Software Reengineering Based on Concept Lattices

Gregor Snelting
Universitat Passau
Lehrstuhl Softwaresysteme
snelting@fmi.uni-passau.de

1 Overview

Concept analysis provides a way to identify groupings of objects that have common at-
tributes. The mathematical foundation was laid by G. Birkhoff [1], who proved that for
every binary relation between certain “objects” and “attributes”, a lattice can be con-
structed which allows remarkable insight into the structure of the original relation. The
relation can always be reconstructed from the lattice, hence concept analysis is similar in
spirit to Fourier analysis.

Later, Wille and Ganter elaborated Birkhoff’s result and transformed it into a data
analysis method [10, 3]. Since then, it has found a variety of applications, such as analysis of
Rembrandt’s paintings, classification of algebraic structures, and behaviour of drug addicts.
In 1993, work on the application of concept analysis in the area of program understanding
and reengineering was initiated. Concept analysis has been used for modularization of
legacy code [5, 6, 2], finding interferences between configurations [4, 7], and transformation
of class hierarchies [8, 9.

2 Concept lattices

In this overview, we will not present the elaborated and beautiful mathematical and algo-
rithmic background (the interested reader should consult [3]), but will merely present an
example explaining concept lattices.

Concept analysis starts with a relation, or boolean table, between a set of objects and
a set of attributes. As an example, consider the table describing properties of the planets
of the solar system (figure 1). The corresponding lattice offers insight not obvious from
the original table. In particular,

e cach lattice element (called a “concept”) corresponds to a maximal rectangle in the
table;

e the lattice is however independent of row or column permutations in the table;

medium
large
far
moon

X | X | nomoon

]

&
Mercury | XX
Venus X
Eath |IX
Mars ><
Jupiter X
Saturn X

X XXX | near

Uranus X
Neptune X
Pluto ><

XX XXX

Figure 1: A table describing properties of planets and the corresponding concept lattice

e lattice lements are labelled with attributes and objects;

e object o has attribut a in the table if and only if o appears below a in the lattice;

e the lattice presents a hierarchical clustering of objects and attributes;

e suprema factor out comon attributes, e.g. “Mars and Venus are both near”;

e infima factor out common objects, e.g. “Pluto is both small and far”;

e upward arcs are implications, e.g. “Any planet without moon is also near and small”.

From a large table, such insights are hard to obtain manually. Lattice construction can be
exponential in the worst case, but is almost linear in practice.

3 Assessing modular structures

In this section, we want to show how concept analysis can be used to assess the modular
structure of legacy code and perhaps modularize old systems. We try to find modules in
legacy code by analysing the relation between procedures and global variables. Hence the
objects are the procedures of a program, the attributes are the global variables, and the
variable usage table has entry (p,v) if procedure p uses variable v.

A module consists of a set of procedures P and a set of variables V' such that all
procedures in P use only variables in V' and all variables in V' are only used by procedures
in P. This definition captures the essence of information hiding. In the table, a module
shows up as a maximal rectangle. This rectangle, however, need not be completely filled
— not every procedure in a module uses all module variables, and not all module variables
are used by all procedures.

<
©
]
I a a 2
a w 8 L
4 =
> [}
£ ek L 2 < 2
Ww o= o & = 3
L% 8 n £ 9 v 8 4 &
S 2 S E % yoEozZi% ,
w9 g 9 5 B ow 8 9 o Procedures Variables
S% 2% i:4 25 33 7
aTlocate % a_° £ ¢ ° 1 |allocate angelegt
init XX 2 | init, analyse geloescht
analyse X % 3 | initsp, ausgabesp, fuegespein speicherverbrauch
initsp X 4 | ermittelsp, loeschenicht, loeschealles, pointerliste
ausgabesp % loesche, einfuegen, erzeuge, elemanz
fuegespein X 5 | addressinput cllone,bhelpadr, help,
eingabe
Crhea;:i%e:t‘lr X % 6 | changeadr colors
readline X 7 |readdata, readline maxstrlength
lookup X 8 | lookup, exists namehashtab
exists X 9 | rlookup phonehashtab
rlookup X 10 | remove, insert
remove X X 11 | calchashvalue hashtabsize
insert X X 12 | savehashtab, partsearch, clearhashtabs
calchasvalue X 13 | inithashtabs
savehashtab X X 14 | printmessage error2, errorl
partsearch X X 15 setbackground settextcolor, esc
clearhashtabs X X 16 setattribute, cfrscr, gotoxy
inithashtabs X X X
printmessage X X
setbackground X
settextcolor X
setattribute X
clrsrc X
gotoxy 0 X

