PCDiff: Attacking the Fragile Pointcut Problem

Christian Koppen (koppen@fmi.uni-passau.de)
Maximilian Stoerzer (stoerzer@fmi.uni-passau.de)
University of Passau

August 22, 2004

Abstract sites orget/set specifying field access. These primi-
tive pointcut designators can be combined using logical
Aspect oriented programming has been proposed as a wpgrations |{, &&, !) forming (hamed)pointcuts

to improve modularity of software systems by allowinds a running example, we will define aspects for a simple
encapsulation of cross-cutting concerns. To do so, aspettspping cart system, the main cl&woppingCart is
specifywherenew functionality should apply usirgpint- shown in prograr]1.
cuts
Unfortunately todays mainstream aspect oriented |a{3nr_ogram 1A S|mplg class modeling a shopping cart

guages suffer from pointcut languages where pointditPlic class ShoppingCart {
declarations result in a high coupling between aspect and biic final static int NEW=0

g : : punlic Tinal static In =0,
base system. Addltlonglly, these pomtcu_ts fnegile, as PROCESSED=1, FINISHED=2:
non-local changes easily may break pointcut semantics.
These propertle§ are a major obstagle for program eVO'“'private Set items:
tion of aspect orlente_d software: Thl_s paper introduces rivate int status;
pointcut delta analysis to deal with this problem. private double total;

private Customer receiver;

1 Motivation ShoppingCart(Customer receiver) {
this.receiver = receiver;

items = new HashSet(); total = 0.0;

Aspect oriented programming (AOP), first introduced in - . o _ NEW:

[2], is a new paradigm in programming extending tradi-
tional programming technigues. Its basic idea is to encap-
sulate so calledross-cutting concerngifluencing many public void additem(integer itemNr) {
modules of a given software system in a new kind of items.add(itemNr);
module calledaspect Aspects provides two constructsto total += Database.loadPrice(itemNr);
specify new behaviour and where it should ap@gvice }
andpointcuts Advice is a method-like construct defining
new functionality which is bound to a pointcut identify- Public void removeltem(integer itemNr) {
ing a set of well-defined points during the execution of ~ tems.remove(itemNr);
a program calledoinpoints So these pointcuts specify total -= Database.loadPrice(itemNr);
where advice should be executed. Tspect weavefi- }
nally combines aspect functionality with the base systqm'"
producing an executable system.
For the remaining of this paper, we will use AspetiJ [6]
as an example, although the observations made are alsbhe problem with current pointcut designators is that
valid for other currently available AspectJ-like languagesiost of them explicitly specify their target location(s)
The pointcut language of AspectJ offers a sgbrinitive by namingelements of their corresponding base program
pointcut designatorslike call specifying method call (see programi|2). These explicit references obviously in-

troduce ahigh couplingbetween the base system and the If a programmer uses wild-cards or not, he still has

aspect, making aspect reuse harder. to face another problem: pointcuts in general faagile.
Consider the following scenario. A programmer correctly
Program 2 A highly coupled pointcut specifies a pointcut, as in progrgin 3. The corresponding
aspect ItemChanges { aspect works as intended, all tests are successful. Now,
pointcut itemChanges(Customer c): the code is refactored, and we rename some methods. If
this(c) && we have references to these methods in our program, the
(call(* ShoppingCart.additem(..)) || compiler will tell us if we missed to update a reference.
call(= ShoppingCart.removeltem(..))); Now if we consider the pointcut, we see that the set
_ of joinpoints picked out by the — unchanged! - point-
before(cusmmer. ¢)- itemChanges(c) { cut definition may be altered by a rename. In general
/I do something o .
} there are several trivial non-local changes possibly mod-
} ifying pointcut semantics in terms of actually matched
joinpoints.

Rename: Renaming classes, methods or fields influ-
ences matching semantics oéll , execution

andget/set and other pointcuts. Wild-cards can
only provide limited protection against these effects.

