Institut fiir Programmstrukturen
\ und Datenorganisation (IPD)
B\ Lehrstuhl Prof. Dr.-Ing. Snelting

Karlsruher Institut fur Technologie

Generating Instruction
Selectors For Large Pattern
Sets

Masterarbeit von
Markus Schlegel

an der Fakultat fur Informatik

load32
Const 42 Proj 0 J
—O0
Proj 1
Erstgutachter: Prof. Dr.-Ing. Gregor Snelting
Zweitgutachter: Prof. Dr. rer. nat. Bernhard Beckert

Betreuende Mitarbeiter: Dipl.-Inform. Sebastian Buchwald
M.Sc. Andreas Fried

Bearbeitungszeit: 5. Oktober 2017 — 4. April 2018

L
KIT — Die Forschungsuniversitit in der Helmholtz-Gemeinschaft WWW . k].t . edu

Zusammenfassung

Es ist sehr aufwendig, effiziente Befehlsauswahlphasen fiir neue Instruktionssétze
zu entwickeln, obwohl sich diese in ihrer Struktur oft &hnlich sind. In dieser Arbeit
entwickeln wir einen Algorithmus, um eine effiziente Befehlsauswahlphase automa-
tisch aus einer gegebenen Regelmenge zu generieren. Wir bauen auf der Arbeit von
Buchwald et al. [I] auf, die beschreibt, wie man aus einer formalen Beschreibung
eines Teils des x86-Befehlssatzes eine umfassende Regelmenge mit mehr als 60000
Regeln berechnen lassen kann. In dieser Arbeit generieren wir aus dieser grofien
Regelmenge wiederum eine effiziente Befehlsauswahlphase fiir das libFiRM Com-
piler Framework. Wir fithren zwei Algorithmen ein: Pattern Decomposition und
Bottom-up Annotation. Wir vergleichen unseren Ansatz mit der handgeschriebenen
Befehlsauswahl in libF1IRM.

Development of new instruction selectors is hard and time-consuming, even though
most instruction sets share a lot of similarities. In this thesis we propose a method
to generate efficient instruction selectors from a given rule set. We make use of
foundational work by Buchwald et al. [I]. Their work describes a means to generate
a rule set with more than 60000 rules from a formal description of x86 instructions.
In turn, we use this large rule set to generate an efficient instruction selector for the
libFIRM compiler framework. We introduce two algorithms: pattern decomposition
and bottom-up annotation. We compare the performance of our generated instruction
selector with the performance of the handwritten instruction selector in libFIRM.

Contents

(1 Introduction
[2__Basics

p1

Intermediate representation|

[2.1.1 Static single assignment form|
212 FIRM
[2.1.3 Data dependencies|
.14 Control flowl

PG

Formal architecture description|

[2.7 Generation and compilation|

3 Related workl

B

Macro expansion|

B2

Tree matching|

[3-3

DAG matchingl L.

14

Proposed solution|

4.1 Motivation|

4.3

i

4.5

4.6

[4.6.2 Extending the bottom-up annotation algorithm

Pattern selection and program graph translation|
Tree matchingl
[4.4.1 Pattern decomposition|
[4.4.2 Bottom-up annotation algorithm|
[4.4.3 Generating the bottom-up annotation code|. . .
4.4.4 Avoiding useless matches|
oingle-rooted DAG matching|.
Double-rooted DAG matching
4.6.1 Virtual bulletin boards

10
11
11
11
14
15
16
17
18
21
21
24
27
28

29
29
29
30

33
33
36
37
39
39
42
44
46
47
49
51
92

Contents

[4.8.1 Calculating flat pattern IDs|

[4.8.2 Layouting matching conditions|

5 _Evaluation
[>.1 Generation time performance|
[5.2 Compile time performance] .
(5.3 Quality of the produced code]

6 Future workl

[/__Conclusion

1 Introduction

In the beginning programmers wore suits and dresses and they were coding in absolute
binary but soon the first programmer ate from the forbidden fruit of assembly and
humankind was sent down the spiral of abstraction. Programming used to be
about manipulating Os and 1s on a computer. Today, programming is mainly about
communicating ideas with other humans. Today’s high-level programming languages
rely on a sophisticated tool called a compiler that translates these high-level programs
into the language of the machine.

Compilers are complex. GCC [2] and LLVM [3], two major industrial compiler
projects, each have millions of lines of source code. Decades of work has gone into
these projects. This is not surprising because a compiler has to account for the
complexity of many programming languages and many target machines. On the side
of the programming languages, the frontend, a lot of work has gone into formalizing
methods and thus automating the process. On the side of the target machine, the
backend, such work is rarer. Compiler backends are usually written by hand even
though a lot of this work is repetitive. In this thesis we investigate one way to
automate a lot of this work by generating an instruction selector, part of the backend,
from a formal specification of the target machine.

2 Basics

A compiler translates a program written in one language (source) into a semantically
equivalent program in another language (target). In the compilers we concern
ourselves with in this thesis, the source is a general-purpose machine-independent
imperative language such as C [4] and the target is a machine language targeted at
a specific architecture such as x86 assembly [5].

Compilers are structured as pipelines consisting of different passes. These passes
are commonly divided into a frontend, an optimization phaseF_-] and a backend [6]. The
frontend parses the source program, performs semantic analysis on it, and translates
it into an intermediate representation (IR). Ideally, this IR is designed such that it
is independent of any source and target language considerations. For that reason
IR is abstract and simple and it is therefore well-suited as a basis for optimizations
such as constant folding [7] or common subexpression elimination [8]. After these
optimizations the backend translates the final IR program into a target language.

Such a design, which decouples frontend and backend, makes it easy to adapt the
compiler to both new source languages and new target languages. If you want to add
a new source language to the compiler you just have to write a new frontend. The
rest of the pipeline doesn’t have to be touched at all. Similarly, if a new architecture
comes along, you just have to write a new backend.

2.1 Intermediate representation

An IR that allows proper decoupling of frontend and backend must be carefully
designed not to contain any biases towards specific source or target languages. We
also want the IR to be designed in a way that makes it easy to reason about and
implement optimization passes, so ideally all primitives are pure functions (free of
side-effects). We want to make all effects of a primitive explicit. An instruction
that computes a value but also sets a flag should therefore be modelled to have two
results.

An IR consists of a small but complete set of abstract primitives. Luckily, in the
compilers we are dealing with, both source and target are imperative in nature. We
can therefore use the bedrock of imperative programming as the foundation of a
good IR design. The bedrock of imperative programming are data and control flow.
Consequently the primitives of an IR are operations that modify data and change the
control flow. These operations are connected by data and control flow dependencies.

IThis phase is often called the middleend, which is a misnomer, because there’s no end in the
middle of a pipeline.

2.1. INTERMEDIATE REPRESENTATION

define 132 @foo(i32, i32) #0 {

int foo(int a, int b) { %3 = mul nsw i32 %0, 3
a *= 3; %4 = add nsw i32 %3, %1
return a + b; ret 132 %4

} 1

C source LLVM IR

Figure 2.1: A C function (left) and its equivalent in LLVM IR (right).

Such IR designs are therefore inherently graph-based and we call the program in IR
a program graph.

LLVM IR, the intermediate representation of the widely used LLVM compiler
framework [3], is implicitely graph-based. Figure shows an example of a simple
C function and its intermediate representation in LLVM.

2.1.1 Static single assignment form

In the C source program in Figure the variable a is reassigned the new value
a * 3, yet this reassignment is missing in the resulting LLVM IR program. Indeed, in
the IR program a new temporary variable is introduced for every operations’ result.
This is a deliberate choice of the designers of the IR, which is said to be in static
single assignment (SSA) form. In SSA form, variables can statically be assigned only
once. This design simplifies a lot of optimizations such as constant folding because
the usage of a variable has a direct correspondence to the definition of that variable.
In addition to that, SSA makes some further optimizations easier such as global value
numbering [9] or sparse conditional constant propagation [10].

When control flow comes into play, a single variable might be assigned different
values depending on the path taken through the control flow graph. In SSA we
deal with this phenomenon by making it explicit through so called ¢ nodes. A ¢
node represents a variable that can take on different values depending on the control
flow predecessor. A ¢ node has multiple predecessors and it can be regarded as
representing all these predecessor values in unison.

Since ¢ nodes emerge whenever there are branches in the control flow, ¢ nodes are
often to be found when there are control flow loops. In turn, ¢ nodes are a source of
loops in the data dependency graph as well. In our work we ignore ¢ nodes (and
blocks, discussed later), so we can view program graphs as directed acyclic graphs

10

2.1. INTERMEDIATE REPRESENTATION

(DAG), which means we can visit its nodes in a topological order. In a topological
order whenever we visit a node we are guaranteed to have visited all of that node’s
operands before.

2.1.2 FIRM

In this thesis we work with the research compiler framework libFirRM. The libF1rRM
intermediate representation is simply called FIRM. In contrast to LLVM IR, where
the program graph structure is encoded implicitely, FIRM uses explicit dependency
graphs, which are by their very nature in SSA form. Figure shows a comparison
of a simple C function translated into FIRM and LLVM IR.

In FIRM each node consumes zero or more SSA values and produces zero or one
SSA value as output. Each node in the dependency graph has a label or opcode in
firm parlance, which determines the instruction kind. We may sometimes refer to
these opcodes as types. Each opcode corresponds to a signature that determines the
number of operands. Outgoing edges are indexed.

2.1.3 Data dependencies

The most straightforward kind of data dependencies are to be found in arithmetic
and logical expressions. These dependencies form define-use-relationships. One node
defines a value that another node uses as an argument for a later computation.
Side-effects produce dependencies as well. Reading from and writing to memory are
considered such side-effects. In general these reads and writes cannot be arbitrarily
reordered without breaking the original semantics. FIRM therefore introduces the
notion of memory dependencies through so call M-values, which represent the state
of the entire memory and therefore help to force an ordering on memory operations.
A load operation, for example, consumes an M-value and produces another one as
part of its output. Not all memory operations have to be totally ordered, though.
Two reads can be reordered regardless of the addresses they access. Furthermore,
often it can be shown that two memory operations do not interfere because they
work with different locations. The ordering imposed by M-value dependencies is
therefore only required to be partial.

We have already seen that LLVM IR uses named temporary variables to implement
data flow. However, this data flow only witnesses define-use-relationships. The order
of memory operations is fixed implicitely by the order of the LLVM IR instructions.
By the virtue of LLVM IR being instruction based, this order is total. A scheduler
has to analyze this total order for parallelizability in a separate step later on. The
libFIRM approach avoids this problem entirely.

