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Abstract Reuse"“You must find it before you can reuse it!”
Most earlier software component retriev8loR meth-
Deduction-based software component retrieval uses pre-ods (e.g., [19]) grew out of classical information retrieva
and postconditions as indexes and search keys and an autofor unstructured texts. However, since software compo-
mated theorem proveA{P) to check whether a component nents are highly structured, more specialized approaches
matches. This idea is very simple but the vast number ofmay lead to better results. In this paper we will concentrate
arising proof tasks makes a practical implementation very on a deduction-based approach where we use pre- and post-
hard. We thus pass the components through a chain of filtersconditions as the components’ indexes and as search keys.
of increasing deductive power. In this chain, rejection fil- A component matches a search key if the involved pre- and
ters based on signature matching and model checking techpostconditions satisfy a well-defined logical relatiorg.g.
nigues are used to rule out non-matches as early as possibléf the component has a weaker precondition and a stronger

and to prevent the subsequatfrom “drowning.” Hence, postcondition than the search key. From this matching rela-
intermediate results of reasonable precision are avagail tion a proof task is constructed and AP is used to estab-
(almost) any time of the retrieval process. The fitvaPstep lish (or disprove) the match.

then works as a confirmation filter to lift the precision ofthe ~ This approach has been proposed before (e.g., [28, 20])
answer set. We implemented a chain which runs fully auto-but without convincing success because essential user re-
matically and useMACE for model checking and the auto- quirements have been neglected. In this paper we fol-
mated provelSETHEOas confirmation filter. We evaluated low a more user-oriented approach and describe steps for
the system over a medium-sized collection of componentsmaking deduction-basestCRpractical. We concentrate on
The results encourage our approach. deduction-base8CRbecause it is the key technique which
underlies more ambitious logic-based software engineer-
ing approaches, e.g., program synthesis [17] or component
adaptation [25]. For a discussion of benefits and the inte-
gration into software engineering processes we refer to [9]
In the next two sections we outline the user requirements
Reuse of approved software components has been idenfor a practical reuse tool and present our system architec-
tified as one of the key factors for successful software en-ture, featuring the filter pipeline and a graphical userrinte
gineering projects. Although the reuse process also cov-face. Then, we discuss the construction of proof tasks out
ers many non-technical aspects [33], retrieving apprépria of the givenvDM-SL specifications. This is an important
software components from a reuse library is a central task.step as the different approaches model quite differenereus
This is best captured by tiférst Golden Rule for Software  aspects. Sections 5 and 6 focus on the two major compo-
nents of the filter pipeline, namely rejection of non-maghe
" This work is supported by the DFG within the Schwerpunkt “Dled  yith model-checking techniques and the final confirmation

tion” (grant Sn11/2-3), the habilitation grant Schu908;1dnd the Son- . .
derforschungsbereich SFB 342, Subproject A5 (PARIS: Réizaltion of filter with SETHEQ We have evaluated our approach over

Inference Systems). Part of the work was done while visithmgy ICSI
Berkeley. 1This rule has been attributed to Will Tracz.
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checking the whole library before any results were pre
sented.ATP runtimes and problems of scaling-up were ig-
nored.

This view led to severe acceptance problems as the us
are software engineers and ATP experts’® Their main re-
guirements are that the tool is easy to use, fully automatize
fast and customizable, and hides all evidence of automated
theorem proving. Hiding thaTP has some consequences.
The input language must be a fully-flavored specification 3. System Architecture
language and not pure first order logieQL). But then the
automatic construction of the actual proof tasks becomesit |, order to meet the user requirements we implemented

