and even for implicit assignments to thisteos.
Another simple type constraint requires that for all methedf,
def (C.f) < dcl(C.f).

The second set of type constraints is more difficult to urtdars
Thesedominance constrain@are necessary whenever a memter
is defined in a clasgl and a subclas® < A. In order to avoid
ambiguous member access in the refactored hierarchy, Boaset
B < A must be retained. More precisely, if subclds®f A rede-
fines a member or method, and some object accesses both.m
andB.m (thatis, 3z : (x, def (A.m)) € TA(z, def (B.m)) € T),
then def (B.m) < def(A.m) must be retained in order to avoid
ambiguous access ta from z [13].



Once all type constraints have been extracted, they are-inco
porated into tablél". To achieve this, we exploit the fact that a
constraint can be seen as ianplication between table rows resp.
columns, and that there is an algorithm to incorporate awgrgi
set of implications into a table [6]. First we observe thatrein
the refactored hierarchy, a subtype inherits all membens fits
super-type. Thereforegype(y) < type(z) enforces that any table
entry forz must also be present fgt that isvm : (z,m) € T =
(y,m) € T, orx — y for short. Secondief (B.m) < def (A.m)
enforces that any table entry fdef (B.m) must also be present
for def (A.m), which is written aslef (B.m) — def (A.m).1°

Reconsidering figure 1, the following assignment constsedne
collected in form of implications:

Ay — Az, A.f.this — a2, B.f.this — a2,
B.g.this — bl, B.h.this — b2,al — Al,
a2 — A2,b1 — B1,b2 — B2,a2 — b2

Furthermore, the following dominance constraints arescodid:

def (B.f) — def(A.f), dcl(B.f) — del(A.f)

def (A.J) — del(A.f), def (B.f) — del(B.f),
def (B.g) — dclEB.g%, deng.h) — dcl(B.h),

These implications are easily incorporated into table 26dpying
row entries from rowy to row x resp. column entries from column
def (A.f) to columndef (B.f) etc. Note that in general there may
be cyclic and mutual dependences between row and/or colomn i
plications, thus a fix-point iteration is required to incorate all
constraints into the table. The final table for figure 20 isspreed
in figure 21.

Concept lattices

In a final step, concept analysis [6] is used to construct effescr
tored hierarchy from tabl&'. Concept analysis can always be ap-
plied whenever hidden hierarchical structures have to baeed
from a given binary relation. The standard example is shown i
figure 22. The table encodes a binary relation between “tdjjec
O (in our case the planets) and “attribute$; thusT C O x A.
From the table, the corresponding concept lattice is coatpbby
some smart algorithm [6]. The elements of this lattice abelied
with “objects” and “attributes”;y(o) is the lattice element labeled
with o € O, u(a) is the element labeled with € A. The lattice
has the following characteristic properties:

1. (0,a) € Tiff v(o) < p(a), that is objecb has attributex iff
o appears below in the lattice;

2. The supremumy(o1) M v(02) represents all attributes com-
mon to botho; andos;

3. Theinfimumu(a:)Up(az) represents all objects having both
attributesaz; andas;

4. p(ar) < wplaz) iff a1 — a2 (a1 impliesaz), that is, ifa;
appears below; in the lattice, all objects having attribuie
also have attributes.

5. v(01) < v(02) iff 02 — o1, that is, ifo, appears below.,
all attributes fitting tao. will also fit to o;.

Note that in big tables, common attributes (suprema), comain
jects (infima), and implications are not at all obvious frdre table
alone. One reason is that the concept lattice for a tablevégiant
against row or column permutations.

ONote thatz — y is an implication between row labels, while
def (B.m) — def (A.m) is an implication between column labels.
Therefore the direction of the second implication is “reesl”. But
the effect is the same: if — y holds inT', theny appears below
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Figure 22: Example table and its concept lattice

The concept lattice for figure 1, as constructed from tabla1
given in figure 23. Concept lattices can naturally be intetgut as
inheritance hierarchies as follows. Every lattedementepresents
aclassin the refactored hierarchy. Method or field naraésvean
element represent theemberf this class. Objects or references
belowan element will have that element (i.e. class) as its typ&

In particular, all objects now have a new type which containly
the members the object really accesses.

