
Using Pointcut Delta Analysis to Support Evolution of Aspect-Oriented Software

Maximilian Stoerzer and Juergen Graf
University of Passau

Passau, Germany
{stoerzer, grafj}@fmi.uni-passau.de

Abstract

Aspect oriented programming has been proposed as a
way to improve modularity of software systems by allowing
encapsulation of cross-cutting concerns. To do so, aspects
specifywherenew functionality should apply usingpoint-
cuts.

Unfortunately expressions written using todays main-
stream pointcut languages arefragile, as non-local changes
may easily change pointcut semantics. This is a major ob-
stacle for evolution of aspect oriented software. In this pa-
per we introduce a pointcut delta analysis to lighten these
problems.

1 Motivation

Aspect-oriented programming (AOP) as first introduced
in [7] is a programming technique extending traditional pro-
gramming techniques to improve software modularity. Its
basic idea is to encapsulate so calledcross-cutting concerns
not properly modularizable using traditional programming
techniques in a new kind of module calledaspect.

Aspects provide two constructs to specify new behavior
and where it should apply:adviceandpointcuts. Advice is
a method-like construct defining new functionality which is
bound to a pointcut identifying a set of well-defined points
during the execution of a program calledjoinpoints. Thus
pointcuts specifywhereadvice should be executed. Theas-
pect weaverfinally uses pointcut information to combine
advice with the base system producing an executable sys-
tem.

Unfortunately todays main stream pointcut languages
arebased on lexical propertiesof the code which change
during system evolution. As a consequence, theresult of
an unchanged pointcut expressioncan changedue to modi-
fications of the base system, thus also changing system se-
mantics. We consider this a crucial problem for evolution
of aspect-oriented systems, as these semantical changes are
silent, i.e. the programmer is not alerted if such changes

happen. We use the termfragile pointcut problemto refer
to this problem.

For the remaining of this paper, we will use AspectJ
[6] as an example, although the observations made are also
valid for other currently available AspectJ-like languages.

The rest of this paper is organized as follows. Section 2
examines thefragile pointcut problem, section 3 introduces
our delta analysis. Section 4 describes our implementation,
the toolPCDiff , and section 5 demonstrates its usefulness
with a case study. We finally discuss related work, outline
future work and conclude in section 6.

2 The Fragile Pointcut Problem

The first generation of pointcut designators explicitly se-
lected joinpoints bynamingelements of their corresponding
context in the base program. These explicit references ob-
viously introduce ahigh couplingbetween the base system
and the aspect, making aspect reuse harder.

As a reaction to reduce coupling, AspectJ introduced
wildcards allowing to exploit naming conventions. How-
ever, this results in a new problem. Pointcuts using this
mechanism depend on thesenaming conventions. As such
conventions are not checkable by a compiler, they arenever
guaranteed. As a result, programmers have to be very care-
ful with their pointcuts to avoidspurious or missed matches.

For small programs a pointcut mismatch can easily be
seen. However, aspects have been proposed for large or dis-
tributed system scenarios, where it is much harder to find
spurious or missed matches. In general, the aspect program-
mer needsglobal system knowledgeto assure that his point-
cut works as expected. Additionally, humans tend not to
look for unexpectedthings, and mismatches in general are
unexpected.

While the problems described above have to be handled
when initially developing a pointcut, wildcards and explicit
naming are especially problematic when considering sys-
tem evolution as such pointcuts in general arefragile. A
programmer might have correctly specified a pointcut. The
corresponding aspect works as intended, all tests are suc-

1



cessful. Afterward the code evolves, e.g. by renaming some
methods, changing some method signatures and adding new
methods.

If the programmer misses to update calls to changed
methods, the compiler will issue an compiler error. How-
ever, if we consider a pointcut referencing a method by
its former name or by its former signature the set of join-
points picked out by the–unchanged!–pointcut definition is
silently altered. In general there are several (trivial) non-
local base code changes possibly modifying pointcut se-
mantics in terms of actually selected joinpoints:

• Rename: Renaming classes, methods or fields influ-
ences semantics ofcall , execution , get/set
and other pointcuts. Wildcards can only provide lim-
ited protection against these effects.

• Move method/class:Pointcuts can pick out joinpoints
by their lexical position, usingwithin or within-
code . Moving classes to another packages or methods
to another class obviously changes matching semantics
for such pointcuts.

• Add/delete method/field/class:Pointcuts are also af-
fected by adding or removing program elements. New
elements can (and sometimes should) be matched by
existing pointcuts, but in general pointcuts cannot an-
ticipate all possible future additions. Removal of pro-
gram elements naturally results in ‘lost’ joinpoints.

• Signature Changes: call - and execution -
pointcut designators allow to pick joinpoints based on
method signatures including method visibility. Thus
signature-based pointcut definitions–although propa-
gated as the more robust mechanism–are nonetheless
fragile1.

Code modifications in general require to also update
code referencing modified code2. (Automated) refactoring
[2], as it is available in IBM’s Eclipse IDE for Java or the
Smalltalk Refactoring Browser, might be a way to avoid
breaking pointcuts in some cases, but for AspectJ refactor-
ings are currently not available and might be problematic in
general when considering dynamic joinpoints like theif -
or cflow -constructs. More important, automated refac-
torings require that the user explicitly requests a refactor-
ing, thus refactoring does not address system evolution in
general. As an example just consider adding new methods,
classes or packages due to new functionality.

