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ABSTRACTPoints-to analysis for Java is di�erent from points-to for Cor even C++. We present a framework whi
h generalizespopular points-to algorithms and generates set 
onstraintsfrom full Java byte
ode. The framework exploits previously
omputed points-to sets in a �xpoint iteration for pre
iseresolution of dynami
 binding. We then 
ompare implemen-tations of this framework for uni�
ation-based and subset-based analysis. It turns out that { in 
ontrast to the Csituation { both approa
hes have about the same runningtime, while the subset-based algorithm is still more pre
ise.The uni�
ation-based method is slowed down be
ause itsinherent impre
ision a

umulates during �xpoint iteration.
1. INTRODUCTIONPoints-to analysis is a stati
 analysis whi
h 
omputes forevery pointer a set of obje
ts it may point to at runtime.For imperative languages su
h as C, many points-to algo-rithms su
h as Andersen's algorithm [2℄, Steensgaard's al-gorithm [22℄, or Das' algorithm [7℄ have been investigated,and Steensgaard's algorithm is 
onsidered to be the fastest[14℄. For obje
t-oriented languages, dynami
 binding mustbe approximated, and in fa
t for C++ dynami
 binding 
anbe analysed similar to fun
tion pointers in C [13℄.For Java, however, the situation is di�erent: there are nopointer arithmeti
s and no pointers to pointers, arrays havedi�erent semanti
s, type 
asts are type safe, and dynami
loading of 
lasses is quite 
ommon. It is the aim of thisarti
le to generalize well-known points-to algorithms su
h asAndersen's and Steensgaard's (and some re
ent extensions)to full Java, exploiting Java's unique features. We will thenprovide an empiri
al 
omparison of these methods.We begin with a small example illustrating that a 
arelesstreatment of dynami
 binding will result in very unpre
isepoints-to information. For the program in Figure 1, Ander-sen's algorithm will 
ompute the initial points-to graph in

Figure 1 (left). A naive treatment of method 
alls wouldthen assume that in a 
all x.f(), all methods named f()from the stati
 
lass of x and its sub
lasses 
an be targets ofthe 
all. It would then extend the points-to graph for any ofthese possible target methods by adding ar
s whi
h modelimpli
it assignments to formal parameters, return values,and this-pointers. Thus for the example, all three imple-mentations of method f will be in
luded during the analysisof the 
alls to f, resulting in the �nal Andersen graph to beseen in Figure 1 (middle); the �nal Steensgaard graph forthe same program 
an be seen in Figure 1 (right).1The results are very unpre
ise { for example, p is assumedto point to three di�erent obje
ts, while it is obvious thatp 
an only point to one obje
t. Furthermore, the naivemethod assumes that in a.f(
) also C.f 
an be 
alled, butin fa
t a 
annot point to obje
ts of type C, and in a type-safe language su
h as Java, the 
all to C.f 
an therefore beignored. In fa
t, the �nal Steensgaard graph even 
ontainstype-in
orre
t edges su
h as 
!new A. Sin
e pointer a

essalong su
h edges will always generate an ex
eption in Java,they 
an safely be ignored. Note that in C or C++, thelatter 
onsideration would not be valid.The example demonstrates that for resolution of method
alls, the a
tual points-to sets for the target obje
t refer-en
es should be 
onsidered. For a 
all x.f(), the points-toset for x gives possible target obje
ts for the 
all, and stati
lookup for f() in the possible target obje
ts will identifypossible target methods for f(). This strategy will lead to amu
h smaller set of target methods than the naive method,whi
h in turn in
reases pre
ision sin
e fewer ar
s are addedto the points-to graph. For the example, it leads to thepoints-to graphs in Figure 2. Still, the Steensgaard graph
ontains type-in
orre
t edges, due to its symmetri
 treat-ment of assignments.In this 
ontribution, we will elaborate on the insights fromthe above example. First we will present a generi
 frame-work for Java points-to analysis, whi
h 
an be instantiatedwith subset-based intrapro
edural approa
hes in the style ofAndersen, or uni�
ation-based intrapro
edural approa
hesin the style of Steensgaard. The framework 
onsists of infer-en
e rules, whi
h generate a 
onstraint system for the points-to sets. It 
omprises the full Java language, and questionsof library treatment and whole-program analysis are also1For reasons of readability, this-pointers are not shown inFigure 1.