2.1.4 Control flow

All nodes in FIRM are directly assigned to a basic block. Basic blocks can be
considered special nodes that take care of control flow. Two nodes A and B belong

11

2.1. INTERMEDIATE REPRESENTATION

12

define i32 @foo(i32, i32) #0 { [End Block 50|
%3 = shl 132 %0, 1

% - add nsw 132 %3, %1

ret i32 %4

}

Figure 2.2:

foo

Start Block 52

Start 55

0
Proj T T_args 57

Const Ox1 Iu 88 | Proj Is Arg 0 59 ‘

=

Proj Is Arg 1 60 ‘ ‘ Shl Is 89 ‘

i A
0 1

Proj MM 58

Return 64

LLVM IR FIRM

A comparison of LLVM IR and FIRM for the same C source. On the
left we see the LLVM IR code that clang produces. On the right we
see the FIRM graph that the libF1RM C compiler cparser produces.
LLVM IR uses temporary variables to form data dependency edges
between operations. In contrast FIRM is explicitly graph-based, so the
data dependencies are directly drawn as edges. Whenever we present
drawings of FIRM graphs or patterns in this thesis we always lay the
nodes out from bottom to top. Edges denote dependencies and go
from the node that depends on a value at the bottom to the node
that provides this value at the top. We may omit drawing arrowheads
whenever nodes can be laid out in this fashion. In the few cases when
we need to draw edges that go from top to bottom, we draw arrowheads
to make the direction clear.

2.1. INTERMEDIATE REPRESENTATION

L

Phl[loop] 63 | ‘ Phils 64 ‘

56

Cmp b greater 66

A

Cond 67
0 0

Proj X false 69 Proj X true 68 |

T 4

Block 70

Sun

‘ Mul Is 73 ‘ |Add Is 77

6 4

o

Block 71

0 1

Figure 2.3: A FIRM graph containing a loop, multiple blocks, and ¢ nodes.

13

2.1. INTERMEDIATE REPRESENTATION

to the same basic block if in any conceivable situation where A is run, B is also
run and vice versa. Figure [2.3] shows the FIRM graph of a simple loop. We can
discern three basic blocks. Block 62 corresponds to the original loops head, block
70 corresponds to the loop body and block 71 is the part after the loop ends. We
can also see that there’s a control flow dependency between block 70 and the Proj X
true node and between block 71 and the Proj X false node. In our work we do not
visit basic block nodes during our topological walk through the program graph. We
therefore simply leave all control flow dependencies intact and rely on the instruction
scheduler to find a good total order.

2.1.5 Modes

Each FIRM node has a mode. A mode can be regarded as a type of a value flowing
through the IR graph. For integers, for example, there are modes for signed and
unsigned versions of 8, 16, 32, and 64 bit widths. Other modes serve as a means to
categorize node operations. The most important categories are summarized in the
following list. In graph drawings we will also color code the modes. The color is
given in parentheses.

I Integer value (white)

B Basic block (gray)

M M-value (blue)

P Memory address (white)

X Control flow (red)

b Boolean (white)

P Pointer (white)

T Tuple (white)

F Floating point (white, not relevant to our work)

Tuple nodes are used to implement operations with multiple output values. A
Load node takes an address and an M-value as operands and produces a single tuple
as output, so the mode of the Load node is Tuple. The tuple actually holds two
results: the retrieved value and another M-value. We can get to these individual
results with the help of Proj (projection) nodes. Each of the individual results of a
tuple operation has a distinct projection number that we can use to get to that value
through a Proj node. Tuples and Proj nodes can greatly simplify analyses because
we can always take on the view that each operation produces a single output value
only.

14

2.1. INTERMEDIATE REPRESENTATION

2.1.6 Nodes

We will now give a brief overview of some of the node types (opcodes) that are to be
found in a FIRM graph. The complete list of opcodes can be found in the official
FIRM API documentation [11].

A FIRM graph represents a single procedure in the underlying source language. In
our case the source language is C, so a FIRM graph represents a single C function.

Every program graph starts with a Start node as an entry point. As we said
earlier, every operation produces exactly one output value. If we want to describe an
operation with multiple outputs, we have to have the node be a Tuple and use Proj
nodes to access the individual output values. For the sake of brevity we will give
signatures that directly show the possible projections and omit the tuple indirection.
The Start node is an example of such a multi-output operation.

Start : B— M x P xr"
with r € {P, I, F}

This Start node produces an initial control flow node, a node representing the
state of memory when entering the function and a pointer to the frame base pointer.
We can use the frame base pointer to access arguments on the stack. We also obtain
a set of values representing the initial register values. Depending on the calling
convention the function arguments are either to be found in these register values or
on the stack.

We can see that Start is assigned a basic block by feeding the block to the node
as an operand. Blocks can have zero or more control flow nodes as predecessors.

Block : X" — B

Among others control flow nodes can be Jmp for unconditional jumps, and Cond
for branches.

Jmp: B — X
Cond: Bxb — XxX

In addition to the opcode and its arguments a node may specify attributes. A
Proj node specifies the projection index as an attribute and a Const node specifies
the contant value it represents as an attribute. We will write nodes of type T" with
an attribute value of w as T w such as Const 1 for a constant one or Proj 0 for a
projection with index zero. When we compare labels for equality we will take the
attribute part of the label into consideration as well. This means that Const 1 is
not equal to Const 0 for example.

FIRM has all the usual arithmetical and logical operations such as Add, Sub,
And, Or etc. Division fails if the divisor is zero and since failure is a control

15

2.2. 1A-32

flow side-effect, Div and Rem nodes additionally take an M-value as an operand
and produce another M-value as part of their output. These nodes also produce
a control flow node that represents normal execution and a control flow node that
represents exceptional execution. The source language C doesn’t feature exceptions
on a language level so if the graph is a transformed C function, these outputs will
usually not be used.

Another class of opcodes are memory-access related. The two most important
memory-access opcodes are Load and Store.

Load: BxMx P — M xr
Store: BxMxPxr — M

There are no surprises here. Load takes an M-value and an address and produces
an M-value and a result value (r € {P, I, F }) Store takes an M-value, an address,
and a value to store and returns a new M-value.

We said earlier that each node is assigned to exactly one basic block. As we can
see from the example nodes above, this assignment is realized by giving each node a
block as an operand. For the following discussion this block operand is irrelevant. We
therefore treat all nodes as having no block operand. When we translate the IR graph
to a target graph, we simply leave all the block nodes and the block assignments as
they appeared in the IR graph. FIRM provisions for special treatment of these block
operands by giving them an index of —1.

2.2 I1A-32

In this work we implement an instruction selection generator that works with arbitrary
architectures as long as they follow certain reasonable prerequisites. We will, however,
only test our implementation with one architecture: 32-bit x86, also referred to as
[A-32. TA-32 is widely implemented in industrial and research compilers. A lot of
work has gone into instruction selectors tailored to this architecture. It therefore
provides a good benchmark to compare our efforts with.

[A-32 defines a 32-bit wide address bus and 32-bit general purpose registers. 1A-32
processors are CISC machines and therefore feature a great number of instructions.
In our work we are handling 535 different instructions. We disregard floating point
arithmetic completely.

The TA-32 CISC design makes heavy use of addressing modes. Adressing modes
let the programmer specify the source and targets of operands for instructions in
great detail. As an example we look at the MOV instruction. In its simplest form, MOV
can load a value from an adress in a register.

MOV (%ESI), %EAX

16

2.3. INSTRUCTION SELECTION

We can additionally specify a constant offset. The constant is part of the instruction.
This form can be used to load values off the stack.

MOV (%EBP-8), Y%EAX

In its fullest extent the MOV operation can load a value from an address that is
calculated from a base register, an index register, a scale constant, and a displacement
constant.

MOV -8(%EBP, %EDX, 4) %EAX

As we can see, an instruction that is touted as having a single responsibility can
actually perform a lot of different things dependening on the addressing modes
we choose to use. On the other hand, addressing modes work the same across a
wide number of different instructions. Adressing modes can therefore be regarded
orthogonal to the instruction set. This view is beneficial for someone who implements
a tailored instruction selector because they can use some good heuristics that assume
this orthogonality. Unfortunately we want our instruction selection generator to
work well independent of such assumptions. For us, adressing modes significantly
increase the set of distinct instructions, yet we can’t employ any tailored heuristics.

2.3 Instruction selection

Just as a compiler can be structured as a pipeline consisting of a frontend, an opti-
mization phase, and a backend, the backend itself can be divided into different phases.
These phases are commonly called instruction selection, instruction scheduling, and
register allocation. Instruction selection is the phase in a compiler pipeline where we
translate a program graph in IR into a semantically equivalent graph in machine
representation. Instruction selectors are mostly written and fine-tuned by hand.
This might be worthwhile for widely used architectures such as those of Intel and
ARM, but handwritten instruction selection is very costly for architectures with less
users such as in the embedded market. Our goal is to find a systematic aproach to
instruction selection that lets us generate efficient instruction selectors solely based
on an abstract description of an instruction set.

Instruction selection works on the basis of rules. A rule is a simple mapping
of a source pattern in IR to a semantically equivalent target pattern in machine
representation. In the simplest setup, target patterns correspond directly with
instructions in the instruction set. An example rule can be seen in Figure Note
that in addition to IR and target nodes, these patterns consist of input nodesﬂ These

2We use the word ’input’ to refer to inputs to patterns. We use ’operand’ to refer to inputs to

17

2.4. PATTERNS

g \\
// \
\
d - \
/ - T~)\
P ~3
Const 1 Var 0 / (TN
/ \ N
t,. .+
0——1 I R

+ Var 0 Var 1

Shi32 Var 1 t,_ 4
LO l_f E:> T

T ia32_Bts

Or32 /

Figure 2.4: A simple single-rooted rule. On the left we see the IR pattern. On the
right we see the equivalent target pattern. Roots in the IR pattern and
roots in the target pattern are mapped 1 to 1.

nodes represent the input values to the patterns. There exists a mapping of input
nodes in the IR pattern to input nodes in the target pattern.

IR languages are designed with semantic compositionality in mind. That means
that if we plug IR nodes together to produce patterns, the resulting structure will
have the semantics that we would expect. We can fit target languages into such a
semantic compositionality framework as well by making all side-effects explicit. In
[A-32 some instructions set flags implicitely and some take flags as input implicitely.
By making these hidden inputs and outputs explicit, we essentially transform the
target instructions into pure functions and therefore obtain this very useful semantic
compositionality property. It is this compositionality that makes instruction selection
a straightforward exercise on graphs.

2.4 Patterns

In order to be rigorous let us define what program graphs and patterns are precisely.

Definition (Program graph). Given a signature ¥ and a function 7 : X — NU{_}
that determines the number of operands w(l) a node with a label of I must have.
Operations | where w(l) = __ are variadic. A program graph G = (V,E,~,9) is a
graph with nodes V', edges E, a node label function v : V +— 3, and an edge index
function § : E+— {0,1,...}. The program graph is well-formed if every node v has

single (FIRM) nodes.

18

2.4. PATTERNS

exactly n = w(o(v)) operands (if n # __) and the corresponding edges are labelled 0
through n — 1.

Definition (Pattern). Given a signature ¥. A pattern P = (Vp, Ep, 0,€) is a graph
with nodes Vp, directed edges Ep, a node label function o : Vp — X U { Var, [mm},
and an edge index function e : Ep — N. We call a node v with a label o(v) =1 € %
an instruction of kind [or simply an | instruction. We call a node with a label of
Var a variable input and we call a node with a label of Imm an immediate input. We
call the edge labels indices. In a wellformed pattern, all outgoing edges of a single
node have distinct edge indices.

