Points-To for Java: A General Framework
and an Empirical Comparison

Mirko Streckenbach, Gregor Snelting
Lehrstuhl fir Softwaresysteme
Universitat Passau

strecken@fmi.uni-passau.de

ABSTRACT

Points-to analysis for Java is different from points-to for C
or even C++. We present a framework which generalizes
popular points-to algorithms and generates set constraints
from full Java bytecode. The framework exploits previously
computed points-to sets in a fixpoint iteration for precise
resolution of dynamic binding. We then compare implemen-
tations of this framework for unification-based and subset-
based analysis. It turns out that — in contrast to the C
situation — both approaches have about the same running
time, while the subset-based algorithm is still more precise.
The unification-based method is slowed down because its
inherent imprecision accumulates during fixpoint iteration.

1. INTRODUCTION

Points-to analysis is a static analysis which computes for
every pointer a set of objects it may point to at runtime.
For imperative languages such as C, many points-to algo-
rithms such as Andersen’s algorithm [2], Steensgaard’s al-
gorithm [22], or Das’ algorithm [7] have been investigated,
and Steensgaard’s algorithm is considered to be the fastest
[14]. For object-oriented languages, dynamic binding must
be approximated, and in fact for C++ dynamic binding can
be analysed similar to function pointers in C [13].

For Java, however, the situation is different: there are no
pointer arithmetics and no pointers to pointers, arrays have
different semantics, type casts are type safe, and dynamic
loading of classes is quite common. It is the aim of this
article to generalize well-known points-to algorithms such as
Andersen’s and Steensgaard’s (and some recent extensions)
to full Java, exploiting Java’s unique features. We will then
provide an empirical comparison of these methods.

We begin with a small example illustrating that a careless
treatment of dynamic binding will result in very unprecise
points-to information. For the program in Figure 1, Ander-
sen’s algorithm will compute the initial points-to graph in

Figure 1 (left). A naive treatment of method calls would
then assume that in a call x.£f(), all methods named £()
from the static class of x and its subclasses can be targets of
the call. It would then extend the points-to graph for any of
these possible target methods by adding arcs which model
implicit assignments to formal parameters, return values,
and this-pointers. Thus for the example, all three imple-
mentations of method f will be included during the analysis
of the calls to £, resulting in the final Andersen graph to be
seen in Figure 1 (middle); the final Steensgaard graph for
the same program can be seen in Figure 1 (right)."

The results are very unprecise — for example, p is assumed
to point to three different objects, while it is obvious that
p can only point to one object. Furthermore, the naive
method assumes that in a.f(c) also C.f can be called, but
in fact a cannot point to objects of type C, and in a type-
safe language such as Java, the call to C.f can therefore be
ignored. In fact, the final Steensgaard graph even contains
type-incorrect edges such as c—new A. Since pointer access
along such edges will always generate an exception in Java,
they can safely be ignored. Note that in C or C++, the
latter consideration would not be valid.

The example demonstrates that for resolution of method
calls, the actual points-to sets for the target object refer-
ences should be considered. For a call x.f (), the points-to
set for x gives possible target objects for the call, and static
lookup for £() in the possible target objects will identify
possible target methods for £ (). This strategy will lead to a
much smaller set of target methods than the naive method,
which in turn increases precision since fewer arcs are added
to the points-to graph. For the example, it leads to the
points-to graphs in Figure 2. Still, the Steensgaard graph
contains type-incorrect edges, due to its symmetric treat-
ment of assignments.

In this contribution, we will elaborate on the insights from
the above example. First we will present a generic frame-
work for Java points-to analysis, which can be instantiated
with subset-based intraprocedural approaches in the style of
Andersen, or unification-based intraprocedural approaches
in the style of Steensgaard. The framework consists of infer-
ence rules, which generate a constraint system for the points-
to sets. It comprises the full Java language, and questions
of library treatment and whole-program analysis are also

!For reasons of readability, this-pointers are not shown in
Figure 1.

class MyException { Object u; MyException(Object t) { u=t } }
class A { A £(A g) { return g; }

class B extends A { A £(A g) { throw new MyException(g); } }
class C extends A { A £(A g) { return this; } }

A a=new A(), p=null, q, r, s;
B b=new B();
C c=new C(Q);

if(...)
a=b; b new A
try {
p=a.f(c);
} catch(MyException e) {

} e 4 new C

new B

//]

try {
r=p.f(a);

} catch(MyException f) {
s=f.u;

}

a a
b new A b new A
c c
p new B p new B
4 new C 4 new C
r r
s S

Figure 1: Example Java program and points-to graphs for naive treatment of dynamic binding. Left: initial
Andersen graph, middle: final Andersen graph, right: final Steensgaard graph.

new A new A

new B new B

new C new C

Wi

Figure 2: Final Andersen (left) and Steensgaard
(right) graphs for improved resolution of dynamic
binding.

discussed. For precise approximation of dynamic binding a
fixpoint iteration is used, which exploits already computed
points-to sets for a call’s target object reference.

We then describe the implementation of specific instances
of the framework. An empirical comparison will show that
a subset-based approach is comparable in performance to
a unification-based approach, but is of course more precise.
The reason is that the imprecision in unification-based meth-
ods propagates during fixpoint iteration. The subset-based
method can legitimately be called “Java-Andersen”, while
the unification-based method should not be called “Java-
Steensgaard”: it uses a Steensgaards-like approach for in-
traprocedural analysis, but uses fixpoint iteration for reso-
lution of dynamic binding.

