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ABSTRACT
KABA is an innovative system for refactoring Java class hierar-
chies. It uses the Snelting/Tip algorithm [13] in order to determine
a behavior-preserving refactoring which is optimal with respect to
a given set of client programs. KABA can be based on dynamic
as well as static program analysis. The static variant will preserve
program behavior for all possible input values; the dynamicversion
guarantees preservation of behavior for all runs in a given test suite.
KABA offers automatic refactoring as well as manual refactoring
using a dedicated editor.

In this contribution, we recapitulate the Snelting/Tip algorithm,
present the new dynamic version, and explain new extensionswhich
allow to handle full Java. We then present five case studies which
discuss the KABA refactoring proposals for programs such asjavac
andantlr. KABA proved thatjavac does not need refactoring,
but generated semantics-based refactoring proposals forantlr.

1. INTRODUCTION
Refactoring transforms a given class hierarchy in order to im-

prove its structure and evolution. Refactoring and, more generally,
program transformation has been a popular research topic for some
time, and has recently gained much interest due to the emergence of
light-weight design methodologies such as Extreme Programming
[2] that advocate continuous refactorings. The book by Fowler [5]
presents a comprehensive list of refactoring transformations which
has been implemented in some refactoring tools.

But while refactorings are well-understood, automated genera-
tion of refactoring proposals is still in its infancy. One ofthe key
limiting factors is the fact that verifying the preconditions for many
refactorings (in order to ensure that program behavior is preserved)
may involve non-trivial program analysis. Another limiting fac-
tor is the fact that refactoring is a manual process even withtool
support: the refactorer must know which refactorings to apply and
why.

In this paper, we present a different approach to refactoring. We
assume that a hierarchy is given together with a set ofclient pro-
grams using this hierarchy. We generate a refactoring proposal
automatically, and this proposal is based on theusageof the hi-
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erarchy by the client programs. The refactoring is guaranteed to
be semantically equivalent to the original program (with respect to
client behavior).

The transformed hierarchy can then be subject to further man-
ual refactorings, while preservation of semantics is stillguaran-
teed. Eventually, code can be generated. The new code contains
the same statements as the original code, except that the hierarchy
has changed and for all variables a new type (i.e. class) has been
computed.

Preservation of semantics is achieved by a combination of pro-
gram analysis, type constraints and concept lattices. But the true
value of the technique lies in the possibility to automatically refac-
tor with respect to a givenpurpose– represented by a given set of
client programs. For the given clients, the refactored hierarchy is
optimal in the sense that every object contains only those methods
or fields it really accesses. In fact, we determine the most fine-
grained refactoring which still preserves behavior of all clients.

The refactoring editor KABA1 offers two variants of this ap-
proach. The static approach requires static program analysis and
guarantees behavior preservation for all analyzed client programs.
The dynamic approach requires dynamic program analysis andguar-
antees behavior preservation for all client runs of a given test suite.
Of course, the static analysis is a conservative approximation of any
dynamic analysis. KABA also offers semantic support for man-
ual refactoring, intended not only for post-processing an automatic
refactoring, but for refactoring any class hierarchy.

Organization of this paper
The primary purpose of this contribution is the presentation of the
innovative KABA refactoring system, as well as the discussion of
case studies for its application. But in order to make KABA work
for full Java, the original refactoring algorithm had to be consider-
ably expanded. Thus we had to decide how the presentation should
reconcile the technical and the practical aspects of our work.

We have chosen a non-standard organization: the main paper
presents KABA from an application-oriented, software engineer-
ing view. All technical and algorithmic details and innovations are
presented in a series of appendices.

2. THE REFACTORING ALGORITHM
In this section, we describe the Snelting/Tip algorithm from a

user’s viewpoint. The algorithm has been described in detail in
[13]. Appendix 1 presents a more technical recapitulation of the
most important steps of the algorithm, as well as technical refer-
ences.
1KABA stands for “KlassenAnalyse mit BegriffsAnalyse” (class
analysis by concept analysis). KABA is also a popular chocolate
drink in Germany.



2.1 Basic steps of the algorithm

2.1.1 Collection of member accesses
The first analysis step collects all field and method accessesin

the given source hierarchy and its client set. The algorithmsets up
a table, where the rows are labeled with variable names (includ-
ing parameters, this-pointers etc), and the columns are labeled with
fields and methods from the hierarchy. An accesso.m() from an
object will lead to a table entry for(o, C ::m) (whereC is the static
class form).

There are two variants of the collection process, one based on
dynamic program analysis and one based on static program anal-
ysis. In the dynamic variant, the JVM is instrumented such that
every callo.m() at runtime leads to a corresponding table entry.
In the static variant,points-to analysisis used to approximate the
effects of dynamic dispatch. For an object referencex, its points-to
setpt(x) = {o1, . . . , on} is used to collect possible method calls
by x.m(): a table entry is generated for any(oi, C ::m).

2.1.2 Incorporation of type constraints
In order to guarantee preservation of behavior, a set of typecon-

straints is extracted from the source which must also be respected
in the refactored hierarchy. For example, every assignmenta =
b; in the original source requires thattype(a) ≥ type(b), and
this must hold in the refactored hierarchy as well. Furthermore, if
A ≥ B are classes which both define a methodm, the constraint
type(A ::m) ≥ type(B ::m) must sometimes be retained in order
to avoid ambiguous accesses in the refactored hierarchy.

Once all type constraints have been extracted, they are incorpo-
rated into the table from phase 1: more entries are added, until
a minimal table is obtained which respects all constraints.It is not
obvious that this is always possible, and even less obvious that these
constraints are enough to guarantee preservation of behavior. The
details of constraint generation and incorporation are quite complex
(see appendix 1).

2.1.3 Generation of concept lattice
Tables are nice, but the true reason for extracting a table from

the source is that a class hierarchy can be generated automatically
from the table using the well-known method ofmathematical con-
cept analysis. Concept analysis (see appendix 1) generates a lat-
tice from the table, which represents exactly the same information
as the table, but organized into a completely different, hierarchi-
cal view. Concept lattices are natural inheritance structures: every
lattice element represents a class, and common fields or methods
are factored out into super-classes. The refactored hierarchy is thus
obtained as a concept lattice generated from the final table.

The statements in this refactored hierarchy are the same as in
the original hierarchy. But every variable or object obtains a new
type, and this type (i.e. refactored class) will contain allfields and
methods needed by the variable. More precisely: every object that
might be generated at runtime has a new type containing all meth-
ods and fields it may access at runtime; while methods or fields
not accessed by an object resp. variable are not members of its new
type.

Thus the original lattice provides fine-grained insight into the
member access patterns of all objects and variables – a feature very
valuable for program analysis and understanding.

2.1.4 Simplification of concept lattice
For practical refactoring purposes, the lattice must be simplified

in order to be useful. Typically the lattice size can be condensed
by 80% without affecting preservation of behaviour. The user may

contribute background knowledge during lattice simplification in
order to control the structure of the final refactoring.

Even the simplified lattice may contain multiple inheritance.2 As
an option, automatic elimination of multiple inheritance can be ap-
plied (see appendix 1). From a software engineering viewpoint, the
resulting final refactorings are the most useful ones.

2.2 Properties of the algorithm
The algorithm has several outstanding properties, which can be

summarized as follows:

• it generates a refactoring proposal automatically;

• it guarantees preservation of behavior (for all possible runs
in the static variant, for the given test suite in the dynamic
variant);

• it refactors with respect to a given purpose, that is, with re-
spect to a given set of clients;

• it thus implements a certain form of program specialization
– but as the number or size of clients grows, the refactorings
will be more general in nature;

• it is optimal with respect to member distribution: all objects
can access only members they really need (thus they usually
become smaller);

• it identifies dead methods or fields as a by-product;

• it provides two levels of granularity: the raw lattice, acting
like a “spectral analysis” tool allows remarkable insight into
program behavior; the simplified lattice provides practical
refactoring proposals.