self a major task. NORA/HAMMR as afilter pipelinethrough which the can-
Short response times are also essential asFtheth  gidates are fed. This pipeline typically starts witigna-
Reuse Truisndemands that “you must find it faster than tyre matching filters They check whether candidate and
you can rebuild it!"[15]. However, due to the computa- qguery have “compatible” calling conventions (i.e., types o
tional complexity ofATP, truly interactive (*sub-second”)  sjgnatures). The notion of compatibility is specified by an
behavior is still far out of reach. Insteadnytime behav- equational theonyz; the filter then appliesZ-matching or
ior is acceptable: intermediate results of sufficient prenisio  g._nification of the signature terms. Typical theories in-
must be available to the user at (almost) any time during thec|yde axioms to handle associativity and commutativity of
retrieval process. Retrieval may then be guided furthen wit parameter lists and records, currying (for functional lan-
feedbackfrqm the user who may for example strengthen theguages), pointer types and VAR-parameters (for imperative
search key incrementally. languages), and coercion rules (see [8] for a detailed sliscu
Ideally, the tool doesn’t constrain user feedback to the sjon).
queries but allows a customization of the complete retlieva  Then, rejection filterstry to eliminate non-matches as
process. This includes the selection of an appropriatematc fast as possible. This is a crucial step to preventAhie
relation from a given list of choices as well as some tun- from “drowning” as there are many more non-matching
ing of the deductive mechanism (e.g., time limits or model than matching candidates. We currently apply model gener-
sizes). But it is important to ensure that the tool still runs ation techniques to check the validity of the tasks in slgtab
fully automatically and produces useful results even witho  finite models. However, both precision and recall may de-
customization. crease because this approach is neither sound nor complete.
In exchange for these constraints, deduction-b&szrl Finally, confirmation filterscheck the validity of the re-
offers the unique feature that completeness and even soundmaining proof tasks and thus lift the precision of the re-
ness are not absolutely vital. Incomplete and unsound de-sult to 100%. Here, we appBETHEQ a high-performance
duction methods only reducecall (“do we get all match-  prover based on the Model Elimination calculus. Both filter
ing components?”) angrecision(“do we get the rightcom-  classes will be described below in more detail.
ponents?”). The graphical user interface (cf. Figure 1) reflects the
idea of successive filtering. The pipeline may easily be cus-
NORA is no real acronym, HAMMR is a highly adaptive multi-  tomized through an icon pad; each filter icon also hides a

method retrieval tool. . . : specialized filter control window which allows some fine-
In a real-life setting, a reuse administrator is required\khows the

applied deduction methods and who can “tune” libraries. (dag giving tu_ning of the filters. Additional inspectors display intem
ATP settings and domain specific lemmata). diate results and grant easy access to the components. They

Figure 1. Graphical user interface




also allow to save intermediate results in a file such that Thus, a component is retrieved if it computes the correct
they may easily be used as libraries for subsequent reltrievaresults on the common domain. If, however, the domains of
runs. The objective of the GUI is precisely to hide all ev- candq are disjointpre, andpre, are never true at the same
idence ofATP usage. Hence, the knowledge necessary totime and thug3) will become vacuously true. But usually

useNORA/HAMMR as atool is restricted tovDM-SL [7] andc then also work on different types andhould already
which we use as our input language and to the target lan-be rejected by signature matchingc lias an empty domain
guage which is required for signature matching. or is notimplementable (i.epost. never becomes true(3)

will again become vacuously true amdwill be retrieved
4. Proof Tasks and Reuse for any query. However, this should not happen in a well-

designed library.
The overall structure of the generated proof tasks de- Obviously, reuse based on partial compatibility is un-
pends on the definition of thmatch relationwhich is used safe because the retrieved components are not guaranteed
in a deduction-basesCRtool. Thus it ultimately depends 0 work on the entire required domain. But they might be

on the kind of reuse which the tool aims at. good starting points for desired more general implementa-
Most often, deduction-basesCR is configured to en-  tions. Hence, the components must be considered as “white
sureplug-in compatibilityof the retrieved components: ~ boxes’—their code needs a closer inspection.

matches if it has a weaker precondition and a stronger post- As an example, let us consider the followik@M-SL
condition than the search key This is usually (cf. e.g., specifications:

[34]) formalized as(pre, = pre,) A (post, = post)*. rotate(l : List) I’ : List shuffiéz : X) 2’ : X

However, this is not adequate for partial functionsy i§ a pre true pre true

partial function (e.gtail) andc¢ its total completion (e.g., post (I=[]=1=[)A post Vi:ltem

¢(nil) returnsnil) then we want: to matchg even if its ( Al = (Gz1,22: X -z =0 i]" 22 &
“completed” result does not fit the original specification. = UNhdl])  Fwi,zo: X 2" =20"i] )

It is thus necessary to restrict the implication between the
postconditions on the domain given pye,. We thus work
with proof tasks of the form

