
Points-To for Java: A General Framework
and an Empirical Comparison

Mirko Streckenbach, Gregor Snelting
Lehrstuhl für Softwaresysteme

Universität Passau

strecken@fmi.uni-passau.de

ABSTRACTPoints-to analysis for Java is di�erent from points-to for Cor even C++. We present a framework whi
h generalizespopular points-to algorithms and generates set
onstraintsfrom full Java byte
ode. The framework exploits previously
omputed points-to sets in a �xpoint iteration for pre
iseresolution of dynami
 binding. We then
ompare implemen-tations of this framework for uni�
ation-based and subset-based analysis. It turns out that { in
ontrast to the Csituation { both approa
hes have about the same runningtime, while the subset-based algorithm is still more pre
ise.The uni�
ation-based method is slowed down be
ause itsinherent impre
ision a

umulates during �xpoint iteration.
1. INTRODUCTIONPoints-to analysis is a stati
 analysis whi
h
omputes forevery pointer a set of obje
ts it may point to at runtime.For imperative languages su
h as C, many points-to algo-rithms su
h as Andersen's algorithm [2℄, Steensgaard's al-gorithm [22℄, or Das' algorithm [7℄ have been investigated,and Steensgaard's algorithm is
onsidered to be the fastest[14℄. For obje
t-oriented languages, dynami
 binding mustbe approximated, and in fa
t for C++ dynami
 binding
anbe analysed similar to fun
tion pointers in C [13℄.For Java, however, the situation is di�erent: there are nopointer arithmeti
s and no pointers to pointers, arrays havedi�erent semanti
s, type
asts are type safe, and dynami
loading of
lasses is quite
ommon. It is the aim of thisarti
le to generalize well-known points-to algorithms su
h asAndersen's and Steensgaard's (and some re
ent extensions)to full Java, exploiting Java's unique features. We will thenprovide an empiri
al
omparison of these methods.We begin with a small example illustrating that a
arelesstreatment of dynami
 binding will result in very unpre
isepoints-to information. For the program in Figure 1, Ander-sen's algorithm will
ompute the initial points-to graph in

Figure 1 (left). A naive treatment of method
alls wouldthen assume that in a
all x.f(), all methods named f()from the stati

lass of x and its sub
lasses
an be targets ofthe
all. It would then extend the points-to graph for any ofthese possible target methods by adding ar
s whi
h modelimpli
it assignments to formal parameters, return values,and this-pointers. Thus for the example, all three imple-mentations of method f will be in
luded during the analysisof the
alls to f, resulting in the �nal Andersen graph to beseen in Figure 1 (middle); the �nal Steensgaard graph forthe same program
an be seen in Figure 1 (right).1The results are very unpre
ise { for example, p is assumedto point to three di�erent obje
ts, while it is obvious thatp
an only point to one obje
t. Furthermore, the naivemethod assumes that in a.f(
) also C.f
an be
alled, butin fa
t a
annot point to obje
ts of type C, and in a type-safe language su
h as Java, the
all to C.f
an therefore beignored. In fa
t, the �nal Steensgaard graph even
ontainstype-in
orre
t edges su
h as
!new A. Sin
e pointer a

essalong su
h edges will always generate an ex
eption in Java,they
an safely be ignored. Note that in C or C++, thelatter
onsideration would not be valid.The example demonstrates that for resolution of method
alls, the a
tual points-to sets for the target obje
t refer-en
es should be
onsidered. For a
all x.f(), the points-toset for x gives possible target obje
ts for the
all, and stati
lookup for f() in the possible target obje
ts will identifypossible target methods for f(). This strategy will lead to amu
h smaller set of target methods than the naive method,whi
h in turn in
reases pre
ision sin
e fewer ar
s are addedto the points-to graph. For the example, it leads to thepoints-to graphs in Figure 2. Still, the Steensgaard graph
ontains type-in
orre
t edges, due to its symmetri
 treat-ment of assignments.In this
ontribution, we will elaborate on the insights fromthe above example. First we will present a generi
 frame-work for Java points-to analysis, whi
h
an be instantiatedwith subset-based intrapro
edural approa
hes in the style ofAndersen, or uni�
ation-based intrapro
edural approa
hesin the style of Steensgaard. The framework
onsists of infer-en
e rules, whi
h generate a
onstraint system for the points-to sets. It
omprises the full Java language, and questionsof library treatment and whole-program analysis are also1For reasons of readability, this-pointers are not shown inFigure 1.

lass MyEx
eption { Obje
t u; MyEx
eption(Obje
t t) { u=t } }
lass A { A f(A g) { return g; }
lass B extends A { A f(A g) { throw new MyEx
eption(g); } }
lass C extends A { A f(A g) { return this; } }...A a=new A(), p=null, q, r, s;B b=new B();C
=new C();if(...)a=b;try {p=a.f(
);}
at
h(MyEx
eption e) {q=e.u;}try {r=p.f(a);}
at
h(MyEx
eption f) {s=f.u;}

a

b

c

p

q

r

s

new A

new B

new C

		

a

b

c

p

q

r

s

new A

new B

new C

		

a

b

c

p

q

r

s

new A

new B

new C

		

Figure 1: Example Java program and points-to graphs for naive treatment of dynami
 binding. Left: initialAndersen graph, middle: �nal Andersen graph, right: �nal Steensgaard graph.
a

b

c

p

q

r

s

new A

new B

new C

		

a

b

c

p

q

r

s

new A

new B

new C

		