2. POINTS-TO FOR JAVA

Points to algorithms are usually described in terms of a
points-to graph, which is a straightforward implementation
of the points-to sets. Indeed, the implementation of our ex-
tended versions for Java is also based on points-to graphs.
However, in order to make the idiosyncrasies of points-to
for Java more clear, we will first present a formal descrip-
tion in terms of points-to sets and provide an inference sys-
tem which generates constraints for the points-to sets (cmp.
[11]). We use the following sets: Ptr, the set of all pointers

(i.e. object references in Java); Obj, the set of all objects
(i.e. constructor call sites);> Ass, the set of all assignments,
where an assignment 1=r is written as (I,r) € Ass;® Pt(p),
the points-to set € 2°% for a pointer p € Ptr.

The basic rules for intraprocedural points-to analysis are as
follows. An assignment of an object reference to a pointer
leads to inclusion of the object in the points-to set:

(p,0) € Ass Ao € Obj = o € Pt(p)

Pointer assignments are treated differently by Andersen and
Steensgaard. Andersen requires a subset relationship:

(p,q) € Ass A q € Pir = (Pt(q) C Pt(p))
Steensgaard merges the two points-to sets:
(p,q) € Ass A\ q € Ptr = (Pt(q) = Pt(p))

The traditional algorithmic structure to solve the resulting
constraint system can be seen in Figure 3: The constraints
are generated in one pass over the program by collecting
all explicit and implicit assignments; for Steensgaard the
constraint system can then be solved in quasi-linear time,
while Andersen requires an O(n?) iteration.

Shapiro and Horwitz[19] and Das[7] presented points-to al-
gorithms which lie between Steensgaard and Anderson. Both
extensions stick to general structure in Figure 3. For exam-
ple, Das’ algorithm can be adapted to Java by adding the
following rule to the Andersen scheme:

(p,q) € Ass = (Pt(p.f) = Pt(q.f))

where p,q are object references and f is a nested object
reference.

?Different runtime incarnations for the same constructor call
will — as usual — not be distinguished.

3Note that Ass also contains implicit assignments, such as
assignments to parameters or this-pointers during method
calls.

Assignments Constraints

- Points-To
Algorithm sets

Figure 3: Structure of traditional points-to algorithms

Dynamically bound
method calls

Assignments

i Constraints Points-to
Algorithm ate

Figure 4: Structure of points-to algorithms for Java

Note that the Steensgaard rule can be modified for Java in
order to avoid type-incorrect arcs in the points-to graph:

(p,q) € Ass =
((o € Pt(q) = o € Pt(p)) A

(0 € Pt(p), type(o) < type(q) = o € Pt(q)))

Interprocedural analysis simply uses the above rules in order
to handle assignments to formal parameters, return values
and this-pointers. In the presence of dynamic binding or
function pointers, however, the situation becomes more com-
plex. Steensgaard’s algorithm can be extended for function
pointers without using an additional fixpoint iteration [8].
However, Hind et al. [13] observed that the precise analysis
of function pointers requires extensions of the basic mecha-
nism. They proposed to use the points-to sets for function
pointers in order to determine the possible call targets, and
to extend the points-to graph according to these targets.

For Java, the analysis of method calls must be based on
a similar approach: it must exploit the already computed
points-to sets for the call’s target object reference. For any
possible target object in this set, the corresponding target
method definition is determined according to the target ob-
ject’s static type. The call to the target method definition
is then treated in the usual way by taking into account im-
plicit assignments to formal parameters, return values, and
this-pointers. Hence these assignments are valid only under
the condition that a specific target object is in the points-to
set. Therefore, the constraints for the resolution of dynamic
binding have the following general form:

(o € Pt(p) Alookup(o, f) =C) = (...,...) € Ass

where f is the called method; lookup determines the class
which contains the appropriate definition of f according to
the type of 0. For the program in Figure 1, the call p=a.f(c)
leads to three conditional constraints:

(o € Pt(a) A lookup(o, £) = &) =
((c,g,) € Ass A (thisi, o) € Ass A (p,g,) € Ass)

(o € Pt(a) A lookup(o,£) = B) =
((c,gg) € Ass A (thisg, 0) € Ass)

(o € Pt(a) A lookup(o,£) = C) =
((c,gc) € Ass A (thisg,0) € Ass A (p, thisg) € Ass)

The assignments generated by these rules will then gener-
ate additional set constraints according to the Andersen
resp. Steensgaard rule. Note that the explicit generation
of assignments decouples interprocedural analysis from the
choice of the intraprocedural algorithm. Note further that
the naive method will generate the same assignments, but
without the conditions; hence it would generate 8 assign-
ments as compared to 2 or 3. In general, conditional con-
straints will never generate more assignments (and hence
points-to relations) than the naive method, but usually much
less.