Let us further assume that we use plug-in compatibility
as match relatiorrptate as candidate andshuffleas query
g. Then several steps are necessary to construct a sorted
(pre, = pre.) A (pre, A post. = post,) (1) FOL proof task. First, the formal parameters must be iden-
tified, in this casé = = andl’ = 2’.6 Then, VDM’s under-
lying three-valued logic LPF must be translated iftoL.
This essentially requires the explicit insertion of adulial
reconditions into the proof task to prevent reasoning from
ndefined terms as well as a translation of the connectives
which takes care of the missing law of the excluded middle
[12, 22]. In our example, this results in the proof task

which are similar to [34]'s “guarded plug-in match” except
for our use of the stronger (via the first implication) pre-
condition from the query. Plug-in compatibility supports
safe reuse. The retrieved components may be considereﬁ
as black boxes and may be reused “as is”, without further
proviso or modification of the component.

Sometimes plug-in compatibility is not applicable be-

cause the users don’t want to specify any precondition but VLI 2,2 List- (I =2 Al =2’ Atrue = true)
are willing to accept whatever comes, as long as their post- AN (I=zAl=2'AN(I=]=>1=])
conditions are met. In that cagg) simplifies to A (£ =0#£]=1 =D hd]]))
= (Vi:ltem- Qz1,22: X -z = 21" [i]"z2
pre. A posf. = pos}, (2) oo,z X -7 = 2 i) 12)))

or conditional compatibility However, reuse now becomes
potentially unsafe because any client still has to satiséy t
open obligatiorpre, .

Sometimes (2) might be too strong, and retrieves
no components, although the library contains “almost” 5. Rejecting Non-Matches
matches, e.g., partial functions. To additionally reteiev
such componentgartial compatibilitymay be used: Detecting and rejecting non-matching components as

3) fast and early as possible is probably the single most impor-
tant step in making deduction-basgaRr practical—there

Finally, a simplification removes obviouslyue or false
parts of the formula.

pre, A pre, A post, = post,

4Actually, the proof tasks are universally closed wrt. thenfal input

and output parameters of the component and the query anc@téain SHere,” means concatenation of list$,the empty list,[i] a singleton
equations relating the parameters. Likewise, the pre- astcpnditions list with item ¢, andhd andtl the functions head and tail, respectively.
are of course logical functions of the respective pararsetelowever, to 6This identification is, however, not always a simple renasobsti-

improve readability, we use these traditionally abbredaormulations. tution as VDM-SL allows pattern matching and complex dajeesy



are simply many more non-matching than matching com- be ordered either way.
ponents. Unfortunately, mosfPs are not suited for this So, while there are some predicates which allow exact
task. They exhaustively search for a proof (or refutation) abstractions, we have to approximate others. Since we want
of a conjecture but are practically unable to conclude thati to use abstract model checking as a rejection filter, we have
is not valid (or contradictory). Therefore, other techniques to make our choices such that the filter produces as few
have to be used to implement rejection filters. false counterexamples as possible: spurious matches are
Generally, we may reject a componentf we find a handled by the subsequent confirmation filter but improp-
“counterexample” for its associated proof tdgkbecause  erly rejected components are lost forever.
it then cannot be valid. Model generators fedL like
Finder [31] orMACE [21] try to find such counterexam- g o Mapping by Approximation
ples (which are simply interpretations under whigheval-
uates tdfalse by systematically checking all possible inter-
pretations. This obviously terminates only if all involved
domains are finite, as for example in finite group theory
or hardware verification problems. On the other hand, the
highly efficient implementation of most model generators
(usually using BDD-based Davis-Putnam decision proce-
dures) would make them ideal candidates for fast rejection
filters.