Figure 2: Variable usage table of Modula-2 program (excerpt); corresponding lattice la-
belling and lattice structure; principal lattice structure for well-modularized programs.

We say that two sets of procedures (resp. their modules) are coupled if they use the
same global variable(s). Similarly, two sets of variables (resp. their modules) interfere, if
they are used by the same procedure. Although coupling via global variables is undesirable,
in a reengineering setting coupling might be acceptable if there are nested local modules or
procedures. Interferences however prevent a modularization, as there is a procedure which
uses variables from two different modules — a violation of the information hiding principle.

Figure 2 presents the variable usage table for a Modula-2 program from a student
project. The program is about 1500 lines long and divided into 8 modules; there are
33 procedures which use 16 module variables. The corresponding lattice is horizontally
decomposable: it consists of independent substructures (each for one module), connected
only via top and bottom element. Any program sticking to modularization and information
hiding must generate a horizontally decomposable lattice.

In case there are only a few interferences between horizontal summands, the modular
structure is still good (see lower right part in figure 2). Interferences can be detected
automatically and removed by simple program transformations such as encapsulation of
global variables.

We examined several legacy systems written in Fortran and Cobol. One example is an
aerodynamics system used for airplane development in a national research institution. The
system is about 20 years old, and has undergone countless modifications and extensions.

INPUT_ISETDEF INBOR _IRFAGIHE

e

Figure 3: Module structure of aerodynamics system

The source code is 106000 lines long, consists of 317 subroutines, and uses 492 global vari-
ables in 46 cOMMON blocks. One of the goals of the analysis is to reshape coMmMON blocks
such that each module corresponds to one COMMON block. Several manual restructuring
efforts had not been very successful, so it was decided to try concept analysis.

After the variable usage table was built, the lattice was constructed!. It contains
no less than 2249 elements. The number of elements in itself is not the problem (after
all, it is a large program), but unfortunately the lattice is so full of interferences that
it is impossible to reveal any structure (Figure 3). There is no way to make the lattice
horizontally decomposable by removing just a small number of interferences. We also tried
to analyse just parts of the system, with no better results either.

Generally speaking, the presence of module candidates must correspond to some parti-
tioning of the variables, and such partitionings can be found by lattice decompositions such
as horizontal decomposition. In the example, the overwhelming number of interferences

1This required 11 seconds on a SparcStation20.

prevents a partitioning and hence a modularization. Based on these results, the national
institution decided to cancel a reengineering project for this system, and develop a new sys-
tem from scratch. Thus in this case, the concept lattice did not generate a modularization,
but served as a quality metrics.

Another approach was studied by Siff and Reps [6]. They not only consider the use
of global variables, but also use of types, or the fact that a procedure does not use a
variable or type. A modularization is obtained by finding lattice elements which provide
a partition of the attribute space. Siff reports good results on small C programs. Van
Deursen and Kuipers use concept analysis for analysing records in Cobol programs in
order to identify object candidates [2]; they report good success on a real-life Cobol legacy
system. According to van Deursen, it is important to filter out “objects” and “attributes”
which are not application specific (in fact, they only analysed records associated with
persistent file structures). In general, a system can be modularized automatically only if
it is not too degenerate.

4 Exploring configuration spaces

Our next application is the analysis of configuration spaces. We concentrated our efforts on
UNIX source files, where variants and versions are often managed using the C preprocessor
CPP.