lass MyEx
eption { Obje
t u; MyEx
eption(Obje
t t) { u=t } }
lass A { A f(A g) { return g; }
lass B extends A { A f(A g) { throw new MyEx
eption(g); } }
lass C extends A { A f(A g) { return this; } }...A a=new A(), p=null, q, r, s;B b=new B();C 
=new C();if(...)a=b;try {p=a.f(
);} 
at
h(MyEx
eption e) {q=e.u;}try {r=p.f(a);} 
at
h(MyEx
eption f) {s=f.u;}
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Figure 1: Example Java program and points-to graphs for naive treatment of dynami
 binding. Left: initialAndersen graph, middle: �nal Andersen graph, right: �nal Steensgaard graph.
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Figure 2: Final Andersen (left) and Steensgaard(right) graphs for improved resolution of dynami
binding.
dis
ussed. For pre
ise approximation of dynami
 binding a�xpoint iteration is used, whi
h exploits already 
omputedpoints-to sets for a 
all's target obje
t referen
e.We then des
ribe the implementation of spe
i�
 instan
esof the framework. An empiri
al 
omparison will show thata subset-based approa
h is 
omparable in performan
e toa uni�
ation-based approa
h, but is of 
ourse more pre
ise.The reason is that the impre
ision in uni�
ation-based meth-ods propagates during �xpoint iteration. The subset-basedmethod 
an legitimately be 
alled \Java-Andersen", whilethe uni�
ation-based method should not be 
alled \Java-Steensgaard": it uses a Steensgaards-like approa
h for in-trapro
edural analysis, but uses �xpoint iteration for reso-lution of dynami
 binding.
2. POINTS-TO FOR JAVAPoints to algorithms are usually des
ribed in terms of apoints-to graph, whi
h is a straightforward implementationof the points-to sets. Indeed, the implementation of our ex-tended versions for Java is also based on points-to graphs.However, in order to make the idiosyn
rasies of points-tofor Java more 
lear, we will �rst present a formal des
rip-tion in terms of points-to sets and provide an inferen
e sys-tem whi
h generates 
onstraints for the points-to sets (
mp.[11℄). We use the following sets: Ptr, the set of all pointers

(i.e. obje
t referen
es in Java); Obj, the set of all obje
ts(i.e. 
onstru
tor 
all sites);2 Ass, the set of all assignments,where an assignment l=r is written as (l; r) 2 Ass;3 Pt(p),the points-to set 2 2Obj for a pointer p 2 Ptr.The basi
 rules for intrapro
edural points-to analysis are asfollows. An assignment of an obje
t referen
e to a pointerleads to in
lusion of the obje
t in the points-to set:(p; o) 2 Ass ^ o 2 Obj ) o 2 Pt(p)Pointer assignments are treated di�erently by Andersen andSteensgaard. Andersen requires a subset relationship:(p; q) 2 Ass ^ q 2 Ptr ) (Pt(q) � Pt(p))Steensgaard merges the two points-to sets:(p; q) 2 Ass ^ q 2 Ptr ) (Pt(q) = Pt(p))The traditional algorithmi
 stru
ture to solve the resulting
onstraint system 
an be seen in Figure 3: The 
onstraintsare generated in one pass over the program by 
olle
tingall expli
it and impli
it assignments; for Steensgaard the
onstraint system 
an then be solved in quasi-linear time,while Andersen requires an O(n3) iteration.Shapiro and Horwitz[19℄ and Das[7℄ presented points-to al-gorithms whi
h lie between Steensgaard and Anderson. Bothextensions sti
k to general stru
ture in Figure 3. For exam-ple, Das' algorithm 
an be adapted to Java by adding thefollowing rule to the Andersen s
heme:(p; q) 2 Ass) (Pt(p:f) = Pt(q:f))where p; q are obje
t referen
es and f is a nested obje
treferen
e.2Di�erent runtime in
arnations for the same 
onstru
tor 
allwill { as usual { not be distinguished.3Note that Ass also 
ontains impli
it assignments, su
h asassignments to parameters or this-pointers during method
alls.
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Figure 3: Stru
ture of traditional points-to algorithms
Dynamically bound

method calls
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Figure 4: Stru
ture of points-to algorithms for JavaNote that the Steensgaard rule 
an be modi�ed for Java inorder to avoid type-in
orre
t ar
s in the points-to graph:(p; q) 2 Ass)��o 2 Pt(q)) o 2 Pt(p)� ^�o 2 Pt(p); type(o) � type(q)) o 2 Pt(q)��
Interpro
edural analysis simply uses the above rules in orderto handle assignments to formal parameters, return valuesand this-pointers. In the presen
e of dynami
 binding orfun
tion pointers, however, the situation be
omes more 
om-plex. Steensgaard's algorithm 
an be extended for fun
tionpointers without using an additional �xpoint iteration [8℄.However, Hind et al. [13℄ observed that the pre
ise analysisof fun
tion pointers requires extensions of the basi
 me
ha-nism. They proposed to use the points-to sets for fun
tionpointers in order to determine the possible 
all targets, andto extend the points-to graph a

ording to these targets.For Java, the analysis of method 
alls must be based ona similar approa
h: it must exploit the already 
omputedpoints-to sets for the 
all's target obje
t referen
e. For anypossible target obje
t in this set, the 
orresponding targetmethod de�nition is determined a

ording to the target ob-je
t's stati
 type. The 
all to the target method de�nitionis then treated in the usual way by taking into a

ount im-pli
it assignments to formal parameters, return values, andthis-pointers. Hen
e these assignments are valid only underthe 
ondition that a spe
i�
 target obje
t is in the points-toset. Therefore, the 
onstraints for the resolution of dynami
binding have the following general form:�o 2 Pt(p) ^ lookup(o; f) = C�) (: : : ; : : :) 2 Asswhere f is the 
alled method; lookup determines the 
lasswhi
h 
ontains the appropriate de�nition of f a

ording tothe type of o. For the program in Figure 1, the 
all p=a.f(
)leads to three 
onditional 
onstraints:�o 2 Pt(a) ^ lookup(o; f) = A�)�(
; gA) 2 Ass ^ (thisfA; o) 2 Ass ^ (p; gA) 2 Ass�

�o 2 Pt(a) ^ lookup(o; f) = B�)�(
; gB) 2 Ass ^ (thisfB; o) 2 Ass��o 2 Pt(a) ^ lookup(o; f) = C�)�(
; gC) 2 Ass ^ (thisfC; o) 2 Ass ^ (p; thisfC) 2 Ass�The assignments generated by these rules will then gener-ate additional set 
onstraints a

ording to the Andersenresp. Steensgaard rule. Note that the expli
it generationof assignments de
ouples interpro
edural analysis from the
hoi
e of the intrapro
edural algorithm. Note further thatthe naive method will generate the same assignments, butwithout the 
onditions; hen
e it would generate 8 assign-ments as 
ompared to 2 or 3. In general, 
onditional 
on-straints will never generate more assignments (and hen
epoints-to relations) than the naive method, but usually mu
hless.The 
orre
tness of the above 
onstraints is obvious. But inorder to solve su
h a system of 
onditional 
onstraints, anadditional feedba
k loop is needed (see Figure 4): points-toentries 
an generate new 
onstraints, whi
h 
an then extendthe set of assignments. The algorithm stru
ture is as follows:
do {apply basi
 algorithm;evaluate 
onditional 
onstraints;} while (points-to graph 
hanged)
3. GENERATING CONSTRAINTS

FROM JAVA BYTECODEJava Byte
ode is more stable than the Java sour
e lan-guage, and many programs are available as Byte
ode butnot in sour
e form. We therefore present the details of the
onstraint-generating inferen
e system for Byte
ode. Due tospa
e limitations, we will present only a few 
entral rules;the full inferen
e system { in
luding in parti
ular stati
 
allsand ex
eptions { 
an be found in [23℄. The general stru
tureof the inferen
e rules is as follows:



Byte
ode old sta
k
onstraints types new sta
kRules are applied to byte
ode instru
tions in sequential or-der, thereby generating 
onstraints and some auxiliary in-formation. The premises of a rule mat
h a spe
i�
 byte
odeinstru
tion. Byte
ode instru
tions refer to sta
k elements,thus an abstra
tion of the JVM sta
k 
ontents is used in therules as well. For runtime sta
k values, their abstra
t repre-sentation is the 
orresponding variable name, whi
h 
an inmost 
ases be extra
ted from the 
ompiler's variable table.4The 
on
lusion of ea
h inferen
e rule 
ontains in its leftpart the 
onstraints generated from the byte
ode instru
-tion. Furthermore, some typings for pointers are re
on-stru
ted. The last part of the 
on
lusion displays the mod-i�ed abstra
t sta
k as to be used for the next byte
ode in-stru
tion in its mat
hing rule premise. For better readabil-ity, 
onditional 
onstraints are split into two rules: sin
etype and sta
k information do not depend on points-to in-formation, they are purely stati
 and are fa
tored out in aseparate rule.The inferen
e rules for 
onstraint generation are presentedin Figure 5. As a typi
al example, 
onsider the rule forvirtual method 
all. The premise of the stati
 part makesassumptions about the byte
ode instru
tion and the signa-ture of the method in question. In addition, the premisenames the (abstra
tions of the) a
tual parameters on thesta
k. The 
on
lusion of the stati
 part states that the this-pointer and the return value are indeed pointers, and namestheir type. The next byte
ode must be mat
hed against aninferen
e rule using a modi�ed abstra
t sta
k, where the pa-rameter abstra
tions have disappeared and are repla
ed bythe abstra
t return value.Of 
ourse, the interesting part is the dynami
 part, whi
hgenerates assignments under the assumption that some ob-je
t is in the points-to set for the 
all's obje
t referen
e.The latter referen
e (more pre
isely, its abstra
t form, thatis a variable name) is taken from the abstra
t sta
k (seestati
 part). The premise of the dynami
 part determinesthe 
orresponding method de�nition by stati
 lookup. The
on
lusion generates one asignment for every formal/a
tualparameter pair, for the method's this-pointer, and for itsreturn value. It also gives types for the 
allee's this-pointer.Let us apply the rules to a small program fragment and itsbyte
ode (Figure 6). The abstra
t sta
k as well as the gen-erated assignments 
an be seen in the lower part of Figure6. Appli
ation of the rule for the �rst byte
ode instru
tionresults in two statements: the obje
t, whi
h is 
reated inmethod f(int) from 
lass S at byte
ode address 0 is indeedan obje
t, and has type A. The this-pointer of the default
onstru
tor method is initialised by the program, hen
e a
orresponding un
onditional assignment is generated. Thenext assignment, 
orresponding to the initialisation of vari-4In pathologi
al examples, the re
onstru
tion of abstra
tsta
k values 
an lead to 
ombinatorial explosion due to anexponential number of 
ontrol 
ow paths between two pro-gram points. But in pra
ti
e, this never happens. An alter-native to get rid of this phenomenon alltogether is to analysesour
e 
ode instead of Byte
ode.