In our implementation we will describe patterns with indexed adjacency lists. The
indexed adjacency list of a node v is a mapping a, : N — Vp. The edge labels are
therefore integrated into these data structures.

Our definition of patterns allows for graphs that are disconnected or contain loops
yet in this work we only handle connected DAG patterns. This restriction has no
big impact on the amount of patterns that we can handle since most of the patterns
that occur in our IA-32 rule set are loop-free anyway.

In DAG patterns we can identify root nodes. A root node is one that has no
predecessors in the pattern.

Definition (Pattern root). Given a pattern P = (Vp, Ep,0,¢e) and a node v € Vp.
We call v a root node (v € root(P)) iff there are no edges (v;,v) € Ep.

There are patterns with a single root node. These are easy to handle because we
can view them as trees with some minor caveats. The bulk of our test pattern set is
multi-rooted patterns, however.

Similarly we can define leaf nodes.

Definition (Pattern leaf). Given a pattern P = (Vp, Ep,0,¢e) and a node v € Vp.
We call v a leaf node iff there are no edges (v,v;) € Ep.

In a well-formed pattern all inputs are leaf nodes. Not all leaves are input nodes,
however. Another kind of leaves are nodes that represent constants, for example.

All nodes that are neither leaves nor roots are called inner nodes. We call the set
of all inner nodes the trunk of a pattern.

All IR patterns follow the signature of the IR language. All target patterns follow
the signature of the target language. The input to our instruction selection generator
is a set of rules. A rule is a tuple of an IR pattern and a corresponding semantically
equivalent target pattern. Each root in the target pattern is mapped to exactly one
root in the IR pattern. Each input node in the target pattern is mapped to exactly
one input node in the IR pattern.

Figure shows a multi-rooted rule and its node mappings. Roots and variable
leaves are mapped as expected. These mappings help to preserve the semantics of
the patterns.

19

2.4. PATTERNS

20

ia32_Add_disp

Imm 0 Var 1 Var 2

A
0
2 1
ia32_Add_disp
0 0

v [l
Var 2 | Proj 1 | | Proj 2 | | Proj 0 |
L 0 1 —f 7 /4 /ﬁ

Figure 2.5: A rule with multiple roots. Roots in the IR pattern (left) and roots in
the target pattern (right) are mapped 1 to 1. Inputs are mapped to
inputs.

2.5. THEORETICAL FOUNDATIONS

All rules in our rule set are of the form of either the rule in Figure [2.4] (single-rooted)
or the rule in Figure (multi-rooted).

Sometimes we need to talk about the height of a pattern. Since we are only dealing
with DAG patterns, we define pattern height as DAG height.

Definition (Pattern height). Given a pattern P = (Vp, Ep,0,¢). Let L C Vp denote
the set of leaves and let R C Vp denote the set of roots. We define the height h of
this pattern as the minimum over all the path lengths between any root and any leaf.
(If such a path doesn’t exist, we define the path length as cc.)

h = min (length(path(P,r,1)))

leL,reR
The length of a path is the number of edges on that path.

We can identify special kinds of patterns: those that only consist of a single root
node and a set of variable inputs. We call these patterns atoms.

Definition (Atom). A single-rooted pattern P = (Vp, Ep, 0, ¢e) over a signature
is called an atom iff for all nodes v € Vp:

v & roots(P) = o(v) = Var
Each node has a downwards view of the pattern it is a part oiﬂ

Definition (Downwards view). Given a pattern P = (Vp, Ep,0,€) over a signature
Y and a node v € Vp. Let V, denote the set of nodes that are reachable from v in P.
The downwards view D of v is the subgraph induced by V.

2.5 Theoretical foundations

Instruction selection can be further divided into two distinct responsibilities: pattern
matching and pattern selection. Again, we can think of these two responsibilities as
two separate phases.

2.5.1 Pattern matching

In the first phase, pattern matching, we take a program graph and a set of IR patterns.
For each node in the program graph we want to determine the set of rules that fit
the program graph structure at that particular node (the set of matches, defined
below). In the second phase, pattern selection, we use these sets to produce a program
graph tiling. Matching and program graph tiling correspond to the theoretical graph
problems of subgraph isomorphism and graph tiling.

3Note again that we draw all of our graphs upside down, so a downwards view is directed upwards
in all our figures.

21

2.5. THEORETICAL FOUNDATIONS

Definition (Graph isomorphism). Given two graphs G = (Vg, Eg) and H =
(Vu, Ey). We say that G and H are isomorphic (G = H) if we can find a bi-
jection f: Vg — Vi such that for any vertices a,b € Vi there is an edge (a,b) € Eg
iff there is an edge (f(a), f(b)) € Ey.

Definition (Subgraph Isomorphism). Let G = (Vg, Eg) and H = (Vy, Eg) be
graphs. The subgraph isomorphism problem asks the question: Is there a graph
Go = (W, Eo), which is a subgraph of G, such that Gy = H ¢

Subgraph isomorphism is NP-complete for arbitrary graphs. It is easy to verify a
given subgraph isomorphism in polynomial time. Cook [12] showed NP-hardness by a
reduction from the 3-satisfiability problem, however, it is easier to show NP-hardness
by a reduction from the graph clique problem which is known to be NP-hard. In
the clique problem you are given a graph GG and an integer k£ and you have to find
out if there is a complete subgraph with k vertices in G. If we simply make H such
a complete graph of k vertices, we could solve the clique problem with the help of
subgraph isomorphism, so subgraph isomorphism must be NP-hard as well.

The definition of subgraph isomorphism loosely maps to our idea of a program
graph match. However, we do not operate on arbitrary graphs but on program
graphs. We have to take the node labels and edge indices into consideration.

Definition (Match). Given a program graph G = (Vg, Eg,7,9), a pattern P =
(Vp,Ep,0,¢e) and a node v € V. We say that P matches in G at v if there is a
subgraph isomorphism f : Vp +— Vg that preserves edge indices:

Vu,w € Vp 2 e(u,w) = 0(f(u), f(w))

and node labels:

., o(u) = Var
Vu € Vp :y(f(u)) = Const __, o(u) = Imm
o(u), otherwise

and there is a root r € Vp such that f(r) = v.

We can see from the definition that immediate input nodes only match Const
nodes, although the value of the constant doesn’t matter. Variable input nodes can
match any label, as described by the underscore.

If we find a match of P in G at v, we also say that the match is anchored at v.
Figure [2.6] shows an example of a match.

If we are given a node in the program graph v € V and a single-rooted pattern
P = (Vp,Ep,o,e), it is easy to verify if there is a match anchored at v. We just
have to go through both the program graph starting at v and the pattern starting
at the root step by step simultaneously in a depth-first order. We follow outgoing
edges in the order of their edge indices. On each visited node we compare the labels
of both graphs. If we encounter a label mismatch, the pattern doesn’t match, else

22

2.5. THEORETICAL FOUNDATIONS

.
-7 0— 0 S~

Program graph Pattern

Figure 2.6: An example pattern match. The pattern on the right is matched in the
program graph on the left. Pattern nodes are mapped onto a subgraph
of the program graph such that (1) edges, (2) edge indices, and (3)
node labels are preserved. Notice that an immediate input such as
Imm 0 can be mapped to any Const __ node such as the Const 1024
node in the example. Variable inputs such as Var 1 and Var 2 can be
mapped to nodes of any label. The pattern has two roots, so we say
the pattern is anchored both at the Add32 and the Proj 0 node.

23

2.5. THEORETICAL FOUNDATIONS

it does. The special Var nodes are considered wildcards. A comparison of such a
variable input always succeeds. The special Imm nodes are considered immediate
wildcards. A comparison of such an input node always succeeds if the other node’s
label is Const.

If our rule set does not contain any patterns with variadic operations, pattern
matching becomes very simple. Let o denote the maximum edge index as defined
by the function 7 : ¥ +— NU{ } limited on non-variadic operations only. This
maxmimum edge index is small. In FIRM o = 3. The time complexity of a lookup
of outgoing edges of a certain index ¢ can therefore be regarded constant. We can
retrieve the i-th outgoing edge of a node in constant time.

With these considerations the simple matching procedure above takes just |Vp|
steps. If we want v to enumerate all the nodes in the program graph, the subgraph
isomorphism problem has a worst case time complexity of just |Vp||Vg|. We have
parameterized the problem with parameter o. Program graph matching therefore
becomes fized parameter tractable for single-rooted patterns. It is easy to see that it
is also fixed parameter tractable for arbitrary DAG patterns.

In the pattern matching phase of instruction selection, we want to annotate all
matches for all patterns in our very large rule set R. We can perform the procedure
above for every pattern P € R. Pattern matching would then take m|Vg||R| steps
where m is the maximum pattern size. While this linear time complexity is nice in
theory, in practice it is still way too slow, because |R| is very large. We will use
this linear approach in order to compare our later solution in terms of quality of the
produced output (matches found) and running time.

2.5.2 Pattern selection

In the second phase of instruction selection, pattern selection, we take a program
graph that has been annotated according to the pattern selection phase and produce
a program graph tiling. The theoretical underpinning of program graph tiling is the
graph tiling problem. In graph tiling, for a given graph G and a set of graphs H (the
tiles) we have to find a set of graphs in H that are subgraphs of G such that these
subgraphs cover all nodes in G but do not overlap. In our case, the set of tiles H is
the set of patterns and G is the program graph. Often we do not just want to find
any graph tiling but rather we want to find the best graph tiling according to a given
metric. One approach is to attach costs to the patterns. In program graph tiling we
want to minimize the accumulated costs of all patterns involved in the tiling.

Graph tiling has a more neat correspondence to program graph tiling than subgraph
isomorphism and pattern matching, yet we still need to point out a differing detail.
The tiles in program graph tiling are patterns. Patterns have immediate and variable
inputs. In this discussion about graph tiling, we consider these inputs as not belonging
to the pattern’s nodes. This essentially allows some nodes to be matched by two
separate patterns: once as a root node and once as an input node which is what we
need at the edges of a match. Figure shows an example of part of a program
graph tiling.

24

2.5. THEORETICAL FOUNDATIONS

id ~

’ \
{ | load32 |1
II /! \

- o1 g
- =~ ,/’——"~\ e N

~ ~
v/ A

Const 1 |\ | Const8 |) 1| Projl | | Proj 0
\ \ ///’

N S ~~ - -’
~ ~ -F- /7 -

-
s

/
I

I

~ = ’

~ 0 1 0 -
N 4 -
AN \ .7 -7
\ \ ’ .7

shiz2 |1 /| Add32
\ A 4

Figure 2.7: An excerpt of a graph tiling. Note how the inputs of pattern | are roots
of patterns Il and Ill. By disowning the input nodes from their patterns
the tiling becomes non-overlapping.

Since we have already established which tiles fit at which nodes in the program
graph due to the preceding pattern matching phase, the pattern selection phase
becomes a lot easier. We use a simple greedy approach to solve the program graph
tiling problem. Instead of attaching costs to patterns, we use prioritization. The set
of all patterns is totally ordered according to their priorities. At each occasion where
we have the choice to use one of multiple patterns we always chose the one with the
highest priority.