Figure 2: Final Andersen (left) and Steensgaard(right) graphs for improved resolution of dynami
binding.
dis
ussed. For pre
ise approximation of dynami
 binding a�xpoint iteration is used, whi
h exploits already
omputedpoints-to sets for a
all's target obje
t referen
e.We then des
ribe the implementation of spe
i�
 instan
esof the framework. An empiri
al
omparison will show thata subset-based approa
h is
omparable in performan
e toa uni�
ation-based approa
h, but is of
ourse more pre
ise.The reason is that the impre
ision in uni�
ation-based meth-ods propagates during �xpoint iteration. The subset-basedmethod
an legitimately be
alled \Java-Andersen", whilethe uni�
ation-based method should not be
alled \Java-Steensgaard": it uses a Steensgaards-like approa
h for in-trapro
edural analysis, but uses �xpoint iteration for reso-lution of dynami
 binding.
2. POINTS-TO FOR JAVAPoints to algorithms are usually des
ribed in terms of apoints-to graph, whi
h is a straightforward implementationof the points-to sets. Indeed, the implementation of our ex-tended versions for Java is also based on points-to graphs.However, in order to make the idiosyn
rasies of points-tofor Java more
lear, we will �rst present a formal des
rip-tion in terms of points-to sets and provide an inferen
e sys-tem whi
h generates
onstraints for the points-to sets (
mp.[11℄). We use the following sets: Ptr, the set of all pointers

(i.e. obje
t referen
es in Java); Obj, the set of all obje
ts(i.e.
onstru
tor
all sites);2 Ass, the set of all assignments,where an assignment l=r is written as (l; r) 2 Ass;3 Pt(p),the points-to set 2 2Obj for a pointer p 2 Ptr.The basi
 rules for intrapro
edural points-to analysis are asfollows. An assignment of an obje
t referen
e to a pointerleads to in
lusion of the obje
t in the points-to set:(p; o) 2 Ass ^ o 2 Obj) o 2 Pt(p)Pointer assignments are treated di�erently by Andersen andSteensgaard. Andersen requires a subset relationship:(p; q) 2 Ass ^ q 2 Ptr) (Pt(q) � Pt(p))Steensgaard merges the two points-to sets:(p; q) 2 Ass ^ q 2 Ptr) (Pt(q) = Pt(p))The traditional algorithmi
 stru
ture to solve the resulting
onstraint system
an be seen in Figure 3: The
onstraintsare generated in one pass over the program by
olle
tingall expli
it and impli
it assignments; for Steensgaard the
onstraint system
an then be solved in quasi-linear time,while Andersen requires an O(n3) iteration.Shapiro and Horwitz[19℄ and Das[7℄ presented points-to al-gorithms whi
h lie between Steensgaard and Anderson. Bothextensions sti
k to general stru
ture in Figure 3. For exam-ple, Das' algorithm
an be adapted to Java by adding thefollowing rule to the Andersen s
heme:(p; q) 2 Ass) (Pt(p:f) = Pt(q:f))where p; q are obje
t referen
es and f is a nested obje
treferen
e.2Di�erent runtime in
arnations for the same
onstru
tor
allwill { as usual { not be distinguished.3Note that Ass also
ontains impli
it assignments, su
h asassignments to parameters or this-pointers during method
alls.

Assignments ConstraintsAlgorithm Points-To
sets

Figure 3: Stru
ture of traditional points-to algorithms
Dynamically bound

method calls

Assignments ConstraintsAlgorithm Points-to
sets

Figure 4: Stru
ture of points-to algorithms for JavaNote that the Steensgaard rule
an be modi�ed for Java inorder to avoid type-in
orre
t ar
s in the points-to graph:(p; q) 2 Ass)��o 2 Pt(q)) o 2 Pt(p)� ^�o 2 Pt(p); type(o) � type(q)) o 2 Pt(q)��
Interpro
edural analysis simply uses the above rules in orderto handle assignments to formal parameters, return valuesand this-pointers. In the presen
e of dynami
 binding orfun
tion pointers, however, the situation be
omes more
om-plex. Steensgaard's algorithm
an be extended for fun
tionpointers without using an additional �xpoint iteration [8℄.However, Hind et al. [13℄ observed that the pre
ise analysisof fun
tion pointers requires extensions of the basi
 me
ha-nism. They proposed to use the points-to sets for fun
tionpointers in order to determine the possible
all targets, andto extend the points-to graph a

ording to these targets.For Java, the analysis of method
alls must be based ona similar approa
h: it must exploit the already
omputedpoints-to sets for the
all's target obje
t referen
e. For anypossible target obje
t in this set, the
orresponding targetmethod de�nition is determined a

ording to the target ob-je
t's stati
 type. The
all to the target method de�nitionis then treated in the usual way by taking into a

ount im-pli
it assignments to formal parameters, return values, andthis-pointers. Hen
e these assignments are valid only underthe
ondition that a spe
i�
 target obje
t is in the points-toset. Therefore, the
onstraints for the resolution of dynami
binding have the following general form:�o 2 Pt(p) ^ lookup(o; f) = C�) (: : : ; : : :) 2 Asswhere f is the
alled method; lookup determines the
lasswhi
h
ontains the appropriate de�nition of f a

ording tothe type of o. For the program in Figure 1, the
all p=a.f(
)leads to three
onditional
onstraints:�o 2 Pt(a) ^ lookup(o; f) = A�)�(
; gA) 2 Ass ^ (thisfA; o) 2 Ass ^ (p; gA) 2 Ass�

�o 2 Pt(a) ^ lookup(o; f) = B�)�(
; gB) 2 Ass ^ (thisfB; o) 2 Ass��o 2 Pt(a) ^ lookup(o; f) = C�)�(
; gC) 2 Ass ^ (thisfC; o) 2 Ass ^ (p; thisfC) 2 Ass�The assignments generated by these rules will then gener-ate additional set
onstraints a

ording to the Andersenresp. Steensgaard rule. Note that the expli
it generationof assignments de
ouples interpro
edural analysis from the
hoi
e of the intrapro
edural algorithm. Note further thatthe naive method will generate the same assignments, butwithout the
onditions; hen
e it would generate 8 assign-ments as
ompared to 2 or 3. In general,
onditional
on-straints will never generate more assignments (and hen
epoints-to relations) than the naive method, but usually mu
hless.The
orre
tness of the above
onstraints is obvious. But inorder to solve su
h a system of
onditional
onstraints, anadditional feedba
k loop is needed (see Figure 4): points-toentries
an generate new
onstraints, whi
h
an then extendthe set of assignments. The algorithm stru
ture is as follows:
do {apply basi
 algorithm;evaluate
onditional
onstraints;} while (points-to graph
hanged)
3. GENERATING CONSTRAINTS