able a, is also un
onditional. Of 
ourse, the interesting partis the invokevirtual instru
tion and its 
orresponding ab-stra
t parameter entry on the sta
k. The appli
ation of theinvokevirtual-rule generates two 
ondititional 
onstraints,ea
h 
onsisting of three assignments and some additionaltype information. Note how the two 
onstraints mirror thetwo possibilities for dynami
 binding of method f: it 
ouldbe A.f or B.f. Finally, the putfield instru
tion generatesan un
onditional assignment for v, and a 
onditional as-signment for any obje
t whi
h might be pointed to by f'sthis-pointer (sin
e it will also 
ontain �eld v).Note that the example program 
ontains a 
onditional ex-pression, whi
h generates a sta
k entry whose abstra
t ver-sion 
annot be taken from the variable table; instead thepossible 
ontrol 
ows from method entry to the 
all of fmust be explored. This results in two abstra
t top sta
k en-tries, namely S.f(int).<#18> and S.f(int).<#e> (that is,the new B resp. new C 
onstru
tion site). In the following,we explore only the �rst alternative.5 The initial 
onstraintsfor the points-to sets, a

ording to Andersen's algorithm, areas follows:S.f(int).<#0> 2 Pt(S.f(int).a)S.f(int).<#0> 2 Pt(A.<init>().<this>)S.f(int).<#18> 2 Pt(C.<init>().<this>)Pt(A.f(Obje
t->Obje
t).<return>)� Pt(S.f(int).<this>.(S.o))After one iteration, the �nal results are obtained:S.f(int).<#0> 2 Pt(S.f(int).a)S.f(int).<#0> 2 Pt(A.<init>().<this>)S.f(int).<#18> 2 Pt(C.<init>().<this>)Pt(A.f(Obje
t->Obje
t).<return>)� Pt(S.f(int).<this>.(S.o))S.f(int).<#0> 2 Pt(A.f(Obje
t->Obje
t).<this>)S.f(int).<#18> 2 Pt(A.f(Obje
t->Obje
t).p)Pt(A.f(Obje
t->Obje
t).<return>)� Pt(A.f(Obje
t->Obje
t).<return/S.f(int).a>)The solution shows that a as well as f's this-pointer 
anonly point to an A obje
t; hen
e the 
all a.f(...) has onlyA.f as a target method. Both the naive method as well as
all-graph based methods su
h as Rapid Type Analysis [3℄would be unable to ex
lude B.f as a possible target.
4. WHOLE-PROGRAM-ANALYSIS, NATIVE

CODE AND REFLECTIONMany programs use library fun
tions for whi
h there is nosour
e text available, or whi
h are not written in Java (\un-analysed fun
tions"). A popular way to deal with this situ-ation is to provide stubs for these fun
tions, that is sour
e
ode fragments whi
h simulate the points-to behaviour ofthe fun
tion. However, the e�ort for stub implementationand maintenan
e is enormous.An alternative is to use a 
onservative approximation for un-known byte
ode. Unknown fun
tions 
an do anything with5In the rare 
ase of non-unique abstra
t sta
k entries, sev-eral variants of the 
onstraint system will be generated andsolved.



Obje
t 
reation: I � new A S = [: : :℄m:<adr(I)>2 Objtype(m:<adr(I)>) = A S = [m:<adr(I)>; : : :℄
Assignment: I � astore r S = [p; : : :℄(Register(m; r; bi+1); p) 2 Ass Register(m; r; bi+1) 2 Ptr S = [: : :℄
Virtual 
all (stati
 part): I � invokevirtual msig(m) = (t1; : : : ; tn)! t S = [pr : : : p1; q; : : :℄m:<ret=q>2 Ptrtype(m:<ret=q>) = t S = [m:<ret=q>; : : :℄Virtual 
all (
onditional 
onstraints):

o 2 Pt(q)) I � invokevirtual msig(m) = (t1; : : : ; tn)! tm0 = lookup(o;m)8ni=1(par(m0; i); pi) 2 Ass;(m0:<this>; q) 2 Ass;(m:<ret=q>;m0:<ret>) 2 Ass m0:<this>2 Ptrtype(m0:<this>) = 
ls(m0)m0:<ret>2 Ptrtype(m0:<ret>) = t
Data member a

ess (stati
 part): I � getfield ff 0 = LookupF ield(f) S = [p; : : :℄p:f 0 2 Ptrtype(p:f 0) = type(f 0) S = [p:f 0; : : :℄Data member a

ess (
onditional 
onstraints): o 2 Pt(p)) I � getfield ff 0 = LookupF ield(f)(p:f 0; o:f 0) 2 Ass o:f 0 2 Ptrtype(o:f 0) = type(f 0)
Data member store (stati
 part): I � getfield ff 0 = LookupF ield(f) S = [p; : : :℄p:f 0 2 Ptrtype(p:f 0) = type(f 0) S = [p:f 0; : : :℄Data member store (
onditional 
onstraints): o 2 Pt(p)) I � getfield ff 0 = LookupF ield(f)(p:f 0; o:f 0) 2 Ass o:f 0 2 Ptrtype(o:f 0) = type(f 0)
Array element store (stati
 part): I � aastore f S = [v; 
; p; : : :℄type(p) = t[ ℄(p[ ℄; v) 2 Ass p[ ℄ 2 Ptrtype(p[ ℄) = t S = [: : :℄
Array element store (
onditional 
onstraint): o 2 Pt(p)) I � aastore ftype(o) = t[ ℄o[ ℄ � type(v)(o[ ℄; v) 2 Ass o[ ℄ 2 Ptrtype(o[ ℄) = t
Type 
ast (stati
 part): I � 
he
k
ast t S = [p; : : :℄:(p = null _ type(p) � t)(t)p 2 Ptrtype((t)p) = t S = [(t)p; : : :℄Type 
ast (
onditional 
onstraint): o 2 Pt(p)) I � 
he
k
ast ttype(o) � t((t)p; o) 2 AssFigure 5: Constraint-generating rules for some Byte
ode instru
tions




lass A {Obje
t f(Obje
t p) { ... }}
lass B extends A {Obje
t f(Obje
t q) { ... }}
lass C {}
lass S {Obje
t v;void f(int x) {A a=new A();v=a.f(x>0?(Obje
t)new B():(Obje
t)new C());}}