We will illustrate the algorithm by a small example in the next
subsection, and will discuss various case studies later in the paper.
Right here, we would like to point out an important observation:
The Snelting/Tip algorithm is not a software engineer. It isan anal-
ysis tool which showswhat can be done without destroying behav-
ior. KABA refactorings are proposals, and the software engineer
decides about their application.

2.3 An example
As a simple example, consider the program in figure 1.B, being

a subclass ofA, redefinesf() and accesses the inherited fieldsx,
y. The main program creates two objects of typeA and two objects
of typeB, and performs some field accesses and method calls.

Figure 2 presents the KABA refactoring proposal, that is, the
simplified concept lattice (the intermediate tables as wellas the
raw lattice are shown in appendix 1; in fact the simplified lattice
is only a partial order). Lattice elements are the classes ofthe new
hierarchy. They are marked with class members above, and with
variables or objects below. The members above an element (i.e. a
new class) define the new class’ members; variables below an ele-
ment will obtain this element as their new type.

The refactoring basically reacts to the different member access
patterns of the objects in the program. Typically, a class issplit into
new unrelated classes if there are objects which access one subset
of its members, and other objects which access another, disjoint
subset of its members. New subclasses and inheritance relations are
introduced if there are objects accessing only a subset of a mem-
ber set accessed by other objects. In the example, we observethe
following:
2The Snelting/Tip algorithm was originally designed with C++ in
mind, where occasional multiple inheritance does not pose aprac-
tical problem.



class A {
int x, y, z;
void f() {

y = x;
}

}

class B extends A {
void f() {

y++;
}
void g() {

x++;
f();

}
void h() {

f();
x--;

}
}

class Client {
public static void
main(String[] args) {

A a1 = new A(); // A1
A a2 = new A(); // A2
B b1 = new B(); // B1
B b2 = new B(); // B2

a1.x = 17;
a2.x = 42;
if (...) { a2 = b2; }
a2.f();
b1.g();
b2.h();

}
}

Figure 1: A small example program

Figure 2: KABA refactoring for figure 1

• The two objects of original typeB have different behavior,
as one callsg and the other callsh. Therefore, the original
B class is split into two unrelated classes.

• The two objects of original typeA have related behavior, as
A2 accesses everything accessed byA1, plusA.f(). There-
fore, the originalA class is split into a class and a subclass.

• A1 does only containA.x and notA.y. A.z is dead any-
way, as it does not appear in the refactored hierarchy. Thus
objects become smaller in general, as unused members are
physically absent in objects of the new hierarchy.

One might think of simplifying even further by merging the two
topmost elements in figure 2, but that would makeA1 bigger than
necessary by includingA.y as a member. It is the refactorer’s deci-
sion whether this disadvantage is out-weighted by a simplerlattice
structure. If so, the refactoring editor must guarantee that behavior
of all clients is still preserved after simplification.

3. THE KABA SYSTEM
KABA is an implementation of the approach described so far.

KABA currently consists of four components: the static analysis,
the dynamic analysis, the class hierarchy editor and the byte-code
transformation tool KRS.

3.1 Program analysis
The static analysis can handle full Java byte-code and includes

a full points-to analysis. Intraprocedural points-to analysis is flow-
sensitive and can be parametrized to be context- and object-sensitive.3

Stubs are necessary to simulate the behavior ofnativemethods.
Stubs are provided for the most commonly used native functions
of JDK 1.3, additional stubs can be added easily. The analysis can
handle reflection features like the.class operator precisely, and
uses a heuristic if a program loads classes withClass.forName.
The techniques used to deal with this aspects of reflection could be
extended to handle all of reflection.

Although mainly tested with class files generated byjavac and
jikes, KABA should be able to handle other Java and non-Java com-
pilers as well. Besides the class files, the analysis needs one or more
starting methods (main). All code reachable from these methods
is included in the analysis. The main limitation of the analysis is its
memory requirement. With 2GB of memory programs likejavac
(as of JDK 1.3, 28000 LOC) can be analyzed. Unfortunately 2GB
is a technical barrier not easily overcome on most systems.

The dynamic analysis consists of the JVMKaffe4, whose byte-
code interpreter has been modified to track all member accesses
during program execution. It supports the same amount of reflec-
tion as the static analysis. No stubs for native programs have been
provided because experience with the static analysis demonstrated
that stubs are important for correct control flow, but not formem-
ber accesses. For the instrumented JVM, control flow is correct
without stubs.

The output from different program runs are merged into the ta-
ble format used by the static analysis. We have not observed any
limitations in terms of program size, however general limitations of
automated testing apply.

3.2 The refactoring editor
The KABA editor computes the (raw or simplified) concept lat-

tice and displays it graphically. Figure 3 presents the lattice for
figure 1 in form of a KABA screen shot. Every box represents one
class, its name is printed in bold font in the center (nodes contain-
ing only members from the same original classC are namedC′n;
users have the option to manually rename classes).

Members are displayed above the class name, variables belowit.
To reduce the screen space requirements, attributes and objects are
not displayed by default; little arrows next to the class name allow
to expand them if necessary.5

In contrast to the simplified lattice in figure 2 this screen shot
features all the ugly details necessary in practice: full method sig-
natures, constructors, and unique object identifiers. Alsonoticeable
are two different displays of methods, as method names are prefixed
by eitherdcl or def. Thedcl represents an abstract declaration of
a method, whereas adef represents the implementation (see Ap-
pendix 1). In the example, a method’sdcl anddef are always at
the same node, but this need not be the case if interfaces or abstract
methods are present.

Additional views help users to browse and refactor the hierar-
chy. The first view (figure 4 upper) shows what “happened” to an
original class. It shows all members and their new “home classes”,
making it easy to see how a class was restructured. Additional util-

3By default, context-sensitive analysis is used only for object con-
structors, while object-sensivity is used for the Java collection
classes. These parameters can be tuned individually to achieve best
performance.
4http://www.kaffe.org/
5We plan to use UML notation in the future, but right now there is
no UML layouter satisfying KABA’s needs.



Figure 3: KABA screen-shot for figure 1

Figure 4: Browser for original types (upper);
Browser for class content (lower).

ity functions to mark certain members are also provided.
The second view (figure 4 lower) gives an overview of a new

class. In addition to members located in the class itself it includes
members from parent classes. KABA displays all members of a
class; for inherited members, their new “home class” is given. For
every object shown in the class hierarchy, the source code ofits
creation site can be seen on mouse click.

Besides browsing, the user may modify the class hierarchy. The
following basic operations are provided:

• Attributes and objects can be moved in a cut-and-paste fash-
ion. Any number of them can be selected (cut) and moved to
any class (paste).

• A class can be split into two. Incoming edges are attached
to the first new class, outgoing edges are attached to the sec-
ond, and the second inherits from the first. All members are
moved to the first, all variables to the second class; they may
be redistributed later.

• Two classes can be merged into one class, and a class can be
made a subclass of another class.

These operations should be sufficient to refactor the class hier-
archy in every possible way. Additional convenience functions are
provided to make common tasks more easy (e.g. application ofthe
lattice simplification algorithm).