FROM JAVA BYTECODEJava Byte
ode is more stable than the Java sour
e lan-guage, and many programs are available as Byte
ode butnot in sour
e form. We therefore present the details of the
onstraint-generating inferen
e system for Byte
ode. Due tospa
e limitations, we will present only a few
entral rules;the full inferen
e system { in
luding in parti
ular stati

allsand ex
eptions {
an be found in [23℄. The general stru
tureof the inferen
e rules is as follows:

Byte
ode old sta
k
onstraints types new sta
kRules are applied to byte
ode instru
tions in sequential or-der, thereby generating
onstraints and some auxiliary in-formation. The premises of a rule mat
h a spe
i�
 byte
odeinstru
tion. Byte
ode instru
tions refer to sta
k elements,thus an abstra
tion of the JVM sta
k
ontents is used in therules as well. For runtime sta
k values, their abstra
t repre-sentation is the
orresponding variable name, whi
h
an inmost
ases be extra
ted from the
ompiler's variable table.4The
on
lusion of ea
h inferen
e rule
ontains in its leftpart the
onstraints generated from the byte
ode instru
-tion. Furthermore, some typings for pointers are re
on-stru
ted. The last part of the
on
lusion displays the mod-i�ed abstra
t sta
k as to be used for the next byte
ode in-stru
tion in its mat
hing rule premise. For better readabil-ity,
onditional
onstraints are split into two rules: sin
etype and sta
k information do not depend on points-to in-formation, they are purely stati
 and are fa
tored out in aseparate rule.The inferen
e rules for
onstraint generation are presentedin Figure 5. As a typi
al example,
onsider the rule forvirtual method
all. The premise of the stati
 part makesassumptions about the byte
ode instru
tion and the signa-ture of the method in question. In addition, the premisenames the (abstra
tions of the) a
tual parameters on thesta
k. The
on
lusion of the stati
 part states that the this-pointer and the return value are indeed pointers, and namestheir type. The next byte
ode must be mat
hed against aninferen
e rule using a modi�ed abstra
t sta
k, where the pa-rameter abstra
tions have disappeared and are repla
ed bythe abstra
t return value.Of
ourse, the interesting part is the dynami
 part, whi
hgenerates assignments under the assumption that some ob-je
t is in the points-to set for the
all's obje
t referen
e.The latter referen
e (more pre
isely, its abstra
t form, thatis a variable name) is taken from the abstra
t sta
k (seestati
 part). The premise of the dynami
 part determinesthe
orresponding method de�nition by stati
 lookup. The
on
lusion generates one asignment for every formal/a
tualparameter pair, for the method's this-pointer, and for itsreturn value. It also gives types for the
allee's this-pointer.Let us apply the rules to a small program fragment and itsbyte
ode (Figure 6). The abstra
t sta
k as well as the gen-erated assignments
an be seen in the lower part of Figure6. Appli
ation of the rule for the �rst byte
ode instru
tionresults in two statements: the obje
t, whi
h is
reated inmethod f(int) from
lass S at byte
ode address 0 is indeedan obje
t, and has type A. The this-pointer of the default
onstru
tor method is initialised by the program, hen
e a
orresponding un
onditional assignment is generated. Thenext assignment,
orresponding to the initialisation of vari-4In pathologi
al examples, the re
onstru
tion of abstra
tsta
k values
an lead to
ombinatorial explosion due to anexponential number of
ontrol
ow paths between two pro-gram points. But in pra
ti
e, this never happens. An alter-native to get rid of this phenomenon alltogether is to analysesour
e
ode instead of Byte
ode.

able a, is also un
onditional. Of
ourse, the interesting partis the invokevirtual instru
tion and its
orresponding ab-stra
t parameter entry on the sta
k. The appli
ation of theinvokevirtual-rule generates two
ondititional
onstraints,ea
h
onsisting of three assignments and some additionaltype information. Note how the two
onstraints mirror thetwo possibilities for dynami
 binding of method f: it
ouldbe A.f or B.f. Finally, the putfield instru
tion generatesan un
onditional assignment for v, and a
onditional as-signment for any obje
t whi
h might be pointed to by f'sthis-pointer (sin
e it will also
ontain �eld v).Note that the example program
ontains a
onditional ex-pression, whi
h generates a sta
k entry whose abstra
t ver-sion
annot be taken from the variable table; instead thepossible
ontrol
ows from method entry to the
all of fmust be explored. This results in two abstra
t top sta
k en-tries, namely S.f(int).<#18> and S.f(int).<#e> (that is,the new B resp. new C
onstru
tion site). In the following,we explore only the �rst alternative.5 The initial
onstraintsfor the points-to sets, a

ording to Andersen's algorithm, areas follows:S.f(int).<#0> 2 Pt(S.f(int).a)S.f(int).<#0> 2 Pt(A.<init>().<this>)S.f(int).<#18> 2 Pt(C.<init>().<this>)Pt(A.f(Obje
t->Obje
t).<return>)� Pt(S.f(int).<this>.(S.o))After one iteration, the �nal results are obtained:S.f(int).<#0> 2 Pt(S.f(int).a)S.f(int).<#0> 2 Pt(A.<init>().<this>)S.f(int).<#18> 2 Pt(C.<init>().<this>)Pt(A.f(Obje
t->Obje
t).<return>)� Pt(S.f(int).<this>.(S.o))S.f(int).<#0> 2 Pt(A.f(Obje
t->Obje
t).<this>)S.f(int).<#18> 2 Pt(A.f(Obje
t->Obje
t).p)Pt(A.f(Obje
t->Obje
t).<return>)� Pt(A.f(Obje
t->Obje
t).<return/S.f(int).a>)The solution shows that a as well as f's this-pointer
anonly point to an A obje
t; hen
e the
all a.f(...) has onlyA.f as a target method. Both the naive method as well as
all-graph based methods su
h as Rapid Type Analysis [3℄would be unable to ex
lude B.f as a possible target.
4. WHOLE-PROGRAM-ANALYSIS, NATIVE

CODE AND REFLECTIONMany programs use library fun
tions for whi
h there is nosour
e text available, or whi
h are not written in Java (\un-analysed fun
tions"). A popular way to deal with this situ-ation is to provide stubs for these fun
tions, that is sour
e
ode fragments whi
h simulate the points-to behaviour ofthe fun
tion. However, the e�ort for stub implementationand maintenan
e is enormous.An alternative is to use a
onservative approximation for un-known byte
ode. Unknown fun
tions
an do anything with5In the rare
ase of non-unique abstra
t sta
k entries, sev-eral variants of the
onstraint system will be generated andsolved.