#0: new Adupinvokespe
ial A.<init>()astore_2aload_0aload_2iload_1ifle #18 -> #e #18#e: new Bdupinvokespe
ial B.<init>()goto #1f -> #1f#18: new Cdupinvokespe
ial C.<init>()invokevirtual A.f(java.lang.Obje
t->java.lang.Obje
t)putfield S.vreturn -> endInstru
tion Sta
k after rule appli
ation Auxiliary Information#0 new A S.f(int).<#0> S.f(int).<#0> 2 Obj, typ(S.f(int).<#0>)=A#3 dup S.f(int).<#0>S.f(int).<#0>#4 invokespe
ial A.<init>() S.f(int).<#0> (A.<init>().<this>,S.f(int).<#0>) 2 Ass#7 astore 2 (S.f(int).a,S.f(int).<#0>) 2 Ass#8 aload 0 S.f(int).<this>#9 aload 2 S.f(int).aS.f(int).<this>#a iload 1 S.f(int).x/intS.f(int).aS.f(int).<this>#b ifle #18 S.f(int).aS.f(int).<this>#18 new C S.f(int).<#18> S.f(int).<#18> 2 Obj, typ(S.f(int).<#18>)=CS.f(int).aS.f(int).<this>#1b dup S.f(int).<#18>S.f(int).<#18>S.f(int).aS.f(int).<this>#1
 invokespe
ial C.<init>() S.f(int).<#18> (C.<init>().<this>,S.f(int).<#18>) 2 AssS.f(int).aS.f(int).<this>#1f invokevirtual A.f(Obje
t->Obje
t) A.f(Obje
t->Obje
t).<return/S.f(int).a> typ(A.f(Obje
t->Obje
t).<return/S.f(int).a>)=Obje
tA.f(Obje
t->Obje
t).<return> 2 Ptr, typ(A.f(Obje
t->Obje
t).<return>) = Obje
to 2 Pt(S.f(int).a)^LookupVirtual(o;A.f(Obje
t->Obje
t)) = A.f(Obje
t->Obje
t) )A.f(Obje
t->Obje
t).<this> 2 Ptr, typ(A.f(Obje
t->Obje
t).<this>)=A^ (A.f(Obje
t->Obje
t).<this>,o) 2 Ass^ (A.f(Obje
t->Obje
t).p,S.f(int).<#18>) 2 Ass^ (A.f(Obje
t->Obje
t).<return/S.f(int).a>,A.f(Obje
t->Obje
t).<return>) 2 Asso 2 Pt(S.f(int).a)^LookupVirtual(o;A.f(Obje
t->Obje
t)) = B.f(Obje
t->Obje
t) )B.f(Obje
t->Obje
t).<this> 2 Ptr, typ(B.f(Obje
t->Obje
t).<this>)=A^ (B.f(Obje
t->Obje
t).<this>,o) 2 Ass^ (B.f(Obje
t->Obje
t).q,S.f(int).<#18>) 2 Ass^ (A.f(Obje
t->Obje
t).<return/S.f(int).a>,A.f(Obje
t->Obje
t).<return>) 2 Ass#22 putfield S.v S.f(int).<this>.(S.v) 2 Ptr, typ(S.f(int).<this>.(S.v))=Obje
t(S.f(int).<this>.(S.v),A.f(Obje
t->Obje
t).<return>) 2 Asso 2 Pt(S.f(int).<this>) )(o.(S.v),A.f(Obje
t->Obje
t).<return>) 2 Asso.(S.v) 2 Ptr, typ(o.(S.v)) = Obje
t#25 returnFigure 6: A program fragment, its Byte
ode, and the 
orresponding appli
ation of 
onstraint-generatingrules. m is unanalysed;sig(m) = (t1; : : : ; tn)! t8ni=1(unanalysed;m:<par(m; i)>) 2 Assm is unanalysed; sig(m) = (t1; : : : ; tn)! t(m0:<ret>; unanalysedt) 2 Ass
o 2 Pt(unanalysed=t)) m is method in t;m is visible in unanalysed 
ode;sig(m) = (t1; : : : ; tn)! tm0 = lookup(o;m0);8ni=1(par(m0; i); unanalysedti) 2 Ass;(m0:<this>; o) 2 Ass;(unanalysed;m0:<ret>) 2 AssFigure 7: Constraint generation for unanalysed fun
tions