Modification of the class hierarchy is only allowed if it willnot
affect client behavior. The user is given detailed feedback, if a cer-
tain refactoring is not allowed. Figure 5 shows an example: in order
to merge classesA’1 andA’6 from figure 3, the user tried to move
the pointera1 from classA’1 to the subclass. KABA refused as
A’1 also contains an object (A2 in terms of figure 2) and there is an
assignment between the pointer and the object in the program: the
proposed pointer move would make this assignment type-incorrect.
It would however be valid to move pointer and object to the sub-
class in one step or just to merge the two classes.

As refactored hierarchies can contain multiple inheritance, the
KABA editor will (on demand) mark classes which really inherit

Figure 5: KABA reaction to an illegal refactoring

method definitions from different superclasses6. It offers to move
method definitions from one of these superclasses further upin the
hierarchy, thereby eliminating multiple inheritance.

3.3 Code generation
The final part of KABA is the byte-code transformation tool KRS

[12]. Using transformation instructions generated by the editor, it
transforms the original byte-code into a new set of classes matching
the new hierarchy. The byte-code can be run directly or fed into one
of the various byte-code decompilers to regain Java source code.

Code generation consists of two major tasks: first, all fieldsand

6Note that the type constraints prevent that thesamemethod is in-
herited from different superclasses



methods must be reordered according to the new class hierarchy.
The second task is more subtle: Every class name in the program
must be replaced by a new one. This affectsnew expressions as
well as types of local variables, method parameters, fields,ins-
tanceof operators, type casts and exception handlers. For re-
flection calls, parameters passed to certain methods are modified
to match the new class names. In addition to the type changes,all
dead code must be removed as it becomes non-typeable in general.

Currently only the static analysis provides all the information
required for code generation, as the dynamic analysis omitsinfor-
mation about pointers.

3.4 Application of KABA
KABA is most useful when a library is analyzed together with

all clients using this library. It guarantees preservationof behavior
for the clients (static analysis) or all test runs (dynamic analysis):
for any input, visible program output remains the same.7 Client
code which was not analyzed by KABA may still work with the
refactored version, but there is no guarantee. It is howeverpossible
to automatically check for preservation of behavior.

For both variants of the analysis, the full byte code must be avail-
able. If some methods are implemented asnativemethods, stubs
are necessary which emulate member access in the same way the
native methods would. The static analysis already containsstubs
for the most commonly used native methods of JDK 1.3.

The user must decide which code is subject to refactoring (user
code) and which part must remain unchanged (library code). Usu-
ally the analyzed program is user code and the classes from the JDK
are library code. If a program requires third party libraries, they are
most likely to be included in the library code. Library code must
be self-contained, it may not contain references to the usercode.

Once the analysis is complete, the KABA editor can be used
to browse and modify the transformed class hierarchy. If thestatic
analysis was used, the original byte code can be automatically trans-
formed into code conforming to the refactored classes hierarchy.

4. CASE STUDIES
We have applied KABA to several real world programs. We use

a condensed view for the resulting hierarchies in the figuresbe-
low. Nodes will only contain the names of the original classes from
which it contains members. Numbers at the left hand side of a node
are used to reference a specific class. The right hand side contains
two numbers: the number of pointers (upper half) and the number
of objects (lower half) who have that specific type. Common pack-
age names are abbreviated “. . . ”. The presented hierarchiesare not
the raw lattices, but have been processed with the algorithmfrom
appendix 1 to reduce their complexity without changing behavior.
Interfaces consisting only of constants are omitted.

4.1 Thejavac compiler
Our first example is the Java compiler from Sun’s JDK 1.3.1. It

was analyzed using the dynamic analysis. The Java library itself
was used as test suite, creating 1878 individual compiler runs. All
refactorings shown below are guaranteed to preserve at least the
behavior of these 1878 test cases.

4.1.1 The symbol table
Figure 6 presents a specific sub-hierarchy fromjavac, namely

the symbol table. The topmost symbol table class isSymbol with

7As objects become smaller, KABA may act as a space optimizer;
as the number of classes usually increases, some runtime overhead
may be introduced. Both effects have not yet been evaluated.

4 subclasses, 3 of them have further subclasses.8 For this case
study, the rest of the compiler is considered to be client code.

Figure 7 shows the KABA refactoring of the symbol table. The
overall structure of the hierarchy is not affected by the transfor-
mation: there is still one top class with four subclasses. Intwo
cases even their subclasses remain unchanged (2 , 3 , 15 ). The
class 4 has some of is members moved into new subclasses 11 and
17 . Class 11 also contains members that were previously in the
top class. Hence these examples illustrate automatic “extract class”
and “move member” / “move method” refactorings.

Something similar happens to the two subclasses of 6 . They
are split into a hierarchy containing members of the same origi-
nal class. Additionally members of the former top class are moved
down. For these members multiple inheritance is introduced, as
they are used by different subclass branches, but not in their com-
mon ancestor class. Only multiple inheritance can visualize this
phenomenon in the hierarchy.

But for a practical Java refactoring, multiple inheritancecan be
easily removed by merging class 8 and 13 with their superclass 6 .
The Result can be seen in figure 8.

In general, refactored objects become smaller. The original class
Symbol had 27 members, only 14 are left in class 1 . Thus the
number of members in the top class was reduced by about 50 per-
cent. The number could be further reduced if the constructorwould
not initialize all data members.

Let us now discuss the KABA refactoring proposal from a soft-
ware engineering viewpoint. Even after removal of multipleinheri-
tance, new subclasses are proposed in the KABA refactoring.Intro-
ducing new subclasses will in general improve information hiding,
as certain “secrets” are moved into less-visible subclasses. Con-
sidering class cohesion, KABA will introduce new classes only if
their methods are executed together and thus improves functional
cohesion. But the source code may provide other arguments against
splitting classes. Remember: KABA shows what can be done with-
out affecting behavior, but is not a software engineer. The KABA
editor is used to modify a refactoring proposal according tosoft-
ware engineering criteria.

In the example, the new subclasses are certainly justified from
a software engineering viewpoint, as functional cohesion is much
improved. But the more fundamental insight from this case study
is that KABA basically reproduced the overall hierarchy structure.
We therefore conclude that the originaljavac design was quite
good. This example demonstrates that KABA can also be used as
a design metrics: it is good if the original hierarchy is moreor
less reproduced, it is bad if the original hierarchy is completely
refactored.

4.1.2 The tree visitor
The second example fromjavac is shown in figure 9; it is the

tree visitor sub-hierarchy. The refactored KABA version ofthe sub-
hierarchy (figure 10) is completely unchanged. However the “move
member” / “move method” refactoring has been applied: several
members have been moved into subclasses. The new class 1 con-
sists of only 3 methods, 6 other methods from the original class are
distributed to classes 8 ,9 ,10 and 11 , while 28 methods are pre-
sumed dead. As this is a very high number, we manually inspected
the code and found that the original class is an abstract visitor with
one method overloaded for 36 different syntactical units. But only
8 of them are actually called, the used versions are usually over-
written in a subclass.

If the dead (!) code is removed, the program produces a run-time

8Symbol$VarSymbol indicates this class is an inner class of
Symbol. An inner class may be a subclass of its outer class.



