
Understanding Class Hierarchies Using Concept
Analysis

GREGOR SNELTING

Universität Passau

and

FRANK TIP

IBM T.J. Watson Research Center

A new method is presented for analyzing and reengineering class hierarchies. In our approach,
a class hierarchy is processed along with a set of applications that use it, and a fine-grained
analysis of the access and subtype relationships between objects, variables, and class members
is performed. The result of this analysis is again a class hierarchy, which is guaranteed to be
behaviorally equivalent to the original hierarchy, but in which each object only contains the
members that are required. Our method is semantically well-founded in concept analysis: the
new class hierarchy is a minimal and maximally factorized concept lattice that reflects the access
and subtype relationships between variables, objects and class members. The method is primarily
intended as a tool for finding imperfections in the design of class hierarchies, and can be used as the
basis for tools that largely automate the process of reengineering such hierarchies. The method can
also be used as a space-optimizing source-to-source transformation that removes redundant fields
from objects. A prototype implementation for Java has been constructed, and used to conduct
several case studies. Our results demonstrate that the method can provide valuable insights into
the usage of a class hierarchy in a specific context, and lead to useful restructuring proposals.

Categories and Subject Descriptors: D.2.7 [Software Engineering]: Distribution, Mainten-
ance and Enhancement—restructuring, reverse engineering, reengineering; D.3.3 [Programming
Languages]: Language Constructs and Features—Classes and Objects, Inheritance; F.3.2 [Log-
ics and meanings of Programs]: Semantics of Programming Languages—Program Analysis

General Terms: Algorithms, Documentation, Experimentation, Languages, Theory

Additional Key Words and Phrases: Class hierarchy reengineering, concept analysis

1. INTRODUCTION

Designing a class hierarchy is hard, because it is not always possible to anticipate
how a hierarchy will be used by an application. This is especially the case when

A preliminary version of parts of this article appeared in the Proceedings of the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, 1998 [Snelting and Tip 1998]. This work
is supported by Deutsche Forschungsgemeinschaft, grant Sn11/7-1.
Authors’ addresses: G. Snelting, Fakultät für Mathematik und Informatik, Universität Passau,
Innstr. 33, 94032 Passau, Germany; F. Tip, IBM T.J. Watson Research Center, P.O. Box 704,
Yorktown Heights, NY 10598.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2000 ACM 0164-0925/00/0500-0540 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000, Pages 540–582.

class String { /* details omitted */ };
class Address { /* details omitted */ };
enum Faculty { Mathematics, CompScience };
class Professor; /* forward declaration */

class Person {
public:
String name;
Address address;
long socialSecurityNumber;
};

class Student : public Person {
public:
Student(String sn, Address sa, int si){

name = sn; address = sa; studentId = si;
};
void setAdvisor(Professor *p){

advisor = p;
};
long studentId;
Professor *advisor;
};
class Professor : public Person {
public:
Professor(String n, Faculty f, Address wa){

name = n; faculty = f;
workAddress = wa;
assistant = 0; /* default: no assistant */
};
void hireAssistant (Student *s){

assistant = s;
};
Faculty faculty;
Address workAddress;
Student *assistant; /* either 0 or 1 assistants */
};

(a)

int main(){
String s1name, p1name;
Address s1addr, p1addr;
Student* s1 = /* Student1 */

new Student(s1name,s1addr,12345678);
Professor *p1 = /* Professor1 */

new Professor(p1name,Mathematics,p1addr);
s1->setAdvisor(p1);
return 0;
}

(b)

int main(){
String s2name, p2name;
Address s2addr, p2addr;
Student* s2 = /* Student2 */

new Student(s2name,s2addr,87654321);
Professor *p2 = /* Professor2 */

new Professor(p2name, CompScience, p2addr);
p2->hireAssistant(s2);
return 0;
}

(c)

Fig. 1. Example: relationships between students and professors. (a) Class hierarchy for expressing
associations between students and professors. (b) Example program using the class hierarchy of
Figure 1(a). (c) Another example program using the class hierarchy of Figure 1(a).

a class hierarchy is developed as a library, and designed independently from the
applications that use it. Ongoing maintenance, in particular ad hoc extensions of
the hierarchy, will further increase the system’s entropy. As typical examples of
inconsistencies that may arise, one might think of:

—A class C may contain a member m not accessed in any C-instance, an indication
that m may be removed, or moved into a derived class.

—Different instances of a given class C may access different subsets of C’s members,
an indication that it might be appropriate to split C into multiple classes.

In this article, we present a method for analyzing the usage of a class hierarchy
based on concept analysis [Wille 1982]. Our approach comprises the following steps.
First, a table is constructed that precisely reflects the usage of a class hierarchy.
In particular, the table makes explicit relationships between the types of variables
and class members such as “the type of x must be a base class of the type of y” and
“member m must occur in a base class of the type of variable x.” From the table, a
concept lattice is derived, which factors out information that variables or members

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

Student::advisor Person::name

Professor::assistant Student::advisor p s p1 s2

Student2

Student::Student()
Student::studentId
Person::address

Professor::Professor()
Professor::workAddress

Professor::faculty
s1

Professor1

Professor::assistant

Person::socialSecurityNumber

p2

Professor::hireAssistant()

Student1 Professor2

Student::setAdvisor()

Fig. 2. Lattice for Student/Professor example.

have in common. We will show how the concept lattice can provide valuable insight
into the design of a class hierarchy, and how it can serve as a basis for automated
or interactive restructuring tools for class hierarchies. The examples presented in
this article are written in C++ or Java, but our approach is applicable to other
object-oriented languages as well.

Our method can analyze a class hierarchy along with any number of programs
that use it, and provide the user with either a combined view reflecting the usage
of the hierarchy by the entire set of programs, or with individual views that clarify
how each application uses the hierarchy. Analyzing a class hierarchy without any
accompanying applications (such as a class library) is also possible, and can be
useful to study the internal dependences inside class definitions.

1.1 A Motivating Example

Consider the example of Figure 1, which is concerned with relationships between
students and professors. Figure 1(a) shows a class hierarchy, in which a class Person
is defined that contains a person’s name, address, and socialSecurityNumber.
Classes Student and Professor are derived from Person. Students have an iden-
tification number (studentId), and a thesis advisor if they are graduate students.
A constructor is provided for initializing Students, and a method setAdvisor
for designating a Professor as an advisor. Professors have a faculty and a
workAddress, and a professor may hire a student as a teaching assistant. A
constructor is provided for initialization, and a method hireAssistant for hiring a
Student as an assistant. Details for classes Address and String are not provided;
in the subsequent analysis these classes will be treated as “atomic” types, and we
will not attempt to analyze them.

Figures 1(b) and (c) show two programs that use the class hierarchy of Fig-
ure 1(a). In the first program, a student and a professor are created, and the
professor is made the student’s advisor. The second program creates another stu-
dent and professor, and here the student is made the professor’s assistant. The
example is certainly not perfect C++ code, but looks reasonable enough at first
glance.

Figure 2 shows the lattice computed by our method for the class hierarchy and
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

the two example programs of Figure 1. Ignoring a number of details, the lattice
may be interpreted as follows:

—The lattice elements (concepts) may be viewed as classes of a restructured class
hierarchy that precisely reflects the usage of the original class hierarchy by the
client programs.

—The ordering between lattice elements may be viewed as inheritance relationships
in the restructured class hierarchy.

—A variable v has type C in the restructured class hierarchy if v occurs immediately
below concept C in the lattice.

—A member m occurs in class C if m appears directly above concept C in the
lattice.

Examining the lattice of Figure 2 according to this interpretation reveals the
following interesting facts1:

—Data member Person::socialSecurityNumber is never accessed, because no
variable appears below it. This illustrates situations where subclassing is used to
inherit the functionality of a class, but where some of that functionality is not
used.

—Data member Person::address is only used by students, and not by professors
(for professors, the data member Professor::workAddress is used instead, per-
haps because their home address is confidential information). This illustrates a
situation where the member of a base class is used in some, but not all derived
classes.

—No members are accessed from parameters s and p, and from data members
advisor and assistant. This is due to the fact that no operations are performed
on a student’s advisor, or on a professor’s assistant. Such situations are typical
of redundant, incomplete, or erroneous code and should be examined closely.

—The analyzed programs create professors who hire assistants (Professor2), and
professors who do not hire assistants (Professor1). This can be seen from the
fact that method Professor::hireAssistant() appears above the concept la-
beled Professor2, but not above the concept labeled Professor1.

—There are students with advisors (Student1) and students without advisors
(Student2). This can be seen from the fact that Student::setAdvisor ap-
pears above the concept labeled Student1, but not above the concept labeled
Student2.

—Class Student’s constructor does not initialize the advisor data member. This
can be seen from the fact that data member Student::advisor does not appear
above method Student::Student() in the lattice.2

One can easily imagine how the above information might be used as the basis
for restructuring the class hierarchy. One possibility would be for a tool to auto-
matically generate restructured source code from the information provided by the

1The labels Student1, Professor1, Student2, and Professor2 that appear in the lattice represent
the types of the heap objects created by the example programs at various program points (indicated
in Figures 1(b) and (c) using comments).
2Student::Student() also represents the this-pointer of the method.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

lattice, similar to the approach taken in Tip and Sweeney [1997; 2000]. However,
from a redesign perspective, we believe that an interactive approach would be more
appropriate. For example, the programmer doing the restructuring job may decide
that the data member socialSecurityNumber should be retained in the class hi-
erarchy because it may be needed later. In the interactive tool we envision, one
could indicate this by moving up in the lattice the attribute under consideration,
socialSecurityNumber. The reengineer may also decide that certain fine distinc-
tions in the lattice are unnecessary. For example, one may decide that it is not
necessary to distinguish between professors that hire assistants, and professors that
do not. In an interactive tool, this distinction could be removed by merging the
concepts for Professor1 and Professor2.

Another useful capability of an interactive tool would be to associate names
with lattice elements. When the programmer is done manipulating the lattice,
these names could be used as class names in the restructured hierarchy when the
restructured source code is generated. For example, using the information provided
by the lattice, the programmer may determine that Student objects on which the
setAdvisor method is invoked are graduate students, whereas Student objects on
which this method is not called are undergraduates. Consequently, he may decide
to associate the names Student and GraduateStudent with the concepts labeled
Student2 and Student1, respectively.

1.2 Organization of this Article

The remainder of this article is organized as follows. Section 2 briefly reviews the
relevant parts of the theory of concept analysis. In Section 3 we define the objects
and attributes in our domain, which correspond to the rows and columns of the
tables. The process of constructing tables is presented in Section 4, while Section 5
discusses important properties of the lattice, in particular behavioral equivalence.
Section 6 presents extensions for constructs such as type casts. In Section 7, we
discuss how the information provided by the lattice can reveal problems in the
design of class hierarchies, and how the lattice can be used as a basis for interactive
restructuring tools. Section 8 describes our prototype implementation for Java in
some detail. Section 9 discusses several case studies. Section 10 discusses related
work. Finally, conclusions and directions for future work are presented in Section 11.

2. CONCEPT ANALYSIS

Concept analysis provides a way to identify groupings of objects that have common
attributes. The mathematical foundation was laid by Birkhoff in 1940 [Birkhoff
1940]. Birkhoff proved that for every binary relation between certain objects and
attributes, a lattice can be constructed that provides remarkable insight into the
structure of the original relation. The lattice can always be transformed back to
the original relation; hence concept analysis is similar in spirit to Fourier analysis.3

Later, Wille and Ganter elaborated Birkhoff’s result and transformed it into
a data analysis method [Wille 1982; Ganter and Wille 1999]. Since then, it has
found a variety of applications, including analysis of software structures [Krone

3A function and its Fourier transform are very different representations of the same information,
but can be transformed into each other.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

sm
al

l

m
ed

iu
m

la
rg

e

ne
ar

fa
r

m
oo

n

no
 m

oo
n

Mercury

Venus

Earth

Mars

Jupiter

Uranus

Neptune

Pluto

Saturn

Mercury
Venus

Earth
Mars

Pluto Jupiter
Saturn

Uranus
Neptune

near

no moon

small moon

far

large medium

Fig. 3. Example table and associated concept lattice.

and Snelting 1994; Snelting 1996; 1998; Lindig and Snelting 1997; Siff and Reps
1997; Godin and Mili 1993; Godin et al. 1998; Ball 1999].

2.1 Relations and Their Lattices

Concept analysis starts with a relation, or boolean table, T between a set of objects
O and a set of attributes A; hence T ⊆ O ×A.

For any set of objects O ⊆ O, their set of common attributes is defined as

σ(O) = {a ∈ A | ∀o ∈ O : (o, a) ∈ T }.

For any set of attributes A ⊆ A, their set of common objects is

τ(A) = {o ∈ O | ∀a ∈ A : (o, a) ∈ T }.

A pair (O,A) is called a concept if

A = σ(O) and O = τ(A).

Informally, such a concept corresponds to a maximal rectangle in the table T : any
o ∈ O has all attributes in A, and all attributes a ∈ A fit to all objects in O. It is
important to note that concepts are invariant against row or column permutations
in the table. The set of all concepts of a given table forms a partial order via

(O1, A1) ≤ (O2, A2) ⇐⇒ O1 ⊆ O2 ⇐⇒ A1 ⊇ A2.

Birkhoff proved that the set of concepts constitutes a complete lattice, the concept
lattice L(T). For two elements (O1, A1) and (O2, A2) in the concept lattice, their
infimum or meet is defined as

(O1, A1) ∧ (O2, A2) = (O1 ∩O2, σ(O1 ∩O2)),

and their supremum or join as

(O1, A1) ∨ (O2, A2) = (τ(A1 ∩A2), A1 ∩A2).