The correctness of the above constraints is obvious. But in
order to solve such a system of conditional constraints, an
additional feedback loop is needed (see Figure 4): points-to
entries can generate new constraints, which can then extend
the set of assignments. The algorithm structure is as follows:

do {

apply basic algorithm;

evaluate conditional constraints;
} while (points-to graph changed)

3. GENERATING CONSTRAINTS
FROM JAVA BYTECODE

Java Bytecode is more stable than the Java source lan-
guage, and many programs are available as Bytecode but
not in source form. We therefore present the details of the
constraint-generating inference system for Bytecode. Due to
space limitations, we will present only a few central rules;
the full inference system — including in particular static calls
and exceptions — can be found in [23]. The general structure
of the inference rules is as follows:

Bytecode | old stack
constraints | types | mnew stack

Rules are applied to bytecode instructions in sequential or-
der, thereby generating constraints and some auxiliary in-
formation. The premises of a rule match a specific bytecode
instruction. Bytecode instructions refer to stack elements,
thus an abstraction of the JVM stack contents is used in the
rules as well. For runtime stack values, their abstract repre-
sentation is the corresponding variable name, which can in
most cases be extracted from the compiler’s variable table.*

The conclusion of each inference rule contains in its left
part the constraints generated from the bytecode instruc-
tion. Furthermore, some typings for pointers are recon-
structed. The last part of the conclusion displays the mod-
ified abstract stack as to be used for the next bytecode in-
struction in its matching rule premise. For better readabil-
ity, conditional constraints are split into two rules: since
type and stack information do not depend on points-to in-
formation, they are purely static and are factored out in a
separate rule.

The inference rules for constraint generation are presented
in Figure 5. As a typical example, consider the rule for
virtual method call. The premise of the static part makes
assumptions about the bytecode instruction and the signa-
ture of the method in question. In addition, the premise
names the (abstractions of the) actual parameters on the
stack. The conclusion of the static part states that the this-
pointer and the return value are indeed pointers, and names
their type. The next bytecode must be matched against an
inference rule using a modified abstract stack, where the pa-
rameter abstractions have disappeared and are replaced by
the abstract return value.

Of course, the interesting part is the dynamic part, which
generates assignments under the assumption that some ob-
ject is in the points-to set for the call’s object reference.
The latter reference (more precisely, its abstract form, that
is a variable name) is taken from the abstract stack (see
static part). The premise of the dynamic part determines
the corresponding method definition by static lookup. The
conclusion generates one asignment for every formal/actual
parameter pair, for the method’s this-pointer, and for its
return value. It also gives types for the callee’s this-pointer.

Let us apply the rules to a small program fragment and its
bytecode (Figure 6). The abstract stack as well as the gen-
erated assignments can be seen in the lower part of Figure
6. Application of the rule for the first bytecode instruction
results in two statements: the object, which is created in
method f(int) from class S at bytecode address 0 is indeed
an object, and has type A. The this-pointer of the default
constructor method is initialised by the program, hence a
corresponding unconditional assignment is generated. The
next assignment, corresponding to the initialisation of vari-

“In pathological examples, the reconstruction of abstract
stack values can lead to combinatorial explosion due to an
exponential number of control low paths between two pro-
gram points. But in practice, this never happens. An alter-
native to get rid of this phenomenon alltogether is to analyse
source code instead of Bytecode.

able a, is also unconditional. Of course, the interesting part
is the invokevirtual instruction and its corresponding ab-
stract parameter entry on the stack. The application of the
invokevirtual-rule generates two condititional constraints,
each consisting of three assignments and some additional
type information. Note how the two constraints mirror the
two possibilities for dynamic binding of method f: it could
be A.f or B.f. Finally, the putfield instruction generates
an unconditional assignment for v, and a conditional as-
signment for any object which might be pointed to by f£’s
this-pointer (since it will also contain field v).

Note that the example program contains a conditional ex-
pression, which generates a stack entry whose abstract ver-
sion cannot be taken from the variable table; instead the
possible control flows from method entry to the call of f
must be explored. This results in two abstract top stack en-
tries, namely S.f(int) .<#18> and S.f(int).<#e> (that is,
the new B resp. new C construction site). In the following,
we explore only the first alternative.’ The initial constraints
for the points-to sets, according to Andersen’s algorithm, are
as follows:

S.f(int).<#0> € Pt(S.£f(int).a)
S.f(int).<#0> € Pt(A.<init>().<this>)
S.f(int).<#18> € Pt(C.<init>() .<this>)
Pt(A.£(0bject->0bject) . <return>)

C Pt(S.£(int) .<this>.(S.0))

After one iteration, the final results are obtained:

S.f(int).<#0> € Pt(S.f(int).a)
S.f(int).<#0> € Pt(A.<init>() .<this>)
S.f(int).<#18> € Pt(C.<init>() .<this>)
Pt(A.£(0bject->0bject) .<return>)

C Pt(S.£(int) .<this>.(S.0))
S.f(int).<#0> € Pt(A.f(0bject->Dbject) .<this>)
S.f(int).<#18> € Pt(A.f(0Object->0bject) .p)
Pi(A.£(0bject->0bject) . <return>)

C Pt(A.£(0Object->0bject) .<return/S.f(int).a>)

The solution shows that a as well as f’s this-pointer can
only point to an A object; hence the call a.£(...) has only
A.f as a target method. Both the naive method as well as
call-graph based methods such as Rapid Type Analysis [3]
would be unable to exclude B.f as a possible target.

4. WHOLE-PROGRAM-ANALYSIS, NATIVE
CODE AND REFLECTION

Many programs use library functions for which there is no
source text available, or which are not written in Java (“un-
analysed functions”). A popular way to deal with this situ-
ation is to provide stubs for these functions, that is source
code fragments which simulate the points-to behaviour of
the function. However, the effort for stub implementation
and maintenance is enormous.

An alternative is to use a conservative approximation for un-
known bytecode. Unknown functions can do anything with

®In the rare case of non-unique abstract stack entries, sev-
eral variants of the constraint system will be generated and
solved.