Object ...code.Symbol

...code.Symbol$VarSymbol

...code.Symbol$MethodSymbol

...comp.Resolve$ResolveError

...code.Symbol$TypeSymbol

...code.Symbol$OperatorSymbol

...comp.Resolve$AmbiguityError

...code.Symbol$ClassSymbol

...code.Symbol$PackageSymbol

Figure 6: Original class hierarchy for javac symbol table

Object 1 ...code.Symbol

2 ...code.Symbol$VarSymbol
 

16

3 ...comp.Resolve$ResolveError
 

5

4 ...code.Symbol$MethodSymbol
 

7

6 ...code.Symbol$TypeSymbol

15 ...comp.Resolve$AmbiguityError
 

1

5 ...code.Symbol$OperatorSymbol
 

2

11
...code.Symbol

...code.Symbol$MethodSymbol
 

1

7 ...code.Symbol$ClassSymbol
 

4

8 ...code.Symbol

12 ...code.Symbol$PackageSymbol
 

1

13 ...code.Symbol
 

1

9
 

1

16 ...code.Symbol$PackageSymbol
 

1

10
...code.Symbol

...code.Symbol$ClassSymbol
 

1

17 ...code.Symbol$MethodSymbol
 

1

14 ...code.Symbol$PackageSymbol
 

1

Figure 7: KABA refactoring for figure 6

Object 1 ...code.Symbol

2 ...code.Symbol$VarSymbol
 

16

3 ...comp.Resolve$ResolveError
 

5

4 ...code.Symbol$MethodSymbol
 

7

6
...code.Symbol

...code.Symbol$TypeSymbol
...code.Symbol$PackageSymbol

 

1

12 ...comp.Resolve$AmbiguityError
 

1

5 ...code.Symbol$OperatorSymbol
 

2

9
...code.Symbol

...code.Symbol$MethodSymbol
 

1

7 ...code.Symbol$ClassSymbol
 

5

10 ...code.Symbol
 

1

8
...code.Symbol

...code.Symbol$ClassSymbol
 

1

13 ...code.Symbol$MethodSymbol
 

1

11 ...code.Symbol$PackageSymbol
 

2

Figure 8: Final refactoring for figure 6 after automatic elim ination of multiple inheritance



Object ...tree.Tree$Visitor

...comp.Enter$MemberEnter

...tree.TreeTranslator

...comp.Gen

...comp.Enter

...comp.Check$Validator

...comp.Flow

...comp.Attr

...comp.TransInner$ClassMap

...comp.TransInner$FreeVarCollector

...comp.TransInner

...comp.TransTypes

Figure 9: Original class hierarchy for javac tree visitor

Object 1 ...tree.Tree$Visitor

2 ...tree.TreeTranslator

4 ...comp.Attr
 

1

8
...tree.Tree$Visitor

...comp.Enter
 

1

9
...tree.Tree$Visitor

...comp.Check$Validator
 

1

10
...tree.Tree$Visitor

...comp.Enter$MemberEnter
 

1

11
...tree.Tree$Visitor

...comp.Flow
 

1

12 ...comp.Gen
 

1

3 ...comp.TransInner
 

1

5 ...comp.TransTypes
 

1

6 ...comp.TransInner$FreeVarCollector
 

1

7
...tree.TreeTranslator

...comp.TransInner$ClassMap
 

1

Figure 10: KABA refactoring for figure 9

error! This design seems questionable. Having dead code forfuture
extensibility may be ok, but having dead code which breaks the
program if removed, is a pitfall for programmers not fully familiar
with the code. The visitor pattern should be implemented in such a
way that removing dead code produces a compile-time error instead
of throwing an exception.

In general, it must be decided individually weather the inclusion
of dead code for future extensibility is a good idea. In some cases
it will cause maintenance problems, as unused code is especially
hard to maintain. In other cases omitting it may prevent all future
extensions (e.g. removing the only public or protected constructor).

Thus KABA replicated the given hierarchy, assuring that the
original design was basically good. But KABA still uncovered a
minor design problem, as KABA identifies dead members as a by-
product.

4.1.3 The syntax tree
Figure 11 shows the abstract syntax tree sub-hierarchy. It is ex-

actly reproduced by KABA, even without automatic elimination of
multiple inheritance. The top class contains just data members and
access methods for these members. The subclasses representthe
36 syntactical units mentioned in the previous example.

The exact hierarchy reproduction shows that the members are
used in the same way by all subclasses. Hence cohesion for this
particular class is high. This indicates a good design whichshould
be left unchanged. KABA confirms thatjavac was designed by
experienced software engineers.

4.2 Theantlr parser generator
Our next case study isantlr, a popular parser generator. For

the dynamic analysis, all example grammars from theantlr dis-
tribution were used, creating 84 test runs. Theantlr Java run-
time classes were not analyzed.

Object 1 ...tree.Tree

2 ...tree.Tree$Synchronized
 

1

3 ...tree.Tree$Continue
 

1

4 ...tree.Tree$Import
 

1

5 ...tree.Tree$Break
 

1

6 ...tree.Tree$Exec
 

1

7 ...tree.Tree$TypeIdent
 

1

8 ...tree.Tree$VarDef
 

2

9 ...tree.Tree$MethodDef
 

2

10 ...tree.Tree$Operation
 

1

11 ...tree.Tree$ForLoop
 

1

12 ...tree.Tree$Return
 

1

13 ...tree.Tree$Conditional
 

1

14 ...tree.Tree$TypeArray
 

1

15 ...tree.Tree$Case
 

1

16 ...tree.Tree$Ident
 

2
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Figure 11: Original class hierarchy and KABA refactoring for
javac syntax trees
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Figure 12: Original hierarchy for a part of antlr
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Figure 13: Fine-grained KABA refactoring proposal for figur e 12 using dynamic analysis
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Figure 14: Final KABA refactoring proposal for figure 12 after removing multiple inheritance from figure 13



Object ...Token ...CommonToken ...CommonHiddenStreamToken

Figure 15: Original hierarchy for another part of antlr
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Figure 16: Fine-grained refactoring for figure 15 (upper); final refactoring after removal of multiple inheritance (lower).

4.2.1 First Example
Figure 12 shows part of the Antlr original hierarchy and figure 13

the fine-grained KABA refactoring. It is obvious that this hierarchy
is much more changed than any of thejavac examples:

1. 6 out of 20 classes have their members distributed to more
than one class; most noticeableAlternateBlock, which
was split into 9 classes,AlternativeElement (split into
6) andGrammarElement (split into 5).

2. The original hierarchy hasGrammarElementandAlter-
nativeElement as super classes of all other classes. In
the new hierarchy a topmost class still exists (1 ), but it con-
tains members from both classes. This indicates that the dis-
tinction between the two classes is redundant.

3. OriginallyAlternativeBlockwas a subclass ofAlter-
nativeElement. This relation is weaker in the new hier-
archy, as a lot of members fromAlternativeElement
are no longer contained in the classes which have members
from AlternativeBlock. This indicates that the inher-
itance between these two classes is a candidate for further
inspection.

4. The isolated class 23 contains only a static member. As static
members are not influenced by member accesses, they appear
as individual nodes in the new hierarchy and may be manu-
ally moved to any other class.

The fine-grained refactoring proposal looks pretty complexand
is not realistic anyway, as it contains a lot of multiple inheritance.
Still, KABA already demonstrated that the “natural” designfrom
figure 12 does not stick to the principle of functional cohesion, and
that refactoring as sketched in items 1.-4. can be done without
affecting behavior.

Figure 14 shows the result of automatically removing multiple
inheritance as described in appendix 1. Now the refactoringlooks
much more convincing! Note that preservation of behaviour is still
guaranteed; items 1.-4. above still apply, but the overall structure
is much more similar to the original hierarchy. But classes have
been merged or splitted, new subclasses have been introduced, and
members have been moved. The result is a dramatic increase in
functional cohesion.

4.2.2 Second Example, Dynamic Variant
For our second example, the original hierarchy is shown in figure

15, the refactored version can be seen in figure 16. The original hi-
erarchy consists of 3 classes, but the fine-grained refactoring triples
this number:

1. No members of the original classCommonHiddenStream-
Token are in the refactored version, revealing the original
class to be dead code.