A concept c = (O,A) has extent ext(c) = O and intent int(c) = A. In our figures,
a lattice element (concept) c is labeled with attribute a ∈ A, if it is the largest

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

concept with a in its intent, and it is labeled with an object o ∈ O, if it is the
smallest concept with o in its extent. The (unique) lattice element labeled with a
is denoted µ(a), and the (unique) lattice element labeled with o is denoted γ(o).
Thus

µ(a) =
∨
{c ∈ L(T) | a ∈ int(c)}, γ(o) =

∧
{c ∈ L(T) | o ∈ ext(c)}.

The following fundamental property establishes the connection between a table and
its lattice, and shows that they can be reconstructed from each other:

(o, a) ∈ T ⇐⇒ γ(o) ≤ µ(a)

Hence, the attributes of object o are those which appear above o, and all objects
that appear below a have attribute a. Consequently, join points (suprema) in the
lattice indicate that certain objects have attributes in common, while meet points
(infima) show that certain attributes fit to common objects. In other words, join
points factor out common attributes, while meet points factor out common objects.
Thus, the lattice uncovers a hierarchy of conceptional clusters that was implicit in
the original table.

Figure 3 shows a table and its lattice (taken from Davey and Priestley [1990]).
The element labeled far corresponds to the maximal rectangle indicated in the
table. This element is the supremum of all elements with far in their intent: Pluto,
Jupiter, Saturn, Uranus, Neptune are below far in the lattice, and the table confirms
that these (and no other) planets are indeed far away.

2.2 Implications

A table and its lattice are alternate views on the same information, serving different
purposes and providing different insights. There is yet another view: a set of
implications. Let A,B ⊆ A be two sets of attributes. We say that A implies B, iff
any object with the attributes in A also has the attributes in B:

A→ B ⇐⇒ ∀o ∈ O :
(
∀a ∈ A : (o, a) ∈ T

)
⇒
(
∀b ∈ B : (o, b) ∈ T

)
For B = {b1, . . . , bk}, A → B holds iff A → bi for all bi ∈ B.4 Implications show
up in the lattice as follows: A → b holds iff

∧
{µ(a) | a ∈ A} ≤ µ(b). Informally,

implications between attributes can be found along upward paths in the lattice.
In the example of Figure 3, we have that µ(far) ≤ µ(moon), which can be read
as far → moon , or “A planet which is far away has a moon.” Other examples of
implication are nomoon → near , small ; or near , far → large (the latter implication
being true because its premise is contradictory).

There is a minimal set of implications, from which all other valid implications
can be derived: the implication base I(T). For the example, it consists of 10 impli-
cations, including far → moon and no moon → near , small . Nonbase implications
such as far, small→ moon, small or no moon→ near can be derived by proposi-
tional logic.

Often, some implications are known to hold a priori. Such background knowledge
can easily be integrated into a given table. An implication x→ y can be enforced by
copying the entries from the x column to the y column, and will cause µ(x) ≤ µ(y)

4We will usually write a1, . . . , an → b1, . . . , bm instead of {a1, . . . , an} → {b1, . . . , bm}.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

in L(T). A general implication A→ B can be enforced by copying the intersection
of the A columns to all B columns.

2.3 Lattice Construction

The table T , the lattice L(T), and the implication basis I(T) represent very dif-
ferent views onto the same information, but can be transformed into each other;
furthermore, background knowledge, given as a set of implications, may be added.
In this section, we will present a short description of the most important transfor-
mation: the computation of the concept lattice for a given table.

Ganter’s algorithm for lattice construction utilizes the fact that C = σ ◦ τ (as
well as C′ = τ ◦ σ) is a closure operator on 2O: it is extensive (O ⊆ C(O)),
idempotent (C(C(O)) = C(O)), and monotone (O ⊆ O′ ⇒ C(O) ⊆ C(O′)).
C(O) determines the largest object set with the same common attributes as O.
It turns out that the lattice elements’ extents are precisely the closed sets under
C. If we have computed all the extents (that is, computed the closure system
{C(O) | O ⊆ O}), the corresponding intents are determined using σ, and the
lattice, together with its partial order as defined above, is complete.

Ganter’s algorithm requires that 2O is totally ordered (e.g., by numbering the
objects and using the lexicographical order for object sets). The algorithm enumer-
ates object sets according to the lexicographical order, and applies C. The process
starts with C(∅), which determines the extent of the bottom element. Once an ex-
tent has been found, its lexicographical successors are enumerated and C is applied,
until the next extent (in lexicographic order) is found.

Construction of concept lattices and implication bases has typical time complex-
ity O(n3) for an n × n table, but can be exponential in the worst case. Empirical
studies show that even for large tables, exponential behavior is extremely rare
[Snelting 1996]. In fact, it can be shown that if the number of attributes for every
object is bounded (which is true for most applications, including the one in the
current article), the lattice size is linear in the number of table entries [Godin et al.
1998]. In practice, Ganter’s algorithm needs less than a second for 2000-element
lattices on a standard workstation [Snelting 1996].

Generation of the minimal implication base has the same complexity as gener-
ation of the lattice, and the number of base implications is of the same order of
magnitude as the number of lattice elements.

If a row or column is added to a table, the lattice for the original table is a sub-
lattice of the lattice for the extended table, and the new lattice can be constructed
incrementally from the old one. The minimal implication base can be constructed
in an incremental manner as well [Ganter and Wille 1999].

There is much more to say about concept lattices, their structure theory, and re-
lated algorithms and methodology. Davey and Priestley’s book [Davey and Priestley
1990] contains a chapter on elementary concept analysis. Ganter and Wille [Ganter
and Wille 1999] treat the topic in depth.

3. OBJECTS AND ATTRIBUTES

Roughly speaking, the objects and attributes in our domain are variables and class
members, respectively, and the table that will be constructed in Section 4 identifies
for each variable which members must be included in its type. Before we can define

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

the objects and attributes more precisely, we need to introduce some terminology.
In what follows, P denotes a program containing a class hierarchy, or a collection
of programs that share a class hierarchy. Further, v, w, . . . denote the variables in
P whose type is a class, and p, q, . . . the variables in P whose type is a pointer
to a class (references can be treated similarly, and we omit their formalization in
the present article). Expressions are denoted by x, y, We will henceforth use
“variables” to refer to variables as well as parameters. In the definitions that follow,
TypeOf(P , x) denotes the type of expression x in P . In this article, we will assume
that each expression has a single static type. Accommodating C-style unions and
generic types will be discussed in Section 11.1.

The objects of our domain are the program variables through which the class
hierarchy is accessed. Variables whose type is (pointer to) built-in can be ignored
because the class hierarchy can only be accessed through variables whose type is
class-related (i.e., variables whose type is a class, or a pointer to a class). Definition 1
below defines sets of variables ClassVars and ClassPtrVars whose type is a class,
and a pointer to a class, respectively. In Section 6.1, we will discuss how to model
heap-allocated objects. Note that ClassPtrVars includes implicitly declared this
pointers of methods. In order to distinguish between this pointers of different
methods, we will henceforth refer to the this pointer of method A::f() by the fully
qualified name of its method, i.e., A::f.

Definition 1. Let P be a program. Then, the set of class-typed variables and
the set of pointer-to-class-typed variables are defined as follows:

ClassVars(P) ,
{ v | v is a variable in P , TypeOf(P , v) = C, for some class C in P }

ClassPtrVars(P) ,
{ p | p is a variable in P , TypeOf(P , ∗p) = C, for some class C in P }

The attributes of our domain are class members. Following the definitions of Tip
and Sweeney [1997; 2000], we will distinguish between definitions and declarations
of members. We define these terms as follows. The definition of a member comprises
a member’s signature (interface) as well as the executable code in its body, whereas
the declaration of a member only represents its signature. This distinction is needed
for accurately modeling virtual method calls. Consider a call to a virtual method
f from a pointer p. In this case, only the declaration of f needs to be contained in
p’s type in order to be able to invoke f ; the body of f does not need to be statically
visible to p.5 Naturally, a definition of f must be visible to the object that p points
to at run-time, so that the dynamic dispatch can be executed correctly.

Definition 2 (shown below) defines sets MemberDcls(P) and MemberDefs(P) of
member declarations and member definitions in P. We distinguish between declara-
tions and definitions of virtual methods for the reasons stated above. For nonvirtual
methods, making this distinction is not necessary because the full definition of a
nonvirtual method must always be statically visible to the caller. Therefore, non-

5Our objective is to identify the smallest possible set of member declarations and definitions that
must be included in the type of any variable. Including the definition of f in ∗p’s type may lead
to the incorporation of members that are otherwise not needed (in particular, members accessed
from f ’s this pointer).

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

class A {
public:

virtual int f(){ return g(); };
virtual int g(){ return x; };
int x;
};
class B : public A {
public:

virtual int g(){ return y; };
int y;
};
class C : public B {
public:

virtual int f(){ return g() + z; };
int z;
};

int main(){
A a; B b; C c;
A *ap;
if (...) { ap = &a; }
else { if (...) { ap = &b; }

else { ap = &c; } }
ap->f();
return 0;
}

Fig. 4. Example program P1.

virtual methods are modeled using definitions only. Data members are modeled as
declarations because they have no this pointer from which other members can be
accessed.

Definition 2. Let P be a program. Then, we define the set of member declara-
tions and member definitions as follows:

MemberDcls(P) ,
{ dcl(C::m) |m is a data member or virtual method in class C }

MemberDefs(P) ,
{ def(C::m) |m is a virtual or nonvirtual method in class C }

Example. Figure 4 shows a program P1 that will be used as a running example.
For P1, we have

ClassVars(P1) ≡ { a, b, c }
ClassPtrVars(P1) ≡ { ap, A::f, A::g, B::g, C::f }
MemberDcls(P1) ≡ { dcl(A::f), dcl(A::g), dcl(A::x), dcl(B::g),

dcl(B::y), dcl(C::f), dcl(C::z) }
MemberDefs(P1) ≡ { def(A::f), def(A::g), def(B::g), def(C::f) }

In Section 6.2, we will discuss how class-typed data members (which behave like
variables because other members can be accessed from them) are modeled.

4. TABLE CONSTRUCTION

This section describes how tables and lattices are constructed. Recall that the
purpose of the table is to record for each variable the set of members that are used.
A few auxiliary definitions will be presented first, in Section 4.1.

4.1 Auxiliary Definitions

For each variable v in ClassPtrVars(P) we will need a conservative approximation of
the variables in ClassVars(P) variables that v may point to. Any of several existing
algorithms [Andersen 1994; Choi et al. 1993; Pande and Ryder 1996; Steensgaard
1996; Shapiro and Horwitz 1997; Das 2000] can be used to compute this information,
and we do not make assumptions about the particular algorithm used to compute

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

points-to information. Definition 3 expresses the information supplied by some
points-to analysis algorithm as a set PointsTo(P), which contains a pair 〈p, v〉 for
each pointer p that may point to a class-typed variable v.

Definition 3. Let P be a program. Then, the points-to information for P is
defined as follows:

PointsTo(P) , { 〈p, v〉 | p ∈ ClassPtrVars(P), v ∈ ClassVars(P), p may point to v }

Example. We will use the following points-to information for program P1. Recall
that X ::f denotes the this pointer of method X ::f().

PointsTo(P1) ≡
{ 〈ap, a〉, 〈ap, b〉, 〈ap, c〉, 〈A::f, a〉, 〈A::f, b〉, 〈C::f, c〉, 〈A::g, a〉, 〈B::g, b〉, 〈B::g, c〉 }

Note that the following simple algorithm suffices to compute the information for
this example: for each pointer p of type ∗X , assume that it may point to any object
of type Y , such that (i) Y = X or Y is a class transitively derived from X , and
(ii) if p is the this pointer of a virtual method C::m, no overriding definitions of
m are visible in class Y .

We will use the following terminology for function and method calls. A direct
call is any call to a function or a nonvirtual method, or an invocation of a virtual
method from a variable in ClassVars(P). An indirect call is an invocation of a
virtual method from a variable in ClassPtrVars(P) (requiring a dynamic dispatch).

4.2 Table Entries for Member Access Operations

Table T has a row for each element of ClassVars(P) and ClassPtrVars(P), and a
column for each element of MemberDcls(P) and MemberDefs(P). Informally, an
entry (y, dcl(A::m)) appears in T iff the declaration of m is contained in y’s type,
and an entry (y, def(A::m)) appears in T iff the definition of m is contained in y’s
type. We begin by adding entries to T that reflect the member access operations
in the program. Definition 4 below defines a set MemberAccess(P) of all pairs
〈m, y〉 such that member m is accessed from variable y. For an indirect call p →
f(y1, . . . , yn), we also include an element 〈f, y〉 in MemberAccess(P) for each
〈p, y〉 ∈ PointsTo(P).

Definition 4. Let P be a program. Then, the set of member access operations
in P is defined as follows:

MemberAccess(P) ,
{ 〈m, v〉 | v.m occurs in P , m is a class member in P , v ∈ ClassVars(P) } ∪
{ 〈m, ∗p〉 | p→ m occurs in P, m is a class member in P,

p ∈ ClassPtrVars(P) } ∪
{ 〈m, y〉 | p→ m occurs in P , 〈p, y〉 ∈ PointsTo(P),m is a virtual method in P }

Example. For program P1 of Figure 4, we have

MemberAccess(P1) ≡
{ 〈x, *A::g〉, 〈y, *B::g〉, 〈z, *C::f〉, 〈g, *A::f〉, 〈g, *C::f〉,
〈f, *ap〉, 〈f, a〉, 〈f, b〉, 〈f, c〉, 〈g, a〉, 〈g, b〉, 〈g, c〉 }

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

Accessing a class member is not an entirely trivial operation because different
classes in a class hierarchy may contain members with the same name (or signature).
Furthermore, in the presence of multiple inheritance, an object may contain multiple
subobjects of a given type C, and hence multiple members C::m. This implies that
whenever a member m is accessed, one needs to determine whichm is being selected.
This selection process is defined informally in the C++ Draft Standard [Accredited
Standards Committee X3 1997] as a set of rules that determine when a member
hides or dominates another member with the same name. Rossie and Friedman
[1995] provided a formalization of the member lookup, as a function on subobject
graphs. This framework has subsequently been used by Tip et al. as a formal basis
for operations on class hierarchies such as slicing [Tip et al. 1996] and specialization
[Tip and Sweeney 1997; 2000].