Obje
t
reation: I � new A S = [: : :℄m:<adr(I)>2 Objtype(m:<adr(I)>) = A S = [m:<adr(I)>; : : :℄
Assignment: I � astore r S = [p; : : :℄(Register(m; r; bi+1); p) 2 Ass Register(m; r; bi+1) 2 Ptr S = [: : :℄
Virtual
all (stati
 part): I � invokevirtual msig(m) = (t1; : : : ; tn)! t S = [pr : : : p1; q; : : :℄m:<ret=q>2 Ptrtype(m:<ret=q>) = t S = [m:<ret=q>; : : :℄Virtual
all (
onditional
onstraints):

o 2 Pt(q)) I � invokevirtual msig(m) = (t1; : : : ; tn)! tm0 = lookup(o;m)8ni=1(par(m0; i); pi) 2 Ass;(m0:<this>; q) 2 Ass;(m:<ret=q>;m0:<ret>) 2 Ass m0:<this>2 Ptrtype(m0:<this>) =
ls(m0)m0:<ret>2 Ptrtype(m0:<ret>) = t
Data member a

ess (stati
 part): I � getfield ff 0 = LookupF ield(f) S = [p; : : :℄p:f 0 2 Ptrtype(p:f 0) = type(f 0) S = [p:f 0; : : :℄Data member a

ess (
onditional
onstraints): o 2 Pt(p)) I � getfield ff 0 = LookupF ield(f)(p:f 0; o:f 0) 2 Ass o:f 0 2 Ptrtype(o:f 0) = type(f 0)
Data member store (stati
 part): I � getfield ff 0 = LookupF ield(f) S = [p; : : :℄p:f 0 2 Ptrtype(p:f 0) = type(f 0) S = [p:f 0; : : :℄Data member store (
onditional
onstraints): o 2 Pt(p)) I � getfield ff 0 = LookupF ield(f)(p:f 0; o:f 0) 2 Ass o:f 0 2 Ptrtype(o:f 0) = type(f 0)
Array element store (stati
 part): I � aastore f S = [v;
; p; : : :℄type(p) = t[℄(p[℄; v) 2 Ass p[℄ 2 Ptrtype(p[℄) = t S = [: : :℄
Array element store (
onditional
onstraint): o 2 Pt(p)) I � aastore ftype(o) = t[℄o[℄ � type(v)(o[℄; v) 2 Ass o[℄ 2 Ptrtype(o[℄) = t
Type
ast (stati
 part): I �
he
k
ast t S = [p; : : :℄:(p = null _ type(p) � t)(t)p 2 Ptrtype((t)p) = t S = [(t)p; : : :℄Type
ast (
onditional
onstraint): o 2 Pt(p)) I �
he
k
ast ttype(o) � t((t)p; o) 2 AssFigure 5: Constraint-generating rules for some Byte
ode instru
tions

lass A {Obje
t f(Obje
t p) { ... }}
lass B extends A {Obje
t f(Obje
t q) { ... }}
lass C {}
lass S {Obje
t v;void f(int x) {A a=new A();v=a.f(x>0?(Obje
t)new B():(Obje
t)new C());}}

#0: new Adupinvokespe
ial A.<init>()astore_2aload_0aload_2iload_1ifle #18 -> #e #18#e: new Bdupinvokespe
ial B.<init>()goto #1f -> #1f#18: new Cdupinvokespe
ial C.<init>()invokevirtual A.f(java.lang.Obje
t->java.lang.Obje
t)putfield S.vreturn -> endInstru
tion Sta
k after rule appli
ation Auxiliary Information#0 new A S.f(int).<#0> S.f(int).<#0> 2 Obj, typ(S.f(int).<#0>)=A#3 dup S.f(int).<#0>S.f(int).<#0>#4 invokespe
ial A.<init>() S.f(int).<#0> (A.<init>().<this>,S.f(int).<#0>) 2 Ass#7 astore 2 (S.f(int).a,S.f(int).<#0>) 2 Ass#8 aload 0 S.f(int).<this>#9 aload 2 S.f(int).aS.f(int).<this>#a iload 1 S.f(int).x/intS.f(int).aS.f(int).<this>#b ifle #18 S.f(int).aS.f(int).<this>#18 new C S.f(int).<#18> S.f(int).<#18> 2 Obj, typ(S.f(int).<#18>)=CS.f(int).aS.f(int).<this>#1b dup S.f(int).<#18>S.f(int).<#18>S.f(int).aS.f(int).<this>#1
 invokespe
ial C.<init>() S.f(int).<#18> (C.<init>().<this>,S.f(int).<#18>) 2 AssS.f(int).aS.f(int).<this>#1f invokevirtual A.f(Obje
t->Obje
t) A.f(Obje
t->Obje
t).<return/S.f(int).a> typ(A.f(Obje
t->Obje
t).<return/S.f(int).a>)=Obje
tA.f(Obje
t->Obje
t).<return> 2 Ptr, typ(A.f(Obje
t->Obje
t).<return>) = Obje
to 2 Pt(S.f(int).a)^LookupVirtual(o;A.f(Obje
t->Obje
t)) = A.f(Obje
t->Obje
t))A.f(Obje
t->Obje
t).<this> 2 Ptr, typ(A.f(Obje
t->Obje
t).<this>)=A^ (A.f(Obje
t->Obje
t).<this>,o) 2 Ass^ (A.f(Obje
t->Obje
t).p,S.f(int).<#18>) 2 Ass^ (A.f(Obje
t->Obje
t).<return/S.f(int).a>,A.f(Obje
t->Obje
t).<return>) 2 Asso 2 Pt(S.f(int).a)^LookupVirtual(o;A.f(Obje
t->Obje
t)) = B.f(Obje
t->Obje
t))B.f(Obje
t->Obje
t).<this> 2 Ptr, typ(B.f(Obje
t->Obje
t).<this>)=A^ (B.f(Obje
t->Obje
t).<this>,o) 2 Ass^ (B.f(Obje
t->Obje
t).q,S.f(int).<#18>) 2 Ass^ (A.f(Obje
t->Obje
t).<return/S.f(int).a>,A.f(Obje
t->Obje
t).<return>) 2 Ass#22 putfield S.v S.f(int).<this>.(S.v) 2 Ptr, typ(S.f(int).<this>.(S.v))=Obje
t(S.f(int).<this>.(S.v),A.f(Obje
t->Obje
t).<return>) 2 Asso 2 Pt(S.f(int).<this>))(o.(S.v),A.f(Obje
t->Obje
t).<return>) 2 Asso.(S.v) 2 Ptr, typ(o.(S.v)) = Obje
t#25 returnFigure 6: A program fragment, its Byte
ode, and the
orresponding appli
ation of
onstraint-generatingrules. m is unanalysed;sig(m) = (t1; : : : ; tn)! t8ni=1(unanalysed;m:<par(m; i)>) 2 Assm is unanalysed; sig(m) = (t1; : : : ; tn)! t(m0:<ret>; unanalysedt) 2 Ass
o 2 Pt(unanalysed=t)) m is method in t;m is visible in unanalysed
ode;sig(m) = (t1; : : : ; tn)! tm0 = lookup(o;m0);8ni=1(par(m0; i); unanalysedti) 2 Ass;(m0:<this>; o) 2 Ass;(unanalysed;m0:<ret>) 2 AssFigure 7: Constraint generation for unanalysed fun
tions