AspectJ also offerawild-cards to reduce coupling.
However, this introduces a new problem. If pointcuts use
this mechanism they rely amaming conventiondAs such
conventions are not checked by a compiler, theynanger
guaranteed As a result, programmers have to be vefylove method/class: Pointcuts can pick out
careful with their pointcuts to avoid spurious or missed joinpoints by their lexical position, us-
matches. In prografn 3, the previous example has been ing within or withincode . Moving
rewritten using a wild-card expression to pick out all calls classes to another packages or methods to an-
methods modifying the items in our shopping cart demo other class obviously changes matching semantics

application. for such pointcuts.

Program 3 A pointcut using wildcards Add/Delete method/field/class:Pointcut semantics is

aspect ltemChanges | also affected by adding or removing program ele-
pointcut itemChanges(Customer c): ments. New elements can (and sometimes should) be

this(c) && matched by available pointcuts, but in general point-

call(* ShoppingCart. *Item(..)); cuts development cannot anticipate all possible fu-
ture additions. Removal of program elements natu-

} rally results in ‘lost’ joinpoints.

Refactorings in general require to modify code refer-

Assume we have a naming convention that all methg@¢ing updated coEbAutomated refactoring, as can also
in classShoppingCart modifying the set of items in be seen in IBM’s Echpsg IDE for Java or the Smalltalk
the cart should end wititem . In classShoppingCart ~ Refactoring Browser might be a way to avoid break-
the wild-card pointcut expression matches the two meff9 Pointcuts in some cases, but for AspectJ refactorings
ods complying to this naming convention. Additionally2ré currently not available and might be problematic for
an aspect programmer always has to make sure, thatd}f§amic joinpoints in general. More important, auto-
pointcuts do not match methods accidentally complyir'iﬁated refactorings require that the user explicitly requests
to this name pattern. a refactoring. But this not necessarily address system

For this trivial example a pointcut mismatch can easifolution in general, just consider adding new methods,
be seen. However, aspects have been proposed for I4/§&Ses or packages due to new functionality. _
or distributed system scenarios, where it is much harderS0 currently system evolution as well as refactorings
to find spurious or missed matches. In general, the 8¢ done manually. While this is also the case for several
pect programmer needgobal system knowledge as- other !anguages, there is an important difference between
sure that his pointcut works as expected. Additionall‘ﬁl,rad't'onaw code and pointcuts. In general code affected
humans tend not to look famexpectedhings, and mis- ~ 1renaming a method for example requires modifying all calls to this
matches in general are unexpected. method to match the new name.

by a refactoring — but not updated — will result imat To reduce coupling, AspectJ inventabstract aspects
compilableprogram. So the compiler checks for a lot ofhese aspects can contain abstract pointcuts which are de-
potential errors introduced by refactorings (although séned by inheriting aspects. Thus all the advice code is en-
mantic differences can occur in this context as well whidapsulated in the abstract aspect and can be reused. The
arenotrevealed by the compiler). aspect can be applied to concrete problem by inheriting
For pointcuts, this problem is considerably more sefiom the abstract aspect and defining the pointcuts for the
ous as changed pointcut semantitgeneral are not vis- concrete base system. Unfortunately, although coupling is
ible for the programmer. There is no support at all to alertduced, pointcuts in the concrete aspect still are fragile.
programmers if refactorings change the set of joinpoints[4] proposes a completely different pointcut language.
matched by their pointcuts. In our opinion, this is a man this language, a program is represented as a set of facts
jor problem for program evolution of aspect oriented sofénd pointcuts are defined in a Prolog like language as a
ware. guery over these facts. However, this language is Turing-
Additionally, aspects influencing a given base clasomplete, thus pointcuts are more dynamic as in AspectJ-
are not visible in the code as a consequence of fike languages and often cannot be evaluated at compile
obliviousness-propertf8] of AOP. As a result, a program-time.
mer refactoring e.g. a class of the base system is nofAn approach in-between these two extremes proposes
aware of all the aspects possibly matching joinpoints ¢teclarative pointcutsa set ofdescriptive pointcut desig-
this class. Tool support lightens this problem [1], but inatorswhich allows to specify joinpoints by their (seman-
our opinion this does not resolve the problems for evoltic) properties([5]. This approach reduces the necessity
tion of aspects, classes and their dependencies. to reference names or source locations and thus consid-
This also raises another interesting question for comg#ably lightens the problem with fragile pointcuts. Un-
nies developing AO software: If failures due to changd@rtunately, these pointcut designators are currently not
pointcut semantics occur, who is responsible? The aspaéilable.
developer or the base developer? Both answers are ndVhile we consider the improvement of pointcut lan-
satisfactory. The aspect programmer developed the @gages important research, these languages will only
pect for a given version of the system using the progrdifihten the problem in the future when the emerging con-
elements at hand, and cannot anticipate all potential refagucts will become part of main stream languages. How-
torings of the system. ever, by then we assume that there is a considerable
The base programmer in general should not be respafount of code written in e.g. AspectJ where evolution
sible to modify an affected aspect as an aspect might 8iffers from the problems outlined above - even if the at-
fect many other modules as well. So the base class pigynpted refactoring is the renewal of the pointcut defini-
grammer definitely is no expert to adapt an aspect potéigns with new, more declarative constructs. For this code
tially influenced by his code changes. This is especiall§e think our approach can be most valuable.
true as aspects can even access hon-public elements of a
cIasEl So in general both programmers have to talk . .
each other but therefore they have to be aware of potentfal Pointcut delta anaIyS|S
evolution problems.) _))
We think the issues demonstrated here are crucial ffftware written today using available pointcut languages