For the purposes of the present article, we will assume the availability of a func-
tion static-lookup which, given a class C and a member m, determines the base
class B (B is either C, or a transitive base class of C) in which the selected member
is located.6 For details on function static-lookup, the reader is referred to Rossie
and Friedman [1995] and Tip et al. [1996].

We are now in a position to state how the appropriate relations between variables
and declarations and definitions should be added to the table:

Definition 5. Let P be a program with associated table T . Then, the following
entries are added to the table due to member access operations that occur in the
program.

〈m, y〉 ∈MemberAccess(P), m ∈ DataMembers(P),
X ≡ static-lookup(TypeOf(P , y),m)

(y, dcl(X ::m)) ∈ T

〈m, y〉 ∈ MemberAccess(P), m ∈ NonVirtualMethods(P),
X ≡ static-lookup(TypeOf(P , y),m)

(y, def(X ::m)) ∈ T

〈m, y〉 ∈ MemberAccess(P), m ∈ VirtualMethods(P),
y ≡ ∗p, p ∈ ClassPtrVars(P),

X ≡ static-lookup(TypeOf(P , y),m)
(y, dcl(X ::m)) ∈ T

〈m, y〉 ∈ MemberAccess(P), m ∈ VirtualMethods(P),
y ≡ v, v ∈ ClassVars(P),

X ≡ static-lookup(TypeOf(P , y),m)
(y, def(X ::m)) ∈ T

6In Rossie and Friedman [1995] and Tip et al. [1996], static-lookup is defined as a function from
subobject to subobjects. Since the present article is only concerned with the classes in which
members are located, we will simply ignore all subobject information below.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

Table I. Initial Table for Program P1 of Figure 4. Arrows
indicate implications due to assignments (see Section 4.4).

a

d
c
l
(
A
:
:
f
)

d
c
l
(
A
:
:
g
)

d
c
l
(
A
:
:
x
)

d
e
f
(
A
:
:
f
)

d
e
f
(
A
:
:
g
)

d
c
l
(
B
:
:
g
)

d
c
l
(
B
:
:
y
)

d
e
f
(
B
:
:
g
)

d
c
l
(
C
:
:
z
)

d
e
f
(
C
:
:
f
)

b

c

*ap

*A::f

*A::g

*B::g

*C::f

4.3 Table Entries for this Pointers

The next table construction rule we will present is concerned with this pointers of
methods. Consider the fact that for each method C::f(), there is a column in the
table labeled def(C::f), and a row labeled ∗C::f . The former is used to express the
fact that method C::f() may be called from objects. The latter is necessary to reflect
members being accessed from method C::f()’s this pointer. Unless precautions are
taken, the attribute def(C::f) and the object ∗C::f may appear at different points
in the lattice, though γ(∗C::f) ≥ µ(def(C::f)) must always hold.7 In such cases,
our method effectively infers that the type of a this pointer could be a base class of
the type in which method C::f occurs (and therefore be less constrained). However,
in reality, the type of a method’s this pointer is determined by the class in which
the associated method definition appears.

The table entries added by Definition 6 will force a method’s attribute and a
method’s this pointer to appear at the same lattice element, by ensuring γ(∗C::f) ≤
µ(def(C::f)). This will allow us later to remove rows for this pointers from the
table when constructing the lattice.

Definition 6. Let P be a program. Then, the following entries are added to the
table:

def(C::m) ∈ MemberDefs(P)
(∗C::m, def(C::m)) ∈ T

Example. Table I shows the table for program P1 of Figure 4 after adding the
entries according to Definitions 5 and 6. The purpose of the arrows at the side of
the table will be explained in Section 4.4.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

Table II. Table after application of Assign-
ment Implications. Arrows indicate implications
for preserving hiding/dominance among mem-
bers with the same name (see Section 4.5).

d
c
l
(
A
:
:
f
)

d
c
l
(
A
:
:
g
)

d
c
l
(
A
:
:
x
)

d
e
f
(
A
:
:
f
)

d
e
f
(
A
:
:
g
)

d
c
l
(
B
:
:
g
)

d
c
l
(
B
:
:
y
)

d
e
f
(
B
:
:
g
)

d
c
l
(
C
:
:
z
)

d
e
f
(
C
:
:
f
)

c

*ap

*A::f

*A::g

*C::f

a

*B::g

b

4.4 Table Entries for Assignments

Consider an assignment x = y, where x ≡ v and y ≡ w, for some class-typed
variables v, w ∈ ClassVars(P). Such an assignment is only valid if the type of x is
a base class of the type of y. Consequently, any member declaration or definition
that occurs in x’s type must also occur in y’s type. We will enforce this constraint
using an implication from the row for x to the row for y. However, we will begin
by formalizing the notion of an assignment.

Definition 7 below defines a set Assignments(P) that contains a pair of objects
〈v, w〉 for each assignment v = w in P where v and w are class-typed. In ad-
dition, Assignments(P) also contains entries for cases where the type of the left-
hand side and/or the right-hand side of the assignment are a pointer to a class.
Parameter-passing in direct calls to functions and methods is modeled by way of
assignments between corresponding formal and actual parameters. For an indirect
call p→ f(y1, . . . , yn), Assignments(P) contains additional elements that model the
parameter-passing in the direct call x.f(y1, . . . , yn), for each 〈p, x〉 ∈ PointsTo(P).
That is, we conservatively approximate the potential targets of dynamically dis-
patched calls. The set Assignments(P) will also contain elements for implicit pa-
rameters such as this pointers of methods and function/method return values
whose type is class-related.

Definition 7. Let P be a program. Then, the set of assignments between vari-

7See Appendix.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

class A { m(); ...};

class B : A { m(); ...};

A a; B b; B c;

a.m(); b.m(); c.m();

a = b;

A::m B::m

b

a

c
b

A::m B::m
ca

B::m

a
b

a

c

A::m

B::m

A::m

b,c

Fig. 5. Effect of dominance rules.

ables whose type is a (pointer to a) class is defined as follows:

Assignments(P) ,
{ 〈v, w〉 | v = w occurs in P, v, w ∈ ClassVars(P) } ∪
{ 〈∗p, w〉 | p = &w occurs in P, p ∈ ClassPtrVars(P), w ∈ ClassVars(P) } ∪
{ 〈∗p, ∗q〉 | p = q occurs in P, p, q ∈ ClassPtrVars(P) } ∪
{ 〈∗p, w〉 | ∗p = w occurs in P, p ∈ ClassPtrVars(P), w ∈ ClassVars(P) } ∪
{ 〈v, ∗q〉 | v = ∗q occurs in P , v ∈ ClassVars(P), q ∈ ClassPtrVars(P) } ∪
{ 〈∗p, ∗q〉 | ∗p = ∗q occurs in P, p, q ∈ ClassPtrVars(P) }

Example. For program P1 of Figure 4, we have

Assignments(P1) ≡
{ 〈*ap, a〉, 〈*ap, b〉, 〈*ap, c〉, 〈*A::f, a〉, 〈*A::f, b〉,
〈*C::f, c〉, 〈*A::g, a〉, 〈*B::g, b〉, 〈*B::g, c〉 }

We are now in a position to express how elements should be added to the table
due to assignments. Definition 8 states this as an implication, which tells us how
elements should be copied from one row to another.

Definition 8. Let P be a program with associated table T . Then, the following
implications must be encoded in the table due to assignments that occur in P:

〈x, y〉 ∈ Assignments(P)
x→ y

Note that assignment implications are implications between “objects” (in the
sense of concept analysis); hence an assignment implication x → y causes x to
appear above y (i.e., γ(x) ≥ γ(y)) in the lattice. Cyclic assignments will generate
cyclic implications, which will collapse the corresponding lattice elements into one
point: all the involved variables must have the same type.

Example. For program P1 of Figure 4, the following assignment implications are
generated:

*ap→ a, *ap→ b, *ap→ c, *A::f→ a, *A::f→ b,
*C::f→ c, *A::g→ a, *B::g→ b, *B::g→ c

These implications are indicated on the left side of Table I. Table II is obtained by
copying the elements from the “source row” to the “target row” according to each
of these implications.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

4.5 Table Entries for Preserving Dominance/Hiding

The table thus far encodes for each variable the members contained in its type
(either directly because a member is accessed from that variable, or indirectly due
to assignments between variables). However, in the original class hierarchy, an ob-
ject’s type may contain more than one member with a given name. In such cases,
the member lookup rules of [Accredited Standards Committee X3 1997] determine
which member is accessed. This is expressed as a set of rules that determine when
a member hides or dominates another member with the same name. In cases where
a variable contains two members m that have a hiding relationship in the original
class hierarchy, this hiding relationship must be preserved: we are interested in gen-
erating a restructured hierarchy from the table, and the member access operations
in the program might otherwise become ambiguous. Definition 9 incorporates the
appropriate hiding/dominance relations into the table, using implications between
attributes:

Definition 9. Let P be a program with associated table T . Then, the following
implications are incorporated into T in order to preserve hiding and dominance:

(x, dcl(A::m)) ∈ T, (x, dcl(B::m)) ∈ T,
A is a transitive base class of B

dcl(B::m)→ dcl(A::m)

(x, dcl(A::m)) ∈ T, (x, def(B::m)) ∈ T,
A = B or A is a transitive base class of B

def(B::m)→ dcl(A::m)

(x, def(A::m)) ∈ T, (x, def(B::m)) ∈ T,
A is a transitive base class of B

def(B::m)→ def(A::m)

(x, def(A::m)) ∈ T, (x, dcl(B::m)) ∈ T,
A is a transitive base class of B

dcl(B::m)→ def(A::m)

Dominance implications are implications between “attributes” (in the sense of
concept analysis); hence a dominance implication B::m→ A::m will cause B::m to
appear below A::m (i.e., µ(B::m) ≤ µ(A::m)) in the lattice. Due to the condition “A
is a (transitive) base class of B,” dominance implications always connect subclass
members to superclass members and cannot contain cycles (if A = B, a one-point
“cycle” is generated). Note the symmetry between assignment implications and
dominance implications: the former are implications between rows (objects) and
serve to preserve behavior of subobject selection; the latter are implications between
columns (attributes) and serve to preserve behavior of member lookup. Figure 5
demonstrates the effect of the dominance rules: subclass B of class A redefines
method m. In the table, the implication due to assignment a = b; forces row a to
be added to row b. But now the member access b.m() has become ambiguous: the
row for b contains entries for both A::m and B::m. According to the dominance
rules, an implication B::m→ A::m is generated, which adds entry (b, A::m) to the

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

d
c
l
(
A
:
:
f
)

d
c
l
(
A
:
:
g
)

d
c
l
(
A
:
:
x
)

d
e
f
(
A
:
:
f
)

d
e
f
(
A
:
:
g
)

d
c
l
(
B
:
:
g
)

d
c
l
(
B
:
:
y
)

d
e
f
(
B
:
:
g
)

d
c
l
(
C
:
:
z
)

d
e
f
(
C
:
:
f
)

b

c

*ap

*A::f

*A::g

*B::g

*C::f

a

dcl(A::x)

b ac

def(B::g)

dcl(A::f)

dcl(A::g)

*ap

dcl(B::g)

def(A::f)

dcl(C::z)
def(C::f)

dcl(B::y)

def(A::g)

Fig. 6. Final table and lattice for program P1, after removing the rows labeled *A::f, *A::g, *B::g,
and *C::f..

table. The corresponding lattice is a two-element chain and thus reproduces the
original hierarchy, thereby reestablishing the dominance of B::m over A::m.

Example. For program P1, the following dominance implications are generated:

def(A::f)→ dcl(A::f) def(A::g)→ dcl(A::g) def(B::g)→ dcl(A::g)
dcl(B::g)→ dcl(A::g) def(B::g)→ dcl(B::g) def(C::f)→ dcl(A::f)

These implications are shown at the bottom of Table II. After incorporating these
implications, the table in Figure 6 results.

Remark. Observe that the implication def(B::g)→ dcl(A::g) only becomes neces-
sary after propagating table elements according to the other implications.

5. THE NEW HIERARCHY

5.1 Lattice Construction

Since the assignment implications can generate new dominance implications and
vice versa, a fixpoint iteration is necessary in order to compute the final table.
This algorithm is described in Section 8. After the table has converged, the lattice
is constructed using Ganter’s algorithm (see Section 2). As explained above, it can
be interpreted directly as a new class hierarchy.

There is one issue concerning pointers that deserves mentioning. Recall that in
Section 4.3 table entries were added to ensure that method definitions and their
this pointers show up at the same lattice element. In order to avoid presenting
redundant information to the user, we will henceforth omit this pointers from the
lattice. The easiest way to accomplish this is to remove the rows for this pointer
variables to the table prior to generating the lattice. Note that rows for this
pointers cannot be left out during table construction because they are needed to
model member accesses from this pointers, and the elements in such rows may be
involved in implications due to assignments and dominance relations.

Example. Figure 6 shows the lattice for program P1, generated from the final
table after removing the rows labeled *A::f, *A::g, *B::g, and *C::f. The lattice can
be interpreted directly as a new class hierarchy. It demonstrates that a does not
access B::y and C::z, while b and c do not access A::x and b does not access
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

C::z. Similarly, the lattice shows the fine-grained differences in method access: for
example, c does not need def(A::f) and def(A::g). Thus a, b, c will receive new
types. The program statements are unchanged, but according to the new hierarchy,
both b and c have become smaller.

Note that from a space optimization viewpoint, the lattice can be simplified fur-
ther: for example, the two topmost elements could be merged (as they only contain
method declarations), and even the edge b ↔ def (A::f) could be merged with the
parallel edge. Tip and Sweeney [2000] discuss such “peephole optimizations” in
detail.