The greedy matcher starts at a designated root node of the program graph (an
End node) with a partial graph tiling which is empty in the beginning. It then
looks up all the annotated pattern matches at that node and chooses the one with
the highest priority that doesn’t overlap with the current partial graph tiling. The
chosen pattern is added to the partial graph tiling. The algorithm then recursively
calls itself with the inputs of that pattern as the new root.

greedy (partial graph tiling T, node v, program graph G) {
let ms = sort-by-priority(matches (G, v))
let res =T
for (m € ms):
if m overlaps with T:
continue
else:
// nodes that correspond to the inputs of the pattern

25

2.5. THEORETICAL FOUNDATIONS

let in = inputs(m, G, v)
for (i € in:
res = res U greedy(T Um, i, G)
return res

[

Such a greedy approach may fail if our partial graph tiling produces gaps that we
are unable to close because all of the patterns are too large. Buchwald and Zwinkau
[13] have identified a constraint on the pattern set called atomic completeness that
helps our case.

Definition (Atomic completeness). A pattern set H is called atomically complete
over a signature > if for every distinct label | € X there exists an atomic pattern
P € H such that o(root(P)) = 1.

We can give a trivial program graph tiling of any program graph by assigning each
node its respective atom pattern. It is therefore easy to see that any gap that might
occur while we perform greedy matching can trivially be closed by a set of atoms/[]

The problem we are dealing with in instruction selection is only partly comparable
to pure graph tiling. Tiling the program graph is not an end in itself, we rather want
to produce a target graph with the same semantics. In the pattern matching phase
we do not just annotate nodes with patterns but with rules. We then translate the
program graph tiling into a target graph by performing translations according to the
rules corresponding to the selected tiles. As we have seen, in a rule each root and
input node in the target pattern is assigned a root and input node in the IR pattern.
This enables the pattern selector to stick the target patterns together in the correct
fashion.

We can translate some graph tilings to a target graph but not all of them. As an
example let us look at the rule in Figure [2.5| again. In Figure [2.8] we show a part of a
program graph where the IR pattern of this rule matches. However there is no way
in which we can translate this match reasonably. In the program graph the Sub32
node uses one of the inner nodes of the pattern, the Proj 1, as an operand. This
Proj 1 node will no longer exist after the translation, however. It will be gobbled up
by the ia32_ Add_ disp node together with the load32 node. The ia32 Add _disp
node condenses the semantics of the entire pattern trunk into a single node. There
is no chance to get access to the individual parts after the translation.

We call matches such as the one described above useless. Fortunately we can
identify useless matches very easily. Note how the match is rendered useless by an
edge that goes from outside the match to its trunk. Any match where we notice such
edges are useless. We will later see how we can make arrangements that help us to
identify such edges early in the pattern matching phase.

4Buchwald and Zwinkau introduced another constraint called composability. In our solution,
however, we only need our pattern sets to be atomically complete.

26

2.6. FORMAL ARCHITECTURE DESCRIPTION

| Const Oxc |

Figure 2.8: An excerpt of a program graph. We see that a pattern matches.
However, there is an edge going from the outside of the pattern to the
inside. In the resulting target graph such an edge cannot be satisfied.
This match is therefore useless to our goal.

2.6 Formal architecture description

Even in RISC architectures, but certainly in CISC architectures such as [A-32,
instruction sets can hold a big number of instructions. Since IR languages are usually
a lot simpler than target languages, each target instruction will likely correspond to
a big number of source patterns and will therefore lead to a big number of rules. For
example, the TA-32 andn instruction can be respresented by either of these terms
(which can be regarded as IR source patterns):

(~ x)&y y — (v&y) z® (7|y) y @ (v&y)

It is a tedious task to enumerate all these rules by hand. We want to generate
the set of rules exhaustively by using a formal description of the architecture. If
we have a semantic description of each target instruction and we have a semantic
description of the components of the IR language, we can use solvers to have all rules
be generated for us by a computer. Up until recently, enumerating rules this way
has taken weeks. Buchwald, Fried, and Hack [I] have found a new approach using
a combination of enumerative techniques along counterexample-guided inductive
synthesis (CEGIS), that brings this down to a few hours for integer instructions in
[A-32. The resulting rule set holds more than 60.000 rules. We can use this rule
set as input for an instruction selection generator. However, instruction selection
algorithms used previously don’t cope well with these excessive amounts of rules.

27

2.7. GENERATION AND COMPILATION

The hypothesis of our work is then to find a new approach to instruction selection
that can incorporate huge rule sets. We want to generate an instruction selector
which is comparable in both running time and quality of the produced output with
industry compilers such as clang [14] or GCC [2] and research compilers such as
FIRM [15].

2.7 Generation and compilation

The purpose of our work is to build what is often called a code-generator generator.
Code-generator is another word for compiler backend. We build software that
generates a compiler from an architecture specification. When we now explain
the details of our proposed algorithm we have to be careful not to confuse which
parts happen at generation time and which parts happen at compile time. We call
generation time the run time of our generator. At generation time we are provided
with a big set of rules and we produce an instruction selector written in C. This
instruction selector is part of a libFIRM based C compiler called cparser. When we
run cparser with an input C program, we talk about compile time. cparser reads its
input file, runs a parser, semantic analyzer, optimization passes and then calls our
instruction selector. Afterwards, an instruction scheduler takes the final target graph
from our instruction selector and schedules it. This step is followed by a register
allocator and a peephole optimizer. The final output is IA-32 object code. After
calling a linker, we can run the output. This is the start of what we call run time.

28

3 Related work

Compiler construction has a long history of research. Instruction selection, however,
is given the least amount of attention out of all the parts of the compiler pipeline.
In contrast to compiler frontends, where formal frameworks such as (E)BNF [16]
are widely used, compiler backends are often written by hand in an ad-hoc fashion.
Blindell provides the most comprehensive overview of formalized instruction selection
techniques to date [17].

3.1 Macro expansion

The earliest instruction selectors used macro expansion, where text templates are
matched over a representation of the source program. In the beginning macro
expansion was used to match templates on the program source code directly instead of
on an intermediate representation. Elson and Rake introduced the idea of performing
macro expansion on nodes of the abstract syntax tree instead of the program source
code [I8]. This was the first step towards IR-based instruction selection. According to
Blindell, Wilcox was one of the first to implement macro expansion on an intermediate
program representation called source language machine (SLM) [19].

Writing macros by hand was still a difficult job and macro expansion generators
were called for. Snyder was one of the first to come up with a fully operational macro
expansion generator that produced a macro expander from a machine description
[20]. In contrast to earlier attempts it could handle addressing modes, branching,
and function calls.

A major drawback of macro expansion is that each macro can only substitute a
single AST or IR node. The resulting code is therefore often of poor quality. Peephole
optimization [2I] can mitigate this problem. Notably, GCC uses a combination of
macro expansion and peephole optimization for its instruction selector in what is
called the Davidson-Fraser approach [22].

Cattell provides a survey of macro expanders [23]. Ganapathi et al. provide a
survey of early code-generator generators [24].

3.2 Tree matching

In tree matching we are given a program tree and a set of tree patterns. The goal is
to cover the tree with the patterns without gaps and overlaps. With tree matching it
is possible to divide instruction selection into pattern matching and pattern selection.

29

3.3. DAG MATCHING

Due to the tree structure of patterns and program trees, instructions can be
modelled by rules of context-free grammars. Translating a program tree can be
achieved by parsing the tree and invoking actions for each grammar rule. In each
rule’s action we emit assembly code for example. Glanville and Graham use LR
parsing to translate program trees in this manner [25]. Their approach consists of
translating the pattern set to a table which is then being used for the parsing of
program trees.

Hoffmann and O’Donnel introduced Bottom-Up Pattern Matching (BUPM) in
1982 [26]. BUPM is also table-based. We determine matches and costs for all
nodes going from the leaves towards the root. At each node we use the information
computed earlier in order to find the match with the least cost. Only that match is
annotated.

Pelegri-Llopart and Graham introduced the Bottom-Up Rewrite System (BURS)
in 1988 [27]. BURS improves on BUPM by allowing rules with variables. This helps
to express abstract laws such as commutativity more concisely.

Tree matching algorithms have solid theoretical foundations and can be fast, but
in reality program graphs are rarely adequatly representable by simple trees. In
order to adapt tree matching to program DAGs, we can split the program DAG into
subgraphs that are trees and match these parts individually. With this strategy,
however, the produced covers are not optimal. Furthermore, patterns are often DAGs
as well. Multi-output instructions cannot be handled at all.

3.3 DAG matching

SSA graphs can be laid out in such a way that each loop includes at least one
¢ node. During instruction selection we can ignore these ¢ nodes because no
pattern can include ¢ functions. This makes each SSA graph effectively a program
DAG. Program DAG matching can therefore be regarded the supreme discipline of
instruction selection.

The earliest attempt to perform instruction selection with DAGs was done by Aho,
Johnson, and Ullman in 1976 [28]. Their scheme assumes that each IR node maps
to one target machine node, however. This assumption circumvents the pattern
matching problem completely. Their solution for the pattern selection problem is to
use a straightforward greedy technique, which produces good enough code in most
situations.

For pattern matching, early attempts to handle program DAGs were done by
Ertl [29]. His DBURG system can only handle tree-shaped patterns and perform
instruction selection for each basic block separately, however.

Garey and Johnson have shown that matching trees on DAGs is NP-complete [30].
In contrast to tree matching, which can be solved optimally in linear time, DAG
matching must therefore employ heuristics that lead to suboptimal solutions.

Most DAG matching techniques transform the program DAG into trees, perform
(optimal) tree matching, and then reassemble the original DAG. There are two ways

30

3.3. DAG MATCHING

to split DAGs: edge splitting and node duplication. A near-optimal technique has
been introduced by Koes and Goldstein in 2008 [31]. Their solution is based on the
one by Ertl. They use both edge splitting and node duplication but claim to always
choose the one technique which is the least detrimental to code quality in every
situation. Like Ertl’s design, however, they can only handle tree-shaped patterns.

Eckstein et al. [32] were the first to use the abstract optimization problem PBQP
as a framework for an instruction selection algorithm. Their technique could only
handle tree-shaped patterns, however. Ebner et al. [33] extended the technique to
incorporate arbitrary DAG patterns. However, both employ transformations that
could lead to situations where the problem instance no longer has a solution even
though the original instance did. Buchwald and Zwinkau [I3] identify atomical
completeness and compositionality as two properties of pattern sets that are required
for their PBQP-based instruction selectors to always succeed. Atomical completeness
is vital to the algorithm we use in this work as well.

31

4 Proposed solution

In order to meet all the requirements stated in the previous chapter, we propose
a two-phase instruction selector that translates any given IR program graph into
a target graph of equal semantics. The two phases neatly correspond to pattern
matching and pattern selection as a general framework. In the pattern matching
phase we annotate each node in the program graph with the set of matching patterns.
Afterwards we can use these annotations in the pattern selection phase in order
to produce a target graph. For the pattern selection phase we employ a simple
greedy approach, which we explain later. The emphasis of our work is on the pattern
matching phase. We will now motivate the idea of our pattern matching algorithm,
explain its traits, and point out some difficulties.