Aspects influencing a given base class arenot directly
visible in the code. As a result, a programmer modifying

1This seems less relevant as public interfaces should be stable. How-
ever, aspects are not restricted to public interfaces.

2Renaming a method for example requires modifying all calls to this
method to match the new name.

e.g. a class of the base system is not necessarily aware of
all the aspects possibly matching joinpoints in this class.
Tool support lightens this problem [1], but in our opinion
this does not resolve the problems forevolution of aspects,
classes and their dependencies, as here a tool has to keep
track of differences between subsequent versions.

So currently system evolution as well as “refactorings”
are done manually, so suffering from fragile pointcuts.
Compared to traditional programming this problem is more
serious as pointcut semantics in generalchange silently.
There is only limited support to alert programmers if code
modifications change the set of joinpoints matched by their
pointcuts.

The issues demonstrated here are crucial for evolution of
programs written using current AspectJ-like pointcut lan-
guages and thus for the long-term usability of languages like
AspectJ. We refer to these problems as thefragile pointcut
problemin [14].

3 Pointcut delta analysis

Software written today using available pointcut lan-
guages potentially will be maintained for years. So a way to
deal with the fragile pointcut problemfor current languages
is needed.

A common technique to reveal unintended semantical
changes is testing. Semantical differences introduced into
a system are (hopefully) revealed by rerunning a regression
test suite through failing test. Testing however only shows
the presence of bugs, but can never prove their absence.
Additionally test failures do not explain the failure reason.
Thus for a failing test, test results (e.g. an exception) have to
be further analyzed to actually track down the bug. Finding
the failure inducing code modifications is hard if changed
pointcut semantics due to non-local edits are responsible.

In the following we will use the program shown in figure
1 as a running example. Figure (a) shows the original pro-
gram version, figure (b) an edited version. We will compare
those versions using delta analysis.

The difference between these two versions includes
moving a method (update from D to C), modification of
pointcutsetField and addition of a new piece of advice.
Although this program is tiny, the resulting changes in ad-
vice matching behavior are not obvious.

3.1 Calculating PC-Deltas

Once a problem is known, it is often half solved. This is
especially valid for pointcuts unexpectedly changing their
semantics due to e.g. base code edits. Consider the fol-
lowing scenario: we have two versions of a program: an
original versionP and an edited program versionP ′. To
detect semantical differences in program behavior due to

2



aspect A {

pointcut setField(): set(int *);

before(): setField() {
print("Changing field value");

} /*[161-0-1108388203184-8132904]*/

}
class C {

int x;
static void main(String[] args) {

D d = new D();
d.setX(5);
d.update();

}
void setX(int x) { this.x = x; }

}
class D extends C {

void setX(int x) { this.x = x; }
void update() { x = 2 * x; }

}

aspect A {
pointcut dynamic(): within(C) && if(4 < 5);
pointcut setField():

set(int *) && dynamic();
before(): setField() {

print("Changing field value");
} /*[161-0-1108388203184-8132904]*/
after(): call(* update()) && if(4 < 5) {

print("Field update done");
} /*[276-1-1108388538145-4535112]*/

}
class C {

int x;
static void main(String[] args) {

D d = new D();
d.setX(5);
d.update();

}
void setX(int x) { this.x = x; }
void update() { x = 2 * x; }

}
class D extends C {

void setX(int x) { this.x = x; }
/* deleted */

}
(a) (b)

Figure 1. (a) Original version of example program. (b) Edited version of example program (underlining
is used to show added/changed code fragments).

changed pointcut semantics, we propose an analysis which
detects changes in matching behavior (calledpointcut delta)
and also–partly–traces these differences back to their corre-
sponding code modification(s).

To derive the pointcut delta the following analysis is
used: Informally, we calculate the set of matched joinpoints
for both versions of the program and compare the result-
ing sets, producing delta information for pointcut match-
ing. This approach is possible for any AspectJ-like lan-
guage where the set of matched pointcuts is (at least partly)
statically computable. For cases where joinpoint matching
cannot be decided statically, the matching is conservatively
approximated and the resulting match marked accordingly.

So, for a given aspect-oriented programP , function

match: P → JP×ADV×Q

determines the set of all aspect-joinpoint relations, where

• JP is the set of all joinpoints inP ,

• ADV is the set of all advice inP and

• Q is the quality of the matching relation, eitherdy-
namicor static.

As this information is also used by the weaver when com-
posing aspects and base-system, it is in general available.

To calculate the delta frommatch(P ) andmatch(P ′) it is
necessary to identifycorresponding joinpoints and advice
in both versionsP andP ′ of the program. More formally
speaking we needequality relationsdefined for joinpoints
(or better on joinpoint representations) and advice of both
program versions. However, while this is trivial for meth-
ods both joinpoints and advice are unnamed constructs (at
least for AspectJ) and thus matching is problematic. What
is needed is an identifying representation for joinpoints and
advice which is stable across different versions, comparable
to a method signature.

The lexical position of a joinpoint/advice in the source
code (“source handle”) isno adequate representation, as
even adding some blank lines changes the joinpoint/advice
source position and thus would make identification of cor-
responding items in both program versions impossible.

For advice this problem can be solved easily by automat-
ically naming a new piece of advice once it is introduced in
the system. To do so, our tool inserts an identifying com-
ment at the end of each piece of advice when encountered
first (as also visible in figure 1). While naming as a standard
solution reliably solves this issue for advice, joinpoints are

3



more complicated as they are no first-class objects in a pro-
gram.