5.2 Properties of the Lattice

The lattice, being a concept lattice, enjoys several important properties [Ganter
and Wille 1999]:

—The lattice is the smallest lattice compatible with the table and thus can be order-
embedded into any other lattice compatible with the table. In fact, if the table
represents a partial order, then the lattice is the Dedekind-McNeill completion
of this partial order. Hence, the lattice is minimal.

—Attribute labels of lattice elements always occur as far upward in the lattice as
possible (see Section 2). Since attribute labels correspond to members in the
classes of the new hierarchy, common members are factored out as much as pos-
sible. The same applies to common variables, which are factored out downward
as much as possible. Therefore the lattice is maximally factorized.

More important than minimality and maximal factorization are semantic prop-
erties of the lattice. In Tip and Sweeney [2000] it was proved that the assignment
constraints and the dominance constraints guarantee

—preservation of assignment behavior : every assignment will select the same sub-
object from the right-hand-side object as in the original program;

—preservation of lookup behavior : every method call will select the same method
definition via dynamic lookup as in the original program.

The lattice, interpreted as a new class hierarchy, respects all assignment and
dominance constraints by construction. Furthermore, by construction, in the new
hierarchy a member is visible to an object if and only if the object accesses the
member. Since the statements of the program are unchanged, we thus can guaran-
tee that the new hierarchy is operationally equivalent to the old one. This fact is
explained in more detail in Tip and Sweeney [2000].

The lattice may contain elements which are neither labeled with an attribute nor
an object (e.g., the center element in Figure 3). Such elements are called “empty”
and serve merely to group the members of other classes. In our application, an
empty element C corresponds to a class which neither has any members, nor does
any variable have type C in the new hierarchy. Section 7 will explain how to
eliminate empty elements.

Remember that rows for this pointers have been removed from the final table
without semantic effect. A similar simplification can be applied to pointers in
general. The lattice may be very fine-grained due to access patterns of pointers
which basically have the same type, but access different members. Since a pointer

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

will always appear above any object it may point to (see proof in the Appendix),
rows for pointers can safely be removed from the final table. The pointers can
then be given the same type as the objects they point to—which still guarantees
operational equivalence, since any pointer may still access all members it needs.8

Of course, pointer rows are essential during table generation, as explained above
for the special case of this pointers.

How does the final lattice depend on the precision of the points-to analysis? Since
any points-to analysis computes a conservative approximation, different analyses
differ only with respect to the row entries they generate for pointer variables: the
more precise the points-to analysis, the less entries any pointer row will have. That
is, if table T1 has been generated using a more precise points-to analysis than for
table T2, we have (o, a) ∈ T1 ⇒ (o, a) ∈ T2. By the fundamental property (o, a) ∈
T1,2 ⇐⇒ γ1,2(o) ≤ µ1,2(a), hence γ1(o) ≤ µ1(a)⇒ γ2(o) ≤ µ2(a), thus L(T1) can
be order-embedded into L(T2). In T1,2, any possible pointer row is a superset of a
“minimal row” for that pointer, which corresponds to the (undecidable) limit case
of precise points-to analysis. By the above embedding, the lattice for the limit case
can be found as a substructure in every actual lattice.

6. LANGUAGE DETAILS

The basic process for constructing tables and lattices, as described in the previous
section, did not address a number of language features, that are not core issues, but
that are indispensable in practice. This section addresses a number of such issues.

6.1 Heap Allocation

We handle heap-allocated objects in a straightforward way by simply treating each
allocation site in the program as a class-typed variable (e.g., an element of the set
ClassVars). For the program of Figure 1, there are four such allocation sites, which
we refer to as Student1, Student2, Professor1, and Professor2. In principle,
more sophisticated context-sensitive analyses could be used to distinguish heap-
allocated objects in different calling contexts, but we expect the benefits of this
additional precision to be limited.

6.2 Modeling Nested Objects

The treatment of class-related data members (i.e., data members whose type is
class-related such as Student::advisor in Figure 1) is an important issue. Like
data members of built-in types, class-related data members can be accessed from
variables and are therefore modeled as attributes. However, since other members
may be accessed from a class-related data member, such data members play an
alternate role as objects.

In order to clarify the issues involved in the reengineering of such “nested” struc-
tures, consider a class C that contains a data member m whose type is some class
D. Then, the following information about m is made explicit in the concept lattice:

—The set of variables in which m is contained. This is modeled by treating m as
an “attribute” a. Any object that occurs below a in the lattice contains m.

8More precisely, the pointer is given the supremum type of all object types it may point to; this
supremum also exists in the reduced lattice and is still below the pointer’s type in the full lattice.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

class StudList {
public:
Student elem;
StudList *next;
Address lookup(long SId){

if (elem.studentId==SId)
return elem.address;

else
return
next->lookup(SId);

}
}

dcl(Person::address)
dcl(Student::studentId)

SId

StudList::elem

def(StudList::lookup)
dcl(*StudList::next)
dcl(StudList::elem)

*StudList::next

StudList::elem

*StudList::next

SId

*StudList::lookup

d
e
f
(
S
t
u
d
L
i
s
t
:
:
l
o
o
k
u
p
)

d
c
l
(
*
S
t
u
d
L
i
s
t
:
:
n
e
x
t
)

d
c
l
(
S
t
u
d
L
i
s
t
:
:
e
l
e
m
)

d
c
l
(
P
e
r
s
o
n
:
:
a
d
d
r
e
s
s
)

d
c
l
(
S
t
u
d
e
n
t
:
:
s
t
u
d
e
n
t
I
d
)

(a) (b) (c)

Fig. 7. Analyzing a linked list of students.

—The set of members contained in the type of m. This is modeled by treating the
type of m as an “object” o. The set of members contained in o corresponds to
the attributes that occur above o in the lattice. This set of members is a subset
of the members of D in the original class hierarchy.

Note that the “attribute view” of m corresponds exactly to the way we previ-
ously modeled data members with a built-in type, whereas the “object view” of m
corresponds exactly to the way we previously modeled variables. The definitions
that are concerned with variables therefore apply to class-related data members as
well, and for convenience we will henceforth assume the term “variable” to include
class-related data members.

Figure 7(a) shows an example that illustrates the issues related to class-related
data members. Here, the program of Figure 1 is extended with a linked list of
students. Observe that the data members address and studentId are accessed
from the elem member of a student list, and that the lookup method of class
StudList is accessed from the next data member. The data members elem and
next are accessed from method lookup’s this pointer, and as usual, a table entry
is added for the associated method definition of lookup. Furthermore, there is an
assignment implication *StudList::lookup = next due to the recursive call.

Figure 7(b) shows the table after applying this implication, and Figure 7(c) shows
the associated lattice. Let us call the left element Student′ and the right element
StudList′, as suggested by their labels. Both next resp. elem show up twice in
the lattice. Student′ shows that the type of StudList::elem must be Student′;
StudList′ shows that the member StudList::elem must be located within class
StudList′. Similar observations are valid for next: it must be located in StudList′

and has type StudList′—as to be expected. The example thus illustrates the dual
role of class-typed data members: the lattice will not only display their type, but
also their position in the class hierarchy.

6.3 Modeling Constructors

Constructors require special attention. A constructor generally initializes all data
members contained in an object. If no constructor is provided by the user, a

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

class O {
...

};

class A extends O {
...

};

class B extends O {
...

};

class Example {
public static void main(String args[]){
A a = new A();
O o = a;

if (o instanceof A){
/* reached */

}

if (o instanceof B){
/* unreached */

}

A a2 = (A)o; /* succeeds */
B b = (B)o; /* ClassCastException */

}
}

class O {
boolean isA(){ return false; };
boolean isB(){ return false; };
A toA(){ throw new ClassCastException(); };
B toB(){ throw new ClassCastException(); };

};

class A extends O {
boolean isA(){ return true; };
A toA(){ return this; };
...

};

class B extends O {
boolean isB(){ return true; };
B toB(){ return this; };
...

};

class Example {
public static void main(String args[]){

A a = new A();
O o = a;

if (o.isA()){
/* reached */

}

if (o.isB()){
/* unreached */

}

A a2 = o.toA(); /* succeeds */
B b = o.toB(); /* ClassCastException */

}
}

(a) (b)

Fig. 8. (a) Example Java program that uses type cast and instanceof operations. (b) Equivalent
Java program after transforming away instanceof and cast operations.

so-called default constructor is generated by the compiler, which performs the nec-
essary initializations. The compiler may also generate a call to a constructor in
certain cases. Modeling these compiler-generated actions as member access op-
erations would lead us to believe that each member m of class C is needed in
all C-instances, even in cases where the only access to m consists of its (default)
initialization. Compiler-generated constructors, compiler-generated initializations,
and compiler-generated calls to constructors will therefore be excluded from the set
of member access operations. Destructors can be handled similarly.

6.4 Type Casts and Type Test Operations

Modern object-oriented languages such as Java provide language features for testing
the run-time type of an object, or down-casting an object to a derived type. Since
these operations are used heavily, any realistic implementation will need to deal
with them. Note that a “catch” statement also may perform implicit type test
operations.

Our approach to dealing with type cast and instance-of operations will be to
transform them into a semantically equivalent piece of code consisting of only vir-
tual method calls and exception-handling constructs. We will outline these trans-
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

formations for the cast and instanceof operations as they are used in Java. In
Java, these operations have the following semantics:

—An expression e instanceof C evaluates to true if the run-time type of the
object pointed to by reference e is C or a subclass of C. Otherwise, the expression
evaluates to false.

—A cast-expression (C)e evaluates to an expression e with static type C if the
run-time type of e is C or a subclass of C. Otherwise, an exception of type
ClassCastException is thrown.

Our strategy for transforming instanceof-expressions will be as follows.9 For
each type C, we introduce a method isC() in the root class O of the hierarchy.
This method has return type boolean, and the default definition of isC() in class
O returns false. Class C provides an overriding definition10 of isC() that returns
true. Now, every expression of the form e instanceof C is transformed into
e.isC(). One can see easily that the expressions e instanceof C and e.isC()
return true under exactly the same conditions.

Cast expressions are transformed in a similar manner. For each type C, we
introduce a method toC() in the root class O of the hierarchy. This method has
return type C, and the default definition of isC in class O throws an exception of
type ClassCastException. Class C provides an overriding definition of toC() that
returns this. Now, every expression of the form (C)e is transformed into e.toC().
It can easily be seen that the expressions (C)e and e.toC() succeed under exactly
the same conditions.

Figure 8(a) shows an example program containing various instanceof and down-
cast expressions. Figure 8(b) shows the program after transforming away all these
expressions. After eliminating all cast and instanceof expressions, the resulting
program can be processed with the techniques presented in the previous section.

After generating the lattice, the artificial isC() and toC() methods can easily be
transformed back into cast and instanceof operations if the reengineer desires to
do so. As an example, we will outline how toC() methods can be transformed back
into cast operations in the transformed class hierarchy. Let x be the lattice element
labeled def(C.toC()), and suppose that class name X has been associated with
this lattice element. Then e.toC() can be transformed into (X)e.

6.5 Exceptions

Exception-handling constructs give rise to additional control flow, additional assign-
ments between the thrown object and the parameter in a matching catch clause,
and additional instanceof expressions11, but do not influence member access pat-
terns. Therefore, the previously discussed mechanisms suffice. Note, however, that
the abundance of (implicit or explicit) exceptions in Java complicates points-to
analysis, and one might think of adopting factored control flow graphs [Choi et al.
1999] for our analysis.

9This transformation was proposed by M. Streckenbach.
10In cases where the target type C is an interface, this overriding definition should not be placed
in C itself, but in all classes that implement C.
11A catch clause catch (E e){ · · · } implicitly performs a run-time type test e instanceof E.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

6.6 Arrays

Arrays are treated as monolithic variables, and we do not distinguish between dif-
ferent array elements. One might think of integrating a fine-grained array analysis,
such as the Omega test [Pugh and Wonnacot 1998].

However, fine-grained array analysis may also reduce analysis precision in case
of mixed co- and contravariance. In Java, arrays are covariant: A ≤ B implies
A[] ≤ B[]. If Java would allow fully contravariant method overriding (which it does
not), we would have dom(fA) ≥ dom(fB) for any B-method f redefined in A. Our
approach is to translate array accesses into predefined method calls a.store(i, x)
and a.access(i).12 Thus, by contravariance for store’s second argument we would
obtain A = dom(storeA[])[2] ≥ dom(storeB[])[2] = B. Hence, we suddenly have
A ≤ B as well as B ≤ A, collapsing lattice elements and hiding fine-grained access
patterns.

6.7 Dynamic Class Loading

Java offers a mechanism for dynamic loading of classes, as well as some reflective
devices. For example, it is possible to construct a string at run-time, interpret
that string as the name of a class, and create an object of that type. Similarly,
methods can be invoked by supplying run-time values that represent their name
and signature. Since reflection and dynamic loading access a program construct
via its name, it limits our capabilities for manipulating the class hierarchy—any
component that is accessed via reflection has to be preserved. In general, it is im-
possible to determine the program constructs that are accessed by way of reflection
and dynamic loading because run-time values are used. Therefore, it is clear that
in the absence of additional information, worst-case assumptions have to be made
that would result in a massive loss of analysis precision.

However, in many cases dynamic loading is not used in an arbitrary way. For
example, the jEdit program (see Section 9.3) uses dynamic class loading just for
configuration management: in order to tailor the program to a specific context,
some classes from a statically determined set of classes are loaded dynamically. In
such cases, the complete set can be analyzed together with the rest of the program,
retaining analysis precision.

A general solution would be to rely on additional input from the user that specifies
where reflection and dynamic loading are used in an application. Sweeney and
Tip [2000] present a small specification language for providing information about
reflective features in the context of an application extraction tool [Tip et al. 1999],
which could be adapted for our purposes in principle. Of course, in cases where
incorrect or incomplete information is provided, operational equivalence is lost.
However, it is possible to insert run-time checks in the generated code to catch
such problems quickly.