4.1 Motivation

In order to motivate our algorithm design, we start with a straightforward but slow
linear algorithm and analyze its shortcomings. This simple algorithm is works by
trying out every pattern at every node and annotating accordingly. We can perform
this linear search with the pattern set shown in Figure and the program graph
shown in Figure [£.2] The labels a, b, and ¢ are placeholders.

Let us assume we want to annotate the node marked with a green z in Figure 4.2
We first check if pattern I matches at the marked node in the program graph. We
perform this check by comparing the labels at each node in depth-first order. Variable
argument nodes can match any type of node. We see that pattern I matches because
all the labels match. Pattern II doesn’t match, because the labels at the root are
different. We now move on the node marked with a blue y. Again, we try if pattern
I matches but we soon come to the conclusion that it doesn’t because of the label
mismatch at the root. In order to check if pattern II matches, we compare all the
labels in a depth-first order again and arrive at the conclusion that it is indeed a
match. However, we had to move deep into the program graph in order to arrive
at this conclusion and we performed a lot of the same checks we did earlier when
we were testing the green marked node for a match of pattern I. We call this the
duplicate work problem.

Similar patterns make us perform similar checks which leads to a lot of duplicate
work. This duplicate work is non-essential. A fast algorithm would perform as little
accidental (non-essential) work as possible.ﬂ We will try to extract the similarities

IThe distinction of essential vs. accidental complexity originated in software engineering research
[34].

33

4.1. MOTIVATION

V
N
; t
0—1
a
1

t, '
—

I II

Figure 4.1: A simple pattern set with two patterns. The pattern on the left is
included as a subpattern in the pattern on the right.

Figure 4.2: A simple program graph.

34

4.1. MOTIVATION

Var

o — o

Var Var

t ! t
0 1 0——1

I II

Figure 4.3: A factorized pattern set. The pattern on the right has a reference to the
pattern on the left (visualized by the octagon shape) as a subpattern.

and perform checks for them separately. We call this technique decomposition or
factorization because it is a similar approach to how we would simplify a term in a
(semi-)ring for example: a xb+a x ¢ = a X (b+c). If we calculate the term in its more
expanded form on the left we do more work than in the factorized version on the right.
In an analogous way, we try to avoid duplicate work in our pattern matching checks.
An ideal matching algorithm would check for the equal subpattern in patterns I and
I1 just once. Figure shows one possible way to factorize patterns I and /1. Note
that sub patterns need names in order to be referenced in other patterns. In this
case we can reuse the names from the original patterns but in general we might have
to invent new names.

If we now perform the matching algorithm with this decomposed pattern set, we
avoid unnecessary duplicate work by reusing work done earlier. The matching process
is the same for pattern I at the green marked node, but when we now want to find a
match for the orange marked node, we can reuse this information and do not have
to dig deep into the program graph again. We simply check if the subpattern [
of pattern II has been matched previously at the green z node. We now need to
traverse the nodes in the program graph in a topological order because annotating
nodes in the program graph might depend on earlier work done above.

The simple linear depth-first-search approach to pattern matching has another
problem. More than 80% of the patterns in our test pattern set are multi-rooted.
There is no straightforward way to handle multi-rooted patterns with this linear
approach. Let us have a look at the situation in Figure [£.4. When we are at the b
node in the program graph, we can say that the pattern might potentially be a match
regarding the current downward view but we have no idea if the other root with the
label ¢ is to be found anywhere. One awkward solution to find this other root is
to go to the node a and then traverse all incoming edges in the reverse direction.
However, while the number of outgoing edges is bounded and small, the number of

35

4.2. OVERVIEW

Downward view of b

-
\\

o 1
i—»
|
!
L.

Program graph Pattern

Figure 4.4: A program graph and a multi-rooted pattern. From the point of view
of the b node in the program graph, there is no easy way to tell if the
pattern matches. The downward view of b does not include the other
root c¢ of the pattern.

incoming edges is unbounded. Traversing all incoming edges might be very costly.
We call this the reverse-edge-direction problem.

4.2 QOverview

We introduce pattern decomposition and a bottom-up annotation algorithm in order to
tackle the duplicate work problem and the reverse-edge-direction problem respectively.
Pattern decomposition happens entirely at generation time. Our generator is written
in Haskell, so we present the ideas of pattern decomposition in functional style
pseudo code. We assume our pseudo code to be evaluated lazily. The generator
uses the result of the pattern decomposition to generate C code for the bottom-up
annotation algorithm. The annotation algorithm itself runs at compile time and is
given a program graph as input. We present the idea of the annotation algorithm in
imperative style pseudo code similar to C.

The following snippet shows how the parts are connected. A decompose function

36

4.3. PATTERN SELECTION AND PROGRAM GRAPH TRANSLATION

decomposes the pattern set into a set of intermediate patterns called flat patterns.
In genCode we take these flat patterns and generate the corresponding C code.

gen :: {Rule} -> String
gen = genCode . decompose

decompose :: {Rule} -> {FlatPattern}

genCode :: {FlatPatternl} -> String

We will explain how the latter two functions work in detail over the course of this
chapter.

The remainder of this chapter is organized as follows. First, in Section we
explain the pattern selection phase and the process of translating an annotated
program graph into a semantically equivalent target graph. We therefore learn
what groundwork the pattern selection phase needs. We explain next how the
pattern matching phase provides this groundwork. In Section we explain how
decomposition and the bottom-up annotation algorithm work in the context of tree
patterns. This helps to understand the general idea of both concepts in a less complex
environment. In Section we develop these ideas to accomodate single-rooted
DAG patterns. In Section we incorporate bulletin boards in order to accomodate
double-rooted DAG patterns. In Section we expand this technique to arbitrary
DAG patterns. In Section we point out some nuances.

4.3 Pattern selection and program graph translation

In the pattern selection phase we are given an annotated program graph that we
have to translate to a semantically equivalent target graph. As we have seen in
Section pattern selection corresponds to program graph tiling.

Our solution to the pattern selection problem is a straightforward greedy approach.
libF1IRM calls the following function with the root of the program graph.

ir_node *be_transform_node(ir_node *node) {

ir_node *new_node = NULL;

if (AUTOTRANSFORM_ENABLED) {
new_node = autotransform(node);

}

if (new_node == NULL) {
// call the handwritten instruction selector
new_node = handtransform(node) ;

}

return new_node;

37

4.3. PATTERN SELECTION AND PROGRAM GRAPH TRANSLATION

If the autotransform extension is enabled, the function calls autotransform, which
is provided by our generator. In some situations (Phi or Sync nodes for example)
our generated instruction selector is not able to find a match. In this case the
autotransform function returns NULL. The handwritten instruction selector then
takes over and performs a transformation.

ir_node *autotransform(ir_node *node) {

annotation **as = get_annotations(node);

for (annotation a : as) {
transform_info_t *tinfo = get_transform_info (a);
ir_node *tnode = transform(mode, tinfo);

if (tnode) {
return tnode;

3

return NULL;
}

The autotransform function just scans through the annotations, which are sorted
best-first, and tries to perform the corresponding transformations. The transform
function does the heavy lifting.

ir_node *transform(ir_node *node, transform_info_t *tinfo) {
// Check for overlap with the current partial program graph
tiling
if (has_overlap(node, tinfo)) {
return NULL;
}

ir_node *input_0 = get_input_O(tinfo);
ir_node *input_1 get_input_1(tinfo);
ir_node *input_2 get_input_2(tinfo);
ir_node *input_3 get_input_3(tinfo);
ir_node *input_4 get_input_4 (tinfo);

inputs = [];

// Recursively transform the inputs

for (input *i : get_inputs(tinfo)) {
inputs[get_index(i)] = be_transform_node(get_node(i));

}

result = tinfo->constructor (tinfo, inputs);
ir_node *new_node;

for (ir_node *r : get_roots(tinfo)) {

ir_node *new_r = get_transformed_root(result, r);
be_set_transformed_node (r, new_r);

38

4.4. TREE MATCHING

if (r == node) {
new_node = new_r;
}
}

return new_node;

}

We first check if the selected transformation annotation overlaps with the current
partial graph tiling. This check can simply be implemented by iterating over all
nodes that are covered by the match and check if they were transformed before. The
details of this check are of little importance.

Now we call be_transform_node recursively for each of the inputs. Next, we call a
node constructor provided by the annotation. The result holds a transformed node
for each of the root nodes mentioned in the annotation. One of these roots is the
node node we want to transform. We return this transformed root in the end.

This recursive scheme starts at the root of the program graph, greedily selects the
best pattern match and then recursively calls itself with the inputs of that match. We
have seen that an annotation consists of a set of input nodes, a set of root nodes, and
a constructor function pointer. We will now see how our pattern matcher provides
these annotations.

4.4 Tree matching

We will now walk through the innards of our pattern matcher by starting with a
slimmed down version that only works with tree patterns.

4.4.1 Pattern decomposition

Patterns are defined as labelled graphs. We represent these graphs with the help of
adjacency lists.

data Pattern = Pattern {

vertices it {Vertex}

argsMap :: Map Vertex (Map Index Vertex)
labels :: Map Vertex Label

targetInfo :: TargetInfo

The field vertices holds the set of all nodes. The field argsMap holds a map of
indexed adjacency lists for each node. In order to get the nth operand of node v in a
pattern p we have to perform two lookups:

39

4.4. TREE MATCHING

let am = argsMap p
let os = lookup(am, v)
let y = lookup(os, n)

The field 1abels holds a label for each node. The field targetInfo holds information
needed for the translation of the pattern to its target equivalent.

data TargetInfo = TargetInfo {

targetGraph :: TargetGraph
rootMap :: Map Vertex Vertex
inputMap :: Map Vertex Vertex
constructor :: String

priority :: Int

The fields rootMap and inputMap correspond to the maps we explained in Figure [2.5]
They express how nodes in the target graph are mapped to nodes in the pattern.
The priority field holds a value that is used later in the pattern selection phase.
Patterns that are higher prioritized are preferably selected over other patterns.

In the decomposition phase we want to decompose patterns to smaller patterns
that make life easier. Since our pattern set is atomically complete, we can take
decomposition to the extreme and decompose all patterns down to the atomic parts.
We call these atomic parts flat patterns. A flat pattern is a tree of height 0 (a single
Const node) or 1 (most other cases).

data FlatPattern = FP {

flatTree :: FlatTree
targetInfo :: Maybe TargetInfo
}
data FlatTree = FT {
rootLabel :: Label
children :: Map Int FlatTreeNode

}

data FlatTreeNode = FTRef FlatPatternId | FTVar | FTImm

Figure [4.5] shows an example of a flat pattern decomposition. As we can see, every
node other than the inputs correspond to one flat pattern.

A flat pattern holds a description of its structure as a flat tree. A flat tree is simply
a labelled root and a set of indexed children. The children are either immediate or
variable inputs or refer to other flat patterns. If a flat pattern corresponds to a root
of the original pattern, it holds the original target info of the pattern in the field

40

4.4. TREE MATCHING

A: Const 1

0—1

Var 1 C: Var 1
4 +

0 0 1

Figure 4.5: A pattern (left) and its decomposition (right). Flat patterns are trees
of height one. The leaves are variable or immediate inputs or references
to other flat patterns. References are denotes by the octagon shapes.

targetInfo. If the flat pattern does not correspond to a root, the targetInfo field is
set to Nothing.