I =new A ‘ S=1.]
Object creation: m.<adr(I)>€ Obj ~
type(m.<adr(I)>) = A S = [m.<adr(I)>, .-]

I=astore r | S=]p,..]
(Register(m,r,bi11),p) € Ass | Register(m,r,biy1) € Ptr | S=]...]

Assignment:

I = invokevirtual m S=Ip]
sig(m) = (t1,...,tn) = ¢ = Pr---P1 0
m.<ret/gq>€ Ptr
type(m.<ret/q>) =1t
Virtual call (conditional constraints):

Virtual call (static part): ‘
S = [m.<ret/g>,...]

sig(m) = (t1,...,tn) > t

I = invokevirtual m
m' = lookup(o, m)

m'.<this>€ Ptr
type(m'.<this>) = cls(m’)
m'.<ret>€ Pitr
type(m'.<ret>) =t

o € Pt(q) = Vi_i(par(m/,i),pi) € Ass,

(m'.<this>,q) € Ass,
(m.<ret/g>,m'.<ret>) € Ass

I = getfield f S=1[p,...]
. f" = LookupField(f) T
Data member access (static part): 7
p.f € Ptr ‘ S:[pf’,]

type(p.f') = type(f')
I = getfield f ‘
f' = LookupField(f)

Data member access (conditional constraints): o € Pt(p) = o.f € Dir ‘

(p-f’, O-f’) € Ass ‘ type(o.f’) = type(f')

I = getfield f S=1p,..]
. f' = LookupField(f) - W
Data member store (static part): 7

type(p.f') = type(f')
I = getfield f
f' = LookupField(f) ‘

Data member store (conditional constraints): o € Pt(p) =

. o.f' € Ptr
(p.f's0.f') € Ass ‘ type(o.f') = type(f') ‘

— S=v,cp,...]
I = aastore f ‘ N
Array element store (static part): type(p) — ¢ |
A p[] € Ptr S = []
wLhv)€Ass | pypepl) = ¢
I = aastore f
type(o) = [|
Array element store (conditional constraint): o € Pt(p) = o[| < type(v)
A o[] € Ptr ‘
(ol],v) € Ass ‘ type(o]]) =t
— S=1Ip,...
I = checkcast ¢ ‘ _)
Type cast (static part): OrLT ~(p = null V type(p) < t)
| e S=(®p.]

type((t)p) =t

I = checkcast ¢
Type cast (conditional constraint): o € Pt(p) = type(o) <t
((t)p,0) € Ass | \

Figure 5: Constraint-generating rules for some Bytecode instructions

#0: new A

dup
class A { invokespecial A.<init>()
Object f(Object p) { ... } astore_2
aload_O
class B extends A { aload_2
Object f(Object q) { ... } iload_1
ifle #18 -> #e #18
class C {} #e: new B
dup
class S { invokespecial B.<init>()
Object v; goto #1f -> #1f
#18: new C
void f(int x) { dup
A a=new A(); invokespecial C.<init>()
v=a.f(x>07(0bject)new B():(Object)new C()); invokevirtual A.f(java.lang.0Object->java.lang.0Object)
} putfield S.v
} return -> end

| Instruction | Stack after rule application | Auxiliary Information
#0 new A 5. (int) . <#0> S.£(int).<#0> € Obj, typ(S.£(int) .<#0>)=A
#3 dup 5.£(int) . <#0>
5.£(int) . <#0>

#4 invokespecial A.<init>() 5. (int) . <#0> (A.<init>().<this>,S.f(int).<#0>) € Ass
#7 astore-2 (s.£(int).a,5.£(int) . <#0>) € Ass
#8 aload 0 £(int) . <this>
#9 aload 2 £(int) .a

£(int) .<this>
#a iload.1 £(int).x/int

£(int).a

£(int) .<this>
#b ifle #18 £(int) .a

£(int) .<this>
£(int).<#18> S.f(int).<#18> € Obj, typ(S.£(int).<#18>)=C
£(int).a
£(int) .<this>
£(int).<#18>
£(int) .<#18>
£(int).a
£(int) .<this>
£(int) .<#18> (C.<init>() .<this>,S.f(int).<#18>) € Ass
£(int).a
£(int) .<this>
.£(Object->Object) .<return/S.f(int) .a> typ(A.f(0bject->0bject) .<return/S.f(int).a>)=ODbject
A.f(Object->Object) .<return> € Ptr, typ(A.f(Object->Object).<return>) = Object
o € Pt(8.£(int).a)A
LookupVirtual(o,A.£(0bject->0bject)) = A.f(Object->Object) =
A.f(Object->Dbject) .<this> € Ptr, typ(A.f(0bject->Object).<this>)=A
A (A.£(0bject->Object) .<this>,0) € Ass
A (A.£(Object->Object) .p,S.£(int) .<#18>) € Ass
A (A.£(Object->Object) .<return/S.£(int).a>,A.£(0bject->0bject) .<return>) € Ass
o € Pt(S.£(int).a)A
LookupVirtual(o,A.£(0bject->0bject)) = B.f(Object->Object) =>
B.f(Dbject->Dbject).<this> € Ptr, typ(B.f(0bject->Dbject).<this>)=A
A (B.f(Object->Object) .<this>,0) € Ass
A (B.f(Object->Object).q,S.£(int).<#18>) € Ass
A (A.f(0bject->Object) .<return/S.f(int).a>,A.f(0bject->Object).<return>) € Ass
#22 putfield S.v S.£(int).<this>.(S.v) € Ptr, typ(S.£(int).<this>.(S.v))=Object
(S.£(int).<this>.(S.v),A.f(Object->Object) .<return>) € Ass
o € Pt(S.£(int).<this>) =
(0.(S.v),A.£(0bject->0bject) .<return>) € Ass
6.(S.v) € Ptr, typ(o.(5s.v)) = Object