6.8 Multiple Subobjects

If an object x contains multiple subobjects of some type C (due to the use of
nonvirtual multiple inheritance), our tables do not make a distinction between the

12This transformation is similar to the transformations for typecasts and instanceof expressions
described above.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

Table III. Final Table for the Student/Professor Example

*Professor::Professor

d
c
l
(
P
e
r
s
o
n
:
a
d
d
r
e
s
s
)

*s1

*s2

*p1

*p2

*s

*p

Student1

d
c
l
(
P
e
r
s
o
n
:
:
n
a
m
e
)

d
c
l
(
P
e
r
s
o
n
:
:
s
o
c
i
a
l
s
e
c
u
r
i
t
y
N
u
m
b
e
r
)

d
c
l
(
S
t
u
d
e
n
t
:
:
s
t
u
d
e
n
t
i
I
d
)

d
c
l
(
S
t
u
d
e
n
t
:
:
a
d
v
i
s
o
r
)

d
c
l
(
P
r
o
f
e
s
s
o
r
:
:
f
a
c
u
l
t
y
)

d
c
l
(
P
r
o
f
e
s
s
o
r
:
:
w
o
r
k
A
d
r
e
s
s
)

d
c
l
(
P
r
o
f
e
s
o
r
:
:
a
s
s
i
s
t
a
n
t
)

d
e
f
(
S
t
u
d
e
n
t
:
:
S
t
u
d
e
n
t
)

d
e
f
(
S
t
u
d
e
n
t
:
:
s
e
t
A
d
v
i
s
o
r
)

d
e
f
(
P
r
o
f
e
s
s
o
r
:
:
P
r
o
f
e
s
s
o
r
)

d
e
f
(
P
r
o
f
e
s
s
o
r
:
:
h
i
r
e
A
s
s
i
s
t
a
n
t
)

Professor1

Professor2

*advisor

*assistant

*Student::Student

*Student::setAdvisor

Student2

*Professor::hireAssistant

various “copies” of the members of C in x. This leads to problems if the objective
is to generate a new hierarchy from the lattice in which the distinct copies of the
members of C must be preserved. We consider this to be a minor problem because
situations where nonvirtual inheritance is used for its “member replicating” effect
are quite rare in practice, and the restructuring tool could inform the user of the
cases where the problem occurs. A clean solution to this problem would involve the
encoding of subobject information in the table using an adaptation of the approach
of Tip and Sweeney [1997; 2000].

7. RESTRUCTURING CLASS HIERARCHIES

7.1 Students and Professors Reconsidered

Table III shows the final table for the example of Figure 1, as obtained by analyzing
the class hierarchy along with the two example programs. The lattice corresponding
to this table was shown previously in Figure 2 (note that we replaced member
definitions by the corresponding method names there for convenience).

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

The following can be learned from the lattice:

—Data members that are not accessed anywhere in the program (e.g.,
Person::socialSecurityNumber) appear at the bottom element of the lattice.

—Data members of a base class B that are not used by (instances of) all de-
rived classes of B are revealed. Such data members (e.g., Person::address)
appear above (variables of) some but not all derived classes of B. For exam-
ple, Person::address appears above instances of Student, but not above any
instances of Professor.

—Variables from which no members are accessed appear at the the top element of
the lattice (e.g., s).

—Data members that are properly initialized appear above the (constructor)
method that is supposed to initialize them. If this is not the case, the data
member may not be initialized. For example, we know that Student::Student
does not initialize Student::advisor because that data member does not appear
above Student::Student in the lattice.

—Situations where instances of a given type C access different subsets of C’s mem-
bers are revealed by the fact that variables of type C appear at different points
in the lattice. Our example contains two examples of this phenomenon. The
instances Professor1 and Professor2 of type Professor and the instances
Student1 and Student2 of type Student.

As we mentioned earlier, a class hierarchy may be analyzed along with any num-
ber of programs, or without any program at all. The latter case may provide
insights into the “internal structure” of a class library. Figure 9 shows the lattice
obtained by analyzing the class hierarchy of Figure 1(a) without the programs of
Figures 1(b) and (c); only code in method bodies is analyzed. Clearly, the resulting
lattice should not be interpreted as a restructuring proposal, because it does not
reflect the usage of the class hierarchy. However, there are some interesting things
to note. For example, socialSecurityNumber is not accessed anywhere. If we
would know in addition that socialSecurityNumber is private (i.e., that it can
only be accessed by methods within its class), we could inform the user that it is
effectively dead. Observe also that no members are accessed from method parame-
ters s and p. Since the scope of these variables is local to the library, we know that
analyzing additional code will not change this situation.

7.2 Restructuring Transformations

Once the lattice has been displayed, it can help in understanding the actual behavior
of a class hierarchy and thus serve as a basis for restructuring tasks (see Section 9).
In addition, several global restructuring transformations are possible:

—Unlabeled (“empty”) lattice elements correspond to classes without members and
without variables using them. The lattice can be simplified by pruning all such
elements, and directly connecting their subordinate and superordinate neighbors.
The resulting structure is not a lattice anymore, but only a partial order, but this
is not so important: a class hierarchy need only be a partial order, and lookup
behavior and subobject selection are not affected.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

Student::setAdvisor

Professor::assistant Student::advisor p s

Professor::assistant Person::name

Professor::hireAssistant Student::Student
Person::studentId
Person::address

Person::socialSecurityNumber

Professor::Professor
Professor::workAddress
Professor::faculty

Student::advisor

Fig. 9. Lattice obtained by analyzing the class hierarchy of Figure 1 without accompanying
programs.

—A reduced lattice can be shown which contains only real objects, but not pointers.
This lattice is obtained by deleting all pointer rows (not just this-pointers) from
the final table, and it was explained earlier that the resulting lattice is a sublattice
of the original one, and still operationally equivalent. For reengineering purposes,
this lattice seems more appropriate than the fine-grained one: ultimately, objects
access members and determine the optimal class structure; fine-grained behavior
of pointers is generally not helpful in providing the overall picture.

—The user can decide to merge adjacent lattice elements if the distinction be-
tween these concepts is irrelevant. For example, one may decide that the dis-
tinction between between professors that hire assistants, and professors that do
not hire assistants is irrelevant, and therefore merge the concepts for Professor1
and Professor2. However, merging must respect the dominance constraints for
members in order to to preserve member lookup behavior. For example, merging
two concepts that have different definitions of a virtual method f associated with
them is not possible, because at most one f can occur in any given class.

—With certain limitations, the user may move attributes upward in the lattice, and
object downward. For example, the user may decide that socialSecurityNumber
should be retained in the restructured class hierarchy, and move the correspond-
ing attribute up to the concept labeled with attribute Person::name. Again,
dominance constraints must be respected.

—Background knowledge that is not reflected in the lattice, e.g., “the type of x must
be a base class of the type of y,” can be integrated via background implications.
Technically, background implications are treated the same way as dominance
implications.

—Color should be used to display relevant substructures in the lattice, e.g., variables
that formerly had the same type, or members that were formerly in the same class.

—Associations in the sense of UML can be recovered from the occurrences of class-
typed members, and corresponding arcs added to the lattice.

—For very large class hierarchies, the tool could allow the user to focus on a selected
subhierarchy either by specifying its minimal and maximal elements in the lattice,
or by selecting specific rows and columns in the table (e.g., those belonging to a
specific class).

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

—The structure theory of concept lattices offers several algebraic decompositions,
such as horizontal decomposition, interference analysis, or block relations [Ganter
and Wille 1999]. They can be used to measure quality factors such as cohesion
and coupling [Snelting 1998; Lindig and Snelting 1997].

—Eventually, the user may associate names with lattice elements, which could be
used as class names in the restructured hierarchy. For example, the program-
mer may determine that Student objects on which the setAdvisor method is
invoked are graduate students, whereas Student objects on which this method is
not called are undergraduates. Consequently, he may decide to associate names
Student and GraduateStudentwith the concepts labeled s2 and s1, respectively.

—Finally, source code can be generated according to the new hierarchy, thereby
utilizing the reduced object memory requirements and the improved structure in
the new hierarchy.

7.3 Dealing with Multiple Inheritance

The analysis results are presented in form of a lattice, hence will naturally contain
multiple inheritance if interpreted as a class hierarchy. Since Java does not support
multiple inheritance, generated hierarchies may not be representable in Java source
code. Note that if the meet point and its superclasses are in fact interface classes,
there is no representation problem. Note further that multiple inheritance is only
a problem if the method is to be used as a program transformation, but not if the
lattice only serves program understanding.

Introducing a certain loss of precision, multiple inheritance can be removed as
follows. Every occurrence of multiple inheritance leads to a “diamond” structure in
the lattice, such as the diamond Professor2−Professor1−p2−Professor :: assistant
in Figure 2. By moving members up and variables down (as explained above) the
diamond can be transformed into a simple chain, while still maintaining behavioral
equivalence. In Figure 2, p2 can be moved down to Professor2, while Professor ::
hireAssistant can be moved up to Professor :: assistant. Finally the lattice element
formerly labeled p2 can be removed, since it has become empty.

8. IMPLEMENTATION

A prototype implementation of the method was recently completed. Our tool is
named KABA,13 is written in Java and analyzes Java Class files. This approach
has the advantage that no front end is needed. Furthermore, Java is much easier
to analyze than C++.

8.1 CFG and Points-to Analysis

The tool first reads the required class files and builds a control flow graph (CFG).
Since Java byte code is stack-oriented, but our analysis needs full variable references
rather than anonymous stack entries, a simple backward analysis reconstructs the
stack contents whenever necessary. If, at a certain point in the CFG, we need to
know the type of, for example, the third entry from the top of stack, we explore all
CFG paths backward until three push operations have been encountered on every

13KABA = KlassenAnalyse mit BegriffsAnalyse [class analysis using concept analysis]. KABA is
also a popular chocolate drink in Germany.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

backward path, and collect the items pushed onto the stack by the third-last push
operations. Usually, the resulting sets are unique.

For points-to analysis, we use Andersen’s method, as described in Shapiro and
Horwitz [1997]. This method is quite precise, but also expensive: it has worst-case
time complexity O(n3) and is very space-intensive in practice. In fact, the points-to
analysis turns out to be the bottleneck of the analysis.

Points-to analysis has originally been designed for imperative languages such
as C, and we had to extend it for object-oriented languages. In particular, the
treatment of virtual dispatch requires special attention. For both Andersen’s and
Steensgaard’s method, the details are described in Streckenbach and Snelting [2000].
Roughly, dynamic dispatch is modeled as follows. Whenever a method call o.m(x)
is encountered during interprocedural iteration, the following steps are performed:

(1) let o 7→ {o1, . . . , on} and x 7→ {x1, . . . , xm} be the points-to information for
o and x as obtained so far (encoded in the points-to graph). Static lookup is
used to resolve any of the calls o1.m(x), . . . , on.m(x).

(2) Let C1::m(a1), . . . , Cn::m(an) be the methods identified by static lookup. For
any ai, xj , add edges as required by the assignments ai = xj to the points-to
graph. Furthermore, add edges as required by the implicit assignment to the
this-pointer Ci::m = oi.

(3) In case m’s return type is a class, let r1, . . . , rn be variables representing the
return values of the Ci::m(ai) inside the method. For any assignment or similar
use of the return value, such as in y = o.m(x), add edges as required by the
assignment y = ri to the points-to graph.

(4) Continue propagation of points-to information.

8.2 Generation of Table Entries and Implication Propagation

The table is implemented as a list of bit strings, and once points-to analysis has
converged, entering the member access entries into the table is straightforward.
Next, the assignment and dominance implications are extracted. Extracting the
dominance rules is quite expensive, because for any classes A ≤ B and any columns
A::m,B::m, every row must be checked for a double entry (x,A::m) and (x,B::m).

Assignment implications as well as dominance implications are arranged into
directed graphs. While the assignment graph may contain cycles, the dominance
graph cannot, as dominance edges always go from members in “lower” classes to
members in “upper” classes (and the original class hierarchy of course is cycle free).
Note that, while the set of assignment implications never changes, new dominance
implications might be generated after applying assignment implications. Hence,
the dominance graph can grow during implication propagation. This is the reason
why the O(n2) method for applying implications to a table [Ganter and Wille 1999]
cannot be used, and a fixpoint iteration must be used instead.

Assignment and dominance implications are applied alternatively. “Local” itera-
tion applies assignment implications respectively dominance implications until they
converge. “Global” iteration alternates local assignment or dominance iterations.
Implication propagation proceeds in topological order, and never propagates out
of a cycle until the cycle converges. Since the dominance graph is cycle free, the
corresponding local iteration converges immediately.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

Professor.workAddress
Professor.faculty

Professor.assistant
def(Professor.<init>)

Samples.example1(...).<<*p1>>

Person.name

Student.studentId
def(Student.<init>)

Person.address

Samples.example2(...).<<*s2>>

dcl(Professor.hireAssistant)

Samples.example2(...).p2

def(Student.setAdvisor)
Student.advisor

Samples.example1(...).<<*s1>>

def(Professor.hireAssistant)

Samples.example2(...).<<*p2>>

Person.socialSecurityNumber
...

dcl(Student.setAdvisor)

Samples.example1(...).s1

Fig. 10. Java version of student/professor example.

8.3 Interactive Back End

From the final table, the lattice is computed using Ganter’s algorithm. Next, an
off-the-shelf graph layouter is used to compute an initial layout for the lattice. The
lattice is displayed by an interactive back end.

The lattice layout may be modified manually, while the system maintains lattice
integrity. There are several options for the display of lattice elements labels, namely
no labels at all, individual labels on request, and labels for user-defined entities
only. The KABA prototype also offers some of the reengineering transformations
that were discussed in Section 7, namely removal of empty lattice elements, reduced
lattices without pointers, highlighting of variables that had the same original type,
and recovery of associations. Interactive lattice manipulation and code generation
are not supported yet.

