
Analysis of AspectJ Programs

Maximilian Sẗorzer∗

December 11, 2003

Abstract

Program Analysis is increasingly used to enhance pro-
gram understanding and find flaws in programs. In con-
trast to testing, it canguaranteeproperties of a program.
Up to now, in the context of program analysis, aspect
oriented programming (AOP) has mostly been used for
program instrumentation (tracing), but has not been it-
self subject to analytical methods. This paper identi-
fies sources of flaws in AOP and suggests that program
analysis could be used to avoid these pitfalls.

The subject of this paper is not to present any solu-
tion for identified problems, but presents ideas how a
solution might be approached.

1 Motivation

AOP is a new paradigm in programming extending tra-
ditional programming techniques, first introduced in
[4]. Its basic idea is to encapsulatecrosscutting con-
cerns influencing many modules of a given software
system in a separate module calledaspect.

This encapsulation improves separation of concerns
and can avoid invasive changes of a program if cross-
cutting concerns are affected by system evolution. The
functionality defined in an aspect is woven into the base
system with a so calledaspect weaverat compile time,
load time or even run time of the program. HereAs-
pectJ, a prototype aspect-oriented language extending
Java, is considered. Main features of AspectJ areintro-
duction, modification of class hierarchies andadvice;
each of these will be examined in detail later.

AOP is a very attractive and powerful technique, but
holds new risks, too. Changes introduced with AspectJ
are not visibledirectly in the the base system’s source
code, making program comprehension more difficult.
Aspects are a new modularization unit, and are usually

1University of Passau, Lehrstuhl for Software-Systems, 94032
Passau,stoerzer@fmi.uni-passau.de

stored in separate files. But the effects of this code can
influence the whole system. Tool support is necessary
to make this aspect influence visible [14].

Some AOP-related problems are discussed in detail
in this paper, with examples given for AspectJ. Orga-
nization is as follows: Section 2 addresses static ele-
ments, section 3advice . Section 4 deals with aspect
interference. Section 5 concludes, outlines future work
and gives an overview of related work.

2 Static Program Modification

AspectJ offers a set of mechanisms designed to modify
behavior of an existing system: Introduction allows to
insert new members (both methods and data fields) into
classes, classes can be pushed down the class hierarchy
usingdeclare parent .

2.1 Binding Interference and
Class Introduction

Introducing new members into existing classes can re-
sult in name clashes (orstatic interference) if a member
with the same name already exists. Name clashes are
reported as errors by the AspectJ-compiler,ajc, and can
thus easily be avoided.

Binding interference—i.e. changes in class behav-
ior by introducing new members in a hierarchy, called
dynamic interference in [12]—however has to be exam-
ined. Consider the example program from figure 1.

AspectintroduceM introduces a methodmto class
B. Any call1 from classCnow results in a call ofB.m()
and not inX.m() as before; the program output for call
c.m() is Aspect:B.m() .

ClassB might work with this change as intended,
as this is the class where the method is introduced to.

1As AspectJ extends Java, any call mentioned in this paper means
avirtual call.



class X {
void m() { System.out.println("X.m()"); }
void n() { System.out.println("X.n()"); }
public static void main(String[] args) {

C c = new C();
X a = new A();

c.m(); // show binding interference
if (a instanceof B) {

System.out.println("B object!");
} else {

System.out.println
("Unknown class - no B!");

} // show type change
a.n(); // show binding interference

// due to hierarchy change
}

}

class A extends X {}

class B extends X {
void n() { System.out.println("B.n()"); }

}

class C extends B {}

aspect introduceM {
void B.m() {

System.out.println("Aspect: B.m()");
}

}

aspect ChangeHierarchy dominates introduceM {
declare parents: A extends B;

}

Figure 1: Binding Interference and Change of type hierarchies

Anyhow, effects of introductions modify any subclass
of B, which does not itself redefinem. If the intro-
duced methodB.m() redefinesX.m() with respect to
behavioral sub-typing [6] a (unknown) client of a sub-
class ofB may still work as expected. However, neither
Java nor AspectJ guarantee this kind of method redefi-
nition. Code of a (unknown) client might rely on calls
to X.m() ; the clients functionality then is broken.