their parameters; in parti
ular any obje
t given to an un-analysed fun
tion may reappear as the return value of anyother unanalysed fun
tion. But Java's type-safety
an beexploited to deliver some pre
ision even under this
onser-vative and pre
ision-threatening assumption.In order to deal with unanalysed
ode, we �rst introdu
ea global variable \unanalysed". Whenever an obje
t refer-en
e p is passed to an unanalyzed fun
tion, an assignment(unanalysed; p) is added. Pointers whi
h are returned fromunanalysed fun
tions
ould analogeously modelled as assign-ments (p; unanalysed). But for return values at least a typeis known and should be utilized for in
reased pre
ision. Wethus introdu
e spe
ial versions of unanalysed, namely globalvariables unanalysedt for every type t. The relation betweenunanalysed and the various unanalysedt is given byo 2 Pt(unanalysed) ^ type(o) � t) o 2 Pt(unanalysedt)Instead of inserting the assignment (p; unanalysed) when-ever the return value of an unanalysed fun
tion is assignedto p, we insert (p; unanalysedt), whi
h redu
es the size ofp's points-to set. Note that this \tri
k"
an only be done ina type-safe language as Java, but not in C or C++.Figure 7 (upper part) gives the inferen
e rules whi
h gen-erate the
orresponding assignments. Unanalysed fun
tions
an
all other fun
tions (unanalysed or analysed), and therule in Figure 7 (lower part) des
ribes su
h
alls. It is simi-lar to the invokevirtual rule, ex
ept that there is no sta
k,and parameters and return values of fun
tions
alled fromunanalysed fun
tions are again modelled via the unanalysedvariable. Ex
eptions and a

ess to global variables from un-analysed
ode
an be modelled similarly; for details see [23℄.Let us
on
lude this se
tion with a dis
ussion of the re
e
-tion API. Native methods from the re
e
tion API
ould of
ourse be analysed using the above approximations, but inmany
ases, we
an do better. As an example,
onsider the
alls to getClass in Figure 8. For every
lass t in the pro-gram, we introdu
e a spe
ial obje
t
lasst. In order to anal-yse the
all
=a.getClass();, we �rst determine Pt(a). Thetypes of all obje
ts in this set determine whi
h
lasst haveto be added to Pt(
). In the example, Pt(
) = f
lassAg.Therefore the
all o=
.newInstan
e(): will return a newspe
ial obje
t dyn : a of type A. As a result, the
all a2.f();
an be resolved.This approa
h is more pre
ise than traditional stubs, be-
ause again it in
orporates points-to information for tar-get obje
ts and parameters. Providing spe
i�

onstraintsfor some popular unanalysed fun
tions improves pre
ision
onsiderably, while the above general approximation
an beused for less popular unanalysed fun
tions without harmingpre
ision too mu
h.
5. EMPIRICAL STUDIESWe implemented the framework as well as its subset-basedand uni�
ation-based variants (see [23℄ for implementationdetails). The implementation is based on points-to graphs.For Andersen's method, every assignment, let it be stati
or
onditionally generated, results in an additional ar
 in