The second approach to map an infinite domain onto a
finite one is done by approximation. From the infinite do-
main, we select a number of values which seem to be “cru-
cial” for the module’s behavior. E.g., for lists, one usyall
picks the empty lisf] and small lists with one or two el-
ements (e.g.[al, [a,b]). Then, we search for a model or
counterexample. This approach mimicks the manual check-
ing for matches: if one has to find a matching compo-

However, most domains in our application are not finite nent. one first make checks with the empty list and one
but unbounded, e.g., numbers or lists. If we want to use ' . . Pty
or two small lists. If this does not succeed, the compo-

model generation techniques for our purpose, we must ma| . o
_g_ . - q - purp . . pnent cannot be selected. Otherwise, additional checks have
these infinite domains onto finite representations, eitlger b

. L to be applied. This approach, however, is neither sound
abstractionor by approximation nor complete. There exist invalid formulas for which a
. . model can be found in a finitely approximated domain (e.g.,
5.1. Mapping by Abstraction VX : List-3i : Item - X = [i]*X), and vice versa (e.g.,
XY, Z: List- X #Y ANY # Z AN Z # X which has a
One approach to establish this mapping uses techniquesnodel only in domains with at least three distinct elements)
from abstract interpretation [6] where the infinite domain While the second case is not too harmful for our
is partioned into a small finite number of sets which are application—the performance of the filter just decreases
called abstract domains. For each functipran abstract  (j.e., more proof tasks can pass), the first one is dangerous:
counterpartf is constructed such that and f commute  proof tasks describing valid matches might be lost. The ex-
with the abstraction functioa: between original and ab-  periments which we describe in Section 7.3 are based on

stract domains, i.eq(f(z)) = f(a(z)). E.g., we may  this approach. For our prototype implementation we use
partition the domain of integers into three abstract dosain the model generatoACE [21].

{0}, {z | > 0} and{z | < 0}, calledzero, posaindneg
Then, all operations for integers must be abstracted aecord
ingly. For example, for the multiplicatiorx, we get the
abstract multiplicationx which actually mirrors the “sign
rule”: negxpos= posxneg= neg For the final stage of our filter chain the high-
Abstract model checking [10] then represents the ab- performance theorem prov8ETHEOIs used. SETHEOQIs
stract domains by single model elements and tries to find ana complete and sound prover for unsorted first-order logic
abstract countermodel, using an axiomatization of the ab-based on the Model Elimination calculus. It accepts formu-
stract functions and predicates with a standa@d model las in clausal normal form and tries to refute the formula by
generator. There is, however, a problem. While abstractconstructing a closed tableau (a tree of clauses). Complete
interpretation may escape to a larger “abstract” domain of ness is accomplished by limiting the depth of the search
truth values in order to make the predicates commute with space (e.g., with a bound on the size or depth of the tableau)
the abstraction function, stande®@L model generatorsre-  and performing iterative deepening over this bound. In the
quire the exact concrete domaintofe andfalseand thusa  context of this papelSETHEOcan be seen as a black box
consistent abstraction may become impossible. E.g., whenwhich returns “proof found” or “failed to find proof” af-
we try to abstract the ordering on the numbéess(zero,  ter the given time-limit. Hence, no further details about
pos)is valid but we cannot assign a single truth value to SETHEOare given in this paper. For a description of the
less(pos, poshecause two arbitrary positive numbers may system and its features see e.g. [16, 24].

6. SETHEO as Confirmation Filter



With SETHEGs soundness, we obtain a confirmation fil-  6.3. Sorts
ter which guarantees that proof tasks which pass it success-
fully actually select matching components. Due to our hard  All proof tasks are sorted. The sorts are imposed from
time constraints, however, means must be taken not to dethe vDM-SL specifications of the modules and are struc-
crease the recall in an unacceptable way. In the following, tured in a hierarchical way. All sorts are static and there
we describe hovBETHEOhas to be adapted in order to be s only limited overloading of function symbols. Therefore
integrated intddORA/HAMMR. We discuss importantissues  the approach teompilethe sort information into the terms
like handling of inductive problems, sorts and equalitan  of the formula can be used. Then, the determination of the
the selection of axioms and parameter settings. sort of a term and checking, if the sorts of two terms are
compatible is handled by the usual unification. Thus there
is no need to modifyfSETHEO and the overall loss of ef-
ficiency is minimal. Our current prototype uses the tool
ProSpec (developed within Protein [1]).