However, similar to method signatures it is possible to
identify joinpoints usingjoinpoint signaturescomposed of
signatures of relevant program elements at the joinpoint.
For example acall -joinpoint can be identified by the sig-
nature of caller method, called method and a counter; sim-
ilar a field set/get is identified by the accessed field and the
e.g. method-signature the access is located in.

Note that this joinpoint identification scheme is only a
heuristic, as in general a single method can contain multi-
ple calls to the same callee all forming different joinpoints.
In this case joinpoint signatures are not able to clearly dis-
tinguish these joinpoints (apart from the counter). But as we
keep track of thenumberof matched same signature join-
points (using the counter) and thejoinpoint modelof As-
pectJ itself is not able to directly distinguish such joinpoints
either in practice this identification schema works very well.

With these two notions of equality for advice and
joinpoints across different program versions it is now
straight forward to calculate the delta set formatch(P ) and
match(P ′).

3.2 Dynamic Pointcut Designators

Up to now we did not explicitly considerdynamic point-
cut designators. For these designators, the set of selected
joinpoints can not be completely evaluated at compile time.
Examples are the widely availableif - or cflow pointcut
designators. Statically one has to conservatively approx-
imate these constructs by assumingtrue for each such
predicate as evaluation requires runtime values.

For the delta analysis this results in the comparison ofsu-
persetsrendering the derived information less reliable. To
deal with this problem we refined our analysis to exploit the
associated matching quality information (static/dynamic)
and mark up resulting delta entries correspondingly. By
adding this knowledge six different cases can be distin-
guished:

• New matches:A new statically determined advice as-
sociation appeared inP ′:

newstatic = {(jp,adv,+static) | ∃(jp,adv,static)
∈match(P ′)∧ 6 ∃(jp,adv,•3) ∈match(P )}

• New potential matches:A new advice association has
to be conservatively assumed inP ′, although evalua-
tion is not possible at compile time:

newdynamic= {(jp,adv,+dynamic) | ∃(jp,adv,dynamic)
∈match(P ′)∧ 6 ∃(jp,adv,•) ∈match(P )}

3In the following, ‘•’ will indicate any possible value for a tuple vari-
able (wildcard).

• Dynamic→ Static: The set of associated advice did
not change, but in contrast toP the responsible point-
cut expression can be statically evaluated inP ′:

changed→s = {(jp,adv,d→ s) | ∃(jp,adv,dynamic)
∈match(P )∧∃(jp,adv,static) ∈match(P ′)}

• Lost matches:A statically determined advice associa-
tion is no longer present inP ′:

loststatic = {(jp,adv,−static) | ∃(jp,adv,static)
∈match(P )∧ 6 ∃(jp,adv,•) ∈match(P ′)}

• Lost Potential matches:A conservatively assumed ad-
vice association is no longer present inP ′:

lostdynamic= {(jp,adv,−dynamic) | ∃(jp,adv,dynamic)
∈match(P )∧ 6 ∃(jp,adv,•) ∈match(P ′)}

• Static→ Dynamic: The set of associated advice did
not change, but in contrast toP pointcut evaluation
needs conservative approximations inP ′:

changes→d = {(jp,adv,s→ d) | ∃(jp,adv,static)
∈match(P )∧∃(jp,adv,dynamic) ∈match(P ′)}

We thus finally define the pointcut delta as the union of the
classified delta sets, thereby also capturing dynamic point-
cut designators:

pcDelta(P ,P ′) =
⋃
{newstatic,newdynamic,changed→s,

loststatic, lostdynamic,changes→d}.

Note that the above assumes thatjp andadvalone iden-
tify a tuple(jp,adv,•). This of course depends on the cho-
sen joinpoint representation. As joinpoint signatures are ex-
tended with a counter this requirement is fulfilled for the
joinpoint signatures introduced here.

Using these six categories, the derived matching delta is
enriched withconfidence information. Static information
can be trusted, dynamic information still requires program-
mer investigation, but offers hints where to start.

Clearly a goal must be to reduce uncertain information
as much as possible. Program analysis can be used to eval-
uate some dynamic expressions at compile time (i.e. by us-
ing partial evaluation, abstract interpretation or related tech-
niques) so reducing the amount of spurious matches by fur-
ther analyzing dynamic joinpoints, but an exact calculation
of matching information in general is not computable. As
this is also a relevant problem for performance of AOP soft-
ware, this is a current research topic[13, 9]. We consider
this out of the scope of this paper.

4



3.3 Explaining Deltas

The benefit of calculating the delta set is that it tends to
besmallcompared to the system’s overall number of advice.
If pcDelta(P ,P ′) = /0, the programmer can assume that an
edit did not affect any applying aspect. IfpcDelta(P ,P ′)
contains differences, these differences can easily be traced
back to the affected aspects, so the aspect programmer can
be notified of this change. As a result, the delta alone is
already valuable information as unexpected matches can be
seen more easily.

The inverse problem is to findexpected but not experi-
enced matches. Unfortunately this is considerable harder to
do automatically as here an analysis would need informa-
tion about the programmers expectations. These expecta-
tions would have to be checked against the actual matching
behavior. However, although this can’t be done automat-
ically, for the programmer it is easier to search through a
small delta than through the whole program, thus our anal-
ysis also offers support in this case.