current AspectJ-like pointcut languages. We refer to tmgth all the deficiencies outlined above potentially will be
problems as théagile pointcut problem maintained for years. So a way to deal with this problem

for current languagess needed.
In general, semantical differences introduced into a sys-
2 Language—based Improvements tem are (hopefully) revealed by rerunning a regression test
suite (failing test). Testing however only shows the pres-

The improvement of the pointcut definition mechanisE’xnce of bugs, but can never prove their absence. For a

. . : ailing test, the results have to be further analyzed to ac-
is an important research topic today. Several approac)
. . ually track down bugs.
have been proposed to attack the fragile pointcut problemO r solution to deal with the fragile pointcut broblem
using improved pointcut languages. U utl Wi [ragrie pointcut p
is to provide a tool to detect differences in pointcut se-
2For exampleget/set pointcut designators allow to intercept an)mam'cs- This tool should be used as follows: We have a

access to (potentiallgrivate) fields. working version of our system. Some time later, the sys-

tem evolves. Several edits (of base and aspects) prodiacaccess relevant joinpoint match information. The cur-
an new version of this system. Unfortunately now soment implementation only uses information which is avail-
regression tests fail. We assume that a pointcut misma#tie from the ajdt-plugin_]1] and the Aspectd compiler
might be the reason and thus want to knmow the set of (thestructure modgland does not calculate any matching
matched joinpoints has changed information itself.

If an aspect (or more specific its pointcuts) has not beenThe AspectJ structure model works well for static
modified, base code edits could be a reason for now expeintcuts, but for pointcuts including dynamic joinpoints
rienced test failures. If the pointcut has been modified, \li¢ | cflow , ...), the model is problematic as it (conser-
might expect differences in its matching behaviour. Anyatively) approximates possible matches (ite.) is
way, a delta of the matched pieces of advice can consihproximated agrue). So the model reports spurious
erably help to validate the expectations. matches. A comparison of supersets obviously might fail

We propose the following pragmatic and straight foto report differences, both additional or lost matches.
ward analysi;: We calculate the set of matched joinpointsA|though we are currently not aware of any numbers il-
for both versions of the program and compare the ressirating how often dynamic joinpoints are used in prac-

ing sets, producing delta information for pointcut matchyce, in our opinion this is a relevant problem of the delta
ing. This approach is possible for any AspectJ-like Iag—p roach presented here.

guage where the set of matched pointcuts is (at leas

partly) statically computable simple way to deal with this problem is to trace back

advice matches to the pointcut definition responsible for

Definition 3.1 (Pointcut Delta) Let P be the program be- the match. If the pointcut definition contains dynamic
fore, P the program after the edits. Let joinpoitRy be a pointcut designators, the system should mark up these
function calculating all joinpoints for the given program PMmatches to show that here the delta might include spuri-
advice j, P) a function listing all pieces of advice at a given joinous information. The user then can interpret the informa-
point j in program P (for j¢ joinpointgP) define advicgj,P) = tion as either a reliable information (for matches statically