6.1. Inductive Problems

Whenever recursive specifications are given or recur-
sively defined data structures are used (e.g., lists) many of6-4. Selection of Axioms
the proof tasks can be solved imgluctiononly. SETHEOIt-
self cannot handle induction and our severe time-consg$rain Each proof task has to contain—besides the theorem and
don't allow us to use an inductive theorem prover. There- the hypotheses—the features of each data type (&gd,,
fore, we approximate induction by splitting up the problem Nat) as a set ohxioms Automated theorem provers, how-
into several cases. For example, for a query and candidatever, are extremely sensitive w.r.t. the number and stractu
with the signaturd : List, and the corresponding proof of the axioms added to the formula. Adding a single (un-
task of the formvi : List - F(I) we obtain the following  necessary) axiom can increase the run-time of the prover by
cases:!! = [| = F(I), Vi : tem-1 = [i] = F(I), and magnitudes, thus decreasing recall in an unacceptable way.
Vi : Itemly : List- F(lg) Al = [i]My = F(I).” After In general, selecting the optimal subset of axioms is a very
rewriting the formula accordingly, we get three indepen- hard problem and has not been solved in a satisfactory way
dent first order proof tasks which then must be processedyet. Our strong time-constraints furthermore won't allosv u
by SETHEQ This approach can be implemented efficiently. to use time-consuming selection techniques. In our proto-
However, we cannot solve every inductive problem. type, we therefore use a simple strategy:

1. select only those theories for those data types (e.g.,
6.2. Equality List, Nat, Booleahoccurring in the proof task,

2. within such theories, only select clauses which have
All proof tasks heavily rely upon equations. This is due function symbols in common with the proof task, and
to the VDM-SL specification style and the construction of ) . .
the proof tasks. While some equations just equate the for- 3: 1eave out particular clauses and axioms which are
mal parameters of the query and the library module, others ~ known to increase the search space substantially (e.g.,
carry information about the modules’ behavior. Therefore, long clauses, Non-Horn clauses).
efficient means for handling equalities must be provided.
We currently provide two variants: the naive approach by
adding the corresponding axioms of equality (reflexivity,
symmetry, transitivity, and substitution axioms), and the
compilation approach used withid-SETHEO[24]. Here,
symmetry, transitivity and substitution rules are conypile
into the terms of the formula such that these axioms need6'5' Control
not be added. This transformation, an optimised variant of
Brand’s STE modification [3], usually increases the size of ~ Once started, the theorem prover has only a few sec-
the formula, but in many cases the length of the proof and onds of run time t(_) search for a proof. This requires that
the size of the search space becomes substantially smaller.h€ parameters which control and influence the search (e.g.,
way of iterative deepening, subgoal reordering) are set in
. N an optimal way for the given proof task. However, such
“Although it would be sufficient to have cases 1 and 3 only, vee al

; e : ) a global setting does not exist for our application domain.
generate case 2, since many specifications are valid forempty lists . . . . .
only. For those specifications, case 1 would be a trivial prask which In order to obtain optimal efficiency combined with short

does not contribute to filtering. answer timesparallel competitiorover parameters is used.

Although this approach is not complete, we use it, since
our aim is to solve as many obvious and simple proof tasks
(i.e., those which don't use many axioms or have a complex
proof) within short limits of run-time.




The basic ideas has been developed for SICoTHEO [30] and Model A B C
could be adapted easily: on all available processors @.g., List] + |Item 2+1 3+1 3+2
network of workstations), a copy &FETHEOQis started to recallr 74.7% | 76.5% | 81.3%
process the entire given proof task. On each processor, a o 0.25| 0.26| 0.25
different setting of parameters is used. The process which precisionp 18.5% | 19.6% | 16.5%
first finds a proof “wins” and aborts the other processes. op 0.21 0.19 0.16

precisionincreas¢ 1.5 1.6 1.3
7. Experimental Results fallout 42.8% | 41.0% | 55.5%

reduction 50.1% | 51.7% | 39.0%
7.1. The Experimental Data Base defect ratiadr 051] 045| 0.48

All experiments were carried out over a database of 55
list specifications which were modified to have the tiipe
— list in order to please our still very simple signature

matching filter. Approximately 40 of these specifications 4 the relative number of rejected matching components in
describe actual list processing functions (ejl,or rotate) relation to the precision of the filter's input. Thus, a risat
while the rest simulates queries. We thus included underde-yefect ratio greater than 1 indicates that the filter's Bbili

termined specifications (e.g., the result is an arbitraoptfr reject only irrelevant components is even worse than a
segment of the argument list) as well as specifications WhiChpurer random choice.

don't refer to the arguments (e.g., the result is not empty).
For simplicity, we formulated the specifications such that
the postconditions only usatDM-SL's built-in sequences.