While the delta set alone is valuable, we refined our anal-
ysis to identifycauses for these deltas, to allow a program-
mer to immediately seewhy a specific delta entry exists.
Potential changes resulting in pointcut deltas are threefold:

1. Certainly, if apointcut itselfhas beenmodified, we ex-
pect differences in its matching behavior4.

2. Aspect evolution can add additional or remove some
pieces of advice. This also includes addition or re-
moval of a complete aspect.

3. Base Code Editsare most problematic and most likely
the reason forunexpectedchanges in the matching be-
havior, as outlined in the motivation.

To explain causes for a delta, we enriched each delta en-
try (jp,adv,•) with additional information giving the rea-
sonswhy this entry exists by associating pointcut, advice
and joinpoint changes.

3.3.1 Modified Pointcuts

Finding modified pointcut definitions for a specific delta is
relatively easy as joinpoints are associated with adapting ad-
vice. Analyzing the source code of advice and referenced
pointcuts allows to access the referenced pointcut defini-
tions5. Pointcuts can also reference other pointcuts. We
express these dependencies using two relations

reference(P )⊂ PCP ×PCP
4This also includes modification of anonymous pointcuts.
5For AspectJ, advice and pointcuts can again reference multiple other

pointcuts (results are combined using logical operators not ’!’, or ’‖’ and
and ’&&’).

and
bind(P )⊂ ADVP ×PCP .

wherePCP is the set of pointcuts andADVP is the set of ad-
vice defined inP . These two relations can be computed by
a simple (syntactical) analysis. It is thus possible to com-
pute all modified and referenced pointcut definitions for a
given piece of advice in the delta set for two given program
versions.

The union ofreference(P ) andbind(P ) is represented as
a directed acyclic graph reflecting the syntactic dependen-
cies of advice and pointcut definitions. For eachadvwith a
corresponding delta element(jp,adv,•) and each program
versionP andP ′ we calculate the set of all pointcut defi-
nitions the advice depends on by by running a breadth first
search starting at the graph node corresponding toadv. The
resulting trees are merged6. Nodes representing pointcuts
where lexical differences exist are annotated as “changed”,
additional or removed nodes are annotated respectively. By
presenting this merged and annotated tree, the user gets a
structured overview of pointcut edits.

3.3.2 New or Removed Advice

Most obvious, additional or lost matches can result from
added or removed advice. Note that this also includes
adding or removing a whole aspect. We assume existence
of a functionexists: ADV× P → {true, f alse} to derive
whether or not adviceadvexists inP (or P ′ respectively).
For each delta entry(jp,adv,•) we also add information
whetheradvcan be found in both versions or not.

3.3.3 Base Code Edits

Finally lost or additional matches can also be due to modifi-
cations of the base code, as such edits can result in addition
or removal of joinpoints to match.

• Additionally matchednew joinpointscould be un-
expected matches due to program extensions or re-
name/move operations and should be further exam-
ined.

• If a joinpointhas beenremovedfrom the program, this
might be a lost match due to rename/move or deleted
statements. This should be examined (also in the con-
text of additional matches) to re-add the lost match if
appropriate.

• If the joinpoint is present in both versions, the rea-
son for a changed matching behavior must either be
a pointcut modification or additional/removed advice
(as captured by the first two cases).

6We can correlate theadv-nodes in both trees; pointcuts are named
constructs.

5



To capture information about existing joinpoints, we de-
fine a functionexists: JP×P →{true, f alse} reflecting this
information. Compared to the above, implementation of
this function is considerably more complex as therefore a
detailed comparison of both program versions on the state-
ment level is necessary.

Our current implementation ofexists, as a heuristic,
checks if program elements containing or referenced by
a joinpoint (i.e. recorded in the joinpoint signature) ex-
ist in both versions. For examplecall - or execution -
joinpoints require the called/executed method to exist; field
access joinpoints are similar.

Thus the granularity ofexistscurrently is only–roughly
speaking–on the method level. More precise results are
however possible if we analyze the source code ofP and
P ′ on the statement level. Future work will first address
this topic. Although e.g. deletion of a single call is not cap-
tured by this method, this approach already captures adding,
moving, renaming or deleting program elements. Thus out
tool can considerably help to lighten evolution of aspect-
oriented programs.

Note that source code changes potentially change the
value of dynamic predicates (compare e.g. AspectJ’s point-
cut designatorsif , this or target ) and thus the actual
matching behavior for advice. However, if dynamic predi-
cates are approximated, such effects are not visible and con-
sequently our analysis oblivious to such changes–a potential
match is present for both program versions. But if such ef-
fects are captued by the calculation ofmatchour analysis
automatically benefits from them.

To summarize, a delta entry(jp,adv,•) is associated with
a structured delta of pointcut definitions by analyzingadv
and its referenced pointcuts, with information about new or
deleted advice, and finally–although limited–with informa-
tion about new or removed joinpoints. Thus the program-
mer gets detailed informationif and whyjoinpoint matching
behavior has changed. This information of course consid-
erably helps when trying to find the reasons for failures due
to changed pointcut semantics.

4 The PCDiff Plugin

The pointcut delta analysis outlined in section 3 has been
implemented as an Eclipse plugin extending the AspectJ
Development Tools (ajdt). Our implementation uses avail-
able information from the ajdt-plugin [1] and the AspectJ
compiler (theabstract structure model (asm)) and does not
calculate any matching information itself. An advantage
of this strategy is that our plugin will automatically benefit
from improvements in the resolution of dynamic joinpoints
added to the AspectJ compiler.