The described problem is a special case of thefrag-
ile base class problem[7], as here the behavior of a
subclass suffers from—oblivious—base class modifi-
cations. Although tracking down bugs introduced by
changing a base class is difficult (only a superclass of
the class where the error shows up has been changed),
the problem is even worse with aspect languages as
modifications of the base class are not visible if the code
is viewed in isolation, i.e. without the applied aspect.
To find bugs emerging from binding interference, im-
pact analysis of aspect application can reveal method
calls withchanged dynamic lookup.

To avoid flaws the compiler could prohibit bind-
ing interference altogether, but this is too strict as the
changed behavior of subclasses might be intended as
well. A reasonable approach could be that the compiler
warns if binding interference occurs and leaves actions
to the programmer.

In [11], a method to compute changes in dynamic
lookup has been suggested which breaks source code
modifications down into atomic changes. This impact
analysis can be used here, as a subset of atomic changes
(add method, change lookup and add field) can be eas-
ily derived from the introduction definition of the as-
pect. With the set of atomic changes at hand, the set of
changed dynamic lookups and necessary regression test

cases can be determined.

2.2 Impact of Changing the
Inheritance Hierarchy

Besides introduction, AspectJ allows to modify the
structure of inheritance hierarchies within certain
boundaries2, intended to move classes (together with
all their subclasses) ‘down’ the inheritance hierarchy,
so that original type relations still hold.

Consider figure 1. At first glance any client using
classes with a modified inheritance hierarchy should
still work. However, there are some problems:

instanceof: In example of figure 1,A is moved down
the inheritance hierarchy by aspectChange-
Hierarchy . Any predicatea instanceof
B for a a of type A now changed value—from
false to true. More generally, thetype of class
A has changed. This allows additional up-casts,
which resulted in aClassCastException be-
fore (e.g.(B)a ).

binding interference: Change of inheritance hierar-
chies might possibly change the method actually
executed by a virtual call. Figure 1 gives an ex-
ample of this situation with method calla.n() :
without application of the aspect,X.n() is called,
with aspectChangeHierarchy active,B.n()
is executed.

The output of the described example is without aspect
X.m()
Unknown class - not a B instance!
X.n()

2The newly assigned superclass has to be a subclass of an old su-
perclass.



and with aspect
Aspect: B.m()
B object found!
B.n()

This demonstrates both binding interference due toin-
troductionand due tochanges in class hierarchy.

As a first step to reveal this subtle changes in pro-
gram behavior, the set of classes from a hierarchyC
with changed type information has to be determined
by examining thedeclare parent statements of
all aspectsA in a given set of aspects,A. Change of
type information can be caused by changing the posi-
tion of a class in the inheritance hierarchy or by defin-
ing that a class implements an interface (declare
... implements ). All subclasses of a modi-
fied class are affected by these changes as well. Let
ChangeType(A, C) be the set of all these classes.

Using points-to analysis[2], for each ‘<ref >
instanceof <type >’ predicate of a clientK,
the type set reference ‘ref ’ might point to, has to
be determined. If the intersection of this set with
ChangeType(C) is not empty, behavior of clientK
might have changed. As exact points-to analysis is un-
decidable, false alarms are possible.

To reveal binding interference,declare parent
statements have to be examined if method lookups
might have changed by redefinition of inheritance hi-
erarchies. LetChangedLookup(C) be set ofpossi-
bly changed method lookups. Clients of any class in
ChangedLookup(C) possibly changed their behavior.

3 Changing Runtime Behavior
of Programs: advice

Apart from static program modifications described up
to now, AspectJadvice allows to modifystate and
control flowof the programat run time. The effects of
these modifications are difficult to foresee, their analy-
sis requires data flow analysis (DFA).

3.1 Defining Pointcuts

AspectJ defines a set ofhooksin the execution of a pro-
gram, where dynamic modification of program flow and
state are applied, so calledjoinpoints. A set of join-
points can be named for further use in the aspect, by
defining apointcut.

As the idea of aspects is used to encapsulate crosscut-
ting concerns, a pointcut potentially comprises a large

set of joinpoints (dependent on the size of the system).
The use of wildcards is very comfortable to specify
necessary pointcuts, but their application can be prob-
lematic, especially in large systems. Relying onnam-
ing conventionsis dangerous here—conventions are not
guaranteed. So wildcards may easily miss necessary or
accidentally include unwanted joinpoints.