the graph.6 In order to redu
e memory
onsumption, theimplementation does not store
omplete points-to sets, butallows transitive edges in the graph;
omplete points-to setsare then determined by traversion of paths in the graph.Instead of adding edges, the implementation of uni�
ation-based intrapro
edural analysis merges graph nodes via thefast union-�nd algorithm. We have already seen that this
an introdu
e type-in
orre
t points-to relations. Therefore,additional type
he
ks are performed whenever a points-toset is expli
itely needed.We applied both variants to 22 small and medium-sized pro-grams with up to 25000 LOC. The results are summarizedin Figure 9. The �rst
olumns give the program name, itsnumber of
lasses, number of methods, Byte
ode size, andnumber of
alls. Furthermore the per
entage of
alls whi
h
ould be resolved stati
ally even without points-to informa-tion is given. It is interesting to see that this per
entageis usually well above 80% { Java programs rely heavily onthe standard API, whi
h
ontains many final methods. Of
ourse, stati
ally resolvable method
alls do not need
ondi-tional
onstraint generation, but
an be analysed dire
tly.For both methods, the following data are given: runtime,relative pre
ision in per
ent, per
entage of additionally re-solved method
alls, and some information
on
erning ourspe
i�
 appli
ation of points-to analysis. The relative pre
i-sion is determined in
omparison with a super-naive points-to method, where every points-to set
ontains all obje
tswhi
h have a
orre
t type:PtSN (p) = fo 2 Obj j type(o) � type(p)gThis method is even worse than the naive method from theintrodu
tion, be
ause not only it resolves method
alls ina naive way, it even makes very impre
ise assumptions forintrapro
edural analysis. Relative pre
ision is de�ned asRP = Pp2Ptr jPt(p)jPp2Ptr jPtSN (p)jAn algorithm with relative pre
ision less than 1 (or below100%) is thus better than the super-naive method.The runtimes have been determined on a SUN Enterprisesystem 450 with 1GB, running JDK1.2. Looking at theruntimes, there are two basi
 observations. First of all, theabsolute runtimes are quite high. The reason, of
ourse, isthat pre
ise analysis of dynami
 binding does not
ome forfree. One might imagine a better implementation, or theuse of a dedi
ated, highly optimized
onstraint solver, butfa
t is that pre
ise resolution of dynami
 binding requires anadditional level of �xpoint iteration. Furthermore, unanal-ysed fun
tions often indu
e quite
onservative assumptionswhi
h redu
e pre
ision and speed of the analysis.The se
ond fundamental observation is that the runtimesare relatively similar. The sum of all runtimes in the ben
h-6The basi
 Andersen rule
an be expressed solely in assign-ments: �(p; q) 2 Ass) (Pt(q) � Pt(p))�()�(p; q) 2 Ass) (o 2 Pt(q)) o 2 Pt(p))�()�(p; q) 2 Ass) (o 2 Pt(q)) (p; o) 2 Ass)�. Similar for Dasand Steensgaard.

lass A {void f() { ... }}
lass B extends A {void f() { ... }}
lass Main {void main() throws IllegalA

essEx
eption, InstantiationEx
eption {A a=new A();Class
=a.getClass();Obje
t o=
.newInstan
e();A a2=(A)o;a2.f();}}
Figure 8: Example use of re
e
tion API

subset-based uni�
ation-basedProgram Cl. Me.
ode
alls stati
 time RP s

 res.
lient
lient-t. time RP res.
lient
lient-t.Haar 17 230 23k 1011 94.0 51.53 71.7 0 / 3 5.9 16.2 13.01 59.98 95.0 4.3 16.9 13.73IComputer 63 390 39k 2261 94.2 162.31 58.9 14 / 14 5.1 22.8 55.91 282.21 84.6 4.9 22.9 59.60JBinHex 5 54 3024 75 81.3 7.12 77.7 2 / 2 18.7 33.2 1.11 5.68 96.8 6.7 33.4 1.14JLex 26 161 28k 1063 97.7 45.24 67.4 7 / 13 1.9 20.0 8.96 75.72 94.1 1.9 20.2 8.87J

odes 8 41 2897 158 68.4 19.98 74.7 2 / 2 21.5 23.5 3.05 7.40 95.7 21.5 23.5 3.07NanoXML 3 32 2296 158 96.2 6.64 81.0 2 / 2 3.8 16.0 1.09 4.89 98.4 3.8 16.0 1.12ProxyHammer 12 38 3079 242 88.8 14.76 73.9 0 / 0 10.7 31.8 2.74 11.02 98.5 10.7 31.8 2.68TextS
roll 4 92 6644 425 73.2 16.71 68.0 0 / 0 26.8 6.4 4.35 14.02 95.6 26.8 6.4 4.39TumblingDi
e 34 196 12k 762 90.8 50.12 73.6 2 / 2 8.8 17.7 13.37 47.10 97.0 8.8 17.7 13.13arabeske 21 296 41k 1964 82.9 162.75 76.6 3 / 5 4.3 16.5 18.85 163.21 94.7 4.3 16.5 19.18graph 32 228 16k 1192 96.7 47.98 66.9 1 / 3 3.2 24.2 14.78 71.48 96.4 3.2 24.2 14.99hanoi 45 362 21k 1005 82.5 43.96 72.2 1 / 18 13.5 20.1 17.37 44.81 95.2 13.0 20.7 14.78j6502 1 31 8123 78 100.0 3.21 40.3 0 / 0 0.0 10.7 0.48 1.73 98.0 0.0 10.7 0.49jEdit 108 489 34k 2179 81.1 430.12 70.7 23 / 33 13.9 20.3 117.15 473.89 88.6 13.2 20.3 115.39jas 127 435 26k 1042 85.1 611.56 84.5 12 / 24 3.7 4.9 54.18 404.69 99.6 3.7 4.9 54.10java
up 41 396 32k 2362 93.2 142.71 71.6 5 / 11 3.4 19.5 35.58 301.58 97.4 3.4 19.5 33.54jaxp 110 761 39k 1579 78.3 528.30 84.1 27 / 93 7.6 11.9 138.74 596.49 96.8 6.2 12.0 134.03j
ex 52 418 50k 2266 96.9 196.77 81.3 4 / 11 2.6 17.6 42.24 373.38 95.5 2.5 17.6 38.53jspringies 13 71 8045 239 90.8 15.19 68.3 2 / 2 8.4 15.6 3.17 7.68 97.4 8.4 15.6 2.98mars 19 120 5431 371 92.7 39.04 64.4 2 / 4 2.4 18.1 8.51 28.02 92.4 2.4 18.3 8.42sable