Typically, original classes are split and new subclassesnro-
duced. This is particularly true for figure 23, where the ratti¢ce
introduces 12 refactored classes instead of the original hese
new classes represent object behavior patterhand A1 useA.x
but nothing else, which is clearly visible in the lattiee addition-
ally callsa.f() and thus needs the declaration of this methti.
calls B.h(), B.f() plus anything called by2. The “real objects”
A2, B2, B1 are located far down in the lattice and use various sub-
sets of the original membersB2 in particular not only accesses
everything accessed 2, but also callsB.f() and thus needs
def (B.f()) (references needd¢l”, objects need def™), which
causes one of the multiple inheritances in the raw lattice.

Note that the raw lattice clearly distinguishes betweemashnd
its interface: several new classes (e.g. the one lak&lgd.g()) in
figure 23) contain onlylci(...) entries, but no (inheritedjef (...)
entries or fields, meaning that they are interfaces.

z in the refactored hierarchy; ifef (B.m) — def(A.m) holds
in T, then def (B.m) appears belowlef (A.m) in the refactored
hierarchy [6].



Figure 23: Concept lattice for figure 1, generated from figure
21

The lattice guarantees preservation of behavior for aint
[13]. It is rather fine-grained, and in its raw form represetiite
most fine-grained refactoring which respects client bedravi

Lattice simplification and elimination of multi-
ple inheritance

From a software engineering viewpoint, the lattice mustitrgk-
fied in order to be useful. For example, “empty” elements (iesv

e If ¢ inherits members from andp’, and the only superclass
of p’ is T, makep’ a subclass of.

e If g inherits members from andp’ with p £ p’ andp’ £ p:
Let r be a superclass of with » < p’. If r is the only su-
perclass op, merger andp, else move all members gfto
T.

e If g inherits members fromp andp’ with p £ p’ andp’ £ p,
and p is a superclass of and there are no instances @f
mergep andq

Repeated application of these transformations to figurels37,
17 resulted in figures 8, 14, 18 respectively. In these exespphe
application of the transformations had to be checked ekegg$or
preservation of semantics, making removal of multiple iithace
expensive.

Dead variables, fields and methods

In the refactored hierarchy the top element is calledwhich is
different from the node fof ava. | ang. Obj ect. One might
argue they should be identical as in Java everything is eéifrom
hj ect . The difference is that objects directly beloware dead.
Similarly, fields and methods appearing directly abdvare dead
as well. In figure 23, field.z is dead.

Appendix 2: Language Details

Several Java features require additional treatment [1Bichwwill
be sketched in the following. We would like to point out thal f
Java can be handled.

Libraries

We distinguish objects whose type is defined in user codephnd

classes without own members) such as the top element in figurejects whose type is defined in library or API code. Library edsl

23 can be removed; multiple inheritance can often be elitatha
and lattice elements can be merged according to certaimyimgh
preserving) rules. In particular, the distinction betweesiass and
its interface can be removed by merging lattice elements.

For simplification of the class hierarchy, we apply severahs-
formations:

e If ¢ is the only subclass gf and there are no instancesgf
mergep andgq.

e If p is the only superclass af and ¢ does not contain any
members, merge andgq.

e If pis the only superclass @f and both classes contain only
members of the same original class, mepgandg.

These transformations are repeated until a fixpoint is exhchhey
simplify the structure, but never affect the semantics efliterar-
chy. Repeated application of the transformations to figlree2
sulted in figure 2. For example, the first transformation camj-
plied to the nodes labellet?2 and A.y, as the latter has no instances
(no variables appear below the node).