Using CPP, objects are code pieces (consecutive source line intervals), while the at-
tributes are derived from the CPP expressions governing each code piece. Figure 4 presents
a simple example which shows how a configuration table is derived from a source file. In
the corresponding lattice, a concept represents a specific configuration thread, namely a
set of code pieces selected by the same CPP expressions. The example lattice also displays
an interference between two configuration threads, namely a code piece governed by two
supposedly independent, or orthogonal, CPP symbols. Interferences show up as infima not
labelled with a cPP symbol. In the example, X_win and DOS are — as everybody knows —
even mutually exclusive, hence the interference indicates that code piece IV is dead code.

But governing conditions can be arbitrary boolean expressions; furthermore, #ifdefs
and #ifs may be nested. Thus it is not so obvious what the “attributes” should be. The
handling of complex governing expressions is explained in detail in [7]: governing expres-
sions are transformed into conjunctive normal form; then additional columns for elementary
disjunctions and negations are introduced. As an example, consider the right part of figure
4: the lattice displays an interference between elementary disjunctions DOS||X_win and
UNIX||DOS. In the source text, it seems that code piece II is governed by the simple ex-
pression DOS, but since DOS also appears in the governing expression for code piece V,
there is a subtle interdependency between the corresponding configuration threads - visible
in the lattice. In general, a good configuration lattice is horizontally decomposable (just
as a good module lattice, see last section). If there are not too many interferences between
sublattices, they can be removed by modification of the cpPp files.

One of the source files we analysed was the stream editor rcsedit from the RCS system.

=z 2w
T B O
S #ifdef UNIX o Ha
#ifdef DOS oL e
R & #endif OzOzZ=Z
tondif |DOS 0S2 X_win #ifdef DOS . pr,AP P
I U & x x X
#ifdef 0S2 I | x #endif IIIII <X
.. III... I X - :
vl x % #if defined(D0S) v X
#endif V4 X || defined(X_win) V X X
#if defined(D0OS)VI R & i
&% defined(X_win) #endif S~ 1o
IV #if !'defined (UNIX) -
RS P m Iv 1 UNIX| | X_win
#endif os I % in
#ifdef X_win ' #endif o D
- #if defined(UNIX) || ’
sV (defined (DOS) &&defined (X_wi
#endif VL
WLVIL .. #tendif

Figure 4: Two simple CPP files and their lattices. Disjunctions can cause interference.

This program is 1656 lines long and uses 21 CPP variables for configuration management.
Its configuration lattice, together with the labelling of the lattice elements is shown in
Figure 5. The top element C'1 represents the code pieces not governed by anything. The
left-hand side of the lattice is quite flat (C'18 to C'4) which means that there are many
configurations which do not influence each other. From a software engineering viewpoint,
this is desirable, as it indicates low coupling between configuration threads.

There are, however, some interferences in the right-hand side. For example, C27,
representing source line 1426, is the infimum of C'3 and C26. The latter are labelled
has rename resp. has NFS; has rename has to do with the file system, while has NFS is
concerned with the network. These should be independent (transparency of the network),
but the lattice reveals that they are not. A look into the source code reveals the following
comment for line 1426: “An even rarer NFS bug can occur when clients retry requests.
... This not only wrongly deletes B’s lock, it removes the RCS file! ... Since this problem
afflicts scads of Unix programs, but is so rare that nobody seems to be worried about it,
we won’t worry either.”

5 Transforming class hierarchies

Recently, we combined concept analysis with dataflow analysis and type inference in order
to improve object-oriented systems. Our goal is to analyse Java or C++ programs with
respect to their member access patterns. We want to infer a transformed class hierarchy
which is semantically equivalent to the original one, but reflects actual member accesses in
the program (in contrast to the static hierarchy as defined in the program text). Techni-
cally, for every variable a new type is computed which contains exactly the data members
and methods which must be visible to the variable due to its actual behaviour. The new