 283 1867 74k 4562 68.2 949.04 62.3 2 / 72 20.1 4.0 363.71 1069.11 88.5 17.7 4.0 343.45yamm 71 264 39k 3279 89.8 1270.15 58.5 5 / 6 7.1 24.5 93.62 1390.87 78.5 6.2 24.5 91.84Figure 9: Ben
hmark results

mark is 4815.22 se
onds for the subset-based, 5434.96 forthe uni�
ation-based version; that is a di�eren
e of roughly10 per
ent. Obviously the iteration for dynami
 bindingdestroys the basi
 speed of the uni�
ation-based method.Con
erning relative pre
ision, the subset-based method ison the average 32.8% more pre
ise than the super-naivemethod, and the uni�
ation-based method is on the aver-age 5.7% more pre
ise than the super-naive method. Thisis a disappointing result for the symmetri
 uni�
ation-basedapproa
h; indi
ating that it is unsuitable for the abundan
eof unsymmetri
 subtype relations in Java programs.The di�eren
e is less signi�
ant if we look only at the num-ber of stati
ally resolved method
alls. The
olumns \res."give the per
entage of
alls whi
h
ould not be resolved stat-i
ally, but where the points-to set is so small that the tar-get method is unique. Again, the subset-based method isbetter. Adding the values in
olumn \stati
" and in
ol-umn \res.", both methods a
hieve almost 100% for mostprograms. That is, dynami
 binding is hardly used in theben
hmark. Comparing this with the relative pre
ision, thereader should keep in mind that the majority of pointers isnot used as target obje
ts for method
alls.We also in
orporated an algorithm for strongly
onne
ted
omponents as des
ribed in [17℄. Rountev reports very pos-itive e�e
ts for C programs, but for Java, the results aredisappointing. The
olumn \s

" presents the number ofstrongly
onne
ted
omponents in the Andersen graph be-fore and after �xpoint iteration. Both numbers are so lowthat there is no improvement in pra
ti
e. Again, we believethat the unsymmetri
 subtype relations whi
h are so typi-
al for OO programming prevent the approa
h from beinge�e
tive in Java.Let us �nally
onsider the e�e
t of the two di�erent methodson a spe
i�

lient analysis, namely the KABA system as de-s
ribed in [21, 20℄. KABA starts out with a table
ontainingall method a

esses for every program variable, and in orderto
ompute the table, points-to information is needed for ev-ery program variable. The better the points-to analysis, theless non-blank table entries. The
olumns labelled \
lient"display the per
entage of table entries whi
h are not blank,and the
olumns labelled \
lient-t" give table
onstru
tiontime. Similarly to the \resolved
alls" results, the subsetmethod is only slightly superior to the other one for thisspe
i�

lient analysis.
6. RELATED WORKRountev, Milanova, and Ryder re
ently presented the onlyother implemented points-to algorithm for Java known tous [18℄. Their method is also based on set
onstraints, butis limited to Andersen's approa
h; they do not
onsider ap-proximations for unanalysed
ode and the re
e
tion API.Rountev et al. use Soot7 as a frontend and the BANE sys-tem [1℄ for solving set
onstraints. The implementation hasroughly the same speed as ours, but uses less memory. Thisis probably due to their use of the highly optimized BANEengine (see [10, 24℄).7http://www.sable.m
gill.
a

It would be interesting to
ompare the pre
ision of the twosystems, but right now this is not possible: Rountev et al.analyse rea
hable methods in user and library
ode; we anal-yse the whole user
ode and treat libraries as unanalysed
ode. Furthermore, the programs
ommon to both ben
h-marks are obviously not the same version. In any
ase, a
omparison not only of the resolved
alls but also of therelative pre
ision would be worthwhile.8Re
ently, Steensgaard's algorithm has been extended to Javaas well [8℄. In
ontrast to our uni�
ation-based variant, itdoes not use �xpoint iteration, but { in
ase two variablesa and b have been uni�ed { uni�es the signatures and this-pointers of all methods in a's and b's stati
 type. This retainsthe quasi-linear speed of the method, but is less pre
ise thanour approa
h. [8℄ reports that a reasonable pre
ision
anonly be a
hieved if a
ontext-sensitive extension is used.
7. CONCLUSION AND FUTURE WORKWe presented a
omparison of a subset-based and a uni�
ation-based points-to approa
h for Java. Our results
an be sum-marized as follows:1. Both analysis strategies di�er only in one spe
i�
 in-feren
e rule, whi
h is plugged into a generi
 points-toframework for Java.2. Java's type safety
an be exploited to in
rease pre
i-sion, in parti
ular for unanalysed
ode.3. Uni�
ation-based methods have diÆ
ulties with theabundan
y of unsymmetri
 subtype relations in JavaPrograms.While in the world of imperative languages su
h as C, Steens-gaard's method is mu
h faster than Andersen's, intrapro
e-dural Steensgaard
ombined with �xpoint iteration for dy-nami
 binding is slightly slower for Java. The reason isthat the �xpoint iteration leads to a propagation of the im-pre
ision in Steensgaard's method, and eventually to slower
onvergen
e.There is still mu
h room for improvement, both in pre
i-sion and performan
e. Besides better implementations ofour algorithms, two options seem worth exploring:
ontext-sensitive points-to analysis and
ow-sensitive points-to anal-ysis. A partially
ow-sensitive analysis
an easily be a
hievedby transforming the Byte
ode to stati
 single assignmentform (
mp. [12℄). Context-sensitive points-to analysis forJava
an be a
hieved in a way analogeously to [15℄, [9℄ or[5℄. This will in
rease pre
ision, but it is un
lear how highthe pri
e will be in terms of performan
e, and what the per-forman
e/pre
ision ratio will be.Our analysis is basi
ally a whole-program analysis. But itis known that many Java obje
ts never leave the methodswhi
h have
reated them [4, 6, 25℄. It should thus be pos-sible to deal with lo
al pointers and obje
ts at the level ofmethods, thereby de
reasing the size of the global points tograph. For C, this has alrady been done [16℄; for Java, itremains to be seen whether it is possible.8Our
urrent implementation requires that the byte
ode
omes with debug information.