The asm works well for static pointcuts, but for point-
cuts including dynamic joinpoints (if , cflow , ...), the

model (conservatively) approximates possible matches (i.e.
if(..) is approximated astrue ). So the model reports
spurious matches. However, the model also reports if a
pointcut includes dynamic designators allowing our tool to
mark up corresponding delta information.

4.1 Usage Scenario

We envision our tool to be used in quality assurance dur-
ing the development process. We assume the following set-
ting: we have a base programmer, an aspect programmer
and a quality assurance agent (QA agent), who could be the
person who is also responsible for running tests, etc.

Finding bugs due to conflicting edits of the base system
is hard. It is even harder if the aspect and the base developer
are different people. In this case this also raises another in-
teresting (management) question: If failures due to changed
pointcut semantics occur, who is responsible? The aspect
developer or the base developer? Both answers are not sat-
isfactory. The aspect programmer developed the aspect for
a given version of the system using the program elements
at hand, and cannot anticipate all future edits of the base
system.

The base programmer in general should not be respon-
sible to modify an affected aspect as an aspect might affect
many other modules as well. So the base class programmer
definitely is no expert to adapt an aspect potentially influ-
enced by his code changes.

Although assigning responsibilities for fragile pointcuts
is problematic, our tool can help to resolve this issue. The
QA agent in general has the knowledge who is responsi-
ble for which components of the system, as he also assigns
tasks to resolve traditional quality issues. When a new ver-
sion of a software system is built, the QA agent runs our
tool on the last and the new system version. He examines
the results and reports potentially problematic deltas to the
responsible aspectandbase programmer.

So the QA agent is responsible to reveal editing conflicts,
but aspect and base programmertogetherare responsible
for solving the issue. Neither aspect nor base programmer
alone have sufficient knowledge to detect or even deal with
the problem, as this would require the aspect programmer
to know the base code or the base programmer to be aware
of all aspects. Both is not realistic for large team-developed
systems. Howevertogetherthey are able to quickly repair
broken aspects.

A second advantage of this approach is that it would
nicely fit into the development process as widely used in
industry. It is well-known that the programmer in general is
a bad tester, thus a separate QA group in general is consid-
ered a good thing.

6



Figure 2. Diff Visualizershowing Advice Hierarchyand Change Hierarchyview

4.2 Using PCDiff

Because our implementation relies on unique names as-
signed to all advice declarations, the initial project version
has to be prepared accordingly. Selecting a single AspectJ
project we are able to trigger the “Create unique names for
all advice” action in thePointcut Diff sub-menu, which will
add the unique name tag at the end of each unnamed advice
declaration. In future program versions derived from this
prepared version new advice is automatically captured and
named.

Assuming two fitting versions in the Eclipse workspace
the PCDiff plugin is ready to compare them. Therefore we
select two build-configuration files (.ajproperties) - one for
each version of the project and select “Compare projects in
Diff Visualizer” in the Pointcut Diff sub-menu. The project
containing the resource selected at first is considered to be
the older version during the calculation of the differences.

When the analysis is finished the results are displayed in
the Diff Visualizer view (figure 2). This view subdivides
into three parts,PointcutDiff Statistics, Advice Hierarchy
andChange Hierarchy. TheStatisticstab shows a short tex-
tual summary about the differences found between both ver-
sions, including the number of additional joinpoint matches
or the number of advice involved in a change and similar
values.

While the Advice Hierarchyvisualizes the differences
sorted by the advice they are associated with, theChange
Hierarchy splits the result by the kind of the change (sec-
tion 3.2).

In addition to theDiff Visualizer view all changes are
also illustrated by markers in the source code utilizing the
Eclipse marker mechanism.

4.3 A first Example

We will now demonstrate the PCDiff plugin with our ex-
ample from figure 1. At first we select versiona followed
by versionb of our example project in the Eclipse resource
view and trigger the “Compare projects in Diff Visualiser”
option. As expected some changes in the advice-joinpoint
matching have been detected and are summarized in the
Statisticspane. Switching to theAdvice Hierarchy(left im-
age on figure 2) there are two pieces of advice involved in
the changes as shown in the tree view. A double-click on
each element in this view opens a text editor showing the
corresponding element.

Denoted by thegreen deltain front of the advice named
“276-1-1108388538145-4535112” we see that this advice
is new and has been added in versionb. Removed advice is
marked by ared delta. All new or lost matches belonging
to those pieces of advice are obviously due to the creation
or removal of the appropriate advice.

In contrast advice “161-0-1108388203184-8132904”
has not been added or removed and thus the changes in the
advice-joinpoint matches have to be due toModified Point-
cuts(section 3.3.1) orBase Code Edits(section 3.3.3). Tak-
ing a closer look at the elements belonging to this advice
we notice modifications in the matching of joinpoints, sym-
bolized by the elements in theChanged matchessubtree.
For some of them our tool was able to identify a base-code
change as a possible reason, shown in a subtree below the
affected joinpoint match. But there have also been changes
in the pointcut designators of our advice that could have
caused the difference. They are outlined in theChanged
pointcutsubtree. Currently, added or removed references to
named pointcut constructs as well as textual changes in the
designator are detected and visualized.

The Change Hierarchyview (figure 2, right side) illus-

7



trates the changes of joinpoint matches sorted by their kind.
So this view provides an overview which change types have
been detected. This also allows the user to easily get an
impression which matches e.g. changed from a sure to a
possible match.

Although this example is simple, it gives an impression
how our tool can help to find program flaws introduced due
to accidentally matched or lost joinpoints. Note that the tool
captures differences due to modified pointcut definitions as
well as differences due to changes in the base code.