#18 new C

#1b | dup

#1c invokespecial C.<init>()

mlonununnnnvnnnvnnvnnennunnunn

#1f | invokevirtual A.Z(Object->0bject)

#25 return

Figure 6: A program fragment, its Bytecode, and the corresponding application of constraint-generating
rules.

m is unanalysed,
sig(m) = (t1,...,tn) = t
Vie: (unanalysed, m.<par(m,7)>) € Ass

m is unanalysed, sig(m) = (t1,...,tn) = ¢
(m'.<ret>,unanalysed;) € Ass

m is method in ¢,
m is visible in unanalysed code,
sig(m) = (t1,...,tn) > t
o € Pt(unanalysed/t) = m' = lookup(o, m'),
V7_i(par(m', i), unanalysed;,) € Ass,
(m'.<this>,o) € Ass,
(unanalysed, m'.<ret>) € Ass

Figure 7: Constraint generation for unanalysed functions

their parameters; in particular any object given to an un-
analysed function may reappear as the return value of any
other unanalysed function. But Java’s type-safety can be
exploited to deliver some precision even under this conser-
vative and precision-threatening assumption.

In order to deal with unanalysed code, we first introduce
a global variable “unanalysed’. Whenever an object refer-
ence p is passed to an unanalyzed function, an assignment
(unanalysed, p) is added. Pointers which are returned from
unanalysed functions could analogeously modelled as assign-
ments (p, unanalysed). But for return values at least a type
is known and should be utilized for increased precision. We
thus introduce special versions of unanalysed, namely global
variables unanalysed; for every type t. The relation between
unanalysed and the various unanalysed; is given by

o € Pt(unanalysed) A type(o) <t = o € Pt(unanalysed;)

Instead of inserting the assignment (p,unanalysed) when-
ever the return value of an unanalysed function is assigned
to p, we insert (p,unanalysed;), which reduces the size of
p’s points-to set. Note that this “trick” can only be done in
a type-safe language as Java, but not in C or C++.

Figure 7 (upper part) gives the inference rules which gen-
erate the corresponding assignments. Unanalysed functions
can call other functions (unanalysed or analysed), and the
rule in Figure 7 (lower part) describes such calls. It is simi-
lar to the invokevirtual rule, except that there is no stack,
and parameters and return values of functions called from
unanalysed functions are again modelled via the unanalysed
variable. Exceptions and access to global variables from un-
analysed code can be modelled similarly; for details see [23].

Let us conclude this section with a discussion of the reflec-
tion API. Native methods from the reflection API could of
course be analysed using the above approximations, but in
many cases, we can do better. As an example, consider the
calls to getClass in Figure 8. For every class ¢ in the pro-
gram, we introduce a special object class;. In order to anal-
yse the call c=a.getClass() ;, we first determine Pt(a). The
types of all objects in this set determine which class; have
to be added to Pt(c). In the example, Pt(c) = {classa}.
Therefore the call o=c.newInstance(): will return a new
special object dyn : a of type A. As aresult, thecalla2.f£();
can be resolved.

This approach is more precise than traditional stubs, be-
cause again it incorporates points-to information for tar-
get objects and parameters. Providing specific constraints
for some popular unanalysed functions improves precision
considerably, while the above general approximation can be
used for less popular unanalysed functions without harming
precision too much.

5. EMPIRICAL STUDIES

We implemented the framework as well as its subset-based
and unification-based variants (see [23] for implementation
details). The implementation is based on points-to graphs.
For Andersen’s method, every assignment, let it be static
or conditionally generated, results in an additional arc in

the graph.® In order to reduce memory consumption, the
implementation does not store complete points-to sets, but
allows transitive edges in the graph; complete points-to sets
are then determined by traversion of paths in the graph.

Instead of adding edges, the implementation of unification-
based intraprocedural analysis merges graph nodes via the
fast union-find algorithm. We have already seen that this
can introduce type-incorrect points-to relations. Therefore,
additional type checks are performed whenever a points-to
set is explicitely needed.

We applied both variants to 22 small and medium-sized pro-
grams with up to 25000 LOC. The results are summarized
in Figure 9. The first columns give the program name, its
number of classes, number of methods, Bytecode size, and
number of calls. Furthermore the percentage of calls which
could be resolved statically even without points-to informa-
tion is given. It is interesting to see that this percentage
is usually well above 80% — Java programs rely heavily on
the standard API, which contains many final methods. Of
course, statically resolvable method calls do not need condi-
tional constraint generation, but can be analysed directly.

For both methods, the following data are given: runtime,
relative precision in percent, percentage of additionally re-
solved method calls, and some information concerning our
specific application of points-to analysis. The relative preci-
sion is determined in comparison with a super-naive points-
to method, where every points-to set contains all objects
which have a correct type:

Ptsn(p) = {o € Obj | type(o) < type(p)}

This method is even worse than the naive method from the
introduction, because not only it resolves method calls in
a naive way, it even makes very imprecise assumptions for
intraprocedural analysis. Relative precision is defined as

EpGPt'r |Pt(p) ‘
> pepir [Ptsn(p)]

An algorithm with relative precision less than 1 (or below
100%) is thus better than the super-naive method.