In order to simulate a realistic number of queries we then
cross-matched each specification against the entireyibrar ~ For the rejection filter wittMACE, we currently use three
using partial compatibility as match relation. This yielde different models with at most three elements for each data

total of 3025 proof tasks where 375 or 12.4% were valid.  type (in our case.ist, Iten). Due to the large number of
variables in the proof tasks we are generally confined to
7.2. Evaluation of Filters such small models.
Our experiments wittMACE, however, revealed that the

Information retrieval methods [29] are evaluated by the restrictions are not too serious. As shown in Table 1, the
two criteria precision and recall. Both are calculated from model checking filter (with a run time limit of 20 seconds)
the sefREL of relevantcomponents which satisfy the given is able to recover at least 75% of the relevant components,
match relation wrt. to the query arRET, the set ofre- regardless of the particular model. The large standard devi
trievedcomponents which actually pass the filter. Tie- ation, however, indicates that the filter's behavior is fani
cision p is defined as the relative number of hits in the uniform and that it may perform poor for some queries.
response while thescall » measures the system'’s relative Unfortunately, the filter is still too coarse. While each

Table 1. Results of model checking

7.3. Rejecting Tasks with Model Generation

ability to retrieve relevant components: model increases the precision of its answer (compared to the
IRELARET] IRELARET| the original 12.4% “precision” of the library) significant!
= T IRET "= TIREL it still lets too many non-matches pass. The values for fall-

Ideally, both numbers would be 1 (i.e. the system retrievesOUt indicate that the results in average contain up to 55% of

all and only matching components) but in practice they are the origingl non-matching components. Similarly, the ever
antagonistic: a higher precision is usually paid for with a &l reduction of approx. 40-50% is at the lower end of our
lower recall. We also need some metrics to evaluate the€XPectations. However, the relative defect ratios show tha

filtering effect. To this end we define tifallout model checking with any model is at least twice as good as
blind guessing.
. | RET\REL |
| L\REL]|

(where £ is the entire library) as the fraction of non-
matching components which pass the filter as well as the
reductionwhich is just the relative number of refuted com-
ponents. Finally, we define thelative defect ratidy

7.4. SETHEO as the Confirmation Filter

For all experiments witlSETHEOwe used parallel com-
petition with 4 processes exploring different ways of han-
dling equality. Due to technical reasons, we had to restrict

| REL\RET| | L] the number of modules from our library46. This resulted
dr = | C\REL| ’ | REL| in a total of 2401 proof tasks with 204 or 8.5% matches.




In our first set of experiments we tried to retrieve iden- sumption. However, their system is still in a prototypical
tical modules from the library (i.e¢ = ¢). The result- stage, so no relevant statistical evaluation is presefiteel.
ing 49 proof tasks are relatively simple and no induction or examples heavily use auxiliary predicates which are not ax-
axioms are needed to prove them. As expec8&iHEO iomatized further and thus rely on the arbitrary choice of
could show all of them within a time-limit of 20 seconds predicate names to represent domain knowledge. The work
CPU-time (on a sun Ultra-SPARC). Whereas the mean run-of Jeng and Cheng [11] also uses a subsumption test and
time was less than 1s, several proof tasks needed up to 18infortunately also shares the same problematic confidence
seconds. in the choice of predicate names. Again, no statistical-eval