9. CASE STUDIES

9.1 Students and Professors, Finally

KABA was applied to several small and medium-sized Java programs. We begin
with a reconsideration of the student-professor example (see Figure 1), in order to
illustrate differences between C++ and Java. Figure 10 presents a screenshot. Data
members appear with their fully qualified name, whereas method definitions are dis-
tinguished from method declarations. Names in “<<...>>” are names of “real” ob-
jects (heap allocation sites), and constructor methods are named “<init>”. Meth-
ods are displayed with full name, but without signature (signatures are shown only
for overloaded methods). Top and bottom element are enlarged for layout reasons.

The first observation is that this lattice is different from the one in Figure 2.
This is not a bug: The screenshot displays an analysis of the Java version of
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

Fig. 11. Lattice for graph editor program.

gnu.regexp.REToken gnu.regexp.RESyntaxgnu.regexp.CharIndexed

Fig. 12. Original class hierarchy for “jEdit” program.

Figure 1. In Java, all methods are virtual, while in Figure 1, setAdvisor and
hireAssistant are nonvirtual. According to the table construction rules, receivers
of virtual methods only need to see the method declaration; hence the definition of
Professor::hireAssistant need not be visible to p2. Consequently, data mem-
ber Professor::assistant need not be visible to p2. Therefore a corresponding
table entry is not created, and the distinction between the two rightmost lattice
elements in Figure 2 disappears. The same argument applies to Student::advisor
except that the original lattice did not contain such a distinction anyway (due to
the missing initialization of Student::advisor in the constructor; see Section 7).
As a result of this subtle phenomenon, the Java version of the lattice is completely
symmetrical, indicating the lower semantic complexity of Java vs. C++.

9.2 An Easy Case

Our next example is a graph editor program (3761 LOC \ comments) with a com-
pletely flat class structure. The purpose of this experiment was to see whether
KABA proposes to introduce inheritance and specialized subclasses.

The lattice (Figure 11) is horizontally decomposable into several small sublattices
(actually, each sublattice corresponds to one original class). The internal structure
in the sublattices stems from fine-grained pointer access patterns and should not
be interpreted as an option to split classes. In particular, each substructure in the
lattice (except two) has its own local bottom element, which is alway an indicator
that potential for introducing inheritance and splitting classes is low. Indeed, the
reduced lattice without pointers replicates the original hierarchy. Thus KABA
demonstrates that there is no refactoring potential. This example shows that our
approach is useful not only for reengineering, but also for ongoing quality assurance
during development: It can confirm that the class design corresponds to actual class
usage, and hence that refactoring is not necessary.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

gnu.regexp.REToken

gnu.regexp.RETokenBackRef

gnu.regexp.RESyntax

gnu.regexp.RETokenStart

gnu.regexp.REMatchEnumeration

gnu.regexp.RETokenRange

gnu.regexp.REException

gnu.regexp.RE

gnu.regexp.CharIndexedgnu.regexp.REMatch

gnu.regexp.RETokenOneOf gnu.regexp.RETokenPOSIXgnu.regexp.RETokenChargnu.regexp.RETokenRepeated

gnu.regexp.RETokenEnd gnu.regexp.RETokenAny

Fig. 13. Original subhierarchy for the regular expression library in “jEdit”.

def(gnu.regexp.RESyntax.get)
dcl(gnu.regexp.RESyntax.get)

gnu.regexp.RESyntax.bits

dcl(gnu.regexp.REToken.setUncle)
def(gnu.regexp.REToken.next)
dcl(gnu.regexp.REToken.next)

dcl(gnu.regexp.REToken.match)
gnu.regexp.REToken.m_uncle

gnu.regexp.REToken.m_subIndex
gnu.regexp.REToken.m_next

dcl(gnu.regexp.REToken.getMinimumLength)
def(gnu.regexp.REToken.dumpAll)
dcl(gnu.regexp.REToken.dumpAll)
dcl(gnu.regexp.REToken.dump)
def(gnu.regexp.REToken.<init>)

dcl(gnu.regexp.CharIndexed.move)
dcl(gnu.regexp.CharIndexed.isValid)
dcl(gnu.regexp.CharIndexed.charAt)

Fig. 14. Lattice for “jEdit”.

dcl(gnu.regexp.REToken.setUncle)
def(gnu.regexp.REToken.next)
dcl(gnu.regexp.REToken.next)

dcl(gnu.regexp.REToken.match)
gnu.regexp.REToken.m_uncle

gnu.regexp.REToken.m_subIndex
gnu.regexp.REToken.m_next

dcl(gnu.regexp.REToken.getMinimumLength)
def(gnu.regexp.REToken.dumpAll)
dcl(gnu.regexp.REToken.dumpAll)
dcl(gnu.regexp.REToken.dump)
def(gnu.regexp.REToken.<init>)

def(gnu.regexp.RE.toString)
def(gnu.regexp.RE.setUncle)

def(gnu.regexp.RE.match)
dcl(gnu.regexp.RE.match)

gnu.regexp.RE.m_numSubs
gnu.regexp.RE.lastToken

def(gnu.regexp.RE.getMinimumLength)
gnu.regexp.RE.firstToken
def(gnu.regexp.RE.dump)
dcl(gnu.regexp.RE.dump)

def(gnu.regexp.RE.getMinMax)
dcl(gnu.regexp.RE.getMinMax)
def(gnu.regexp.RE.addToken)
dcl(gnu.regexp.RE.addToken)

def(gnu.regexp.RE.<init>(java.lang.Object,int,gnu.regexp.RESyntax,int,int))

def(gnu.regexp.RE.getNumSubs)
dcl(gnu.regexp.RE.getNumSubs)

def(gnu.regexp.RE.chain)
dcl(gnu.regexp.RE.chain)

def(gnu.regexp.REToken.setUncle)

def(gnu.regexp.RE.getMatchImpl)
dcl(gnu.regexp.RE.getMatchImpl)

def(gnu.regexp.RE.getMatch(java.lang.Object->gnu.regexp.REMatch))
dcl(gnu.regexp.RE.getMatch(java.lang.Object->gnu.regexp.REMatch))

def(gnu.regexp.RE.getMatch(java.lang.Object,int,int->gnu.regexp.REMatch))
dcl(gnu.regexp.RE.getMatch(java.lang.Object,int,int->gnu.regexp.REMatch))

def(gnu.regexp.RE.getMatch(java.lang.Object,int,int,java.lang.StringBuffer->gnu.regexp.REMatch))
dcl(gnu.regexp.RE.getMatch(java.lang.Object,int,int,java.lang.StringBuffer->gnu.regexp.REMatch))

def(gnu.regexp.RE.<init>(java.lang.Object,int,gnu.regexp.RESyntax))

org.gjt.sp.jedit.gui.HyperSearch.doHyperSearch().<#15>

def(gnu.regexp.REToken.chain)
dcl(gnu.regexp.REToken.chain)

def(gnu.regexp.RE.substituteImpl)
dcl(gnu.regexp.RE.substituteImpl)

def(gnu.regexp.RE.substitute(java.lang.Object,java.lang.String->java.lang.String))
dcl(gnu.regexp.RE.substitute(java.lang.Object,java.lang.String->java.lang.String))

def(gnu.regexp.RE.substitute(java.lang.Object,java.lang.String,int,int->java.lang.String))
dcl(gnu.regexp.RE.substitute(java.lang.Object,java.lang.String,int,int->java.lang.String))

org.gjt.sp.jedit.jEdit.getRE(->gnu.regexp.RE).<#1a>

def(gnu.regexp.REToken.getMinimumLength)

def(gnu.regexp.RE.<init>(gnu.regexp.REToken,gnu.regexp.REToken,int,int))

Fig. 15. Details for “jEdit”: regular expression classes.

9.3 The GNU Regular Expression Library

Our next example is “jEdit,” a text editor with useful features such as syntax
coloring and regular expression search.14 JEdit contains more than 80 classes and
almost 12,000 LOC. It makes heavy use of a Java adaptation of the GNU regular
expression library, and can thus be seen as an instance of our scenario, namely that

14version 1.2final, available from http://www.gjt.org/~sp/jedit.html

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

a given hierarchy is used by different applications.
Figure 12 shows the original hierarchy of all classes shipped with “jEdit.” Five

separate subsystems are visible, concerned with input modes, editor commands,
editor modes, regular expressions, and syntax highlighting. Several singleton classes
without any inheritance relationship provide basic and auxiliary functionality. All
original subhierarchies are very flat.

Figure 13 shows those classes of the original hierarchy which constitute the regular
expression library; these are 20 classes comprising more than 3000 LOC. The super-
class REToken has one subclass for every regular expression construct (∗,+, [], $).
The programming interface class RE also is a subclass of REToken.

Figure 14 shows the reduced lattice produced by KABA.15 It shows several inde-
pendent substructures that correspond to the subsystems of the original hierarchy.
Most of the singleton classes in the original hierarchy, as well as the entire “input
mode” subsystem, recur literally in the right-hand part of the lattice, indicating
low reengineering potential.

More interestingly, however, is the leftmost part of the lattice, which represents
the regular expressions library (that is, all subclasses of REToken), which has be-
come a complex structure. Figure 15 shows a detailed view. The rightmost part of
this structure represents the classes for the different regular expression constructs.
Note that there is more fine-grained detail than before because the different con-
structs apparently rely on different parts of REToken’s functionality. It is interesting
to observe that while some subclasses of the original base class REToken are liter-
ally reproduced by KABA, the original subclass RE has been distributed over 6
different nodes (left part of Figure 15). A look at the source code reveals that
the class labeled gui.HyperSearch.doHyperSearch is the API for search without
substitution, whereas the class below it is the API for search with substitution.

Note that the lattice displays the finest possible splittings and refactorings of
classes according to possible program behavior. For reengineering purposes, the
lattice should therefore be simplified by merging lattice elements, in order to reflect
software design principles. Nevertheless, the lattice demonstrates that the original
RE class can be split into, say, RE substitution and RE no substitution. The
element labeled gnu.regexp.RE.dump etc. also reveals that there is a “composite”
design pattern used: class RE stands for complex regular expression and offers
methods for accessing subexpressions, while the subclasses of REToken in the right
part represent elementary regular expressions.

9.4 JAS

Our next example is “JAS”, a java bytecode assembler, including a Scheme-like
scripting language (about 5400 LOC).16 Its original class hierarchy is shown in Fig-
ure 16. Among various single classes and three small inheritance trees it shows a
huge structure with more than 50 classes. These classes are part of the scripting

15For this and the following example we used the reduced lattice which does not show fine-grained
access patterns for pointers, just for “real” objects. As explained in Section 7, fine-grained pointer

access patterns are not really relevant for reengineering, and the reduced lattice is still guaranteed
to be operationally equivalent. The full lattices for this and the next example are about twice the
size as the reduced lattices.
16version 0.4, available from http://www.sbktech.org/jas.html

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

Fig. 16. Original class hierarchy for the “JAS” example.

...

...

...

...

...

...

......

...

...

...

...

...

......

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

......

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

......

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

... ...

...

...

...

...

...

...

...

...

...

......

...

...

... ...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

......

...

...

...

...

Fig. 17. Lattice for “JAS”.

language implementation. The top class is called Obj, and all (except four) sub-
classes additionally implement an interface Procedure. Each of these subclasses
represents a function like “Add” or “Sub” in the scripting language.

In the KABA lattice (Figure 17) this huge structure is reproduced basically
unmodified, confirming the original design was good. However, the subhierarchy
with base class Insn (Figure 18) is interesting. All but one subclasses of Insn just
redefine the constructor method, and these subclasses are reproduced unchanged.
However, the rightmost chain in Figure 18, which contains all members of the
original subclass Label, differs from the other subclasses because it does not use
the methods Insn.size and Insn.write. A closer look reveals that all the other
subclasses are dealing with the implementation of certain bytecode instructions, but
Label is concerned with bytecode addressing. The implementations of size and
write in Label are empty, so these two methods can be considered “amputated.”
An even closer look reveals that the resolvmethod does not execute any useful code
when called from a Label object. This demonstrates that the original subhierarchy
should be restructured: Label does not share any code with the other subclasses;
thus it does not need a common base class with them.

The sublattice for the subclasses of the InsnOperand class shows a similar phe-
nomenon (Figure 19). Two classes (UnsignedByteWideOperand and IincOperand
on the left-hand side) are separated from the rest, just like Label was. They have
their own implementations of the method writePrefix, while all other subclasses
share the same implementation. A look at the source code reveals that the other
subclasses use a dummy implementation of writePrefix which has no functional-
ity; only the two “separated” classes on the left actually have code for writePrefix.
This demonstrates that writePrefix can be removed from InsnOperand and put
into a new class, which should be the base class of the separated classes.

9.5 Empirical Results

Some additional case studies are described in the Bögemann/Streckenbach master’s
thesis [Bögemann and Streckenbach 1999]. Of course, it is interesting to know about
the performance and lattice size as a function of program size. Table IV presents
data for the above case studies and for KABA self-application. The number of rows
in a KABA-generated table is roughly the sum of the number of pointers plus the
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

...

...

...

...

...

...

...

...

...
...

...

dcl(jas.Insn.write)
dcl(jas.Insn.size)

def(jas.Insn.resolve)
jas.Insn.operand

jas.Insn.opc

def(jas.Insn.write)
def(jas.Insn.size)

...

...

def(jas.Insn.<is_jas.Insn>)

...

...

def(jas.Insn.<init>())

def(jas.Label.writeOffset)
def(jas.Label.write)

def(jas.Label.toString)
def(jas.Label.size)

jas.Label.id
def(jas.Label.<is_jas.Label>)

def(jas.Label.<init>)

...

def(jas.Label.writeWideOffset)

...

...

...

...

...

...

...

...

...

...