] MORA-RECS O]
File Action Options Help
Girid off.
M g

Cef: 1428 - 1426 _*" & tewien@inmsps3 (~irestruct) I EH]
if thas_rename
Intent Labels .] do_Tink(from,tod =10 7 =1 : un_link(from)
else
C26: { bad_unlink OR has_MFS) | 3 has rename rename(from, to) != 0
has_NFS 1424 - 1424 # if has_NFs
1476 - 14728 . endﬂ%& errno != ENDENT
1432 - 1432 2 -
if bad_a_rename
: mode != mode_while_renaming ? chmod(to, m
[P T e |
C18: large_memory
Ci: 1 - 164 1347 - 1370 C8: 'has_readlink 254 - 254 C27: 1426 - 1426
169 - 179 1377 - 1385 1125 - 1126 277 - 400 C28: 215 - 235
210 - 210 1396 - 1396 C9: has_setuid 490 - 490 C29: bad_unlink
238 - 252 1401 - 1402 1545 - 1545 608 - 652 190 - 193
413 - 427 1406 - 1408 C10: (!has_rename OR bad_b_rename) 661 - 661 198 - 201
486 - 488 1419 - 1420 1410 - 1417 693 - 693 C30: 195 - 196
532 - 598 1434 - 1543 Ci1: has_fchmod 715 - 715 C31: !large_memory
654 - 659 1549 - 1656 1398 - 1399 729 - 729 166 - 167
666 - 667 C2: 'has_setuid 1404 - 1404 751 - 751 402 - 405
674 - 684 1547 - 1547 C12: bad_a_rename C19: 'has_memmove 410 - 411
690 - 691 C3: has_rename 1387 - 1392 258 - 275 429 - 484
695 - 702 1424 - 1424 C13:1430 - 1430 C20: has_memmove 492 - 530
708 - 713 1428 - 1428 C14: has_prototypes 256 - 256 600 - 606
726 - 727 1432 - 1432 1372 - 1373 C21: !has_NFS 663 - 664
731 - 731 C4: !'bad_a_rename C15: has_mktemp C22: 'has_rename 669 - 672
T4T - 749 1394 - 1394 1318 - 1318 1422 - 1422 686 - 688
753 - 754 C5: 'has_prototypes 1330 - 1334 C23: 213 - 213 704 - 706
758 - 1049 1375 - 1375 C16: !open_can_creat C24: (bad_unlink OR has_NFS) 717 - 723
1096 - 1121 C6: 'has_mktemp 1230 - 1230 181 - 188 733 - 745
1128 - 1142 1320 - 1320 C17: has_readlink 208 - 208 756 - 756
1150 - 1228 1336 - 1345 1051 - 1094 C25: 206 - 206 C32: bad_fopen_wplus
1234 - 1316 C7: open_can_creat 1123 - 1123 C26: has_NFS 407 - 408
1322 - 1328 1232 - 1232 1144 - 1148 204 - 204 C33:

Figure 5: Configuration lattice for rcsedit

types are arranged in a new class hierarchy, obtained as a concept lattice. The new hi-
erarchy is usually more fine-grained, indicating that the old classes may be splitted or
refactored. Average object size has usually decreased, hence the approach can also be
considered a hyper-agressive space optimization. The program statements are unchanged!

The method is quite complex, and the interested reader can find details in [8, 9]. As
an example, consider figure 6. A small class hierarchy is presented together with a main
program using it. The upper right table summarizes all member accesses occuring in the
source text. “Objects” are all variables and pointers from the program, including this
pointers. “Attributes” are all data members and methods from the program. Note that a
conservative approximation for dynamic binding must be used during table construction,
since the exact target of a method call is unknown at analysis time. This approximation is
achieved via points-to analysis (an analysis which for every pointer computes a — hopefully

class A {
public:
virtual int £(){ return g(Q; };

virtual int g(){ return x; }; int mainO){

int x;
Vs ’ A a; Bb; C c;
I’
. A *ap;
class B : public A { if (P’) { ap = ga; }
ublic: e ’
pub- . else { if (...) { ap = &b; }
virtual int g(){ return y; }; else { ap = &c; } }
int y; ’
i’ s ap—>f();
I
. return 0;
class C : public B {) ’
public:
virtual int £(){ return g() + z; };
int z;
1%
<|<|<|i|<|alala|o|s
i|<|%|2|<|s|a|s|s|s ol el S A A |e|<|<]i|a|s|a|s|e
3|3|3|2|8|2|3 |2 |33 2 XXIXXX 3|3|3|3|8|3|3|%8 |35
o [X[x] X XX .
XX TITx AT XX XXX
P X X T o ||| x| [x[x|x
NEE N N ¢ [X[X X
T ap [e ap X
Ao x| X
A f At
e ><><><>< “Biig XX 'A:'g><>>i><><><
B XX < s XX IR XXX
"o X x| =" RS X x|

xXQ
No—

Figure 6: Sample C++ program; initial member access table and tables after propagating
assignment and dominance type constraints; final lattice.