2. Some members of the former top classToken were moved
into subclasses 7 and 8 . Manual inspection reveals that
these members are methods calledgetType andsetType,
which are accessor functions for a data membertype. This
indicates some functionality ofToken concerningtypemay
be moved to a subclass.type itself however is contained in
class 1, as it is accessed by the default constructor.

The multiple inheritance introduced by KABA can be removed by
collapsing the diamond of classes 4 , 3 , 2 and 5 . As a result, the
refactored hierarchy will be a chain just like the original hierarchy,
but more fine grained (see figure 16). Thus the KABA refactoring
improves locality and cohesion.

4.2.3 Second Example, Static Variant
The fine-grained class hierarchy created by the static analysis

can be seen in figure 17. The hierarchy has more than thrice as
many classes as the dynamic variant. It is not useful as a practi-
cal refactoring, but presents a detailed “spectral analysis” of true
object behaviour. This feature is valuable for various program un-
derstanding tasks. In particular, the static analysis is useful in ar-
eas where automated testing is difficult or the transformed code is
needed. The static variant also generates refactoring proposals for
interfaces which is not possible with the dynamic analysis.

For example, 10 classes are not belowObject. While in Java
everything is a subclass ofObject, in KABA this need not al-
ways be the case. Classes not belowObject may contain data
members, but are never instantiated, as an instance would require
access to the constructor ofObject. Non-instantiated classes are
good candidates for the “create interface” refactoring.

The static variant, being a conservative approximation, contains
some additional lattice elements due to imprecision of the underly-
ing points-to analysis. But the main reason for the higher number of
classes in the static refactoring is the inclusion of pointers (which
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Figure 17: Fine-Grained KABA refactoring proposal for figur e 15 using static analysis
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Figure 18: Final KABA refactoring for figure 15 using static analysis

objects 3 1 1 5 1 1 1 1 1 1
dynamic 1 1 3 5 5 5 6 8 9 10
static 22 23 20 20 32 33 11 36 34 35

Figure 19: Position of objects in the dynamic and static analysis

are left out by the dynamic analysis). Often, lattice elements are
created just because pointers of the same original type access differ-
ent member subsets, even though this does not hold for the objects
pointed to. This is the reason that including pointers is interesting
for program understanding, but not for practical refactoring.

In order to compare precision of the static and dynamic analysis,
Figure 19 correlates individual objects for the static and dynamic
analysis. For example the first column means that 3 objects which
are located in class 1 in the dynamic analysis are in class 22 in the
static analysis. Remarkably, there is an example where the dynamic
analysis is more detailed (columns 3 and 4; these objects arein
the same class in the static analysis and in different classes in the
dynamic analysis) as well as examples where the static analysis is
more detailed (columns 4 to 6). This means that the level of detail
of the refactored class hierarchy does not always stem from static
vs. dynamic analysis, but may come from the analyzed code itself.

In rare cases, the conservative approximation generates artifacts,
in particular if reflection is used. For example, the static refac-
toring contains members ofCommonHiddenStreamToken in
class 37 , which were presumed dead by the dynamic analysis. It
seems that the static analysis includes code which was not covered
by the test suite of the dynamic analysis. But this is not the case!
Class 37 (as well as 14 and 12 ) are results of the approximation of
Java’s reflection capabilities.antlr uses reflection, but not within
classes considered in this example. Thus the inclusion of members
from class 37 is an artifact of statically approximating reflection.

The final static refactoring, based on agressive simplification of
figure 17, can be seen in figure 18. It is even more coarse-grained
than the dynamic version. In fact, the static refactoring can be ob-
tained from the dynamic variant by merging classes 1/2 resp.5/6,

which preserves behaviour. It is the engineers task to decide which
refactoring is more appropriate. In any case, the original distinction
betweenToken andCommonToken was not designed properly,
and KABA shows how to improve the hierarchy.

4.3 Discussion
We have seen that KABA can distinguish designs which respect

actual member access patterns (and thus have high cohesion and
good locality) from designs where this is not the case; in thelatter
situation, KABA provides practically useful proposals forrefactor-
ing. For practical refactorings, aggresive lattice simplification and
automatic elimination of multiple inheritance must be used. The
case studies have shown that the final refactorings definitely im-
prove the quality of the design.

Still, the fine-grained lattice offers another important KABA fea-
ture: the possibility to obtain fine-grained insight into member ac-
cess patters. KABA can act as a “spectral analysis” for a hierarchy,
telling the engineer what the objects really do. Fine-grained analy-
sis is also useful if the KABA lattice is used as a quality metrics for
old or new programs: simple lattices are better than complexones;
lattices replicating the original design are better than lattices intro-
ducing many new classes and inheritance relationships. Whenever
KABA proposes a refactoring which substantially differs from the
manual design, classes and objects do not stick to the principle of
functional cohesion. During development of new code, designers
can react to this lack of software quality by applying some orall
KABA refactorings.

Let us finally repeat a fact which was mentioned before: a KABA
refactoring is just aproposal; it presents changes whichcan be ap-
plied without changing behavior. There may be good reasons not to
apply some or all of these changes, like future extensibility or cohe-
sive grouping of members into classes. Similarly, subsequent man-
ual refactorings should obey software engineering criteria: “what
can be done” is not always the same as “what should be done”.
Naturally, the decision to apply a refactoring requires a certain fa-
miliarity with the code.



5. RELATED WORK
In the recent Dagstuhl seminar “Program Analysis for Object-

Oriented Evolution”, analysis researchers met with refactoring re-
searchers in order to explore the potential for program analysis in
refactoring [16]. One insight of this workshop was that in a refac-
toring context, 100% preservation of behaviour is not always an
objective. KABA reacts to this insight by offering a static variant
which preserves the behavior of all clients, and a dynamic variant
which preserves only the behavior of a given test suite.

Other authors proposed methods for automated refactoring.None
of these are client-specific, which means they are valid for all clients,
but also prevents client-specific refactorings. Opdyke [10] origi-
nally introduced the concept of refactoring a class hierarchy. Casais
[4] was among the first authors to investigate automated refactor-
ing. Unfortunately, his algorithm does not provide semantic guar-
antees. Moore [9] not only refactors classes, but also statements
e.g. by extracting common subexpressions. His algorithm isfor
the dynamically-typed languageself. Naturally, behavior guaran-
tees are not provided, and realistic applications have not been re-
ported. Bowdidge and Griswold [3] present semantics-preserving
restructuring transformations for procedural programs based on so-
called star diagrams; as it happens, star diagrams have similarities
to concept lattices. Kataoka et al. [7] automatically extract simple
invariants from Java source code and use these to derive code-level
refactorings such asEncapsulate Downcastor Remove Parameter.

Tip et al. [15] also uses type constraints in order to supportthe
refactoringsExtract Interface, andPull up / Push down member.
Tip doesguarantee behavior preservation, and offers an interactive
tool similar to the KABA editor as part of Eclipse. Automaticgen-
eration of refactorings is however not supported. Earlier work by
Tip described an algorithm to specialize a class hierarchy with re-
spect to one client [17]; this method also influenced KABA, but to
our knowledge was never implemented.

Identification of dead fields and methods is usually based on
static analysis such as RTA [1], and often used in practical tools
such as JAX [18]. KABA is a more general analysis which includes
dead members as a by-product.

6. CONCLUSION
The original version of the Snelting/Tip algorithm was already

published in 1998, but it took us several years to develop KABA
on the basis of this algorithm, refine the foundations in order to
handle full Java, add the dynamic analysis variant, find goodlattice
simplifications, and make KABA work for realistic applications.
Compared to [13] our achievements can be summarized as follows.

• Today, the static KABA variant can handle up to 30000 LOC,
while the new dynamic variant has no program size limita-
tion.