5 Case Studies

As unfortunately only very limited AspectJ code is pub-
licly available, we were only able to evaluate our tool with
two case studies.

5.1 AspectJ Examples

Naturally the first subjects of our evaluation are the As-
pectJ example projects, more precisely Telecom and Space-
war. These projects are small and easy to understand, so
the way howPCDiff finds and displays its results can be
manually verified. Unfortunately the CVS repository for
the AspectJ examples does not contain different versions
of the examples, thus our analysis can only be run against
different build configurations. As expected we only found
changes due to the introduction or removal of advice.

The result of the comparison between the different build
configurations is displayed in figure 3 for thetelecomexam-
ple and figure 4 for thespacewarexample.

The table is divided into 5 columns, starting with the
build configurations that have been compared, the number
of aspects and pieces of advice involved in any change, a
summary of all changed matches and finally the reason for
those changes.

Looking at theAspectscolumn it is subdivided into 3
columns,+, ∆ and−. These symbols have a very intuitively
meaning: + denotes the number of added aspects,∆ the
number of aspects involved in any change and− the number
of removed aspects. Below the summary all relevant aspects
are listed separately together with the appropriate symbol in
front of their name. All further statistics in these lines refer
to the named aspect.

The Advicecolumn is also split into 3 columns,+, ∆
and− with a similar meaning.+ is the number of newly
introduced advice,∆ the number of advice involved in any
joinpoint matching changes and− the number of deleted
advice.

Possibly of most interest is the fourth column,Changed
Matches, containing the number of new sure matches (+S),
new potential matches (+D), possible matches changed to
sure ones (D →S), sure matches changed to possible ones

(S→D), lost possible matches (−D) and lost sure matches
(−S).

Finally the reason for all found changes is shown in the
fifth and last column. As we were only comparing differ-
ent build configurations naturally this is the reason for all
differences. This column will be of greater interest when
analyzing a more sophisticated project in the following sec-
tion.

5.2 AspectJ development tools

As second subject for our analysis we finally found an
example in the source of the AspectJ development tools
Eclipse plugin itself. Since November 2004 aspects have
been used inorg.eclipse.ajdt.ui. Comparing the changes
of the advice joinpoint matching between versions of this
project separated by approximately 15 days, we analyzed
the evolution of the matching behavior in this code.

An interesting finding of our analysis is that pointcut def-
initions rarely change. Most changes are due to the removal
of old or introduction of new advice. Modifications in the
base code affect pointcuts by creating new statements that
match an existing pointcut bound to advice. Dynamic point-
cut definitions have been used very seldom in ajdt and join-
point matches that changed from a dynamic to a static na-
ture (or the other way round) could not be observed.

Most interesting for the purpose to evaluate the benefit
of our tool is that there are indeed several cases where the
matching behavior changed due to base code edits, as can
be seen in table 5 (column reason).

Although we just reported our experience gained from
two examples and these single data points do not yet allow
to draw conclusions, the results are promising. The two case
studies we made give a good impression of the benefits of
our tool, especially as the data shows that modified pointcut
semantics or more precisely lost or additional matches due
to base code edits are not a theoretical problem.

6 Related Work & Conclusions

Compared to the prior work reported in [14] the delta
analysis proposed here has considerably been extended as
we improved the delta analysis, added the handling of dy-
namic pointcut designators and the explanation of the re-
sulting deltas. We also examined “real” AspectJ code in our
case studies.

The AspectJ development toolsajdt [1] visualize rela-
tions between aspects and base, but the current version does
not contain any support for pointcut deltas or delta analysis
in general. Whileajdt statically analyzes a single pro-
gram version to provide valuable feedback for the user, we
are using two (or more) versions to analyzetheir differences
to support system evolution.

8



Compared
Aspects Advice Changed Matches

Reason+ ∆ − + ∆ − +S +D D →S S→D −D −S

basic→ billing
2 0 0 4 0 0 5 0 0 0 0 0

change of build configuration+ Billing 2 0 0 3 0 0 0 0 0
+ Timing 2 0 0 2 0 0 0 0 0

basic→ timing
2 0 0 4 0 0 4 0 0 0 0 0

change of build configuration+ TimerLog 2 0 0 2 0 0 0 0 0
+ Timing 2 0 0 2 0 0 0 0 0

basic→ build

3 0 0 6 0 0 7 0 0 0 0 0

change of build configuration
+ Billing 2 0 0 3 0 0 0 0 0
+ Timing 2 0 0 2 0 0 0 0 0
+ TimerLog 2 0 0 2 0 0 0 0 0

billing → timing
1 0 1 2 0 2 2 0 0 0 0 3

change of build configuration− Billing 0 0 2 0 0 0 0 0 3
+ TimerLog 2 0 0 2 0 0 0 0 0

Figure 3. Statistics for the telecomexample project using different build configurations

Compared
Aspects Advice Changed Matches

Reason+ ∆ − + ∆ − +S +D D →S S→D −D −S

debug→ build
0 0 2 0 0 14 0 0 0 0 2 302

change of build configuration− Display2 0 0 1 0 0 0 0 0 4
− Debug 0 0 13 0 0 0 0 2 298

Figure 4. Statistics for the spacewarexample project using different build configurations

Compared
Aspects Advice Changed Matches

Reason+ ∆ − + ∆ − +S +D D →S S→D −D −S

01.11.2004
15.11.2004

2 0 0 3 0 0 355 0 0 0 0 0
new aspects introduced+ PreferencePageBuilder 1 0 0 4 0 0 0 0 0