RP =

The runtimes have been determined on a SUN Enterprise
system 450 with 1GB, running JDK1.2. Looking at the
runtimes, there are two basic observations. First of all, the
absolute runtimes are quite high. The reason, of course, is
that precise analysis of dynamic binding does not come for
free. One might imagine a better implementation, or the
use of a dedicated, highly optimized constraint solver, but
fact is that precise resolution of dynamic binding requires an
additional level of fixpoint iteration. Furthermore, unanal-
ysed functions often induce quite conservative assumptions
which reduce precision and speed of the analysis.

The second fundamental observation is that the runtimes
are relatively similar. The sum of all runtimes in the bench-

6The basic Andersen rule can be expressed solely in assign-
ments: ((p,q) € Ass = (Pt(q) C Pt(p))) <

((p,q) € Ass = (o € Pt(q) = o € Pt(p))) <=

((p,q) € Ass = (o € Pt(q) = (p,0) € Ass)). Similar for Das
and Steensgaard.

class A {

void £() { ... }

class B extends A {
void £O) { ... }

}

class Main {

void main() throws IllegalAccessException, InstantiationException {

A a=new A();

Class c=a.getClass();
Object o=c.newInstance();

A a2=(A)o;
a2.f();
}
}
Figure 8: Example use of reflection API
subset-based unification-based

Program Cl.| Me.|code]| calls |static time| RP scc| res. |client | client-t. time| RP| res.|client |client-t.
Haar 17| 230| 23k|1011| 94.0| 51.53|71.7| 0/ 3| 5.9| 16.2| 13.01| 59.98/95.0| 4.3| 16.9| 13.73
IComputer 63| 390| 39k|2261| 94.2| 162.31|58.9(14 / 14| 5.1| 22.8| 55.91| 282.21|84.6| 4.9| 22.9| 59.60
JBinHex 5| 54|3024| 75| 81.3 7.12(77.7| 2/ 2|18.7| 33.2 1.11 5.68|96.8| 6.7| 33.4 1.14
JLex 26| 161| 28k|1063| 97.7| 45.24|67.4| 7 /13| 1.9| 20.0 8.96| 75.72|94.1| 1.9 20.2 8.87
Jecodes 8| 41|2897| 158| 68.4| 19.98|74.7| 2 /2|21.5| 235 3.05 7.40(95.7|21.5| 23.5 3.07
NanoXML 3| 32|2296| 158| 96.2 6.64/81.0| 2 /2| 3.8| 16.0 1.09 4.89/98.4| 3.8| 16.0 1.12
ProxyHammer| 12| 38(3079| 242| 88.8| 14.76(73.9/ 0/ 0|10.7| 31.8 2.74| 11.02|98.5/10.7| 31.8 2.68
TextScroll 4| 92|6644| 425| 73.2| 16.71|68.0/ 0/ 0]|26.8| 6.4 4.35| 14.02|95.6(26.8| 6.4 4.39
TumblingDice | 34| 196| 12k| 762| 90.8| 50.12(73.6| 2 /2| 8.8| 17.7| 13.37| 47.10(97.0| 88| 17.7| 13.13
arabeske 21| 296| 41k |1964| 82.9| 162.75(76.6| 3 /5| 4.3| 16.5| 18.85| 163.21|94.7| 4.3| 16.5| 19.18
graph 32| 228| 16k|1192| 96.7| 47.98|66.9| 1 /3| 3.2| 24.2| 14.78| 71.48|96.4| 3.2| 24.2| 14.99
hanoi 45| 362| 21k|1005| 82.5| 43.96|72.2| 1/ 18|13.5| 20.1| 17.37| 44.81|95.2(13.0| 20.7| 14.78
j6502 1| 31|8123| 78|100.0 3.21/40.3| 0/0| 0.0| 10.7 0.48 1.73|198.0f 0.0| 10.7 0.49
jEdit 108 | 489| 34k |(2179| 81.1| 430.12(70.7|23 / 33|13.9| 20.3| 117.15| 473.89(88.6|/13.2| 20.3| 115.39
jas 127| 435| 26k|1042| 85.1| 611.56(84.5(12 / 24| 3.7| 4.9| 54.18| 404.69(99.6| 3.7| 4.9| 54.10
java_cup 41| 396| 32k|2362| 93.2| 142.71|71.6| 5 /11| 3.4| 19.5| 35.58| 301.58(97.4| 3.4| 19.5| 33.54
jaxp 110| 761| 39k |1579| 78.3| 528.30(84.1|27 /93| 7.6| 11.9| 138.74| 596.49|96.8| 6.2| 12.0| 134.03
jflex 52| 418| 50k|2266| 96.9| 196.77|81.3| 4 / 11| 2.6| 17.6| 42.24| 373.38|95.5| 2.5| 17.6| 38.53
jspringies 13| 71|8045| 239| 90.8| 15.19|68.3| 2 /2| 8.4| 15.6 3.17 7.68(97.4| 8.4| 15.6 2.98
mars 19| 120|5431| 371| 92.7| 39.04|64.4| 2 /4| 2.4| 18.1 8.51| 28.02(92.4| 2.4| 18.3 8.42
sablecc 283|1867| 74k|4562| 68.2| 949.04|62.3| 2 / 72|20.1| 4.0| 363.71|1069.11|88.5(17.7| 4.0| 343.45
yamm 71| 264| 39k|3279| 89.8/1270.15|58.5| 5 /6| 7.1| 24.5| 93.62|1390.87|78.5| 6.2| 24.5| 91.84

Figure 9: Benchmark results

mark is 4815.22 seconds for the subset-based, 5434.96 for
the unification-based version; that is a difference of roughly
10 percent. Obviously the iteration for dynamic binding
destroys the basic speed of the unification-based method.