• The innovative KABA refactoring editor guarantees behav-
ior preservation for client-specific as well as general refac-
torings.

• Case studies have shown that KABA is helpful for analyzing
class hierarchies, and generates practically useful refactor-
ings.

It is interesting to note that KABA based on dynamic analysisworks
fine in practice, hence the much higher cost of static analysis and
full behavior preservation seems questionable. Future work must
show whether this observation represents a new trend in program
analysis for software tools.
Acknowledgments.This work was funded by Deutsche Forschungs-
gemeinschaft, grants DFG Sn11/7-1 and Sn11/7-2.

7. REFERENCES
[1] D. F. Bacon and P. F. Sweeney. Fast static analysis of C++

virtual function calls. InProc. 11th Conference on
Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA’96), pages 324–341, 1996.

[2] K. Beck.Extreme Programming Explained. Longman Higher
Education, 2000.

[3] R. Bowdidge and W. Griswold. Supporting the restructuring
of data abstractions through manipulation of a program
visualization.ACM Transactions on Software Engineering
and Methodology (TOSEM), 7:109–157, 1998.

[4] E. Casais. Automatic reorganization of object-oriented
hierarchies: A case study.Object-Oriented Systems,
1(2):95–115, 1994.

[5] M. Fowler.Refactoring. Addison-Wesley, 1999.
[6] B. Ganter and R. Wille.Formal Concept Analysis -

Mathematical Foundations. Springer Verlag, 1999.
[7] Y. Kataoka, M. Ernst, W. Griswold, and D. Notkin.

Automated support for program refactoring using invariants.
In Proc. International Conference of Software Maintenance
(ICSM’01), 2001.

[8] O. Lhotak and L. Hendren. Scaling Java points-to using
Sparc. InCompiler Construction, 12th International
Conference, LNCS, pages 153–169, 2003.

[9] I. Moore. Automatic inheritance hierarchy restructuring and
method refactoring. InProc. 11th Conference on
Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA’96), pages 235–250, 1996.

[10] W. Opdyke and R. Johnson. Creating abstract superclasses
by refactoring. InACM 1993 Computer Science Conference,
1993.

[11] A. Rountev, A. Milanova, and B. G. Ryder. Points-to
analysis for Java using annotated constraints. InProc. 16th
Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’01), pages 43–55,
2001.

[12] P. Schneider. Umsetzung von Transformationen an
Klassenhierarchien in der Sprache JAVA. Master’s thesis,
Universität Passau, 2003.

[13] G. Snelting and F. Tip. Understanding class hierarchies using
concept analysis.ACM Transactions on Programming
Languages and Systems, pages 540–582, May 2000.

[14] M. Streckenbach. Points-to-Analyse für Java. Technical
Report MIP-0011, Fakultät für Mathematik und Informatik,
Universität Passau, 2000.

[15] F. Tip, A. Kiezun, and D. Baeumer. Refactoring for
generalization using type constraints. InProc. 18th
Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’03), pages 13–26,
2003.

[16] F. Tip, G. Snelting, and R. Johnson. Program analysis for
object-oriented evolution. Technical report, Dagstuhl
Seminar Report 03091, 2003.

[17] F. Tip and P. F. Sweeney. Class hierarchy specialization. Acta
Informatica, 36:927–982, 2000.

[18] F. Tip, P. F. Sweeney, C. Laffra, A. Eisma, and D. Streeter.
Practical extraction techniques for java.ACM Trans. Prog.
Lang. Syst., 24(6):625–666, November 2002.



Appendix 1: The Snelting/Tip Algorithm
In order to keep this contribution self-contained, this appendix ex-
plains the main steps of the refactoring algorithms in a moretech-
nical way. Full details can be found in [13].

Collecting member accesses
The algorithm is based on a fine-grained analysis of object ac-
cesses. For all objects or object referenceso, it determines whether
memberm from classC is required ino. This information is ex-
tracted from a given hierarchy and its clients by (static or dynamic)
program analysis. The result is a binary relation, coded in form of
a tableT .

For the example in figure 1, tableT contains rows for object ref-
erencesa1, a2, b1, b2, A.f.this , B.f.this , B.g.this, B.h.this , as
well as for object creation sitesA1, A2, B1, B2.9 Columns are la-
beled with fields and methodsA.x, A.y, A.z, A.f(), B.f(), B.g(),
B.h(). For methods, there is a distinction between declarations and
definitions (i.e. implementations), that is, betweendcl(C.f()) and
def (C.f()), which makes the analysis more precise [13].

Dynamic Variant
KABA offers two variants of table construction, a static anda dy-
namic one. The dynamic variant analyzes member accesses fora
given test suite. The JVM is instrumented such that every member
accessO.x from a true objectO (resp. its creation site) gives rise
to a table entry

(O, C.m)

whereO = (C, m, i) is the object creation site at instructioni in
methodm of classC. Method callsO.f() give rise to table entry

(O, def (C.f()))

For references, no entries are generated.

Static Variant
In the static variant, points-to analysis is used to determine for an
object referenceo to which object creation sites it might point to at
runtime; this set is denoted

pt(o) = {O1, O2, . . .}

pt(o) may be too big (i.e. imprecise), but never too small (i.e.pt
is a conservative approximation). Today, reasonable efficient and
precise points-to analysis exists for Java, e.g. [14, 11, 8].

Now let Type(o) = C be the static type ofo, and let member
accesseso.m resp.o.f() be given. TableT will contain entries

(o, C.m)

resp.

(o, dcl(C.f())

Furthermore, entries

(O, def (C.f()))

are added for allO ∈ pt(o) whereC = StaticLookup(Type(O), f).
For the above example, the resulting table is shown in figure 20.

Note that it contains some additional entries forthis-pointers which
are explained in [13]. In this simple example, static and dynamic
9Program analysis usually does not distinguish runtime objects cre-
ated by the samenew statement, so it is a standard technique to
identify objects with the same creation site. Thus in the following
“object” O in fact stands forO’s creation site, coded as a triple
O = (C, m, i) of classC, methodm and instruction addressi.
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Figure 20: Member access table for figure 1
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Figure 21: Table after incorporating type constraints

table are identical, but in general this is of course not the case: due
to the principle of conservative approximation, the entries of the
static table are a superset of the entries of any dynamic table.

Type constraints
In a second step, a set of type constraints is extracted from the
program, which are necessary and sufficient for preservation of be-
havior. The refactoring algorithm computes a new type (i.e.class)
for every variable or class-typed member field, and a new “home”
class for every member. Therefore, constraints for a variable or
field x are expressed over the (to be determined) new type ofx
in the refactored hierarchy,type(x); constraints for a member or
methodC.m are expressed over its (to be determined) new “home
class”,def (C.m).

There are basically two kinds of type constraints. First, any
assignmentx = y; gives rise to a type constrainttype(y) ≤
type(x). Such a constraint will be generated not only for explicit
assignments, but also for implicit assignments due to parameter and
return values, and even for implicit assignments to this-pointers.
Another simple type constraint requires that for all methods C.f ,
def (C.f) ≤ dcl(C.f).

The second set of type constraints is more difficult to understand.
Thesedominance constraintsare necessary whenever a memberm
is defined in a classA and a subclassB ≤ A. In order to avoid
ambiguous member access in the refactored hierarchy, sometimes
B ≤ A must be retained. More precisely, if subclassB of A rede-
fines a member or methodm, and some objectx accesses bothA.m
andB.m (that is,∃x : (x,def (A.m)) ∈ T∧(x,def (B.m)) ∈ T ),
thendef (B.m) < def (A.m) must be retained in order to avoid
ambiguous access tom from x [13].