As we alluded to earlier, every flat pattern needs an id to enable us to refer to
it from other flat patterns. The id encodes the structure of the flat pattern. We
want two flat patterns a and b to have the same id iff whenever a matches, b also
matches and whenever b matches, a also matches. This means that when we obtain
a flat pattern from decomposing one pattern and we obtain another flat pattern from
decomposing another pattern and both flat patterns have the same id, we can just
keep one of the two flat patterns and discard the other. Calculating flat pattern ids
is an intricate matter. We defer this discussion to Section [4.8.1]

Flat patterns are patterns in the sense of the definition in Section 2.4 We can
therefore use the term match for flat patterns as well.

The function decompose is straightforward.

decompose p = lefts (map (mkFlatPattern p) (vertices p))

mkFlatPattern :: Pattern -> Vertex -> Either FlatPattern ImmVarFlag
data ImmVarFlag = ImmFlag | VarFlag

The 1efts function takes a collection of Either a b, discards all the Right values
and unpacks the Left values. The mkFlatPattern function performs the main work.

mkFlatPattern p v = case lookup v (labels p) of
Var ... -> Right VarFlag

41

4.4. TREE MATCHING

Imm ... -> Right ImmFlag
1bl -> Left (FlatPattern {
flatTree = ft
targetInfo = if isRoot p v
then Just (targetInfo p)
else Nothing
} where ft = FlatTree {
rootLabel = 1bl
children = Map.map (mkFTChild p) (lookup v (argMap p))

Variable and immediate input nodes are mapped to the respective flag. For non-
input nodes we forward the target info and form a flat tree. For the flat tree we
translate each of the node’s children with mkFTChild.

mkFTChild :: Pattern -> Vertex -> FlatTreeNode
mkFTChild p v = case mkFlatPattern p v of
Right VarFlag -> FTVar
Right ImmFlag -> FTImm
Left fp -> FTRef (flatPatternId fp)

As we can see, we call mkFlatPattern recursively. The recursion will terminate
because with each step we move closer to the leaves of the pattern and patterns do
not contain cycles. At the leaves the recursion stops. We can memoize the results of
these calls in order to make the entire computation faster.

This is the basis of what decomposition is about. The main difficulty lies in the
computation of flat pattern ids (flatPatternId). We cover this topic in Section m

4.4.2 Bottom-up annotation algorithm

After decomposition we generate code for the bottom-up annotation algorithm. We
will first explain how the algorithm works and then how we generate its code. At
compile time we are given a program graph. Our goal is to annotate each node with
the set of all patterns that match at this node.

We visit the nodes in topological order.

void annotateAll (ir_graph x*xirg) {
walk_topological(irg, annotate);

}

This means that the annotate() function is called with each node and if we make
sure to annotate the given node correctly, we can be certain to have annotated all
of the node’s operands before. We visit the nodes moving from leaves to roots, or

42

4.4. TREE MATCHING

L__J

2

load32

0 0 —|
1 3
const 1 Proj 1 Proj 0

t._ 1! T

Shl32 const 2

Figure 4.6: An excerpt of a program graph.

bottom-ugl The function is best explained with the help of a small example. Assume
that the rule set we were given solely consisted of rule R in Figure[2.4,. We decompose
the rule as shown in Figure 4.5 which means we obtain three different flat patterns:
A, B, and C. A part of the program graph that we want to annotate is shown in
Figure 4.6l The nodes in the program graph are annotated with numbers. Assume
we already annotated all nodes above and including node 2. We choose a topological
visitation order of 1, 3, 4, 5, 6 for the other nodes.

The code for annotate() takes care of the three flat patterns A, B, and C and will
look like this:

void annotate(ir_node *node) {
if (label(node) == Const
&& const_value(node) == 1) {
addAnnotation(node, A);
}

if (label(node) == Shl32

2The term bottom-up is confusing since leaves are drawn at the top in this thesis. When we say
bottom-up, we always mean going from the leaves towards the roots.

43

4.4. TREE MATCHING

&% hasAnnotation(operand(node, 0), A)) {
addAnnotation (node, B);
}

if (label(node) == 0r32
&% hasAnnotation(operand(node, 0), B)) {
addAnnotation(node, C);
handle_C(node) ;
}
}

void handle_C(ir_node *node) {
target_info_t *ti = new_target_info ();
set_inputs(ti, <pointers to the inputs>);
set_constructor (ti, &c_orShift);
set_roots(ti, node);
addPatternAnnotation(node, ti);

We see that for each flat pattern we generate an if statement. The condition
contains predicates for the root label and in some cases the operands’ annotations. If
the statement succeeds, we annotate that we found a flat pattern match. In the case
of flat pattern C, we also annotate that we found a pattern match (inside handle_c),
because flat pattern C corresponds to the root of the original pattern (we say that
C is a root flat pattern). For a pattern match to be of use to us later, we need to
store some additional information in a target_info_t structure. The structure holds
pointers to the pattern’s inputs and roots and a constructor function. There is one
constructor function for each target instruction. In our generator we just look up
these constructor function pointers from an external data map.

We chose to use a separate handle_C function to wrap the addPatternAnnotation
call. These functions will do more heavy lifting once we adapt the algorithm to
multi-rooted patterns.

4.4.3 Generating the bottom-up annotation code

Generating this code consists of two parts: generating the main annotate() function
and generating each of the handle_Xx() functions.

genCode :: {FlatPattern} -> String
genCode fps = concat (map genAnnotate_X fps)
++ genAnnotate fps

When we only handle single-rooted patterns, the handle_x() functions are simple.

44

4.4. TREE MATCHING

genAnnotate_X :: FlatPattern -> String

genAnnotate_X fp

= "void annotate_$(id fp) (ir_node #*node) {"
"target_info_t *ti = new_target_info();"
"set_inputs(ti, $(<make pointers to the inputs>));"
"set_constructor(ti, &$(constructor (targetInfo fp)));"
"set_roots(ti, node);"
"addPatternAnnotation(node, ti);"

ll}ll

For the main annotate() function we first gather a map of predicates. In this map
we associate each flat pattern with the set of predicates we need to check in order to
make sure that the flat pattern matches at the given node.

fpPredicatesMap :: {FlatPattern} -> Map FlatPattern {Predicatel}
fpPredicatesMap fps = Map.fromlist
(map (\fp -> (fp, predicates fp)) f£fps)

predicates :: FlatPattern -> {Predicate}
predicates fp = {labelPredicate fp}
‘union‘ operandsPredicates fp
‘union ‘ specialPredicates fp

labelPredicate fp
= case (rootLabel (flatTree fp)) of

Const X -> "label(node) == Const && const_value(node) == $X"
Sh132 -> "label(node) == Sh1l32"
0r32 -> "label(node) == 0r32"
->
operandsPredicates fp = set (map operandPredicate

(children (flatTree fp)))

operandPredicate :: (Int, FlatTreeNode) -> Predicate
operandPredicate (idx, FTVar) = "true"

operandPredicate (idx, FTImm) = "is_immediate (node)"
operandPredicate (idx, FTRef id) = "hasAnnotation(get_irn_n(node,

$idx), $id)"

specialPredicate =

The set of predicates for a given flat pattern consists of a label predicate, a set of
operand predicates and a set of special predicates. The label predicate checks if the
root label of the given flat tree matches at the current node in the program graph.
The operand predicates check that for each of the operands we find annotations for
the referenced flat patterns or immediate nodes if we need an immediate input. The
special predicates take care of further details. Arithmetic nodes need a predicate to

45

4.4. TREE MATCHING

check that the node has an integer mode, for example. These special predicates are
very tied to the way FIRM works. We get the set of special predicates as a map from
a source external to our generator. The details of these predicates are irrelevant to
the understanding of our algorithms.

With the help of the flat pattern predicates map we can now generate the checks
for flat pattern matches.

genAnnotate :: {FlatPattern} -> String

genAnnotate fps

= let fpPreds = fpPredicatesMap fps in
"void annotate(ir_node *node) {\n" ++
concat (map check fpPreds) ++

u}u

check :: (FlatPattern, {Predicate}) -> String
check (fp, preds)
= "if ($(intercalate " && " preds)) {\n" ++
" addAnnotation(node, $(id fp));\n" ++
if isRootFlatPattern fp
then "handle_$(id fp) (node)"
else ""
++ "}

We simply lay out all the checks in a linear fashion. For each check we open a single
if statement and concatenate all predicates to form a conjunction. In Section we
will see how we can improve on this linear layout. The general approach of collecting
predicates and laying them out in if statements stays the same, however.

4.4.4 Avoiding useless matches

Recall how we discussed that some matches can never be part of a valid program
graph tiling. In Section we called such matches useless. It is easy to avoid
collecting useless matches with one more predicate for each flat pattern. Matches
are rendered useless if there are additional edges going from outside a match to one
of its inner nodes. We can detect useless matches by keeping track of the number
of incoming edges. Iterating over incoming edges is expensive but obtaining the in
degree is cheap.

In decomposition we have to calculate the in degree for all the nodes in a pattern
and store this information in the flat patterns.

data FlatPattern = FlatPattern {

inDegree :: Int

(-

46

4.5. SINGLE-ROOTED DAG MATCHING

mkFlatPattern p v = case lookup v (labels p) of
1bl -> Left (FlatPattern {

inDegree = patternInDegree p v

B

patternInDegree :: Pattern -> Vertex -> Int
patternInDegree p v = length (filter (pointsTo p v) (vertices p))

pointsTo :: Pattern -> Vertex -> Vertex -> Bool
pointsTo p to from = let args = lookup from (argsMap p) in
any (map f args)
where
f (idx, v) = v == to

With this information we can add one more predicate to the set of predicates for
each flat pattern.

predicates fp =
‘union ¢ {inDegreePredicate fp}

inDegreePredicate fp = if root fp
then "true"
else "get_irn_n_edges(node) == $(inDegree
fp) n

This way we make sure to not match any useless patterns. For flat patterns that
correspond to roots in the original pattern we must not restrict the in degree because
roots are at the edge of a match and can therefore be used as inputs any number of
times.

4.5 Single-rooted DAG matching

We will now adapt our solution to single-rooted DAG patterns. Such patterns already
fit the Pattern data type definition due to our choice to use adjacency lists to model
edges.

We can view a DAG as a tree and a set of branch convergences. A branch
convergence is a set of paths. If we start at the root and follow each of these paths
we must end up at the same node in all cases. We call this node a confluence node.
Figure 4.7 shows an example DAG and its representation as a tree with a branch
convergence. Since outgoing edges are indexed, we can describe paths by a list of
indices.

47

4.5. SINGLE-ROOTED DAG MATCHING

ia32_Lea_base_index_scale_disp2 Var 0 Var 1

Var 0 Var 1

t, —1

Add32
t,

4

0 1
where [0,0,1] = [0, 1]

Figure 4.7: A single-rooted DAG pattern and its tree representation. For the tree
representation we need to specify an additional branch convergence. A
branch convergence is a set of paths that have to lead to the same node
starting at the root.