8. REFERENCES[1℄ A. Aiken, M. Faehndri
h, J. S. Foster, and Z. Su. Atoolkit for
onstru
ting type- and
onstraint-basedprogram analyses. Le
ture Notes in Computer S
ien
e,1473:78{92, 1998.[2℄ L. O. Andersen. Program Analysis and Spe
ializationfor the C Programming Language. PhD thesis, DIKU,University of Copenhagen, May 1994. (DIKU report94/19).[3℄ David F. Ba
on and Peter F. Sweeney. Fast stati
analysis of C++ virtual fun
tion
alls. InOOPSLA '96 Conferen
e Pro
eedings: Obje
t-OrientedProgramming Systems, Languages, and Appli
ations,pages 324{341. ACM Press, 1996.[4℄ Bruno Blan
het. Es
ape analysis for obje
t orientedlanguages. appli
ation to Java. In Pro
eedings of theConferen
e on Obje
t-Oriented Programming,Systems, Languages, and Appli
ations, pages 20{34,1999.[5℄ Ramkrishna Chatterjee, Barbara G. Ryder, andWilliam A. Landi. Relevant
ontext inferen
e. In Pro
.26th ACM SIGPLAN-SIGACT on Prin
iples ofprogramming languages, ACM SIGPLAN Noti
es,pages 133{146, New York, NY, USA, 1999. ACMPress.[6℄ Jong-Deok Choi, Manish Gupta, Mauri
io Serrano,Vugranam C. Sreedhar, and Sam Midki�. Es
apeanalysis for Java. ACM SIGPLAN Noti
es,34(10):1{19, O
tober 1999.[7℄ Manuvir Das. Uni�
ation-baseb pointer analysis withdire
tional assignments. In Pro
. SIGPLANConferen
e on Programmming Design andImplementation (PLDI), pages 35{46, Van
ouver,Canada, June 2000.[8℄ Manuvir Das and Bjarne Steensgaard, November2000. Personal
ommuni
ation.[9℄ Maryam Emami, Rakesh Ghiya, and Laurie J.Hendren. Context-sensitive interpro
edural points-toanalysis in the presen
e of fun
tion pointers. In PLDI,pages 242{256. ACM, ACM, June 1994.[10℄ Manuel F�ahndri
h, Je�rey Foster, Zhendong Su, andAlexander Aiken. Partial online
y
le elimination inin
lusion
onstraint graphs. In Pro
. SIGPLAN'98Conferen
e on Programming Language Design andImplementation, pages 85{96, Montreal, Canada, June1998. ACM SIGPLAN Noti
es 33(6).[11℄ Je�rey S. Foster, Manuel F�ahndri
h, and AlexanderAiken. Flow-insensitive points-to analysis with termand set
onstraints. Te
hni
al Report CSD-97-964,University of California, Berkeley, August 5, 1997.[12℄ Rebe

a Hasti and Susan Horwitz. Using stati
 singleassignment form to improve
ow-insensitive pointeranalysis. In Pro
eedings of the ACM SIGPLAN'98Conferen
e on Programming Language Design andImplementation (PLDI), pages 97{105, Montreal,Canada, 17{19 June 1998.

[13℄ Mi
hael Hind, Mi
hael Burke, Paul Carini, andJong-Deok Choi. Interpro
edural pointer aliasanalysis. ACM Transa
tions on ProgrammingLanguages and Systems, 21(4):848{894, July 1999.[14℄ Mi
hael Hind and Anthony Pioli. Whi
h pointeranalysis should I use? In Pro
. InternationalSymposium on Software Testing and Analysis, pages113{123, Portland, OR, 2000.[15℄ William Landi and Barbara G. Ryder. A safeapproximation algorithm for interpro
edural pointeraliasing. In ACM SIGPLAN Conferen
e onProgramming Language Design and Implementation,June 1992.[16℄ Donglin Liang and Mary Jean Harrold. EÆ
ientpoints-to analysis for whole-program analysis. In Pro
.ESEC/FSE, pages 199{215, N. Y., September 6{101999. ACM Press.[17℄ Atanas Rountev and Satish Chandra. O�-line variablesubstitution for s
aling points-to analysis. InPro
eedings of the 2000 ACM SIGPLAN Conferen
eon Programmming Design and Implementation(PLDI), pages 47{56, Van
ouver, Canada, June 2000.[18℄ Atanas Rountev, Ana Milanova, and Barbara G.Ryder. Points-to analysis for java using annotatedin
lusion
onstraints. Te
hni
al Report DCS-TR-417,Department of Computer S
ien
e, Rutgers University,July 2000.[19℄ Mar
 Shapiro and Susan Horwitz. Fast and a

urate
ow-insensitive points-to analysis. In Pro
. 24th ACMSIGPLAN-SIGACT Symposium on Prin
iples ofProgramming Languages, pages 1{14, New York, NY,USA, 1997. ACM Press.[20℄ Gregor Snelting and Frank Tip. Understanding
lasshierar
hies using
on
ept analysis. ACM Transa
tionson Programming Languages and Systems. to appear.[21℄ Gregor Snelting and Frank Tip. Reengineering
lasshierar
hies using
on
ept analysis. In Pro
eedings ofthe ACM SIGSOFT Sixth International Symposiumon the Foundations of Software Engineering: FSE-6,pages 99{110. ACM Press, 1998.[22℄ Bjarne Steensgaard. Points-to analysis in almost lineartime. In Pro
eedings of the Twenty-Third ACMSymposium on Prin
iples of Programming Languages,pages 32{41, St. Petersburg, FL, January 1996.[23℄ M. Stre
kenba
h. Points-to-Analyse f�ur Java. NumberMIP-0011 in Te
hni
al Report Series. Fakult�at f�urMathematik und Informatik, Universit�at Passau, 2000.[24℄ Zhendong Su, Manuel F�ahndri
h, and AlexanderAiken. Proje
tion merging: Redu
ing redundan
ies inin
lusion
onstraint graphs. In Conferen
e Re
ord ofPOPL'00: The 27th ACM SIGPLAN-SIGACTSymposium on Prin
iples of Programming Languages,pages 81{95, Boston, Massa
husetts, January 19{21,2000.[25℄ John Whaley and Martin Rinard. Compositionalpointer and es
ape analysis for Java programs. ACMSIGPLAN Noti
es, 34(10):187{206, O
tober 1999.