0). Let computable) or as a heuristic hint requiring additional ex-
JP = joinpointg P’) Ujoinpointg P) amination.
be the set of joinpoints in both program versions. Let It is also possible to reduce the amount of spurious

matches by further analysing dynamic joinpoints, but an
exact calculation of matching information in general is not
computable. As this is also a relevant problem for perfor-

add(P,P) = | J (advicgj,P’") — advicg j,P))
jedpP

be the set ofdditional advice matchesd mance of AOP software, this is a current research topic|[8].
del(P,P") = | J (advicq j,P) — advice j,P’)) Although this is a weakness of our approach, we think
jep that even the simple plugin available now can consider-

able help programmers to track down bugs in evolving
aspect-oriented software. However, this is outside the
deltaPQP P') = {(add(P,P’) U (del(P,P'))} scope of this paper and considered future work.

)) . _ . Ourtool allows users to take snapshots of arbitrary ver-
Wh".:r.' represents ex.aCtly all pieces of ad.v'ce no.We'ther apply'gﬁ)ns of the program and compare these snapshots with
additionallyor applyingno longer(associated with the respec- . . .
tive joinpoint j). each qther. Results of this comparison are presented in the

task view and as text markers in the editor for the current

The benefit of calculating the delta sets is that the¥ersion and in a tree-based comparison view showing dif-
sets tend to bemall compared to the overall number oferences on a per-file basis, comparing the program model
all pieces of advice in the system.déltaPQP,P') =0,a Of P andP’. The model of’ is adorned with the set of
base programmer can assume that any applying aspelﬂsg matches, additional matches appear in the model of
not affected by changes he made déitaPQP,P’) con- P-
tains differences, these differences can easily be tracedo represent changes of pointcut semantics in the
back to the affected aspects, so the aspect programmersmance code, the plugin also uses thelipse marker
be notified of this change. A potential problem is detectedechanisnto show additional or lost matches. Some-
before deliveryand can thus be easily corrected. times lost matches can no longer be displayed (if the tar-

This delta analysis has been implemented in an Eclipget joinpoint respective its underlying resource has been
plugin extending the AspectJ Development Tools (ajdieleted). In this case, the lost match is shown at the top of

the set oflost advice matchedNVe are then interested in the set

the file. Additionally, thetask viewcontains an entry for Program 4 Customer andAuthentication

each affected file. public class Customer {
Integer custNr;
String name, address;
ShoppingCart cart;

4 Example A Slmple public Customer(String name, String address){
H H H this.name = name; this.address = address;
ShOppIng Cart app||Cat|0n this.cart = new ShoppingCart(this);
custNr = Database.newUniqueNr();
We will demonstrate our plugin with our running exam- }
ple. It deals with a simple web-based shopping cart sysputélic void orderltlemgztde_ger_itemNr) { N
. . tem.out. tin(" t "o+t)
tem as used in many places to keep track of articles and e ng frem = ftemiD)
orders of customers. As time and technology advance the
system evolves, so unfortunately introdycing new flaws ,piic void cancelltem(integer itemhir) {
We will demo how our tool can help to identify reasons Systtem-out-ﬁrintlr_l("Ri‘mgving item "+itemNr);
for unexpected or faulty behaviour. y canemove em(temr).

o ShoppingCart getCart() { return cart; }
4.1 Initial system

L }
The central class for our analysis is the class

ShoppingCart (program[1). Customers may add owublic abstract aspect ItemChanges {

ointcut itemChanges(Customer c) :

remove items to the cart, order the items in the cart and SO i) g call(. « ShoppingCart. *ltem(.)):

on (not shown here). }

The initial system contains the claghoppingCart ppjic aspect Authentication
and a class modelling customers. Additionally, the as- A fextends ItemChanges { A
pect Authentication checks access to the shop- ™ o ekomen s rges(®) |
ping cart usingbefore -advice; if a customer is not if (!mfri]yAcceSS(C)) { _
authorized to change the shopping cart content, an trﬂ“””eJSWACAESSQSS.EﬁCe‘en’?EST-g;
AccessException is thrown. Therefore, the pointcut }
itemChanges is used defining all joinpoint where item
data is actually changed within a shopping cart. private_boolean mayAccess(Customer c) {