Then we tried to retrieve matching, but non-identical uation is presented.
components. Our experimental basis contains 155 such Scaling problems have been addressed differently. The
cases. First, these proof tasks were tried without induc-Inscape/Inquire-system [27] limits the specification lan-
tion. Here,SETHEOwas able to solve 46 proof tasks with guage to make retrieval more efficient. Similarm-
a standard set of axioms. The rate of recall could be in- PHION [17] uses a GUI to foster a more uniform spec-
creased drastically, when our approximation of induction ification style which in turn allows an appropriate fine-
was used. With the same set of axioms, a total of 70 prooftuning of the prover. Additional speed-up is achieved by
tasks could be solved. Due to the increased size of the for-automatically “compiling” axioms into decision theories
mulas (esp. in the step case), more overflow errors occurred[18]. These techniques have successfully been applied to
Nevertheless, with case splitting we have been able to re-to assemble over 100 FORTRAN programs from a scien-
trieve 18 matches more than without case splitting. Due totific component library for solar system kinematics. Penix,
the different structure of the search space, 6 tasks could beBaraona and Alexander [26] use “semantic features” (i.e.,
shown only without case splitting, making the simple mode user-defined abstract predicates which follow from the com-
interesting for parallel competition. In order to obtaieth ponents’ specifications) to classify the components and per
overall recall of theSETHEOconfirmation filter, we have to  form case-based reasoning along this classification te iden
combine the data of both sets of experiments. From a to-tify the most promising candidates. This classification
tal of 204 = 49 + 155 possible matchesSETHEO could process uses forward reasoning with/aip. However, the
retrieve 125 (49 identical modules, 70 non-identical with authors give no evidence of how successful their approach
case splitting and 6 without case splitting) modules. This is.

yields an overall recall 061.2%. However, the standard Related work on the use of model checking techniques
deviation is relatively high as in the model checking experi for infinite domains is much rarer. Jackson [10] is based
ments, revealing quite different retrieval results for vae- on [5] and also investigates abstract model checking of

ous queries. SiNCBETHEGs proof procedure is sound, all ~ software specifications. His goal, however, is to prove
solved proof tasks correspond to matches, hence the precithe conjectures and not to disprove them. This requires

sion is100%. sound approximations which forced him to restrict his logic
severely—no negations and exact abstractions only. As
8. Related Work sSoon as approximate abstractions are allowed, this approac

also becomes unsound. Wing and Vaziri-Farahani [32] also
use abstractions but don’t discuss any correctness aspects

Most early publications on deduction-basedRr (e.qg., which are related with them

[20, 28, 14]) were mainly concerned with general concep-
tual issues and ignored the usability and scaling problems. )
We will thus discuss only more recent related work. 9. Conclusions and Further Work
Zaremski and Wing [34] have investigated specification
matching in a slightly more general framework but their  In this paper, we have present&ORA/HAMMR, a
main application area is also software reuse. They use thededuction-based software component retrieval tool. Our
Larch/ML specification language for component descrip- goal was to show that such a tool is not only theoretically
tion and the associated interactive Larch prover for retitie ~ possible but practical with state-of-the-art theorem prev
But this promises some severe scaling problems as in ouMe thus designed it as a user-configurable pipeline of dif-
experience only a small fraction of the tasks is provable ferent filters. Rejection filters are in charge of reducing th
without interaction. Unfortunately, the paper does not-con number of non-matching query-component pairs as soon
tain any larger experimental evaluation. and good as possible. In this paper, we have studied an
Mili et. al. [23] describe a system in which specifications approach which uses model generation techniques for this
are given as binary relations of legal (input, output)-pair purpose. Our experiments WIthACE showed that this ap-
They then define a subsumption relation on such pairs andproach, although neither sound nor complete, returns rea-
use this for retrieval, relying odtter to calculate the sub-  sonable results. The final stage of the filter pipeline is al-



ways a confirmation filter which ensures that the selectedduce the precision and recall of the retrieval tool. This al-
components really match. Here, we have used the automalows interesting and promising deduction techniques (e.g.
ted theorem proveSETHEQ Even with a short time-limit  approximating proofs by filter chains or iteration) to be ex-
of 20 seconds, an overall recall of more th&#¥ was ob- plored and will help to automate software engineering a lit-
tained. tle further.

We have evaluated our approach with a reasonable large
number of experiments. The results obtained so far are veryacknowledgements
encouraging. We are currently preparing experiments with ) o ] . ]
a library of commercial date and time handling functions as Gregor Snelting originally proposed the filter chain. Chris

used for example in stock trading software. This work is fian Lindig helped with the GUI. He and the anonymous ref-
done in cooperation with the German DG Bank. erees provided valuable comments. Ralf Haselhorst of the

Nevertheless, many improvements still have to be madePC Bank, Frankfurt, contributed to the date experiments.

beforeNORA/HAMMR can really be used in industry. Due
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