their parameters; in parti
ular any obje
t given to an un-analysed fun
tion may reappear as the return value of anyother unanalysed fun
tion. But Java's type-safety 
an beexploited to deliver some pre
ision even under this 
onser-vative and pre
ision-threatening assumption.In order to deal with unanalysed 
ode, we �rst introdu
ea global variable \unanalysed". Whenever an obje
t refer-en
e p is passed to an unanalyzed fun
tion, an assignment(unanalysed; p) is added. Pointers whi
h are returned fromunanalysed fun
tions 
ould analogeously modelled as assign-ments (p; unanalysed). But for return values at least a typeis known and should be utilized for in
reased pre
ision. Wethus introdu
e spe
ial versions of unanalysed, namely globalvariables unanalysedt for every type t. The relation betweenunanalysed and the various unanalysedt is given byo 2 Pt(unanalysed) ^ type(o) � t) o 2 Pt(unanalysedt)Instead of inserting the assignment (p; unanalysed) when-ever the return value of an unanalysed fun
tion is assignedto p, we insert (p; unanalysedt), whi
h redu
es the size ofp's points-to set. Note that this \tri
k" 
an only be done ina type-safe language as Java, but not in C or C++.Figure 7 (upper part) gives the inferen
e rules whi
h gen-erate the 
orresponding assignments. Unanalysed fun
tions
an 
all other fun
tions (unanalysed or analysed), and therule in Figure 7 (lower part) des
ribes su
h 
alls. It is simi-lar to the invokevirtual rule, ex
ept that there is no sta
k,and parameters and return values of fun
tions 
alled fromunanalysed fun
tions are again modelled via the unanalysedvariable. Ex
eptions and a

ess to global variables from un-analysed 
ode 
an be modelled similarly; for details see [23℄.Let us 
on
lude this se
tion with a dis
ussion of the re
e
-tion API. Native methods from the re
e
tion API 
ould of
ourse be analysed using the above approximations, but inmany 
ases, we 
an do better. As an example, 
onsider the
alls to getClass in Figure 8. For every 
lass t in the pro-gram, we introdu
e a spe
ial obje
t 
lasst. In order to anal-yse the 
all 
=a.getClass();, we �rst determine Pt(a). Thetypes of all obje
ts in this set determine whi
h 
lasst haveto be added to Pt(
). In the example, Pt(
) = f
lassAg.Therefore the 
all o=
.newInstan
e(): will return a newspe
ial obje
t dyn : a of type A. As a result, the 
all a2.f();
an be resolved.This approa
h is more pre
ise than traditional stubs, be-
ause again it in
orporates points-to information for tar-get obje
ts and parameters. Providing spe
i�
 
onstraintsfor some popular unanalysed fun
tions improves pre
ision
onsiderably, while the above general approximation 
an beused for less popular unanalysed fun
tions without harmingpre
ision too mu
h.
5. EMPIRICAL STUDIESWe implemented the framework as well as its subset-basedand uni�
ation-based variants (see [23℄ for implementationdetails). The implementation is based on points-to graphs.For Andersen's method, every assignment, let it be stati
or 
onditionally generated, results in an additional ar
 in

the graph.6 In order to redu
e memory 
onsumption, theimplementation does not store 
omplete points-to sets, butallows transitive edges in the graph; 
omplete points-to setsare then determined by traversion of paths in the graph.Instead of adding edges, the implementation of uni�
ation-based intrapro
edural analysis merges graph nodes via thefast union-�nd algorithm. We have already seen that this
an introdu
e type-in
orre
t points-to relations. Therefore,additional type 
he
ks are performed whenever a points-toset is expli
itely needed.We applied both variants to 22 small and medium-sized pro-grams with up to 25000 LOC. The results are summarizedin Figure 9. The �rst 
olumns give the program name, itsnumber of 
lasses, number of methods, Byte
ode size, andnumber of 
alls. Furthermore the per
entage of 
alls whi
h
ould be resolved stati
ally even without points-to informa-tion is given. It is interesting to see that this per
entageis usually well above 80% { Java programs rely heavily onthe standard API, whi
h 
ontains many final methods. Of
ourse, stati
ally resolvable method 
alls do not need 
ondi-tional 
onstraint generation, but 
an be analysed dire
tly.For both methods, the following data are given: runtime,relative pre
ision in per
ent, per
entage of additionally re-solved method 
alls, and some information 
on
erning ourspe
i�
 appli
ation of points-to analysis. The relative pre
i-sion is determined in 
omparison with a super-naive points-to method, where every points-to set 
ontains all obje
tswhi
h have a 
orre
t type:PtSN (p) = fo 2 Obj j type(o) � type(p)gThis method is even worse than the naive method from theintrodu
tion, be
ause not only it resolves method 
alls ina naive way, it even makes very impre
ise assumptions forintrapro
edural analysis. Relative pre
ision is de�ned asRP = Pp2Ptr jPt(p)jPp2Ptr jPtSN (p)jAn algorithm with relative pre
ision less than 1 (or below100%) is thus better than the super-naive method.The runtimes have been determined on a SUN Enterprisesystem 450 with 1GB, running JDK1.2. Looking at theruntimes, there are two basi
 observations. First of all, theabsolute runtimes are quite high. The reason, of 
ourse, isthat pre
ise analysis of dynami
 binding does not 
ome forfree. One might imagine a better implementation, or theuse of a dedi
ated, highly optimized 
onstraint solver, butfa
t is that pre
ise resolution of dynami
 binding requires anadditional level of �xpoint iteration. Furthermore, unanal-ysed fun
tions often indu
e quite 
onservative assumptionswhi
h redu
e pre
ision and speed of the analysis.The se
ond fundamental observation is that the runtimesare relatively similar. The sum of all runtimes in the ben
h-6The basi
 Andersen rule 
an be expressed solely in assign-ments: �(p; q) 2 Ass) (Pt(q) � Pt(p))�()�(p; q) 2 Ass) (o 2 Pt(q)) o 2 Pt(p))�()�(p; q) 2 Ass ) (o 2 Pt(q) ) (p; o) 2 Ass)�. Similar for Dasand Steensgaard.