The new hierarchy may exhibit multiple inheritance betwten
new classes. Many of these classes can be made interfadehiéan
lattice be simplified as above), but cases remain in whichssdh-
herits a non-abstract method from more than one superdlasse
can always be removed manually without changing behavior.

In order to eliminate multiple inheritance automaticaltyore
aggressive transformations are needed. It must be checked e
plicitely whether their application affects the semantitsat is,
whether all type constraints are still valid after applicat

never refactored. Nevertheless, all objects created (e cre-
ated inside library code) must be taken into account for tagcs
analysis (in particular points-to analysis), as they inifae control
flow of the analyzed program and may influence which members of
the relevant objects are accessed.

The Java API also contains native code. These methods can ac-
cess members too and do so in practice. For each of these meth-
ods a stub must be provided, which must be equivalent in tefms
member access or dynamic type checks.

The effects of library code should not be underestimateagnEv
small Java programs load a huge amount of library Hogovid-
ing big problems for the scalability of the static analy8sit anal-
ysis of this code and careful handling of native code is alisi
necessary when it comes to preservation of behatfor.

HAs of JDK 1.4.2, a “hello world” example loads 248 library
classes.

2Here is a small example:

class Main {
String toString() { return "Hello,
Wor | d";
public static void main(String args[]) {
Systemout. println(new Main());

}

Without handling the effects of library code and native noel)
the method oSt ri ng will be declared dead, obviously breaking
the behavior of the program. This is no esoteric exampleg tikd
this can be found in many Java programs.



Treatment of i nst anceof

Like object creation sites, different uses of ihest anceof op-

erator in the program are distinguished by their byte-caltiress.
For an occurrence i nst anceof T at siteC in the program,
two additional attributes (table columns) are generatéd: true

andC = false. For everyo € pt(z) atable entryo, C' = true)

is generated itype(z) < T, a table entry(o, C = false) other-
wise.

In the class hierarchy, all objects returning true for theregsion
in the program will appear below(C = true). When code is
regeneratedy(C' = true) is the new type forl" in the original
expression. The attribujgC = false) only becomes relevant for
editing the class hierarchy. Variables belpfC' = false) may
never be belowi(C = true) as well, because the transformed
i nst anceof operator will match every object of classes below
w(C = true).

The result of tha nst anceof may be always true (indicated
by u(C = false) = L) or never true f(C' = true) = 1). Inthe
latter case, the whole operator could be replacetidlyse (more
aggressive dead code elimination is also possible). Wnfately
this is not possible for the “always true” caseaamay benul | ,
causing the operator to retufral se, so the operator could be
replaced by! =nul | , also enabling further optimizations.

Treatment of Type Casts

Type casts are handled in a similar fashion( T) x is in the pro-
gram at site”, two attributes(C' = true andC = false are gen-
erated, objects € pt(x) passing the type cast will create a table
entry (o, C' = true), if the cast is not possible, C = false) is
generated. The new cast then can be rewrittdp.{6' = true))z.

But for type casts the situation that the cast is never sstdds
more complicated. A little example illustrates this:

class A { _ .
void f() {} 2.?(;?W A

class B extends A { E ?(:g !3) &

} o

In this example no object gets a table entry at coluthsa: true
because the cast always fails 8@ = ¢rue) = L. But_Lisnota
type and cannot be used in the transformed program. To htridle
for every cast, an additional pointeyT", representing the result of
cast, is created and the objects successfully casted agaedto
it (o € pt(z) A Type(o) < T = x/T = o). This pointer is further
used to collect the member accesses from the casted vatuea(e.
table entry(a/B, dcl(B.f)) would be generated for the example
program). Because of the assignmedty’ = true) < vy(a/B) is
always valid. Ifu(C = true) = L, v(a/B) can be used as type
for the result, but not for the typecast as there is no guaeatttat
no object is belowy(a/B). For this special case the recreated code
would be:

B b=nul | ;
if(al=null)

t hr ow new Cl assCast Excepti on();
b.f();

Without the calla. f () ; , the new class hierarchy would have a
class containing only a declaration fof without subclasses or in-
stances.