—_

type Convergence = {Path}
type Path = [Index]

We save these convergences in the flat pattern data structure that corresponds to
the root of the original pattern.

data FlatPattern = FlatPattern {

convergences :: Maybe {Convergencel}

}

We can find all branch convergences during pattern decomposition.

mkFlatPattern p v
= case lookup v (labels p) of

1bl -> Left (FlatPattern {
convergences = if isRoot p v

then Just (findConvergences p V)
else Nothing

48

4.6. DOUBLE-ROOTED DAG MATCHING

The findConvergences p v function works by iterating over all nodes w in the
pattern p and enumerating all paths from v to w. If there is more than one such
path we have found a convergence.

Now during the bottom-up annotation algorithm we have to check if the conver-
gences occur in the program graph as well. We simply add this check as one more
predicate.

predicates fp =
‘union ¢ convergencePredicates fp

convergencePredicates :: FlatPattern -> {Predicatel}
convergencePredicates fp
= case convergences fp of

Nothing -> {}

Just cs -> map convergencePredicate cs

convergencePredicate :: Convergence -> Predicate
convergencePredicate paths
= "same("
++ intercalate ", " (map followPath paths)
++ ")
followPath :: Path -> String
followPath = followPath’ . reverse
followPath’ :: Path -> String
followPath’ [] = error
followPath’ [idx] = "get_irn_n(node, $idx)"
followPath’ idx:idxs = "get_irn_n($(followPath idxs), $idx)"

The same function is a variadic helper function that checks if all of the arguments
are pointers to the same node.

Adding predicates for the convergences is all it takes to adapt our solution to
single-rooted DAG patterns.

4.6 Double-rooted DAG matching

We now want to add DAG patterns with two roots to our pattern set. An example
pattern is shown in Figure 4.8 Let’s try to employ the bottom-up annotation
algorithm as described up until this point in the example program graph shown in
Figure[4.9 Suppose we arrive at the Add32 node on the left. So far in the bottom-up
annotation algorithm our view was solely directed downwards into the program graph.
We therefore come to the conclusion that the ia32_ Add_ disp pattern matches at
the Add32 node. This conclusion is premature, however. The match we found is
only a partial match. We are still lacking information about the Proj 0 root: Is such

49

4.6. DOUBLE-ROOTED DAG MATCHING

ia32_Add_disp

Var 1 Imm O

t, .1t

load32

LO
FO |
Var 2 Proj 1 Proj 0

Add32

Figure 4.8: An ia32_Add_disp pattern with two roots. The two roots are a conse-
quence of the load32 memory instruction.

a root to be found in the program graph and if so, where? Suppose we move on
with the algorithm and arrive at the Proj 0 node. Again, we come to the conclusion
that the pattern matches at this node. Now we are in the same situation as before,
however. We only found a partial match and do not know where the other root is
to be found or if it even exists at all. From a bird’s eye view we see that the two
partial matches fit together, but so far we have no means to use this perspective in
our pattern matcher.

When we are at the Add32 node we could search for the Proj 0 root node
explicitly. We first move down to the load32 node, which is a meeting point node
in respect to both roots. We now have to iterate over all incoming edges of this
meeting point. For each incoming edge we have to check if the node at the start of
the edge is a Proj 0 node. This does not sound like much extra work, but iterating
over incoming edges can be costly, because their number is unbounded. Let 7 denote
the average number of incoming edges at each node in an average program graph.
Moving down to the meeting point node and then looking for Proj 0 nodes in this
manner therefore takes 7 + 2 steps on average.ﬂ

Even if 7 is small and the cost of this method is therefore acceptable in this
specific situation, there are situations in which the cost grows significantly. We are
not guaranteed to arrive at the Add32 node before we arrive at the Proj 0 node.
Suppose we arrive at the Proj 0 node first. Now, if we want to search for Add32
root nodes explicitly, we have to move down to the load32 node and then go up two
levels. On average, this takes 1 + 72 steps. The cost grows exponentially with the

3We assume that we want to find all occurrences of Proj 0 nodes. In practice, we only need to
find one Proj 0 node.

50

4.6. DOUBLE-ROOTED DAG MATCHING

0
l
Add32 Proj 0
t, 1
load32

L 0
|_O |
Var 2 Proj 1 PI'Oj 0

b, ! T

Add32

Figure 4.9: An excerpt of a program graph containing an instance of a double-rooted
pattern.

distance between the roots and the meeting point.

The in-degree check, which we introduced earlier, helps to keep 7 fairly small
(depending on the pattern set), because we immediately reject matches with edges
pointing from outside the pattern to its inner nodes. Iterating over incoming edges
might therefore still be a viable option in practice, at least when it comes down to
performance. There is another, non performance-related, problem in this situation,
however. Starting at the Proj 0 root, we can only directly access two of the three
inputs of the pattern. The Var 2 input can only be reached by the Add32 root.
If we look for the Add32 node explicitly, we must then also look for this missing
input node. Explicitly searching for roots and inputs quickly becomes unwieldy. We
therefore reject this approach for implementation complexity reasons.

4.6.1 Virtual bulletin boards

The source of our problem is that we arrive at the two roots of the same pattern at
different points in time. We have to asynchronously exchange information between
these two events. Instead of looking for the roots explicitly, we use a method people
use in the real world in order to exchange information: bulletin boards. Bulletin
boards make asynchronous communication possible between complete strangers. We

51

4.6. DOUBLE-ROOTED DAG MATCHING

want to replicate those characteristics of bulletin boards for our purposed’}

The following listing shows the C struct definition of a virtual bulletin board. The
primary purpose of our bulletin boards is to acquaint two compatible roots with one
another via the root_0 and root_1 fields. The pid field holds a unique identifier of
the pattern. It allows for different pattern matching passes to find the bulletin board
they are concerned with.

typedef struct {
long pid;

ir_node *root_0; // gather all roots
ir_node *root_1;

ir_node *input_0; // gather all inputs
ir_node *input_1;
ir_node *input_2;
ir_node *input_3;
ir_node *input_4;
} bb_t;

The secondary purpose of bulletin boards is to gather all the additional information
necessary to perform a pattern translation. The input z fields gather all inputs to
the pattern.

Where do we set up these bulletin boards? Meeting points, such as the load32
node in the example above, make up ideal information exchanges. A meeting point
is a node that is accessible from two or more roots in a pattern. We call a program
graph node that we entrust with holding a bulletin board a hub.

A single hub can hold many bulletin boards. A bulletin board is concerned with a
single pattern id only. In this way, independent pattern matching operations do not
interfere with each other because they communicate via independent bulletin boards.

4.6.2 Extending the bottom-up annotation algorithm

Recall that we split the matching process into a main annotate() function and
handle_X() functions in the case of root flat patterns. So far, the latter did not
do much work, but now we can use these functions to handle the bulletin board
extension. At the point when we call handle_X we have only found a partial match.
The purpose of these handler functions is to find full matches.

Definition (Partial match). Given a program graph G = (Vg, Eg,,0), a multi-
rooted pattern P = (Vp, Ep,0,¢e), and a node v € V. Let r be one of the roots in
the pattern and let V' be the set of nodes in P that we can reach by traversing P

4We are essentially describing asynchronous unbounded channels as described in the concurrency
programming literature (e.g. Reppy [35]). Since we are not dealing with true concurrency, we
give this concept a new name to avoid confusion.

52

4.6. DOUBLE-ROOTED DAG MATCHING

starting at r. Let P’ be the subgraph of P induced by V'. We say that P is a partial
match in G at v, if P' matches in G at v.

Let A be the flat pattern id of the Add32 root and let B be the flat pattern id of
the Proj 0 node. We want the annotation function for A to look as follows.

void handle_A(ir_node *node) {
// Get the hub
ir_node *hub = get_irn_n(get_irn_n(node, 1), 0);

// Get the bulletin board
bb_t *bb = get_bulletin_board (hub, <ia32_Add_disp pattern id>);

// Enter mnode as root_0
bb->root_0 = node;

// Enter all known inputs

bb->input_0 = <the IMM_O node>;
bb->input_1 = <the VAR_1 node>;
bb->input_2 = <the VAR_2 node>;

// Check if we know everything
if (bb->root_0
&& bb->root_1) {
target_info_t *ti = new_target_info ();
add_inputs(ti, <pointers to the inputs>);
set_constructor (ti, &c_ia32_Add_disp);
set_roots(ti, bb->root_0, bb->root_1);

// Add annotation for both roots
addPatternAnnotation(bb->root_0, ti);
addPatternAnnotation(bb->root_1, ti);

And similarly we want the annotation function for B to look like this:

void handle B (ir_node *node) {
// Get the hub
ir_node *hub = get_irn_n(get_irn_n(node, 1), 0);

// Get the bulletin board
bb_t *bb = get_bulletin_board(hub, <ia32_Add_disp pattern id>);

// Enter mnode as Toot_1
bb->root_1 = node;

// Enter all known inputs
bb->input_O = <the IMM_O node>;

23

4.6. DOUBLE-ROOTED DAG MATCHING

bb->input_1 = <the VAR_1 node>;

// Check <if we know everything
if (bb->root_0
&& bb->root_1
&& bb->input_O
&& bb->input_1
&& bb->input_2) A
target_info_t *ti = new_target_info ();
add_inputs (ti, <pointers to the inputs>);
set_constructor (ti, &c_ia32_Add_disp);
set_roots(ti, bb->root_0, bb->root_1);

// Add annotation for both roots
addPatternAnnotation (bb->root_0, ti);
addPatternAnnotation(bb->root_1, ti);

We first get the hub and the bulletin board corresponding to the current pattern.
Since we only get to the handle_X functions as root nodes, we can enter node as a root
in the bulletin board. In the case of flat pattern A we enter the node as root_0 and in
the case of flat pattern B we enter the node as root_1. This arrangement is arbitrary,
but it has to be consistent. We just need to know of both roots in the end. Next, we
gather all the inputs we can access from the current root node. In the case of flat
pattern A — the one that corresponds to the Add32 node in the original pattern —
we know of all three inputs. In the case of flat pattern B, however, we only know
the identity of two out of three inputs. In the end we check if we know everything
we need for a pattern annotation. If this is the case, we build a target_info_t struct
as before and annotate both roots.

Assume we are working with a program graph where the ia32_Add_ disp pattern
above matches. We want to find this match with the bottom-up annotation algorithm.
Assume we first arrive at the Proj 0 node that is the right root of the pattern. We
learn that the pattern partially matches. We therefore enter the handle_B function.
There we get the bulletin board from the hub at the load32 node and enter the
Proj 0 node as root_1. We also enter the location of the two inputs. Next, we check
if the bulletin board knows of the location of both roots and all three inputs. That is
not the case, we are lacking root_0 and input_2. We continue the matching process.
Eventually we arrive at the Add32 node that is the left root of the pattern in the
program graph. We learn that the pattern partially matches. We therefore enter the
handle_A function. We get the bulletin board from the hub at the load32 node and
enter the Add32 node as root_0. We can also enter the location of all three inputs.
We now check if the bulletin board knows the location of all roots and inputs. Along
with the info provided by the earlier pass, the information in the bulletin board is
now complete, so we annotate the pattern match at both the Add32 and the Proj
0 nodes.

o4

4.7. MULTI-ROOTED DAG MATCHING

Var 0 Var 1
t, rl_T

0 h, g

| 7

a b C

Figure 4.10: A pattern with three roots and two inputs. No two roots taken together
can access all inputs. This makes gathering inputs very intricate.