gnuregexp REToken gnuregexp Charindexed anuregepRESyax

del(gnu.regexp.CHarlndexed.charAt) gnu.regexp RESyntax bits
dcl(gnu.regexp.CHarindexed.isValid) dcl(gnu.regexp[RESyntax.get)

del(gni.regexp Charindexed move) def(gnu.regexp|RESyntax. get)

Figure 8: Transformed class hierarchy for “jEdit”.

small — set of objects it can point to at runtime). There are also some subtleties in
connection with class-typed data members, nonvirtual methods and this pointers, which
will not be explained here.

The original program generates several type constraints which are essential for program
behaviour. For example, in any assignment the type of the left-hand side must be a
superclass of the type of the right-hand side. Such constraints are incorporated into the
table in form of implications [3]. Implications are indicated as arrows between rows in the
upper right table in figure 6; an implication from row z to row y means that all entries
in z must be copied to y and will enforce z < y in the lattice. Furthermore, certain sub-
/superclass relations must be retained in order to preserve visibility properties of members
which have been redefined in subclasses. The latter constraints are more complex to
determine; they are indicated as implications between columns in the lower left table. A
fix-point iteration applies implications until the table has stabilized, and finally the concept
lattice is computed.

The resulting lattice can directly be interpreted as a class hierarchy: lattice elements are
classes, “attribute labels” are class members, and “object labels” are class-typed variables.
We have proven that the new hierarchy is operationally equivalent to the old hierarchy.
But usually it contains more classes, and objects are smaller. In the example, we see that
b does not access A: :f and A: :x, and ¢ does not access any of A’s original members. Hence
the new types of b resp. ¢ are not a subclass of the new type of a anymore, resulting in

def(gnu.regexp.REToken.<init>)
dcl(gnu.regexp.REToken.dump)
dcl(gnu.regexp.REToken.dumpAll)
def(gnu.regexp.REToken.dumpAll)
dcl(gnu.regexp.REToken.getMinimumLength)
gnu.regexp.REToken.m_next

dcl(gnu.regexp.RE.dump) gnu.regexp.REToken.m_subindex
def(gnu.regexp.RE.dump) gnu.regexp.RE[Token.m_uncle
gnu.regexp.RE firstToken dcl(gnu.regexp.REToken.match)
def(gnu.regexp.RE.getMinimumLength) dcl(gnu.regexp/REToken.next)
gnu.regexp.RE.lastToken def(gnu.regexp|REToken.next)

gnu.regexp.RE.m_numSubs dcl(gnu.regexp.REToken.setUncle)

dcl(gnu.regexp.RE.match)

def(gnu.regexp.RE.match)
def(gnu.regexp.RE. setUncIe)
def(gnu.regexp.Rl S

tlef(gnu.regexp\REToken.chain)

def(gnu.regexp.RE.<initp(java.lang.Object,int,gnu.regexp. RESyntax
dcl(gnu.regexp.RE.getMatch(java.lang|Object,int,int,java.lang. StringBuffer->gnu’regexp.REMatch))
def(gnu.regexp.RE.getMatch(java.lang{Object,int,int,java.lang.StringBuffer->gnu.regexp.REMatch))
dcl(gnu.regexp.RE.getMatch(java. Iang Object,int,int->gnu.regexp.REMatch)) .
def(gnu.regexp.RE.getMatch(java.lang.Object,int,int->grd-regexp. REMatch)) dcl(gnu.regexp.REZ.chain)

def(gnu.regexp>REToken.setUncle)