Once all type constraints have been extracted, they are incor-
porated into tableT . To achieve this, we exploit the fact that a
constraint can be seen as animplication between table rows resp.
columns, and that there is an algorithm to incorporate any given
set of implications into a table [6]. First we observe that even in
the refactored hierarchy, a subtype inherits all members from its
super-type. Thereforetype(y) ≤ type(x) enforces that any table
entry forx must also be present fory; that is∀m : (x,m) ∈ T ⇒
(y, m) ∈ T , or x → y for short. Second,def (B.m) < def (A.m)
enforces that any table entry fordef (B.m) must also be present
for def (A.m), which is written asdef (B.m) → def (A.m).10

Reconsidering figure 1, the following assignment constraints are
collected in form of implications:

A.y → A.x, A.f.this → a2, B.f.this → a2,
B.g.this → b1, B.h.this → b2, a1 → A1,
a2 → A2, b1 → B1, b2 → B2, a2 → b2

Furthermore, the following dominance constraints are collected:

def (B.f) → def (A.f), dcl(B.f) → dcl(A.f)
def (A.f) → dcl(A.f), def (B.f) → dcl(B.f),
def (B.g) → dcl(B.g),def (B.h) → dcl(B.h),

These implications are easily incorporated into table 20 bycopying
row entries from rowy to rowx resp. column entries from column
def (A.f) to columndef (B.f) etc. Note that in general there may
be cyclic and mutual dependences between row and/or column im-
plications, thus a fix-point iteration is required to incorporate all
constraints into the table. The final table for figure 20 is presented
in figure 21.

Concept lattices
In a final step, concept analysis [6] is used to construct the refac-
tored hierarchy from tableT . Concept analysis can always be ap-
plied whenever hidden hierarchical structures have to be extracted
from a given binary relation. The standard example is shown in
figure 22. The table encodes a binary relation between “objects”
O (in our case the planets) and “attributes”A, thusT ⊆ O × A.
From the table, the corresponding concept lattice is computed by
some smart algorithm [6]. The elements of this lattice are labeled
with “objects” and “attributes”;γ(o) is the lattice element labeled
with o ∈ O, µ(a) is the element labeled witha ∈ A. The lattice
has the following characteristic properties:

1. (o, a) ∈ T iff γ(o) ≤ µ(a), that is objecto has attributea iff
o appears belowa in the lattice;

2. The supremumγ(o1) ⊓ γ(o2) represents all attributes com-
mon to botho1 ando2;

3. The infimumµ(a1)⊔µ(a2) represents all objects having both
attributesa1 anda2;

4. µ(a1) ≤ µ(a2) iff a1 → a2 (a1 implies a2), that is, if a1

appears belowa2 in the lattice, all objects having attributea1

also have attributea2.

5. γ(o1) ≤ γ(o2) iff o2 → o1, that is, ifo1 appears belowo2,
all attributes fitting too2 will also fit to o1.

Note that in big tables, common attributes (suprema), common ob-
jects (infima), and implications are not at all obvious from the table
alone. One reason is that the concept lattice for a table is invariant
against row or column permutations.

10Note thatx → y is an implication between row labels, while
def (B.m) → def (A.m) is an implication between column labels.
Therefore the direction of the second implication is “reversed”. But
the effect is the same: ifx → y holds inT , theny appears below
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Figure 22: Example table and its concept lattice

The concept lattice for figure 1, as constructed from table 21, is
given in figure 23. Concept lattices can naturally be interpreted as
inheritance hierarchies as follows. Every latticeelementrepresents
aclassin the refactored hierarchy. Method or field namesabovean
element represent themembersof this class. Objects or references
belowan element will have that element (i.e. class) as its newtype.
In particular, all objects now have a new type which containsonly
the members the object really accesses.

Typically, original classes are split and new subclasses are intro-
duced. This is particularly true for figure 23, where the raw lattice
introduces 12 refactored classes instead of the original two. These
new classes represent object behavior patterns:a1 andA1 useA.x
but nothing else, which is clearly visible in the lattice.a2 addition-
ally callsa.f() and thus needs the declaration of this method.b2
callsB.h(), B.f() plus anything called bya2. The “real objects”
A2, B2, B1 are located far down in the lattice and use various sub-
sets of the original members.B2 in particular not only accesses
everything accessed byb2, but also callsB.f() and thus needs
def (B.f()) (references need “dcl ”, objects need “def ”), which
causes one of the multiple inheritances in the raw lattice.

Note that the raw lattice clearly distinguishes between a class and
its interface: several new classes (e.g. the one labeleddcl(B.g()) in
figure 23) contain onlydcl(...) entries, but no (inherited)def (...)
entries or fields, meaning that they are interfaces.

x in the refactored hierarchy; ifdef (B.m) → def (A.m) holds
in T , thendef (B.m) appears belowdef (A.m) in the refactored
hierarchy [6].



Figure 23: Concept lattice for figure 1, generated from figure
21

The lattice guarantees preservation of behavior for all clients
[13]. It is rather fine-grained, and in its raw form represents the
most fine-grained refactoring which respects client behavior.

Lattice simplification and elimination of multi-
ple inheritance
From a software engineering viewpoint, the lattice must be simpli-
fied in order to be useful. For example, “empty” elements (i.e. new
classes without own members) such as the top element in figure
23 can be removed; multiple inheritance can often be eliminated,
and lattice elements can be merged according to certain (behavior-
preserving) rules. In particular, the distinction betweena class and
its interface can be removed by merging lattice elements.

For simplification of the class hierarchy, we apply several trans-
formations:

• If q is the only subclass ofp and there are no instances ofq,
mergep andq.

• If p is the only superclass ofq and q does not contain any
members, mergep andq.

• If p is the only superclass ofq and both classes contain only
members of the same original class, mergep andq.

These transformations are repeated until a fixpoint is reached. They
simplify the structure, but never affect the semantics of the hierar-
chy. Repeated application of the transformations to figure 23 re-
sulted in figure 2. For example, the first transformation can be ap-
plied to the nodes labelleda2 andA.y, as the latter has no instances
(no variables appear below the node).

The new hierarchy may exhibit multiple inheritance betweenthe
new classes. Many of these classes can be made interfaces (and the
lattice be simplified as above), but cases remain in which a class in-
herits a non-abstract method from more than one superclass.These
can always be removed manually without changing behavior.

In order to eliminate multiple inheritance automatically,more
aggressive transformations are needed. It must be checked ex-
plicitely whether their application affects the semantics, that is,
whether all type constraints are still valid after application.

• If q inherits members fromp andp′, and the only superclass
of p′ is ⊤, makep′ a subclass ofp.

• If q inherits members fromp andp′ with p � p′ andp′ � p:
Let r be a superclass ofp with r ≤ p′. If r is the only su-
perclass ofp, merger andp, else move all members ofp to
r.

• If q inherits members fromp andp′ with p � p′ andp′ � p,
and p is a superclass ofq and there are no instances ofp,
mergep andq

Repeated application of these transformations to figures 7,13,
17 resulted in figures 8, 14, 18 respectively. In these examples, the
application of the transformations had to be checked excessively for
preservation of semantics, making removal of multiple inheritance
expensive.

Dead variables, fields and methods
In the refactored hierarchy the top element is called⊤, which is
different from the node forjava.lang.Object. One might
argue they should be identical as in Java everything is derived from
Object. The difference is that objects directly below⊤ are dead.
Similarly, fields and methods appearing directly above⊥ are dead
as well. In figure 23, fieldA.z is dead.

Appendix 2: Language Details
Several Java features require additional treatment [13], which will
be sketched in the following. We would like to point out that full
Java can be handled.