lass A {void f() { ... }}
lass B extends A {void f() { ... }}
lass Main {void main() throws IllegalA

essEx
eption, InstantiationEx
eption {A a=new A();Class 
=a.getClass();Obje
t o=
.newInstan
e();A a2=(A)o;a2.f();}}
Figure 8: Example use of re
e
tion API

subset-based uni�
ation-basedProgram Cl. Me. 
ode 
alls stati
 time RP s

 res. 
lient 
lient-t. time RP res. 
lient 
lient-t.Haar 17 230 23k 1011 94.0 51.53 71.7 0 / 3 5.9 16.2 13.01 59.98 95.0 4.3 16.9 13.73IComputer 63 390 39k 2261 94.2 162.31 58.9 14 / 14 5.1 22.8 55.91 282.21 84.6 4.9 22.9 59.60JBinHex 5 54 3024 75 81.3 7.12 77.7 2 / 2 18.7 33.2 1.11 5.68 96.8 6.7 33.4 1.14JLex 26 161 28k 1063 97.7 45.24 67.4 7 / 13 1.9 20.0 8.96 75.72 94.1 1.9 20.2 8.87J

odes 8 41 2897 158 68.4 19.98 74.7 2 / 2 21.5 23.5 3.05 7.40 95.7 21.5 23.5 3.07NanoXML 3 32 2296 158 96.2 6.64 81.0 2 / 2 3.8 16.0 1.09 4.89 98.4 3.8 16.0 1.12ProxyHammer 12 38 3079 242 88.8 14.76 73.9 0 / 0 10.7 31.8 2.74 11.02 98.5 10.7 31.8 2.68TextS
roll 4 92 6644 425 73.2 16.71 68.0 0 / 0 26.8 6.4 4.35 14.02 95.6 26.8 6.4 4.39TumblingDi
e 34 196 12k 762 90.8 50.12 73.6 2 / 2 8.8 17.7 13.37 47.10 97.0 8.8 17.7 13.13arabeske 21 296 41k 1964 82.9 162.75 76.6 3 / 5 4.3 16.5 18.85 163.21 94.7 4.3 16.5 19.18graph 32 228 16k 1192 96.7 47.98 66.9 1 / 3 3.2 24.2 14.78 71.48 96.4 3.2 24.2 14.99hanoi 45 362 21k 1005 82.5 43.96 72.2 1 / 18 13.5 20.1 17.37 44.81 95.2 13.0 20.7 14.78j6502 1 31 8123 78 100.0 3.21 40.3 0 / 0 0.0 10.7 0.48 1.73 98.0 0.0 10.7 0.49jEdit 108 489 34k 2179 81.1 430.12 70.7 23 / 33 13.9 20.3 117.15 473.89 88.6 13.2 20.3 115.39jas 127 435 26k 1042 85.1 611.56 84.5 12 / 24 3.7 4.9 54.18 404.69 99.6 3.7 4.9 54.10java 
up 41 396 32k 2362 93.2 142.71 71.6 5 / 11 3.4 19.5 35.58 301.58 97.4 3.4 19.5 33.54jaxp 110 761 39k 1579 78.3 528.30 84.1 27 / 93 7.6 11.9 138.74 596.49 96.8 6.2 12.0 134.03j
ex 52 418 50k 2266 96.9 196.77 81.3 4 / 11 2.6 17.6 42.24 373.38 95.5 2.5 17.6 38.53jspringies 13 71 8045 239 90.8 15.19 68.3 2 / 2 8.4 15.6 3.17 7.68 97.4 8.4 15.6 2.98mars 19 120 5431 371 92.7 39.04 64.4 2 / 4 2.4 18.1 8.51 28.02 92.4 2.4 18.3 8.42sable

 283 1867 74k 4562 68.2 949.04 62.3 2 / 72 20.1 4.0 363.71 1069.11 88.5 17.7 4.0 343.45yamm 71 264 39k 3279 89.8 1270.15 58.5 5 / 6 7.1 24.5 93.62 1390.87 78.5 6.2 24.5 91.84Figure 9: Ben
hmark results