Avoiding name-based pointcuts completely might
solve the problem but is obviously too restrictive. A
logical consequence is to provide tool support to al-
low better control of aspect application by the program-
mer as is available for AspectJ (XEmacs mode/some
IDE plug-ins). Aspects are mapped to every joinpoint
they apply to (and vice versa) and visualized. How-
ever, these tools are onlypassive, the user must explic-
itly examine,if and wherethere are changes in the set
of matched joinpoints. This is insufficient, as program-
mers work with large systems and will not examine the
whole system forunexpectedchanges. Tools should
only displaychangesin sets of affected joinpoints. This
restriction is necessary as this is exactly the information
a programmer needs to see the impact of changes to a
pointcut modification.

Another interesting approach might be to develop a
high level specification language, allowing to specify
exactlywhich partsof a given system are allowedun-
der which circumstancesto be modified by an aspect.
A tool could then take pointcut definitions and a spec-
ification and check if these definitions are valid, thus
avoiding unexpected aspect influence. Pointcut defini-
tions using wildcards too generously would be revealed.

3.2 Requirements for
Data Flow Analysis

To understand effects ofadvice , advanced program
analysis might help. As a starting point, many algo-
rithms in this context require a dedicated representation
of programs. A standard data structure used in this con-
text areDependence Graphs (DGs). Their efficient con-
struction has been a research topic for years [3], but es-
pecially for object-oriented languages like Java it is still
discussed.

As AspectJ is an extension to Java, an aspect oriented
DG (ADG) is supposed to extend a Java DG. An oper-
ational semantics for subsets of Java[13] and AspectJ
advice , modeled as method call interception [5] is
available, which is a necessary precondition for con-
struction of the control flow graph (CFG) and finally



class C {
int x = 0;
B b = new B();

void m() { [A]
b.n();
System.out.println(x);

}
}

class B {
int y = 0;

void n() {
System.out.println(y);

}
}

aspect A { [C]
// define pointcut
pointcut callBn(B b, C c):

target(b) && this(c) && call(void B.n());

// define around advice - changes
// member values of caller and callee
void around(B b, C c): callBn(b, c) {

c.x = 5;
b.y = -3;
proceed(b, c);
// --> redefinition of B.n() if suppressed

}
// test driver
public static void main(String[] args) {

C c = new C();
c.m();

}
}

Figure 2: Using AspectJadvice —an example for wrapping a method.

the ADG as a CFG has to consider known aspect appli-
cations3.

With the ADG at hand, traditional analytic tech-
niques as well as new techniques analyzing impact of
aspect code can be used with aspect oriented languages.
Fulfillment of the requirements described in brief here
allows to apply DFA to AspectJ. Unfortunately, con-
struction of the ADG is far from trivial, a fitting infras-
tructure is not available.

3.3 Impact of Advice—changing
program state and flow

Although analysis ofadvice is expensive, it would be
a great achievement to improve confidence in AOP as
especiallyadvice can completely change the seman-
tics of a program. DFA can prove whether control flow
remains the same independent of aspect application.

Usingadvice , AspectJ allows insertion of arbitrary
code (even wrapping of existing methods) atjoinpoints.
Consider the example from figure 2. MethodC.m() is
wrapped by around-advice of aspectA. Theadvice
has access to any (visible and modifiable) members of
caller and callee4.

The example in figure 2 modifies data membersc.x
andb.y using aroundadvice . Changing these val-
ues might alter program flow as thestateof caller and
callee objects changes. More important—these changes

3For DG construction, calculation ofReaching Definitionssets on
the CFG is necessary.

4Aroundadvice is an interesting feature of AspectJ—it allows
wrapping and thus can be used to simulate Composition Filters [1].
This shows the relation between these at first glance very different
AOSD approaches.

are appliedglobally at any matching pointcut and may
corrupt the system if changes in state are applied acci-
dentally.

Changes of system behavior due to advice are only
comprehensible if influence of aspect code is visible
directly in the source code of the base system. Tools
(as mentioned before) displaying applied aspects at rel-
evant joinpoints produce annotation as shown in figure
2 (markings[A] , [C] ). However, these merely textual
annotations are insufficient for two reasons:

• First, they only show that aspectA references
methodC.m() , but influence onB is not shown
as there is no pointcut definition affectingB de-
fined in the aspect. Note, that the aroundadvice
changes value ofb.y , so there is influence onB.
This influence is not captured by the annotation.