+ FDDC 2 0 0 351 0 0 0 0 0

15.11.2004
01.12.2004

1 1 1 11 0 3 31 8 0 0 0 355
new/removed aspect,
advice removed

+ MarkerUpdating 2 0 0 2 0 0 0 0 0
− FDDC 0 0 2 0 0 0 0 0 351
∆ PreferencePageBuilder 9 0 1 29 8 0 0 0 4

01.12.2004
15.12.2004

0 2 0 0 1 1 1 0 0 0 0 8
advice removed,
change in basecode

∆ MarkerUpdating 0 0 1 0 0 0 0 0 1
∆ PreferencePageBuilder 0 1 0 1 0 0 0 0 7

15.12.2004
15.02.2005

0 0 0 0 0 0 0 0 0 0 0 0 no change

15.02.2005
01.03.2005

0 1 1 0 2 1 2 0 0 0 0 1
removed aspect, change
in basecode

− MarkerUpdating 0 0 1 0 0 0 0 0 1
∆ PreferencePageBuilder 0 2 0 2 0 0 0 0 0

01.03.2005
15.03.2005

0 1 0 0 2 0 0 0 0 0 0 2
change in basecode∆ PreferencePageBuilder 0 2 0 0 0 0 0 0 2

Figure 5. PointcutDiff has been used to calculate the changed matches in the org.eclipse.ajdt.uiproject
of the AspectJ development tools between 01.11.2004 and 15.03.2005 in steps sized ≈15 days.

9



Our approach relies on a good approximation of dynamic
pointcut designators. An approach to better approximate
thecflow pointcut is presented in [13]. Partial evaluation
[9] may also be useful to better approximate dynamic join-
points.

Besides the work mentioned above we see our work re-
lated to many other efforts to improve program understand-
ing, especially the work about Delta Debugging, Change
Impact Analysis and the development of new pointcut lan-
guages.

6.1 Change Impact Analysis and Delta Debugging

The goal of Change Impact Analysis is to provide tech-
niques to allow programmers to analyze the effects of
changes they made. Examples are the work presented in
[10, 4] or [12, 11].

In the latter work the edit between two program versions
is decomposed in a set of Atomic Changes. These changes
are then associated with nodes and edges of call graphs for
tests drivers, allowing to calculate which tests are affected
and which changes affect these tests. However, this work
is in the context of classical object-oriented programming
(Java) and up to now has not been extended for aspect con-
structs.

The techniques presented here are a first step to bring
Change Impact Analysis to aspect-orientation and thus can
be compliment with traditional Change Impact Analysis es-
pecially to get a more thorough analysis of changes in the
set of joinpoints existing in a program. Future work will
address this topic and try to combine both approaches.

Delta Debugging as introduced in [15] also focuses on
finding failure inducing inputs or edits. However, this ap-
proach does not reveal any syntactical or semantical depen-
dencies of the different program constructs as derived by
our delta analysis. Second, Delta Debugging relies on ex-
ecuting resulting version. This however might not be pos-
sible for software under development. Our approach stati-
cally analyzes both versions and can be easily integrated in
an IDE.

6.2 Improved Pointcut Languages

The improvement of the pointcut definition mechanism
is an important research topic today. Several approaches
have been proposed to attack the fragile pointcut problem
using improved pointcut languages.

To reduce coupling, AspectJ [6] inventedabstract as-
pects. These aspects can contain abstract pointcuts which
are defined by inheriting aspects. Thus all the advice code is
encapsulated in the abstract aspect and can be reused. The
aspect can be applied to a concrete problem by inheriting
from the abstract aspect and defining the pointcuts for the

concrete base system. Unfortunately, although coupling is
reduced, pointcuts in the concrete aspect still are fragile.

[3] proposes a logic pointcut language. In this language,
a program is represented as a set of facts and pointcuts
are defined in a Prolog like language as a query over these
facts. Although this language is Turing-complete its expres-
sions could be evaluated by our tool to acquire the necessary
matching information. However, if a expression cannot be
completely evaluated at compile time we would again have
to conservatively approximate. However, as joinpoints are
picked in a more semantical way pointcuts tend to be less
fragile.

An approach in-between these two extremes proposes
declarative pointcuts, a set ofdescriptive pointcut desig-
natorswhich allows to specify joinpoints by their (seman-
tic) properties [5]. This approach reduces the necessity to
reference names or source locations and thus considerably
lightens the problem with fragile pointcuts. Unfortunately,
although research produced first results [8] these pointcut
designators are currently not widely available.

While we consider the improvement of pointcut lan-
guages important research, these languages will only
lighten the problemin the futurewhen the emerging con-
structs will become part of main stream languages. How-
ever, by then we assume that there is a considerable amount
of code written in e.g. AspectJ where evolution suffers from
the problems outlined above - even if the goal of system
evolution is the renewal of the pointcut definitions with new,
more declarative constructs. Additionally, even if new con-
structs are available the old constructs will be kept for com-
patibility reasons for some time. For this code our approach
is valuable.

6.3 Future Work

Future work will address two topics. Though first re-
sults are promising we plan a thorough evaluation of our
tool to validate the benefits we expect from our tool. This
is mainly hindered by the lack of subjects to analyze. Sec-
ond, we will explore how additional, more detailed informa-
tion about source edits can further improve our results. On
the long term we will incorporate these efforts in a general
impact analysis framework for evolution of aspect-oriented
software, to also capture effects of aspect edits and add sup-
port known from traditional object-oriented impact analy-
sis.