Fig. 18. Details for “JAS”: substructure for Insn.

dcl(jas.InsnOperand.writePrefix)
dcl(jas.InsnOperand.write)
dcl(jas.InsnOperand.size)

dcl(jas.InsnOperand.resolve)

def(jas.InsnOperand.writePrefix)

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

def(jas.IincOperand.writePrefix)
def(jas.IincOperand.write)

jas.IincOperand.vindex
def(jas.IincOperand.size)

def(jas.IincOperand.resolve)
jas.IincOperand.constt

def(jas.IincOperand.<init>)

jas.IincInsn.<init>(...).<#c>

...

...

def(jas.UnsignedByteWideOperand.writePrefix)
def(jas.UnsignedByteWideOperand.write)

jas.UnsignedByteWideOperand.val
def(jas.UnsignedByteWideOperand.size)

def(jas.UnsignedByteWideOperand.resolve)
def(jas.UnsignedByteWideOperand.<init>)

jas.Insn.<init>(int,int).<#b2>

Fig. 19. Details for “JAS”: substructure for InsnOperand.

number of objects (creation sites); usually there are 10 times as many pointers as
creation sites. The number of columns includes members/methods from standard
library usage; it is about one-third higher than the total number of members and
methods (due to the def/decl distinction for methods). Note the high number
of assignment implications (including implicit assignments for parameters, this
pointers, etc.). The number of dominance implications is comparatively small, and
on the average only 25% of them ever generate a new table entry. The biggest
program, KABA itself, is 26,882 lines long and has a table with about 5.43 · 108

cells; only a small percentage of these have an entry. Note the high number of
assignment implications for KABA.

In order to eliminate fine-grained pointer access patterns, all rows for pointers
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

Table IV. Program and Table Statistics for Case Studies. The columns display lines
of code, total number of pointers, total number of objects, number of table rows,
number of table columns, number of assignment implications, number of dominance
implications.

Program Statistics Table Statistics
LOC #Ptr #Obj #Row #Col #AssImp #DomImp

graph 7045 8518 678 9197 1137 16399 1098
jEdit 11862 18597 1877 20477 2881 62508 3245
jas 5432 12590 2127 14718 1457 72735 1875

KABA 26882 73842 5722 79580 6831 648494 7478

Table V. Performance and Lattice Statistics for Case Studies. The columns display times
for points-to-analysis, table construction including implication iteration, and construction
of the final lattice (all measured on a SUN 450); furthermore number of rows and columns
in the final table and number of elements in the final lattice are displayed.

Performance Statistics Lattice Statistics
Points-to Table Lattice #finRow #finCol #LatElem

graph 48.28 sec 24.3 sec 0.00 sec 106 335 57
jEdit 514.84 sec 260.77 sec 0.30 sec 211 801 136
jas 660.15 sec 80.56 sec 0.20 sec 527 771 140

KABA 12577.98 sec 2355.48 sec 0.38 sec 1147 3074 519

are deleted after table construction (see Section 7.2). Furthermore, all columns for
methods from the standard libraries are deleted as well. This dramatically reduces
the table and lattice size: the final table for KABA has only 3.52 · 106 cells, which
is less than one percent of the full table. The lattice generation is based on the final
tables; it uses the very efficient implementation of Ganter’s algorithm by Christian
Lindig [Lindig 1999], and the times are neglectable. We mention in passing that
the KABA self-application lattice is quite big, but very flat and very similar to the
original class hierarchy.

Table V summarizes execution times for the case studies. Obviously, program
size does not correlate well with points-to analysis performance. The extremely
high points-to time for KABA is due to excessive garbage collection and paging;
the other programs need less memory for the points-to graph, which leads to more
realistic points-to times in the 10-minute range. The times for table construction
and implication propagation are much less than the points-to times.

Obviously, the initial points-to analysis is the bottleneck of the whole method.
Worse, an implementation of the supposedly faster (and less precise) Steensgaard
algorithm, adapted for Java, was not faster in practice: the imprecision propagates
and eventually slows down convergence of the iteration for the conservative ap-
proximation of dynamic binding. Other authors also have observed that the speed
of Steensgaard’s analysis is offset by increased costs for later client analyses [Bent
et al. 2000; Hind and Pioli 2000]. We agree with Bent et al. [2000] that a flow- and
context-sensitive points-to analysis could well be worth the effort.

We expect that a native code compiler and a better garbage collector will re-
duce time and memory requirements by at least 30%. However, the ultimate im-
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

provement must come from the treatment of standard libraries. KABA currently
performs a whole-program analysis and conservatively approximates the effect of
library calls. It would certainly be better if fine-grained information is precomputed
for library functions, as in Rountev and Ryder [2000].

The preliminary experience from our experiments can be summarized as follows:

—Most Java programs explicated a reasonable structure without high reengineering
potential, probably due to the fact that these programs are quite young. In
such cases, the lattice can serve as a quality metric, demonstrating that the
architecture is good.

—Nevertheless, in many Java examples we found possibilities to split or refactor
classes. These proposals, which are guaranteed not to alter the program behav-
ior, would not have been possible without our unique combination of points-to
analysis, type constraints, and concept lattices.

—KABA has an experimental option where member accesses from dead code will
not be entered into the table. This greatly reduces the size of the lattices in
many examples. From a reengineering viewpoint however, it is questionable to
exclude dead code, just as it is questionable to delete dead members such as
socialSecurityNumber in our first example.

—We did not yet exploit the structure theory of concept lattices, in particular
congruences and weak congruences. (Weak) congruence classes could serve as
proposals how to group classes into packages, and can be used to measure coupling
and cohesion; resulting in more substantial restructuring proposals.

—The full set of reengineering transformations from Section 7 is not available yet.

—The real market for our method consists of course of ill-structured legacy C++
applications with a long revision history. Given the complexity of both C++ and
our method, we think it is realistic to say that the application of our techniques
to legacy C++ applications is at least a few years of work.

10. RELATED WORK

10.1 Applications of Concept Analysis

Godin and Mili [Godin and Mili 1993; Godin et al. 1998] also use concept analysis for
class hierarchy (re)design. The starting point in their approach is a set of interfaces
of (collection) classes. A table is constructed that specifies for each interface the set
of supported methods. The lattice derived from this table suggests how the design
of a class hierarchy implementing these interfaces could be organized in a way that
optimizes the distribution of methods over the hierarchy. Although Godin and
Mili’s work has the same formal basis as ours, the domains under consideration
are different. In Godin and Mili [1993], relations between members and classes
are studied in order to improve the distribution of these members over the class
hierarchy. In contrast, we study how the members of a class hierarchy are used
in the executable code of a set of applications by examining relationships between
variables and class members, and relationships among class members.

Another application of concept analysis in the domain of software engineering
is the analysis of software configurations. Snelting [1996] uses concept analysis to

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

analyze systems in which the C preprocessor (CPP) is used for configuration man-
agement. The relation between code pieces and governing expressions is extracted
from a source file, and the corresponding lattice visualizes interferences between
configurations. Later, Lindig proved that the configuration space itself is isomor-
phic to the lattice of the inverted relation [Lindig 1998].

Concept analysis was also used for modularization of old software. Siff and Reps
[1997] investigated the relation between procedures and “features” such as usage
of global variables or types. A modularization is achieved by finding elements in
the lattice whose intent partitions the feature space. Lindig and Snelting [1997]
also analyzed the relation between procedures and global variables in legacy For-
tran programs. They showed that the presence of module candidates corresponds
to certain decomposition properties of the lattice (the Siff/Reps criterion being a
special case).

Ball [1999] applied concept analysis to test coverage information. In his domain,
the objects are tests and attributes are the program entities (e.g., procedures) that
a test may cover. The concept lattices derived from these tables identify dynamic
control flow invariants between entities that are similar to static program properties
such as domination and postdomination.

10.2 Class Hierarchy Specialization and Application Extraction

The work in the present article is closely related to the work on class hierarchy
specialization by Tip and Sweeney [1997; 2000]. Class hierarchy specialization is
a space optimization technique in which a class hierarchy and a client program
are transformed in such a way that the client’s space requirements are reduced
at run-time. The method of Tip and Sweeney [1997; 2000] shares some basic
“information gathering” steps with the method of the present article,17 but its
subsequent steps are quite different. After determining the member access and
assignment operations in the program, a set of type constraints is computed that
capture the subtype-relationships between variables and members that must be
retained. These type constraints roughly correspond to the information encoded in
our tables, but contrary to our current approach they correctly distinguish between
multiple subobjects that have the same type. From the type constraints, a new
class hierarchy is generated automatically. In a separate step, the resulting class
hierarchy is simplified by repeatedly applying a set of simple graph rewriting rules.

In addition to the differences in the underlying algorithms, the method of Tip
and Sweeney [1997; 2000] differs from our reengineering framework in a number
of ways. Class hierarchy specialization is an optimization technique that does not
require any intervention by the user. In contrast, the current article presents an
interactive approach for analyzing the usage of a class hierarchy in order to find
design problems. Reducing object size through the elimination of members is pos-
sible, but not necessarily an objective. For the purpose of restructuring it may very
well be the case that an unused member should be retained in the restructured
class hierarchy. The framework we presented here also allows for the analysis of
a class hierarchy along with any number of programs, including none. Class hi-

17Definitions 1, 3, 4, and 7 were taken from Tip and Sweeney [1997; 2000].

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

erarchy specialization customizes a class hierarchy with respect to a single client
application.

Several other application extraction techniques for eliminating unused compo-
nents from hierarchies and objects have been presented in the literature. These
are primarily intended as optimizations, although they may have some value for
program understanding. Agesen and Ungar [1994] describe an algorithm for the
dynamically typed language Self that eliminates unused slots from objects (a slot
corresponds to either a data member, a method, or an inheritance relation). Self
is a dynamically typed language, and eliminating members from objects does not
involve transforming class hierarchies.

Tip et al. [1996] present an algorithm for slicing class hierarchies that eliminates
members and inheritance relations from a C++ hierarchy. Class slicing is less
powerful than specialization because it can only remove a member m from a class
C if m is not used by any C-instance. Later, Tip et al. developed Jax [Tip et al.
1999], an application extractor for Java, which incorporates Rapid Type Analysis
[Bacon and Sweeney 1996] to construct call graphs and detect unreached methods,
elimination of dead fields [Sweeney and Tip 1998], as well as some of the class
hierarchy transformations of Tip and Sweeney [1997; 2000]. Jax reduces the size of
class file archives by up to 70%.

10.3 Techniques for Restructuring Class Hierarchies

Another category of related work is that of techniques for restructuring class hier-
archies for the sake of improving design and reuse. The overview article by Casais
[1998] presents 18 different methods, many of them process-centered or dynamic
analyses. The probably most well-known method for static restructuring was intro-
duced by Opdyke and Johnson [Opdyke 1992; Opdyke and Johnson 1993]. They
present a number of behavior-preserving transformations on class hierarchies, which
they refer to as refactorings. The goal of refactoring is to improve design and en-
able reuse by “factoring out” common abstractions. This involves steps such as the
creation of new superclasses, moving around methods and classes in a hierarchy,
and a number of similar steps. Our techniques for analyzing the usage of a class
hierarchy to find design problems is in our opinion complimentary to the techniques
of Opdyke [1992] and Opdyke and Johnson [1993].

Moore [1996] presents a tool that automatically restructures inheritance hier-
archies and refactors methods in Self programs. The goal of this restructuring
is to maximize the sharing of expressions between methods, and the sharing of
methods between objects in order to obtain smaller programs with improved code
reuse. Since Moore is studying a dynamically typed language without explicit
class definitions, a number of complex issues related to preserving the appropriate
subtype-relationships between types of variables do not arise in his setting.

An interesting approach is that of Astudillo [1997]. He argues that from an evo-
lutionary viewpoint, subclasses may not only add or redefine members, but also
loose or “amputate” members. This approach violates fundamental type-theoretic
properties of object-oriented programming, but has the advantage that well-known
algorithms for the reconstruction of biological taxonomies can be used. Astudillo
argues that his hierarchies are more “natural” than those which stick to the prin-
ciples of type conformance and contravariance.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

11. CONCLUSIONS AND FUTURE WORK

We have presented a method for understanding class hierarchies by analyzing the
usage of the hierarchy by a set of applications. This method constructs a concept lat-
tice in which relationships between variables and class members are made explicit,
and where information that members and variables have in common is “factored
out.” We have shown the technique to be capable of finding design anomalies such
as class members that are redundant or that can be moved into a derived class.
In addition, situations where it is appropriate to split a class can be detected. We
have suggested how these techniques can be incorporated into interactive tools for
maintaining and restructuring class hierarchies.

Our analysis is one of the most powerful analysis methods for object-oriented
programs, due to its unique combination of points-to analysis, type constraints,
and concept lattices. The method subsumes classic analyses such as dead-member
detection and useless-variable detection as special cases. Our preliminary case
studies have indicated the usefulness of the analysis as a basis for reengineering, but
the method can also be used for quality assessment during initial development. It
turned out that the Java examples we analyzed were all reasonably well structured,
but that the method nevertheless discovered many possibilities for refactoring, while
at the same time guaranteeing that program behavior is unchanged.

11.1 Future Work

The present article has focused on foundational aspects and preliminary case stud-
ies. We distinguish the following avenues for future work:

Language Issues. Several important language features have not been discussed
yet. Union types and parametric polymorphism pose interesting research problems.
In the presence of union types, different sets of members may be accessed from a
union’s variants. A solution with distinct lattice elements for the different variants
seems the obvious solution. In the case of parametric polymorphism, the question
arises of what to do when two instantiations of a generic type can be restructured
differently.