• Second, there is no information if the state of a
class is changed by an applied aspect or not. Di-
rect influence is easy to track, but influence can be
hidden by a sequence of method calls of caller or
callee, finally influencing values of some distant
object.

This information is important for every programmer
and should be visible at every affected class.

Using methods of program analysis,advice may
be classified intosemantic changingandsemantic pre-
serving. Using DGs, changes in control flow and/or
program state can be revealed using e.g. slicing to find
witnesses for influence on system data members from
aspect code. Logging for example does not influence
program execution (not considering performance and



class Main {
public static void main(String[] args) {

start();
end();

}
void start() {}
void end() {}

}
aspect A {

before(): call(Main.start()) {
openDoor();

}
after(): call(Main.end()) {

closeDoor();
}

void openDoor() {}
void closeDoor() {}

}
aspect B {

before(): call(Main.start()) {
goInside();

}
after(): call(Main.end()) {

goOutside();
}
void goInside() {}
void goOutside() {}

}

Figure 3: Ordering of Aspects—Conflictingadvice Order.

the log file) and could be ignored when tracking down
bugs due to advice application.

4 Interfering Aspects

Up to now, possible problems of interference of aspects
and base system have been discussed. Additionally, as-
pects can interfere with each other either directly—e.g.
via introduction, aspect domination or advice—or indi-
rectly bymanipulating and reading the same fieldsof a
class of the base system.

Tools like XEmacs AspectJ-mode can display differ-
ent aspects applied in parallel at join-points. But again,
they do not show any semantical interference of these
aspects. The problems emerging from interfering as-
pects are similar to those emerging from aspect-base
interference and will not be considered here.

In [9], an additional problem only affecting the ap-
plication of multiple aspects at one joinpoint has been
stated: aspect order. AspectJ permits definition of a par-
tial order on aspects usingdominates language con-
struct: aspect A dominates B { ... }, in-
dicating thatA is applied after applicationB has been
applied, possibly overriding effects ofB. If advice
from both aspects demand a conflicting execution or-
der, like in example 3 (taken from [9]), the granularity
of this ordering is too coarse as single pieces of advice
have to be ordered, not whole aspects.

The only sound execution order is obviously�
start − openDoor − goInside − goOutside −
closeDoor − end �. So neitherA dominates B
nor vice versa is sound with necessaryadvice order.

Detection of contradictory aspect order is difficult, as
semantics of the code is relevant here. A workaround
might be to request an annotation determining order: A
before B, vice versa or don’t care. This can be achieved

as a special comment in code at the joinpoint where dif-
ferent pieces ofadvice apply. The presence of such
annotations can be checked automatically and conflicts
(cycles) in this user given dependencies can easily be
found.

5 Conclusion and Related Work

Many software engineers shiver when thinking about
modifying the behavior of their system by some aspect
like ‘by magic’. Indeed, AspectJ introduces language
elements which can be sources of subtle flaws in a pro-
gram. These problems have to be solved, before tech-
niques like AspectJ will be commonly used.

Information calculated by applying program analy-
sis to AspectJ can be used to dramatically improve tool
support available for AspectJ—either as compiler warn-
ings or separate analysis toolkits—so reducing flaws in
AspectJ programs.

Ideas to solve the problems demonstrated in this pa-
per suggest, that an ADG and points-to analysis for
aspect oriented programs are needed to develop algo-
rithms to enable analysis ofadvice . A better control
over the effects of AspectJ languages constructs will
help to improve confidence, as the lack of control of
global modification features is one of the most prob-
lematic drawbacks of AOP.

Current work concentrates on the static modification
features of AspectJ. Impact analysis of introduction and
hierarchy modification can be performed by adapting
available algorithms [11]. Analysis ofadvice is a
major challenge to develop an analytical framework for
AOP software. The main effort that has to be made is
the creation of the necessary infrastructure for AspectJ
source code. Working with Java byte code is no appro-
priate approach, as aspects no longer exist at byte code



level.
In [12] an impact analysis for hierarchy composition,

as used in Hyper/J is proposed. [10] examines aspect in-
terference, but focuses on aspects applying to the same
joinpoint and resulting nondeterminism in application
order only. In [5], an semantical approach for method
call interception is presented.