Within our tool, we can takenapshotef every state ;""" c.getName(.lengthQ % 2 = O:

of the system that might be of interest for later compar-

isons. As the initial state is always a good starting point
for comparisons, we take a snapshot now (Fi¢lire 1).

P— P——— To do so, aPersistence aspect is added. It con-
b bl 1S e tains anafter -advice saving the shopping cart con-

wigate Search Project Fun Window Help

(@) ss-p-B- |cae-
ake a snapshat of the current .ﬁ.spectJ-data|'
[CEremeEr Tava R = B EYE

Figure 1: Taking a Snapshot

4.2 Modification 1: Persistence

tent after any modification. A#ersistence and
Authentication affect the saminpoints the point-
cutitemChanges can be reused (persistence must be
enforced if and only if an item within the cart has
changed). The code is shown in progrgm 5. An exam-
ple output can be seen in figure 6.

To prevent unwanted side-effects, the system is
checked after this modification with our tool. Figure 2
shows the changes between the original and the modified
system.

For every changed file, a marker appeared in the task

With the system evolving, the shopping cart shall be madiew. When viewing one of the affected files in the editor,
persistent, i.e. its data shall be saved permanently, so #hary change is shown as code markers in the editor; a
a customer can log off and log on again without losing tlygeen plus or red minus icon shows the kind of change,

content of his shopping cart (séenazoi.

the change is further described in the marker description.

Program 5 ThePersistence aspect To be sure that this modification is correct, the new sys-

public aspect Persistence tem state is compared to the previous one. To achieve
extends ItemChanges { a better overview than markers could offer, we do not
after (Customer c): itemChanges(c) { use the task / editor views for this, but tReintcutDiff-
/I save new state TreeView Within this view, the user can choose any two

Database.saveShoppingCart(c); snapshots he took from the system, and all changes be-
System.out.printin(

BN . tween the two snapshots are shown by presenting two
} Saving Shopping Cart to DB'); trees: the left tree shows all items that are no longer
} matched in the system, the right one displays the ele-
ments which are additionally matched in the new ver-
sion. As shown in figur¢]4, the spurious matches for
showltem() disappeared.
As expected, the persistence advice will be executed aftel’he system is now back in a consistent state. We can
every shopping cart modification. verify this by comparing the state after adding persistence
Note that the programmer has a very focused view fith the final state — as expected, no differences in the set
the differences in matched joinpoints. He no longer h@matches joinpoints occur.
to filter anything which has not changed — only actual Finally, we show the output of our system for two ver-
changes are displayed so greatly reducing the amoun$ighs of our system. The first version demonstrates the
data to check. Unwanted changes can be seen eabige functionality of our system. The second version
However, the delta analysis also helps to reveal missgtpws the final functionality, after adding (but before fix-
matches, as a smaller amount of matches has to be ex#@) the ‘wish list'-feature.
ined.

Customer Maximilian (Foo Road 123/1) -- starting.
Adding item 1
Adding item 2
ifi i . i Removing item 1
4.3 MOdIflcatlon 2: AHOW readlng Customer Maximilian (Foo Road 123/1) -- finished.
the cart content Customer Christian (Bar Street 321/2) -- starting.
Adding item 1
“« - llegal Access - denied.
As we are fans of the “wish list” feature of Amazongustomer Christian (Bar Street 321/2) - finished.