mark is 4815.22 se
onds for the subset-based, 5434.96 forthe uni�
ation-based version; that is a di�eren
e of roughly10 per
ent. Obviously the iteration for dynami
 bindingdestroys the basi
 speed of the uni�
ation-based method.Con
erning relative pre
ision, the subset-based method ison the average 32.8% more pre
ise than the super-naivemethod, and the uni�
ation-based method is on the aver-age 5.7% more pre
ise than the super-naive method. Thisis a disappointing result for the symmetri
 uni�
ation-basedapproa
h; indi
ating that it is unsuitable for the abundan
eof unsymmetri
 subtype relations in Java programs.The di�eren
e is less signi�
ant if we look only at the num-ber of stati
ally resolved method 
alls. The 
olumns \res."give the per
entage of 
alls whi
h 
ould not be resolved stat-i
ally, but where the points-to set is so small that the tar-get method is unique. Again, the subset-based method isbetter. Adding the values in 
olumn \stati
" and in 
ol-umn \res.", both methods a
hieve almost 100% for mostprograms. That is, dynami
 binding is hardly used in theben
hmark. Comparing this with the relative pre
ision, thereader should keep in mind that the majority of pointers isnot used as target obje
ts for method 
alls.We also in
orporated an algorithm for strongly 
onne
ted
omponents as des
ribed in [17℄. Rountev reports very pos-itive e�e
ts for C programs, but for Java, the results aredisappointing. The 
olumn \s

" presents the number ofstrongly 
onne
ted 
omponents in the Andersen graph be-fore and after �xpoint iteration. Both numbers are so lowthat there is no improvement in pra
ti
e. Again, we believethat the unsymmetri
 subtype relations whi
h are so typi-
al for OO programming prevent the approa
h from beinge�e
tive in Java.Let us �nally 
onsider the e�e
t of the two di�erent methodson a spe
i�
 
lient analysis, namely the KABA system as de-s
ribed in [21, 20℄. KABA starts out with a table 
ontainingall method a

esses for every program variable, and in orderto 
ompute the table, points-to information is needed for ev-ery program variable. The better the points-to analysis, theless non-blank table entries. The 
olumns labelled \
lient"display the per
entage of table entries whi
h are not blank,and the 
olumns labelled \
lient-t" give table 
onstru
tiontime. Similarly to the \resolved 
alls" results, the subsetmethod is only slightly superior to the other one for thisspe
i�
 
lient analysis.
6. RELATED WORKRountev, Milanova, and Ryder re
ently presented the onlyother implemented points-to algorithm for Java known tous [18℄. Their method is also based on set 
onstraints, butis limited to Andersen's approa
h; they do not 
onsider ap-proximations for unanalysed 
ode and the re
e
tion API.Rountev et al. use Soot7 as a frontend and the BANE sys-tem [1℄ for solving set 
onstraints. The implementation hasroughly the same speed as ours, but uses less memory. Thisis probably due to their use of the highly optimized BANEengine (see [10, 24℄).7http://www.sable.m
gill.
a

It would be interesting to 
ompare the pre
ision of the twosystems, but right now this is not possible: Rountev et al.analyse rea
hable methods in user and library 
ode; we anal-yse the whole user 
ode and treat libraries as unanalysed
ode. Furthermore, the programs 
ommon to both ben
h-marks are obviously not the same version. In any 
ase, a
omparison not only of the resolved 
alls but also of therelative pre
ision would be worthwhile.8Re
ently, Steensgaard's algorithm has been extended to Javaas well [8℄. In 
ontrast to our uni�
ation-based variant, itdoes not use �xpoint iteration, but { in 
ase two variablesa and b have been uni�ed { uni�es the signatures and this-pointers of all methods in a's and b's stati
 type. This retainsthe quasi-linear speed of the method, but is less pre
ise thanour approa
h. [8℄ reports that a reasonable pre
ision 
anonly be a
hieved if a 
ontext-sensitive extension is used.
7. CONCLUSION AND FUTURE WORKWe presented a 
omparison of a subset-based and a uni�
ation-based points-to approa
h for Java. Our results 
an be sum-marized as follows:1. Both analysis strategies di�er only in one spe
i�
 in-feren
e rule, whi
h is plugged into a generi
 points-toframework for Java.2. Java's type safety 
an be exploited to in
rease pre
i-sion, in parti
ular for unanalysed 
ode.3. Uni�
ation-based methods have diÆ
ulties with theabundan
y of unsymmetri
 subtype relations in JavaPrograms.While in the world of imperative languages su
h as C, Steens-gaard's method is mu
h faster than Andersen's, intrapro
e-dural Steensgaard 
ombined with �xpoint iteration for dy-nami
 binding is slightly slower for Java. The reason isthat the �xpoint iteration leads to a propagation of the im-pre
ision in Steensgaard's method, and eventually to slower
onvergen
e.There is still mu
h room for improvement, both in pre
i-sion and performan
e. Besides better implementations ofour algorithms, two options seem worth exploring: 
ontext-sensitive points-to analysis and 
ow-sensitive points-to anal-ysis. A partially 
ow-sensitive analysis 
an easily be a
hievedby transforming the Byte
ode to stati
 single assignmentform (
mp. [12℄). Context-sensitive points-to analysis forJava 
an be a
hieved in a way analogeously to [15℄, [9℄ or[5℄. This will in
rease pre
ision, but it is un
lear how highthe pri
e will be in terms of performan
e, and what the per-forman
e/pre
ision ratio will be.Our analysis is basi
ally a whole-program analysis. But itis known that many Java obje
ts never leave the methodswhi
h have 
reated them [4, 6, 25℄. It should thus be pos-sible to deal with lo
al pointers and obje
ts at the level ofmethods, thereby de
reasing the size of the global points tograph. For C, this has alrady been done [16℄; for Java, itremains to be seen whether it is possible.8Our 
urrent implementation requires that the byte
ode
omes with debug information.
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