To improve separation of concerns, several different
approaches besides aspect oriented programming have
been proposed. Aksit et al. proposed transparentCom-
position Filters [1] intercepting and rerouting method
calls through filter queues. These filters are able to
redirect, reject, or pass messages on to the original re-
ceiver object. Redirection of objects involves reifica-
tion of messages in the filter queue. In [8], Harris and
Ossher proposed multi-dimensional separation of con-
cerns. This leads to a separate implementation of dif-
ferent features and a composition of the resulting hier-
archies according to user defined composition rules.

Acknowledgments

Thanks to Silvia Breu, Jens Krinke and the unnamed
reviewers for their valuable feedback.

References

[1] M. Aksit and B. Tekinerdogan. Solving the mod-
eling problems of object-oriented languages by
composing multiple aspects using composition fil-
ters, 1998.

[2] Michael Hind and Anthony Pioli. Which pointer
analysis should i use? InInternational Symposium
on Software Testing and Analysis, pages 113–123,
2000.

[3] Susan B. Horwitz and Thomas W. Reps. The use
of program dependence graphs in software engi-
neering. InProceedings of the Fourteenth Interna-
tional Conference on Software Engineering, pages
392–411, 1992.

[4] Gregor Kiczales, John Lamping, Anurag Menhd-
hekar, Chris Maeda, Cristina Lopes, Jean-Marc
Loingtier, and John Irwin. Aspect-oriented pro-
gramming. In Mehmet Akşit and Satoshi Mat-
suoka, editors,Proceedings European Conference
on Object-Oriented Programming, volume 1241,
pages 220–242. Springer-Verlag, Berlin, Heidel-
berg, and New York, 1997.

[5] R. Lämmel. A Semantical Approach to Method-
Call Interception. InProc. of the 1st International
Conference on Aspect-Oriented Software Devel-
opment (AOSD 2002), pages 41–55, Twente, The
Netherlands, April 2002. ACM Press.

[6] Barbara H. Liskov and Jeannette M. Wing. A be-
havioral notion of subtyping. 1994.

[7] Leonid Mikhajlov and Emil Sekerinski. A study
of the fragile base class problem.Lecture Notes in
Computer Science, 1445:355–382, 1998.

[8] H. Ossher and P. Tarr. Multi-dimensional sepa-
ration of concerns and the hyperspace approach,
2000. Proc. Symposium on Software Architec-
tures and Component Technology: The State of
the Art in Software Development.

[9] K. Ostermann and G. Kniesel. Independent ex-
tensibility – an open challenge for aspectj and hy-
per/j, 2000. Position paper for the ECOOP’2000
Workshop on Aspects and Dimension of Con-
cerns, C. V. Lopes (ed.), 2000.

[10] Mario Südholt Ŕemi Douence, P.Fradet. A
framework for the detection and resolution of
aspect interactions. InProceedings of the
ACM SIGPLAN/SIGSOFT Conference on Gener-
ative Programming and Component Engineering
(GPCE’02), October 2002.

[11] Barbara G. Ryder and Frank Tip. Change impact
analysis for object-oriented programs.Proceed-
ings of the Workshop on Program Analysis for
Software Tools and Engineering (PASTE 2001),
pages 46–53, 2001.

[12] Gregor Snelting and Frank Tip. Semantics-based
composition of class hierarchies. InECOOP, page
562ff, 2002.

[13] Don Syme. Proving java type soundness. InFor-
mal Syntax and Semantics of Java, pages 83–118,
1999.

[14] Detlef Vollmann. Visibility of join-points in aop
and implementation languages. InSecond Work-
shop on Aspect-Oriented Software Developement,
pages 65–69, Bonn, Germany, February 2002. GI
SIG.


	Motivation
	Static Program Modification
	Binding Interference and Class Introduction
	Impact of Changing the Inheritance Hierarchy

	Changing Runtime Behavior of Programs: advice
	Defining Pointcuts
	Requirements for Data Flow Analysis
	Impact of Advice---changing program state and flow

	Interfering Aspects
	Conclusion and Related Work