Interactive Restructuring Support. This article has focused primarily on provid-
ing programmers with information on how a class hierarchy is used. The obvious
next step is to construct tools that allow for the interactive restructuring of class
hierarchies based on the results of the analysis. Actions supported by such a tool
could include:
—Deleting unlabeled lattice elements.
—Merging adjacent lattice elements in cases where certain fine distinctions are

deemed irrelevant by the reengineer.
—Moving members up in the lattice and variables down in the lattice. The tool

would check that no type constraints are violated by these actions.
—Incorporating background knowledge into a class hierarchy (“X must be a sub-

class of Y”).
—Using color to highlight substructures. For example, all members that originated

from the same source class could be shown in the same color.
—Utilizing algebraic decompositions and the structure theory of concept lattices.
—Associating names with lattice elements.
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

—Generating restructured class hierarchies and code from a lattice.
Developing and Utilizing more Precise Points-to Analyses. In Section 9.5, we re-

ported problems with the current points-to analysis technology. In a nutshell, we
found that Andersen’s analysis [Andersen 1994] is very expensive on larger pro-
grams, and that the imprecision of Steensgaard’s inexpensive points-to analysis
[Steensgaard 1996] slows down KABA’s approximation of dynamic binding in a way
that offsets its speed. Das [2000] recently developed one-level-flow analysis, and re-
ported precision results comparable with Andersen and analysis speed comparable
with Steensgaard for most C programs. The applicability of Das’ algorithm to Java
remains to be seen, because of the absence of multilevel pointers, and the pervasive
use of virtual method dispatch. In our opinion, the usefulness of unification-based
points-to analysis algorithms such as Steensgaard’s and Das’ in the object-oriented
domain is diminished by the fact that unification interferes with the subtyping
relationships that are abundant in typical object-oriented programs.

In our experience, the conservative approximation of dynamic dispatch due to
imprecise points-to relations has the dual disadvantages of both increasing the cost
and reducing the accuracy of our subsequent analysis. This suggests the use of more
precise flow- and context-sensitive points-to analysis algorithms. A more efficient
treatment of library functions could also be worthwhile.

Industrial Application. Ill-structured legacy C++ applications with a long revi-
sion history are the real market for the method. It remains to be seen whether an
efficient implementation for the full C++ language can be achieved.

APPENDIX

This appendix demonstrates that a method and its this pointer will always appear
together in the lattice, and that arbitrary pointers appear above any object they
point to.

Lemma A.1. For any a ∈ A, µ(a) =
∨

(o, a)∈T γ(o).

Proof. This is true for every concept lattice by construction [Ganter and Wille
1999].

Lemma A.2. For any def(C::f) ∈ MemberDefs(P), we have that

γ(∗C::f) ≥ µ(def(C::f)).

Proof. By the preceding lemma,

µ(def(C::f)) =
∨

(x, def(C::f))∈T
γ(x).

Furthermore, for any x such that (x, def(C::f)) ∈ T , there must be a method
call x.f() (otherwise the table entry would not exist). This method call causes
an implicit assignment to f ’s this pointer, generating an assignment dominance
∗C::f → x, which enforces γ(∗C::f) ≥ γ(x). Since this is true for all x calling f , it
is also true for their supremum:

γ(∗C::f) ≥
∨

(x, def(C::f))∈T
γ(x)

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

Combining both statements, we obtain γ(∗C::f) ≥ µ(def(C::f)).

The last lemma shows that a method always appears below its this pointer, and
without the this rule, they will indeed appear at different elements in the lattice
if method C::f does not access itself (i.e., is nonrecursive).

The this rule enforces γ(∗C::f) ≤ µ(def(C::f)), and together with the lemma
we may conclude the following.

Proposition A.3. For any def(C::m) ∈MemberDefs(P) we have that

γ(∗C::f) = µ(def(C::f)).

Hence methods and their this pointers appear together in the lattice. For point-
ers in general, only a weaker result can be established: any pointer always appears
above any object it may point to.

Proposition A.4. 〈p, v〉 ∈ PointsTo(P) =⇒ γ(p) ≥ γ(v).

Proof. (In this proof, we use member m also as a shorthand for def(X ::m) or
dcl(X ::m).) By the basic properties of concept lattices, it is enough to show

∀m ∈MemberDcls(P) : (p,m) ∈ T =⇒ (v,m) ∈ T

because this implication will force γ(p) ≥ γ(v). So let (p,m) ∈ T . By Definition
5, this implies 〈m, p〉 ∈ MemberAccess(P) and therefore p.m() must occur in P.
Since 〈p, v〉 ∈ PointsTo(P), by Definition 4 (case 3), 〈m, v〉 ∈ MemberAccess(P)
and therefore (v,m) ∈ T .

ACKNOWLEDGMENTS

Andreas Bögemann and Mirko Streckenbach did a great job with the prototype
implementation [Bögemann and Streckenbach 1999], and Mirko’s help with the
experiments and with improving the prototype was indispensable.

REFERENCES

Accredited Standards Committee X3. 1997. Working paper for draft proposed international
standard for information systems—programming language C++. Doc. No. X3J16/97-0108.

Agesen, O. and Ungar, D. 1994. Sifting out the gold: Delivering compact applications from
an exploratory object-oriented programming environment. In Proceedings of the Ninth Annual
Conference on Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA’94). Portland, OR, 355–370. ACM SIGPLAN Notices 29(10).

Andersen, L. O. 1994. Program analysis and specialization for the c programming language.
Ph.D. thesis, DIKU, University of Copenhagen. DIKU report 94/19.

Astudillo, H. 1997. Maximizing object reuse with a biological metaphor. Theory and practice
of object systems 3, 4, 235–251.

Bacon, D. F. and Sweeney, P. F. 1996. Fast static analysis of C++ virtual function calls.
In Proceedings of the Eleventh Annual Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’96). San Jose, CA, 324–341. ACM SIGPLAN Notices
31(10).

Ball, T. 1999. The concept of dynamic analysis. In Proceedings of the Seventh European Software
Engineering Conference Held Jointly with the Seventh ACM SIGSOFT Symposium on the
Foundations of Software Engineering. Toulouse, France, 216–234.

Bent, L., Atkinson, D., and Griswold, W. G. 2000. A comparative study of two whole-program
slicers for C. Tech. Rep. CS2000–643, UCSD. May.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

Birkhoff, G. 1940. Lattice Theory. American Mathematical Society.

Bögemann, A. and Streckenbach, M. 1999. KABA: Reengineering class hierarchies using con-
cept lattices. M.S. thesis, Technische Universität Braunschweig, Germany.

Casais, E. 1998. Reengineering of object-oriented legacy systems. Journal of object-oriented
programming , 45–52.

Choi, J., Grove, D., Hind, M., and Sarkar, V. 1999. Efficient and precise modeling of excep-
tions for the analysis of java programs. In Proceedings of the ACM SIGPLAN-SIGSOFT Work-
shop on Program Analysis for Software Tools and Engineering (PASTE ’99). ACM, Toulouse,
France, 21–31.

Choi, J.-D., Burke, M., and Carini, P. 1993. Efficient flow-sensitive interprocedural computa-
tion of pointer-induced aliases and side effects. In Conference Record of the Twentieth ACM
Symposium on Principles of Programming Languages. ACM, 232–245.

Das, M. 2000. Unification-based pointer analysis with directional assignments. In Proceedings of
the 2000 ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’00). Vancouver, Canada, 35–46. Appeared as ACM SIGPLAN Notices 35(5).

Davey, B. and Priestley, H. 1990. Introduction to lattices and order. Cambridge University
Press.

Ganter, B. and Wille, R. 1999. Formal Concept Analysis - Mathematical Foundations. Springer
Verlag.

Godin, R. and Mili, H. 1993. Building and maintaining analysis-level class hierarchies using
galois lattices. In Proceedings of the Eighth Annual Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA’93). Washington, DC, 394–410. ACM
SIGPLAN Notices 28(10).

Godin, R., Mili, H., Mineau, G. W., Missaoui, R., Arfi, A., and Chau, T.-T. 1998. Design of
class hierarchies based on concept (galois) lattices. Theory and Practice of Object Systems 4, 2,
117–134.

Hind, M. and Pioli, A. 2000. Which pointer analysis should I use? In Proceedings of the
International Symposium on Software testing and Analysis. Portland. to appear.

Krone, M. and Snelting, G. 1994. On the inference of configuration structures from source
code. In Proceedings of the 1994 International Conference on Software Engineering (ICSE’94).
Sorrento, Italy, 49–57.

Lindig, C. 1998. Analyse von Softwarevarianten. Tech. Rep. 98-02, TU Braunschweig, FB Infor-
matik.

Lindig, C. 1999. Algorithmen zur begriffsanalyse und ihre anwendung in softwarebibliotheken.
Ph.D. thesis, Technische Universität Braunschweig. in German.

Lindig, C. and Snelting, G. 1997. Assessing modular structure of legacy code based on math-
ematical concept analysis. In Proceedings of the 1997 International Conference on Software
Engineering (ICSE’97). Boston, MA, 349–359.

Moore, I. 1996. Automatic inheritance hierarchy restructuring and method refactoring. In
Proceedings of the Eleventh Annual Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’96). San Jose, CA, 235–250. ACM SIGPLAN Notices
31(10).

Opdyke, W. and Johnson, R. 1993. Creating abstract superclasses by refactoring. In ACM 1993

Computer Science Conference.

Opdyke, W. F. 1992. Refactoring object-oriented frameworks. Ph.D. thesis, University Of Illinois

at Urbana-Champaign.

Pande, H. D. and Ryder, B. G. 1996. Data-flow-based virtual function resolution. In Proceedings

of the Third International Symposium on Static Analysis (SAS’96). 238–254. Springer-Verlag
LNCS 1145.

Pugh, W. and Wonnacot, D. 1998. Constraint-based array dependence analysis. ACM Trans-
actions on Programming Languages and Systems 20, 3 (May), 635–678.

Rossie, J. G. and Friedman, D. P. 1995. An algebraic semantics of subobjects. In Proceedings
of the Tenth Annual Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA’95). Austin, TX, 187–199. ACM SIGPLAN Notices 30(10).

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

Rountev, A. and Ryder, B. G. 2000. Practical points-to analysis for programs built with
libraries. Tech. Rep. dcs-tr-410, Rutgers University. February.

Shapiro, M. and Horwitz, S. 1997. Fast and accurate flow-insensitive points-to analysis. In

Conference Record of the Twenty-Fourth ACM Symposium on Principles of Programming Lan-
guages. Paris, France, 1–14.

Siff, M. and Reps, T. 1997. Identifying modules via concept analysis. In Proc. International
Conference on Software Maintenance. Bari, Italy, 170–179.

Snelting, G. 1996. Reengineering of configurations based on mathematical concept analysis.
ACM Transactions on Software Engineering and Methodology 5, 2 (April), 146–189.

Snelting, G. 1998. Concept analysis – a new framework for program understanding. In Proc. ACM
SIGPLAN/SIGSOFT Workshop on Program Analysis for Software Tools and Engineering
(PASTE). Montreal, Canada, 1–10. ACM SIGPLAN Notices 33(7).

Snelting, G. and Tip, F. 1998. Reengineering class hierarchies using concept analysis. In Proc.
ACM SIGSOFT Symposium on the Foundations of Software Engineering. Orlando, FL, 99–110.

Steensgaard, B. 1996. Points-to analysis in almost linear time. In Proceedings of the Twenty-
Third ACM Symposium on Principles of Programming Languages. St. Petersburg, FL, 32–41.

Streckenbach, M. and Snelting, G. 2000. Points-to analysis for object-oriented languages.
Tech. rep., Universität Passau, Fakultät für Informatik. To appear.

Sweeney, P. F. and Tip, F. 1998. A study of dead data members in C++ applications. In
Proceedings of the ACM SIGPLAN’98 Conference on Programming Language Design and Im-
plementation. Montreal, Canada, 324–332. ACM SIGPLAN Notices 33(6).

Sweeney, P. F. and Tip, F. 2000. Extracting library-based object-oriented applications. In Pro-
ceedings of the Eighth International Symposium on the Foundations of Software Engineering
(FSE’2000). San Diego, CA. To appear.

Tip, F., Choi, J.-D., Field, J., and Ramalingam, G. 1996. Slicing class hierarchies in C++.
In Proceedings of the Eleventh Annual Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’96). San Jose, CA, 179–197. ACM SIGPLAN Notices
31(10).

Tip, F., Laffra, C., Sweeney, P. F., and Streeter, D. 1999. Practical experience with an
application extractor for Java. In Proceedings of the Fourteenth Annual Conference on Object-
Oriented Programming, Languages, and Applications (OOPSLA’99). Vol. 34. 292–305.

Tip, F. and Sweeney, P. 1997. Class hierarchy specialization. In Proceedings of the Twelfth
Annual Conference on Object-Oriented Programming Systems, Languages, and Applications

(OOPSLA’97). Atlanta, GA, 271–285. ACM SIGPLAN Notices 32(10).

Tip, F. and Sweeney, P. F. 2000. Class hierarchy specialization. Acta Informatica. to appear.

Wille, R. 1982. Restructuring lattice theory: an approach based on hierarchies of concepts.
Ordered Sets, 445–470.

Received December 1999; accepted May 2000

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

	Introduction
	A Motivating Example
	Organization of This Article

	Concept Analysis
	Relations and Their Lattices
	Implications
	Lattice Construction

	Objects and Attributes
	Table Construction
	Auxiliary Definitions
	Table Entries for Member Access Operations
	Table Entries for {tt this} Pointers
	Table Entries for Assignments
	Table Entries for Preserving Dominance/Hiding

	The new Hierarchy
	Lattice Construction
	Properties of the Lattice

	Language Details
	Heap Allocation
	Modeling Nested Objects
	Modeling Constructors
	Type Casts and Type Test Operations
	Exceptions
	Arrays
	Dynamic Class Loading
	Multiple Subobjects

	Restructuring class hierarchies
	Students and Professors Reconsidered
	Restructuring Transformations
	Dealing with Multiple Inheritance

	Implementation
	CFG and Points-to Analysis
	Generation of Table Entries and Implication Propagation
	Interactive Back End

	Case Studies
	Students and Professors, Finally
	An Easy Case
	The GNU Regular Expression Library
	JAS
	Empirical Results

	Related Work
	Applications of Concept Analysis
	Class Hierarchy Specialization and Application Extraction
	Techniques for Restructuring Class Hierarchies

	Conclusions and Future Work
	Future Work

	Acknowledgments
	References