Libraries
We distinguish objects whose type is defined in user code, andob-
jects whose type is defined in library or API code. Library code is
never refactored. Nevertheless, all objects created (eventhose cre-
ated inside library code) must be taken into account for the static
analysis (in particular points-to analysis), as they impact the control
flow of the analyzed program and may influence which members of
the relevant objects are accessed.

The Java API also contains native code. These methods can ac-
cess members too and do so in practice. For each of these meth-
ods a stub must be provided, which must be equivalent in termsof
member access or dynamic type checks.

The effects of library code should not be underestimated. Even
small Java programs load a huge amount of library code11, provid-
ing big problems for the scalability of the static analysis.But anal-
ysis of this code and careful handling of native code is absolutely
necessary when it comes to preservation of behavior.12

11As of JDK 1.4.2, a “hello world” example loads 248 library
classes.

12Here is a small example:

class Main {
String toString() { return "Hello,

World"; }
public static void main(String args[]) {
System.out.println(new Main());
}

}

Without handling the effects of library code and native methods,
the methodtoString will be declared dead, obviously breaking
the behavior of the program. This is no esoteric example, code like
this can be found in many Java programs.



Treatment of instanceof
Like object creation sites, different uses of theinstanceof op-
erator in the program are distinguished by their byte-code address.
For an occurrencex instanceof T at siteC in the program,
two additional attributes (table columns) are generated:C = true
andC = false. For everyo ∈ pt(x) a table entry(o, C = true)
is generated iftype(x) ≤ T , a table entry(o, C = false) other-
wise.

In the class hierarchy, all objects returning true for the expression
in the program will appear belowµ(C = true). When code is
regenerated,µ(C = true) is the new type forT in the original
expression. The attributeµ(C = false) only becomes relevant for
editing the class hierarchy. Variables belowµ(C = false) may
never be belowµ(C = true) as well, because the transformed
instanceof operator will match every object of classes below
µ(C = true).

The result of theinstanceof may be always true (indicated
by µ(C = false) = ⊥) or never true (µ(C = true) = ⊥). In the
latter case, the whole operator could be replaced byfalse (more
aggressive dead code elimination is also possible). Unfortunately
this is not possible for the “always true” case, asx may benull,
causing the operator to returnfalse, so the operator could be
replaced byx!=null, also enabling further optimizations.

Treatment of Type Casts
Type casts are handled in a similar fashion. If(T)x is in the pro-
gram at siteC, two attributes,C = true andC = false are gen-
erated, objectso ∈ pt(x) passing the type cast will create a table
entry (o, C = true), if the cast is not possible(o, C = false) is
generated. The new cast then can be rewritten to(µ(C = true))x.

But for type casts the situation that the cast is never successful is
more complicated. A little example illustrates this:

class A {
void f() { }

}
class B extends A {
}

A a=new A();
a.f();
B b=(B)a;
b.f();

In this example no object gets a table entry at columnC = true
because the cast always fails, soµ(C = true) = ⊥. But⊥ is not a
type and cannot be used in the transformed program. To handlethis
for every cast, an additional pointerx/T , representing the result of
cast, is created and the objects successfully casted are assigned to
it (o ∈ pt(x)∧Type(o) ≤ T ⇒ x/T = o). This pointer is further
used to collect the member accesses from the casted value (e.g. a
table entry(a/B, dcl(B.f)) would be generated for the example
program). Because of the assignment,µ(C = true) ≤ γ(a/B) is
always valid. Ifµ(C = true) = ⊥, γ(a/B) can be used as type
for the result, but not for the typecast as there is no guarantee that
no object is belowγ(a/B). For this special case the recreated code
would be:

B b=null;
if(a!=null)

throw new ClassCastException();
b.f();

Without the calla.f();, the new class hierarchy would have a
class containing only a declaration off, without subclasses or in-
stances.

Treatment of Exceptions
To preserve the behavior of exceptions, the analysis must guaran-
tee that every object thrown as exception shows the same behavior
against every exception handler testing it while thrown. Exception
handlers are listed as a table in byte-code, so they can be identified
by a method name and a number referring to a table entry. The han-
dlers a thrown object is tested against can be inferred from control
flow information intraprocedural and from the call graph interpro-
cedural. Again, attributesH = false andH = true are created
for every exception handlerH in the program. An objecto tested
againstH raises a table entry(o, H = true) if the exception is
caught by that handler and(o, H = false) else.

The new type for an exception handlerH is the classµ(H =
true). In caseµ(H = true) = ⊥, the handler is never used and
can be removed from the code.

The necessary table entries for handlers are currently not created
by the dynamic analysis, making it impossible to refactor exception
hierarchies. This does not affect the analysis of objects not used as
exceptions.

Signatures of Overloaded Methods
As the analysis reduces every type in the program to its minimum,
this may cause unwanted results in the context of overloadedmeth-
ods. For the following example

class A {}
class B {}
...

void f(A a) { System.out.println("an A"); }
void f(B b) { System.out.println("a B"); }

...
f(new A());
f(new B());

Both parameters will be reduced to typeObject, giving the
overloaded methods equal signatures, which is not allowed in Java.
This can be detected automatically and one or both variants of the
method can be renamed.

Signatures of Overwritten Methods
Exactly the opposite will happen to the parameters of methods
overwritten in a subclass. Here is a small example:
class A {

void f(C c) { c.g(); }
}
class B extends A {

void f(C c) { c.h(); }
}
...

A a=new A();
if(...)

a=new B();
a.f(null);

For the parameter off in A, a type containing onlydcl(C.g)
will be calculated, forf in B a type containing onlydcl(C.h).
But with different signatures Java would treat these as overloaded
methods and no longer apply dynamic binding. It seems possible
to take the infimumµ(dcl(C.g)) ⊔ µ(dcl(C.h)) as type for the
parameter, but this may be⊥ (like in this example) and in general is
not type correct. Instead assignments between all those parameters
are added, forcing them to have the same type in the new class
hierarchy (and giving all actual parameters the necessary type).

The same process is applied to the return type of overwritten
methods.



Appendix 3: Preserving behavior
This appendix describes how the KABA editor guarantees preser-
vation of behavior when manually modifying a refactoring pro-
posal.

The initial refactoring proposal preserves behavior. Subsequent
refactoring steps must only guarantee that the behavior of the new
class hierarchy is identical to the behavior of the initially generated
concept lattice. Behavior preservation is guaranteed by two groups
of constraints. The first group consists of global constraints which
must be fulfilled in order to interpret the graph as a class hierarchy.
Constraints in the second group concern individual objects. The
first group comprises:

• The graph must not contain cycles, and a class may not con-
tain two method definitions with equal signature.

• All assignments in the program must still be type-correct. If p
= q; was in the analyzed program, thenγ(q) ≤ γ(p) must
be valid.

• Dominance constraints must not be violated. IfA → B is a
dominance constraint, thenµ(A) ≤ µ(B) must be valid.

• The additional constrains for type checks and exception han-
dling must be respected. IfC is the site of a type check or
represents an exception handler,C, C = false � C = true
must be valid.

The second group comprises individual constraints for a true ob-
jectO:

• If Type(O) initially contained a statically bound memberm,
γ(O) must also containm.

• If Type(O) initially contained a dynamically bound method
m, the lookup must yield the same implementation:
StaticLookup(Type(O), m) = StaticLookup(γ(O), m).

• The class ofO, γ(O), must not become an abstract class.

• If the table for the initial graph had an entry(o, C = true),
γ(o) ≤ C = true must be valid.

• If the table for the initial graph had an entry(o, C = false),
γ(o) � C = false must be valid.

Thus these constraints are the “interactive” version of thedomi-
nance constraints from appendix 1.