dcl(gnu.regexp.RE.getMatch(java.lang.Object->gril.regexp.REMatch)) def(gnu.regexp.RE chain)
def(gnu.regexp.RE.getMhtch(java.lang.Object<>gnu.regexp.REMatch)) ~ dcl(gnu.regexp\RE/getNumSubs)
dcl(gnu.regexp.RE.getMatchimpl) def(gnu.regexp.BE.getNumSubs)
def(gnu.regexp.RE-getMatchimpl) \
def(gnu.regexp.REToken-gétMinifiumLength

org.gjt.sp.jedit.gui.HyperSegrch.doHyperSearch().<#15>

dcl(gnu.regexp.RE.substitute(java.lang.Object java.lang.String,int,int->java.lang.String))
def(gnu.regexp.RE.substitute(java.lang.Objgct java.lang.String, int,int->java.lang. String))
dcl(gnu.regexp.RE.substitute(java.lang.Qbject java.lang.String->java.lang.String))
def(gnu.regexp.RE.substitute(java.lang.Qbject,java.lang.String->java.lang.String))
dcl(gnpi.regexp.RE.substitutelmpl)
def(gnpi.regexp.RE.substitutelmpl)

org.gjt.sp.jedit.jEdit.geth>gnu.regexp.RE).<#1a>

Figure 9: Refactoring proposal for regular expression subhierarchy.

reduced space requirements for objects b resp. c.

Instead of discussing more details of this powerful analysis method, we would like to
conclude with a realistic example. The “jEdit” text editor (ca. 9000 LOC) uses a Java
reimplementation of the GNU regular expression library, and we will now show how our
method generates restructuring proposals for this library. Figures 7 and 8 present the orig-
inal and the transformed class hierarchy, as displayed by our implementation KABA. Most
of the classes are just reproduced by KABA, indicating that the original class structure
was good.

But there is a subhierarchy “gnu.regexp.REToken” which implements regular expression
search. The transformed regular expression search is much more fine-grained (figure 9);
for example, KABA discovers a distinction between “regular expression search without
substitution” and “regular expression search with substitution”. Note that the lattice
displays the finest possible splittings and refactorings of classes according to actual program
behaviour. For reengineering purposes, the lattice should therefore be simplified in order
to reflect software design principles. Semantics-preserving simplifications based on the
structure theory of concept lattices are discussed in [9].

10

References

[1] G. Birkhoff: Lattice Theory. American Mathematical Society, Providence, R.I., 1st
edition, 1940.

[2] A. van Deursen, T. Kuipers: Identifying objects using cluster and concept analysis.
Proc. 21th International Conference on Software Engineering, Mai 1999, IEEE Comp.
Soc. Press, pp. 246-255.

[3] B. Ganter, R. Wille: Formal concept analysis — mathematical foundations. Springer
Verlag 1999.

[4] M. Krone, G. Snelting: On the inference of configuration structures from source code.
Proc. 16th International Conference on Software Engineering, Mai 1994, IEEE Comp.
Soc. Press, pp. 49-57.

[6] C. Lindig, G. Snelting: Assessing Modular Structure of Legacy Code Based on Math-
ematical Concept Analysis. Proc. International Conference on Software Engineering
(ICSE’97), Boston 1997, pp. 349 — 359.

[6] M. Siff, T. Reps: Identifying Modules via Concept Analysis. Proc. International Con-
ference on Software Maintenance, Bari 1997, pp. 170 — 179.

[7] G. Snelting: Reengineering of configurations based on mathematical concept analysis.
ACM Transactions on Software Engineering and Methodology 5,2 (April 1996), pp.
146-189.

[8] G. Snelting, F. Tip: Reengineering Class Hierarchies Using Concept Analysis. Proc.
ACM SIGSOFT Symposium on the Foundations of Software Engineering, November
1998, pp. 99-110.

[9] G. Snelting, F. Tip: Reengineering Class Hierarchies Using Concept Analysis. Tech.
Report MIP-9910, University Passau 1999. Submitted for publication.

[10] R. Wille: Restructuring lattice theory: an approach based on hierarchies of concepts.
In: I. Rival, (Ed.), Ordered Sets, pp. 445-470, Reidel 1982.

11