6.4 Conclusions

In this paper we claimed that current mainstream point-
cut languages are not satisfactory, as they suffer from the
fragile pointcut problem. Although improvement of point-
cut languages is a research topic and might well solve this

10



problem one day, we introduced a delta analysis to deal with
this problem for current languages, based on a comparison
of the sets of matched joinpoints for two program versions.
We showed that the calculated delta set together with as-
sociated responsible code constructs can considerably help
to reveal unexpected changes in the matching behavior of
pointcuts by reporting the results of our case studies using
our implementation.

The main contributions of this paper are:

• A detailed analysis of the fragile pointcut problem as
a major problem for evolution of programs written in
currently available aspect-oriented languages.

• The introduction of a pointcut delta analysis allowing
to derive a joinpoint matching delta across program
versions which also handles dynamic pointcut desig-
nators. Furthermore our analysis also explaines which
edits are responsible for the experienced delta.

• This paper furthermore shows that aspect-oriented lan-
guages need to be complemented with tool support.

• Finally we also provide an implementation of our anal-
ysis as an Eclipse plugin extendingajdt and exam-
ined the benefits of our tool in two case studies.

If requested, the Eclipse plugin PCDiff is available from the
authors for evaluation purposes.

To conclude, although we only have few data points to
evaluate our tool, the results are promising and suggest that
our tool might well help to avoid introduction of bugs into
an aspect-oriented system due to accidentally matched or
lost joinpoint deltas during system evolution. To best of our
knowledge, up to now this is the only delta-analysis based
tool for this purpose.

References

[1] A. C. Andy Clement and M. Kersten. Aspect-oriented pro-
gramming with ajdt. InProceedings of AAOS 2003: Anal-
ysis of Aspect-Oriented Software, held in conjunction with
ECOOP 2003, July 2003.

[2] M. Fowler. Refactoring – Improving the Design of Existing
Code. Addison-Wesley, 1999.

[3] K. Gybels. Using a logic language to express cross-cutting
through dynamic joinpoints.

[4] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pen-
nings, S. Sinha, S. A. Spoon, and A. Gujarathi. Regression
test selection for Java software. InProc. of the ACM SIG-
PLAN Conf. on Object Oriented Programming Languages
and Systems (OOPSLA’01), pages 312–326, October 2001.

[5] G. Kiczales. The fun has just begun. Keynote AOSD 2003,
Boston, March 2003.

[6] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ.Lecture Notes
in Computer Science, 2072:327–355, 2001.

[7] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In M. Akşit and S. Matsuoka, editors,Pro-
ceedings European Conference on Object-Oriented Pro-
gramming, volume 1241, pages 220–242. Springer-Verlag,
Berlin, Heidelberg, and New York, 1997.

[8] H. Masuhara and K. Kawauchi. Dataflow pointcut in aspect-
oriented programming. InProgramming Languages and
Systems, First Asian Symposium, APLAS 2003, Beijing,
China, November 27-29, 2003, Proceedings, pages 105–
121. Springer-Verlag, 2003.

[9] H. Masuhara, G. Kiczales, and C. Dutchyn. Compilation Se-
mantics of Aspect-Oriented Programs. InProc of workshop
Foundations Of Aspect-Oriented Languages (FOAL) held in
conjunction with AOSD 2002. 2002.

[10] A. Orso, T. Apiwattanapong, J. Law, G. Rothermel, and
M. J. Harrold. An empirical comparison of dynamic im-
pact analysis algorithms. InProc. of the International Conf.
on Software Engineering (ICSE’04), pages 491–500, Edin-
burgh, Scotland, 2004.

[11] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. Chi-
anti: a tool for change impact analysis of java programs. In
OOPSLA ’04: Proceedings of the 19th annual ACM SIG-
PLAN Conference on Object-oriented programming, sys-
tems, languages, and applications, pages 432–448. ACM
Press, 2004.

[12] B. G. Ryder and F. Tip. Change impact analysis for object-
oriented programs. InPASTE ’01: Proceedings of the 2001
ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering, pages 46–53. ACM
Press, 2001.

[13] D. Sereni and O. de Moor. Static analysis of aspects. In
Proceedings of the 2nd international conference on Aspect-
oriented software development, pages 30–39. ACM Press,
2003.

[14] M. Stoerzer and C. Koppen. Pcdiff: Attacking the frag-
ile pointcut problem. InProceedings of European Inter-
national Workshop on Aspect Software (EIWAS’04), Berlin,
Germany, 2004.

[15] A. Zeller. Yesterday my program worked. Today, it does
not. Why? InProc. of the 7th European Software Engi-
neering Conf./7th ACM SIGSOFT Symp. on the Foundations
of Software Engineering (ESEC/FSE’99), pages 253–267,
Toulouse, France, 1999.

11


	Motivation
	The Fragile Pointcut Problem
	Pointcut delta analysis
	Calculating PC-Deltas
	Dynamic Pointcut Designators
	Explaining Deltas
	Modified Pointcuts
	New or Removed Advice
	Base Code Edits


	The PCDiff Plugin
	Usage Scenario
	Using PCDiff
	A first Example

	Case Studies
	AspectJ Examples
	AspectJ development tools

	Related Work & Conclusions
	Change Impact Analysis and Delta Debugging
	Improved Pointcut Languages
	Future Work
	Conclusions