Treatment of Exceptions

To preserve the behavior of exceptions, the analysis mustgu
tee that every object thrown as exception shows the sameibeha
against every exception handler testing it while throwncdption
handlers are listed as a table in byte-code, so they can btfidd
by a method name and a number referring to a table entry. Trire ha
dlers a thrown object is tested against can be inferred framtrol
flow information intraprocedural and from the call grapheitro-
cedural. Again, attribute& = false and H = true are created
for every exception handleil in the program. An object tested
againstH raises a table entryo, H = true) if the exception is
caught by that handler arld, H = false) else.

The new type for an exception handlEr is the classu(H =
true). In caseu(H = true) = L, the handler is never used and
can be removed from the code.

The necessary table entries for handlers are currentlyraatexd
by the dynamic analysis, making it impossible to refactaegstion
hierarchies. This does not affect the analysis of objectsised as
exceptions.

Signatures of Overloaded Methods

As the analysis reduces every type in the program to its minmim
this may cause unwanted results in the context of overloaut-
ods. For the following example

class A {}

class B {}

”void f(Aa) { Systemout.printin("an A"); }
void f(B b) { Systemout.printin("a B"); }

" f(new A());
f(new B())

Both parameters will be reduced to tygbj ect, giving the
overloaded methods equal signatures, which is not allowddva.
This can be detected automatically and one or both varidriteeo
method can be renamed.

Signatures of Overwritten Methods

Exactly the opposite will happen to the parameters of method
overwritten in a subclass. Here is a small example:
class A {
void f(Cc) {c.g(); } A a=new A():
if(...)
a=new B();
(null);

class B extends A {
void f(Cec) {c.h(); } ¢
) .

For the parameter of in A, a type containing onlylcl(C.g)
will be calculated, forf in B a type containing onlyicl(C.h).
But with different signatures Java would treat these asloaded
methods and no longer apply dynamic binding. It seems plessib
to take the infimumu(dcl(C.g)) U u(dcl(C.h)) as type for the
parameter, but this may hke (like in this example) and in general is
not type correct. Instead assignments between all thoseneaers
are added, forcing them to have the same type in the new class
hierarchy (and giving all actual parameters the necesgpg).t

The same process is applied to the return type of overwritten
methods.



Appendix 3: Preserving behavior

This appendix describes how the KABA editor guaranteesepres
vation of behavior when manually modifying a refactoring-pr
posal.

The initial refactoring proposal preserves behavior. $gbent
refactoring steps must only guarantee that the behavidreohéw
class hierarchy is identical to the behavior of the inijigienerated
concept lattice. Behavior preservation is guaranteed bygroups
of constraints. The first group consists of global constsaivhich
must be fulfilled in order to interpret the graph as a classahihy.
Constraints in the second group concern individual objedtse
first group comprises:

e The graph must not contain cycles, and a class may not con-

tain two method definitions with equal signature.

e All assignments in the program must still be type-correfop. |
= @; was in the analyzed program, thefy) < ~(p) must
be valid.

e Dominance constraints must not be violatedAlf— B is a
dominance constraint, ther(A) < p(B) must be valid.

e The additional constrains for type checks and exceptior han
dling must be respected. @' is the site of a type check or
represents an exception handlér,C' = false £ C = true
must be valid.

The second group comprises individual constraints for e di
jectO:

e If Type(O) initially contained a statically bound member,
~(0O) must also contaime.

e If Type(O) initially contained a dynamically bound method
m, the lookup must yield the same implementation:
StaticLookup ( Type(O), m) = StaticLookup(y(O), m).

e The class oD, v(O), must not become an abstract class.

e If the table for the initial graph had an entty, C' = true),
~(0) < C' = true must be valid.

e If the table for the initial graph had an entfy, C = false),
v(0) £ C = false must be valid.

Thus these constraints are the “interactive” version oftki-
nance constraints from appendix 1.