Concerning relative precision, the subset-based method is
on the average 32.8% more precise than the super-naive
method, and the unification-based method is on the aver-
age 5.7% more precise than the super-naive method. This
is a disappointing result for the symmetric unification-based
approach; indicating that it is unsuitable for the abundance
of unsymmetric subtype relations in Java programs.

The difference is less significant if we look only at the num-
ber of statically resolved method calls. The columns “res.”
give the percentage of calls which could not be resolved stat-
ically, but where the points-to set is so small that the tar-
get method is unique. Again, the subset-based method is
better. Adding the values in column “static” and in col-
umn “res.”, both methods achieve almost 100% for most
programs. That is, dynamic binding is hardly used in the
benchmark. Comparing this with the relative precision, the
reader should keep in mind that the majority of pointers is
not used as target objects for method calls.

We also incorporated an algorithm for strongly connected
components as described in [17]. Rountev reports very pos-
itive effects for C programs, but for Java, the results are
disappointing. The column “scc” presents the number of
strongly connected components in the Andersen graph be-
fore and after fixpoint iteration. Both numbers are so low
that there is no improvement in practice. Again, we believe
that the unsymmetric subtype relations which are so typi-
cal for OO programming prevent the approach from being
effective in Java.

Let us finally consider the effect of the two different methods
on a specific client analysis, namely the KABA system as de-
scribed in [21, 20]. KABA starts out with a table containing
all method accesses for every program variable, and in order
to compute the table, points-to information is needed for ev-
ery program variable. The better the points-to analysis, the
less non-blank table entries. The columns labelled “client”
display the percentage of table entries which are not blank,
and the columns labelled “client-t” give table construction
time. Similarly to the “resolved calls” results, the subset
method is only slightly superior to the other one for this
specific client analysis.

6. RELATED WORK

Rountev, Milanova, and Ryder recently presented the only
other implemented points-to algorithm for Java known to

s [18]. Their method is also based on set constraints, but
is limited to Andersen’s approach; they do not consider ap-
proximations for unanalysed code and the reflection APIL.
Rountev et al. use Soot” as a frontend and the BANE sys-
tem [1] for solving set constraints. The implementation has
roughly the same speed as ours, but uses less memory. This
is probably due to their use of the highly optimized BANE
engine (see [10, 24]).

"http://www.sable.mcgill.ca

It would be interesting to compare the precision of the two
systems, but right now this is not possible: Rountev et al.
analyse reachable methods in user and library code; we anal-
yse the whole user code and treat libraries as unanalysed
code. Furthermore, the programs common to both bench-
marks are obviously not the same version. In any case, a
comparison not only of the resolved calls but also of the
relative precision would be worthwhile.®

Recently, Steensgaard’s algorithm has been extended to Java
as well [8]. In contrast to our unification-based variant, it
does not use fixpoint iteration, but — in case two variables
a and b have been unified — unifies the signatures and this-
pointers of all methods in a’s and b’s static type. This retains
the quasi-linear speed of the method, but is less precise than
our approach. [8] reports that a reasonable precision can
only be achieved if a context-sensitive extension is used.

7. CONCLUSION AND FUTURE WORK

We presented a comparison of a subset-based and a unification-
based points-to approach for Java. Our results can be sum-
marized as follows:

1. Both analysis strategies differ only in one specific in-
ference rule, which is plugged into a generic points-to
framework for Java.

2. Java’s type safety can be exploited to increase preci-
sion, in particular for unanalysed code.

3. Unification-based methods have difficulties with the
abundancy of unsymmetric subtype relations in Java
Programs.

While in the world of imperative languages such as C, Steens-
gaard’s method is much faster than Andersen’s, intraproce-
dural Steensgaard combined with fixpoint iteration for dy-
namic binding is slightly slower for Java. The reason is
that the fixpoint iteration leads to a propagation of the im-
precision in Steensgaard’s method, and eventually to slower
convergence.

There is still much room for improvement, both in preci-
sion and performance. Besides better implementations of
our algorithms, two options seem worth exploring: context-
sensitive points-to analysis and flow-sensitive points-to anal-
ysis. A partially flow-sensitive analysis can easily be achieved
by transforming the Bytecode to static single assignment
form (cmp. [12]). Context-sensitive points-to analysis for
Java can be achieved in a way analogeously to [15], [9] or
[6]. This will increase precision, but it is unclear how high
the price will be in terms of performance, and what the per-
formance/precision ratio will be.

Our analysis is basically a whole-program analysis. But it
is known that many Java objects never leave the methods
which have created them [4, 6, 25]. It should thus be pos-
sible to deal with local pointers and objects at the level of
methods, thereby decreasing the size of the global points to
graph. For C, this has alrady been done [16]; for Java, it
remains to be seen whether it is possible.

80ur current implementation requires that the bytecode
comes with debug information.