we also want to implement this (in a “light” version)
for our shopping cart system. Therefore, the system is . .
changed one more time to allow customers to inspect ~ Figure 5: Version one: base system output.
other customer’s shopping carts, so that friends of & CBlistomer Maximilian (Foo Road 123/1) -
tain customer can see what present he would be int&fiing item 1
. . s . ing Shopping Cart to DB ...
ested in. This change is implemented by adding a methghg iem 2
showltem() to the clasShoppingCart . Saving Shopping Cart to DB ...
. . . Removing item 1
Unfortunately, this new functionality does not work agaying Shopping Cart to DB ...
expected: users are not able to inspect a different c@gstomer Maximilian (Foo Road 123/1) - finished.
, Customer Grandma (Foobar Av./2) -- starting.
tomer’s shopping cart; instead, an authorisation error G&pecting item 1
curs (see figurig]6). We use our tool to analyze the systeepingCart. AccessException: lllegal Access - denied.
find th We tak hot of th t stat at shoppingCart.aspects.Authentication.ajc
and find the error. We ta € asnapshot o € current state, $before$shoppingCart_aspects_Authentication$c2(

and compare it to the last working state of the system (af- Authentication java:12) .
at shoppingCart.Customer.inspectltem(Customer.java:28)

- starting.

ter adding perSiStence) with our tool. at s_hoppingCart.testDl_’ivers.ListOf\NishesDemo.main(
As shown in figure[B markers for some unex- ListOfWishesDemo java:24)
. L . . Exception in thread "main"
pected advice calls from withiAuthentication and
Persistence referring to the pointcutemChanges
appeared. Figure 6: Version two: flawed wish list.

Looking further at this pointcut, we see that it is also
— erroneously — bound to the newly introduced methodAlthough this example is considerable simple, we think
showltem() . Once knowing this, it is easy to modifyit can give a good idea how our tool can help to find pro-
the pointcut so that it matches only the methods whichgnam flaws introduced due to accidentally matched join-
fact change the shopping cart (and do not just read it). points. Note that the tool captures differences due to

Km Database.java (m Cuskarner.java &4 m ShoppingiZart, java | EP
16 public void orderlfesiTrtraccr jroelbel J AID
17 System.out.pri H

el cart.addItemiitenlir) ;

19 H J

20

z21 public void cancelltem(Integer itemlNr)

22 gyatem.out.println("Removing item "™ + itemMNr):

2Rz 3 cart.removeItem|itemllr) ;

24 H

25 i
4| | _"’lJ

| Paintcut DifF|Pr0bIems|Error L0g| <] :“:’ > =0
Tasks (2 items)

0 Description Resource In Folder Location
l [[+] Found differences to Original Yersion (05, 06,04 Customer.java | aop.analysis, pointcutDiff paper, codefshoppingCart line 1

L

19
z0
z1
Z2

24
Z5
26
27
28
dhz 9
30
31
3z
33
34

] shoppingCart java |4 Database, java | B

1g

23|

[+] Found differences to Criginal Yersion (05,0604 12:26) Persistence.java aop.analysis, pointcutDiff . paper, codefshoppingCartfaspects line 1

Figure 2: Changes between the original and the modified version

System.out.println(adding 1tem " + ltemdr); ‘ID
cart,addItem|iten®r) ;
i

public void cancelltem(Integer itewlr) |
System.out.println("Removing itewm " 4+ itewlr):
cart.removeltem|itemNe) ;

public void inspectltem|Customer o, Integer itemilr) |
System.out.println("Inspecting item " + itenlr):
c.getCart () .showltem|iterllr) ;

[+] advised by: Authentication.before itemiChanges., (9); advised by: Persistence.after
itemChanges.. (7);

Press 'F2' for focus,)
Telurn [(0 instanceol CUSLOMEL) && (| |CUSLOMEL) o) .custlr == this.custNr));

¥ -
1 | »

Figure 3: Unexpected advice calls

modified pointcut definitions as well as differences duwmmparison of the sets of matched joinpoints for two pro-
to changes in the base code. gram versions.