8.
[1]

[10]

[11]

[12]

REFERENCES

A. Aiken, M. Faehndrich, J. S. Foster, and Z. Su. A
toolkit for constructing type- and constraint-based
program analyses. Lecture Notes in Computer Science,
1473:78-92, 1998.

L. O. Andersen. Program Analysis and Specialization
for the C Programming Language. PhD thesis, DIKU,
University of Copenhagen, May 1994. (DIKU report
94/19).

David F. Bacon and Peter F. Sweeney. Fast static
analysis of C++ virtual function calls. In

OOPSLA ’96 Conference Proceedings: Object-Oriented
Programming Systems, Languages, and Applications,
pages 324-341. ACM Press, 1996.

Bruno Blanchet. Escape analysis for object oriented
languages. application to Java. In Proceedings of the
Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 20-34,
1999.

Ramkrishna Chatterjee, Barbara G. Ryder, and
William A. Landi. Relevant context inference. In Proc.
26th ACM SIGPLAN-SIGACT on Principles of
programming languages, ACM SIGPLAN Notices,
pages 133-146, New York, NY, USA, 1999. ACM
Press.

Jong-Deok Choi, Manish Gupta, Mauricio Serrano,
Vugranam C. Sreedhar, and Sam Midkiff. Escape
analysis for Java. ACM SIGPLAN Notices,
34(10):1-19, October 1999.

Manuvir Das. Unification-baseb pointer analysis with
directional assignments. In Proc. SIGPLAN
Conference on Programmming Design and
Implementation (PLDI), pages 35-46, Vancouver,
Canada, June 2000.

Manuvir Das and Bjarne Steensgaard, November
2000. Personal communication.

Maryam Emami, Rakesh Ghiya, and Laurie J.
Hendren. Context-sensitive interprocedural points-to
analysis in the presence of function pointers. In PLDI,
pages 242-256. ACM, ACM, June 1994.

Manuel Fahndrich, Jeffrey Foster, Zhendong Su, and
Alexander Aiken. Partial online cycle elimination in
inclusion constraint graphs. In Proc. SIGPLAN’98
Conference on Programming Language Design and
Implementation, pages 85-96, Montreal, Canada, June
1998. ACM SIGPLAN Notices 33(6).

Jeffrey S. Foster, Manuel Fahndrich, and Alexander
Aiken. Flow-insensitive points-to analysis with term
and set constraints. Technical Report CSD-97-964,
University of California, Berkeley, August 5, 1997.

Rebecca Hasti and Susan Horwitz. Using static single
assignment form to improve flow-insensitive pointer
analysis. In Proceedings of the ACM SIGPLAN’98
Conference on Programming Language Design and
Implementation (PLDI), pages 97-105, Montreal,
Canada, 17-19 June 1998.

[13]

[14

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]

[25]

Michael Hind, Michael Burke, Paul Carini, and
Jong-Deok Choi. Interprocedural pointer alias
analysis. ACM Transactions on Programming
Languages and Systems, 21(4):848-894, July 1999.

Michael Hind and Anthony Pioli. Which pointer
analysis should I use? In Proc. International
Symposium on Software Testing and Analysis, pages
113-123, Portland, OR, 2000.

William Landi and Barbara G. Ryder. A safe
approximation algorithm for interprocedural pointer
aliasing. In ACM SIGPLAN Conference on
Programming Language Design and Implementation,
June 1992.

Donglin Liang and Mary Jean Harrold. Efficient
points-to analysis for whole-program analysis. In Proc.
ESEC/FSE, pages 199-215, N. Y., September 6-10
1999. ACM Press.

Atanas Rountev and Satish Chandra. Off-line variable
substitution for scaling points-to analysis. In
Proceedings of the 2000 ACM SIGPLAN Conference
on Programmming Design and Implementation
(PLDI), pages 47-56, Vancouver, Canada, June 2000.

Atanas Rountev, Ana Milanova, and Barbara G.
Ryder. Points-to analysis for java using annotated
inclusion constraints. Technical Report DCS-TR-417,
Department of Computer Science, Rutgers University,
July 2000.

Marc Shapiro and Susan Horwitz. Fast and accurate
flow-insensitive points-to analysis. In Proc. 2/th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 1-14, New York, NY,
USA, 1997. ACM Press.

Gregor Snelting and Frank Tip. Understanding class
hierarchies using concept analysis. ACM Transactions
on Programming Languages and Systems. to appear.

Gregor Snelting and Frank Tip. Reengineering class
hierarchies using concept analysis. In Proceedings of
the ACM SIGSOFT Sizth International Symposium
on the Foundations of Software Engineering: FSE-6,
pages 99-110. ACM Press, 1998.

Bjarne Steensgaard. Points-to analysis in almost linear
time. In Proceedings of the Twenty-Third ACM
Symposium on Principles of Programming Languages,
pages 32-41, St. Petersburg, FL, January 1996.

M. Streckenbach. Points-to-Analyse fiir Java. Number
MIP-0011 in Technical Report Series. Fakultat fiir
Mathematik und Informatik, Universitdt Passau, 2000.

Zhendong Su, Manuel Fahndrich, and Alexander
Aiken. Projection merging: Reducing redundancies in
inclusion constraint graphs. In Conference Record of
POPL’00: The 27th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
pages 81-95, Boston, Massachusetts, January 19-21,
2000.

John Whaley and Martin Rinard. Compositional
pointer and escape analysis for Java programs. ACM
SIGPLAN Notices, 34(10):187-206, October 1999.