We implemented this analysis in a tool which is avail-
able as an Eclipse plugin extending dResuIts from

5 Conclusion our example are promising. We hope that the pointcut

delta analysis is a useful tool to help programmers find

In this paper we claimed that current mainstream poiftgs introduced into their software by breaking pointcuts,
cut languages are not satisfactory, as they suffer fr@ither directly or by modifying the base system.
the fragile joinpoint problem. Although improvement Future work clearly has to address dynamic joinpoints.

of pointcut languages is a research topic and might wett;

The tool is available under the terms of the CPL via our Eclipse

solve thiS problem one day, we proposed an analySiSJﬂiate Site: www.infosun.fmi.uni-passau.de/st/staff/stoerzer/PCDiff.
deal with this problem for current languages, based oiFeedback is welcome!

m\woblemshaskﬂ E I A

Pointcut DFF -- Current project: aop, analysis, pointcukDiff . paper, code

| with Inspection (05.08,04 13:19) x| |Fixedios.oend 1338 7]
== Omitked objects: a9k Additional objects:
m futhenticationjava e < Mo obijects available!
E| [Customer.java

- B9 Customer
: B-e inspectItem{Custaomer, Integer)
EhAe} rethiod-call{void shoppingCart, ShoppingCart showItem(java.lang. Integet)) (29)
- =p advised by
@ authentication. beforel Customer): itemChanges. . (90
@ Persiskence, after{Customer): itemiChanges. . (73
m Persistence.java

Markers compare ka: With Inspection (05.06.04 13:19) <-= Fixed (05,0604 13:36)

Figure 4: Advice no longer affecghowltem()

We only addressed this topic in a footnote, but highly dy- ceedings European Conference on Object-Oriented
namic pointcuts can greatly reduce the value of deltas, Programming (ECOOR)volume 1241, pages 220—
as currently the comparison used a very conservative ap- 242. Springer-Verlag, Berlin, Heidelberg, and New
proximation for dynamic pointcut&flow andif prim- York, 1997.

itive pointcuts are always approximated withe . This
can definitely be improved.

We see our work related to many other efforts to im-
prove program understanding. We addressed the frag- Kris Gybels. Using a logic language to express cross-
ile pointcut problem in an earlier paper [9]. The ajdt- cutting through dynamic joinpoints.
development tools [1] also clearly address these topics,
although the current version does not contain any supplit Gregor Kiczales. The fun has just begun. Keynote
for pointcut deltas. But while ajdt statically analyzes a AOSD 2003, Boston, March 2003.
single program version to provide valuable feedback f
the user, we are using two (or more) versions to anal
their differencego support system evolution and by that
are rather related to other Change Impact Analysis ap-
proaches.

An approach to better approximate tbdow point- [7] Hidehiko Masuhara, Gregor Kiczales, and Chris
cut is presented in [8]. Partial evaluation [7] may also be Dutchyn. Compilation Semantics of Aspect-Oriented

[3] R. Filman and D. Friedman. Aspect-Oriented Pro-
gramming is Quantification and Obliviousness, 2000.

(l Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik

Kersten, Jeffrey Palm, and William G. Griswold. An
overview of AspectJLecture Notes in Computer Sci-
ence 2072:327-355, 2001.

useful to better approximate dynamic joinpoints. Programs. InProc of workshop Foundations Of
Aspect-Oriented Languages (FOAL) held in conjunc-
tion with AOSD 20022002.

References

[8] Damien Sereni and Oege de Moor. Static analysis
of aspects. IrProceedings of the 2nd international
conference on Aspect-oriented software development
pages 30-39. ACM Press, 2003.

[1] Adrian Colyer Andy Clement and Mik Kersten.
Aspect-oriented programming with ajdt. Rroceed-
ings of AAOS 2003: Analysis of Aspect-Oriented Soft-
ware, held in conjunction with ECOOP 2003uly [9] M. Storzer. Analytical problems and Aspect]. In
2003. Proc. 3rd German Workshop on Aspect-Oriented

))) Software Development, Essen, Germariarch
[2] Gregor Kiczales et. al. Aspect-oriented programming. 2q03.

In Mehmet Aksit and Satoshi Matsuoka, editd?sy-

	Motivation
	Language-based Improvements
	Pointcut delta analysis
	Example: A simple shopping cart application
	Initial system
	Modification 1: Persistence
	Modification 2: Allow reading the cart content

	Conclusion