4.7 Multi-rooted DAG matching

With the introduction of bulletin boards for double-rooted patterns, we laid the
groundwork for matching arbitrary multi-rooted patterns. There are, however, some
minor annoyances that can occur with three or more roots per pattern. For instance,
gathering all the roots and inputs for DAG patterns with more than two roots can be
complicated. So far, with double-rooted DAG patterns, information that was missing
for one root could always be provided by the other root. With some triple-rooted
patterns, no two roots taken together can access all inputs. An artificial example
of such a pattern is shown in Figure [4.10] Assume we want to find a full match of
this pattern in a program graph where this pattern occurs. Assume we arrive at the
root with the label b first. At b we can access neither of the two inputs, so we only
enter our own root location in the bulletin boards at the hubs hy and h;. Assume
we arrive at root a next. We can access Var 0 and the hub hy. From hy we obtain
the location of the root b but nothing more. We enter our own root location and
the location of the input in the hub hy. We do not know where root ¢ and the input
Var 1 are to be found, so we continue. Assume we arrive at root ¢ next. We can
access Var 1 and the hub h;. From h; we obtain the location of the root b but
nothing more. We enter our own root location and the location of the input in the
hub h;. We are lacking the location of root a and Var 0 so we still have not found
a full match. Unfortunately we have already visited all the roots of the pattern. The
pattern will therefore never be found. Due to the order of visitation we failed to
propagate all the necessary information properly.

We only have limited influence on the order of visitation of program graph nodes.
Even if we could fully control the visitation order, there are situations in which no
visitation order will lead us to finding all patterns with the scheme above. The ideal
visitation order for one pattern might conflict with the ideal visitation order for
another pattern. Manipulating the visitation order is therefore no solution to the
problem of incomplete propagation of information. Instead, we adapt the bulletin
boards to accomodate multi-rooted patterns properly.

We have each bulletin board hold a list of subscribers. An interested root node

95

4.7. MULTI-ROOTED DAG MATCHING

can register a callback function that triggers whenever the bulletin board changes.
In the example above, root b subscribes to changes in the bulletin boards at hy and
hy. Now, when root a adds the location of Var 0 and a to the bulletin board at
ho, the respective callback function is called. The callback function propagates the
new information from hub hg to hub h;. Finally, when it is ¢’s turn, hub h; holds
all information necessary to enable ¢ to decide that we found a full pattern match.
If we have every root node subscribe to all accessible hubs, we are guaranteed that
for every visitation order, all information eventually propagates to a root that can
decide whether a full match is found.

To implement this scheme, we adapt our bulletin boards. The new version is
shown in the listing below. In addition to the fields for roots and inputs, we now
have a set of callbacks and subscription keys. The callbacks will be the handie_X
functions. For root b the handle_B function is shown in Figure [4.11

typedef struct {
long pid;

void (**callbacks) (ir_node *); // interested subscribers
ir_node *subscribers/[]; // subscription keys

ir_node *root_O0; // gather all roots
ir _node *root_1;
ir_node *root_2;

ir_node *input_O0; // gather all inputs
ir_node *input_1;
ir_node *input_2;
ir_node *input_3;
ir_node *input_4;
} bb_t;

Root b can access two hubs, so we first get the two respective bulletin boards. Next,
we gather all information locally. We combine the information from the two hubs
and we add our own root location as root_1. We can now check if this information is
complete. If it is, we build a target_info_t package as before and annotate all the
roots accordingly. We have successfully found a full match so we return from the
function. If we do not have complete information yet, we subscribe to both bulletin
boards for further updates. The callback function is the handle_B function itself. We
use node as the subscription key to unsubscribe later. In any case, afterwards we
propagate information to the two bulletin boards. The add_info function adds the
given information to the bulletin board and returns true if any new information
has actually been added or false if the bulletin board already had all the given
information. If we added new information, we notify all subscribers to the bulletin
board. The notify function takes a bulletin board and a function pointer. It iterates
through the list of subscribers of the bulletin board and calls the callbacks. If one

o6

4.8. DETAILS

of the callbacks is equal to the function pointer in the second argument, the call is
skipped. This means we notify all subscribers other than ourselves, else this scheme
would recur endlessly.

We use the pattern in Figure to illustrate the behaviour of these new handler
functions. The handle_A and handle_C functions look similar to the handle_B function
in Figure {.11] Assume we are arriving at a b node in a program graph where this
pattern matches. As before we find a partial match so we enter the handle_B function.
We access the bulletin boards at the hubs hy and h; and combine their information
with the location of root_1. This information is not complete yet, so we subscribe
to both bulletin boards. We also put the combined information into both bulletin
boards at the hubs. Since we added information at each bulletin board, we notify all
subscribers other than ourselves. At this point there are no other subscribers.

Assume that we arrive at the a node in the program graph at a later point. Again
we take the information from the only accessible hub at hy and combine it with our
own information, which is the location of root_0 and input_0. The information is
still not complete, so we subscribe to the bulletin board at hy. We also put the new
information in the bulletin board and therefore notify the list of subscribers. The
only other subscriber is handie_B. We call it.

When we enter handle_B a second time, there is new information in the bulletin
board at hub hy. Our information is still not complete, however. We call subscribe on
both bulletin boards again, but this has no effect, because we were already subscribed
and subscription is idempotent. Now, we call add_info(bb_0, ...) but bulletin board
0 already knows everything we want to tell it. The call therefore returns false and
we do not notify the subscribers. Bulletin board 1, however, gets new information
from us, so we notify its subscribers of which there are none. Bulletin board 1 now
holds information for all fields except root_2 and input_1.

We finally arrive at the ¢ node in the program graph. We gather information from
the bulletin board h; and add the location of root_2 and input_1. The information is
now complete, so we build a transform_info_t package and perform an annotation at
all three roots. Our scheme was able to match this intricate triple-rooted pattern.

4.8 Details

In this section we explain some more details that we skipped over during the previous
sections.

4.8.1 Calculating flat pattern IDs

Every flat pattern that we generate needs an identifier so we can reference the flat
pattern in other flat patterns. The id encodes the structure of the flat pattern such
that two flat patterns a and b shall have the same id iff for every program graph
whenever a matches, b also matches and vice versa.

o7

4.8. DETAILS

void handle B(ir_node *node) {

// Get the hubs

ir_node *hub_O = get_irn_n(node, 0);
ir_node *hub_1 = get_irn_n(node, 1);

// Get the bulletin boards
bb_t *bb_0 = get_bulletin_board (hub_0, <id>);
bb_t *bb_1 = get_bulletin_board (hub_1, <id>);

// Gather all information locally

ir_node *root_O = bb_0->root_O0 || bb_1->root_O0;
ir_node *root_1 = node;

ir_node *root_2 = bb_0->root_2 || bb_1->root_2;
ir_node *input_O0 = bb_0->input_O || bb_1->input_O0;
ir_node *input_1 = bb_O->input_1 || bb_1->input_1;

// Check if a full match <s found
if (root_O && root_1 && root_2 && input_O0 && input_1) {

}

target_info_t *ti = new_target_info ();
add_inputs (ti, input_O, input_1);
set_constructor (ti, &<constructor>);
set_roots(ti, root_O0, root_1, root_2);
addPatternAnnotation(root_0, tinfo);
addPatternAnnotation(root_1, tinfo);
addPatternAnnotation(root_2, tinfo);

// Unsubscribe from all bulletin boards
unsubscribe (bb_0, node);

unsubscribe (bb_1, node);

return;

else {

// Subscribe to all bulletin boards
subscribe(bb_0, node, &handle_B);
subscribe (bb_1, node, &handle_b);

// Propagate new information
if (add_info(bb_0, root_O, root_1, root_2,

}

// bb_0 changed, notify subscribers
notify (bb_0, &handle_B);

if (add_info(bb_1, root_0O, root_1, root_2,

3

// bb_1 changed, notify subscribers
notify (bb_1 &handle_B);

input_0, input_1)) {

input_0, input_1)) {

Figure 4.11: The handle_B function for a multi-rooted pattern. We can access
two hubs. We get the corresponding bulletin boards and merge their
information. We also add the root location of the currently handled
root node. If all necessary information is collected, we construct a
target_info_t structure as before and we unsubscribe from all bulletin
boards. If our information is not yet complete, we subscribe to all
bulletin boards for further updates. We then propagate our merged

o8

information to the two bulletin boards.

4.8. DETAILS

flatPatternId :: FlatPattern -> FlatPatternId

Recall the final algebraic data type definition of flat patterns and flat trees:

data FlatPattern = FP {

flatTree :: FlatTree

targetInfo :: Maybe TargetInfo

inDegree :: Int

convergences :: Maybe {Convergencel}
¥
data FlatTree = FT {

rootLabel :: Label

children :: Map Int FlatTreeNode

data FlatTreeNode = FTRef FlatPatternId | FTVar | FTImm

It is obvious that the structure of the flat pattern must include the fields f1atTree,
inDegree, and convergences. If a and b differ in any of these three fields, they are not
interchangable. We use a cryptographic hash function to generate an identifier from
these fields. The targetInfo has to be handled with more care.

flatPatternId fp = hash (flatTree fp,
inDegree fp,
convergences fp,
relevant (targetInfo fp)
where

Not all details of the targetInfo are relevant to the creation of a flat pattern id.
We use the function relevant to carve out the relevant parts. First up, the targetInfo
field is only set for root flat patterns. A root flat pattern is never interchangeable
with a non-root flat pattern.

relevant Nothing = Nothing
relevant (Just ti) = Just (carve ti)
-- or: relevant = fmap carve

Recall the definition of the TargetInfo type:

Hdata TargetInfo = TargetInfo {

29

4.8. DETAILS

:f—o 1—:f Lo 1—:f
1 N

g:H k:H

Figure 4.12: Two isomorphic patterns. The patterns only differ in the vertex names.
Each vertex is annotated in the scheme x : Y where x is the vertex
identifier and Y is the label.

targetGraph :: TargetGraph
rootMap :: Map Vertex Vertex
inputMap :: Map Vertex Vertex
constructor :: String
priority :: Int

The carve function must forward the fields priority and constructor because no
two flat patterns that differ in these fields are interchangeable.

carve ti = (priority ti,
constructor ti,

»

The other fields of the target info include data of the type Vertex, which are
vertex identifiers. The TargetGraph type uses these identifiers internally to express
the structure of the graph. The rootMap and inputMap fields map IR pattern vertex
identifiers to target pattern vertex identifiers. So far when we drew graphs, we
omitted these identifiers and only showed the node labels. The vertex identifiers are
internal implementation details. They never reach the generated output. Nevertheless,
internally we can have two patterns that are exactly the same but use different vertex
identifiers. Figure shows two such patterns. Each vertex is annotated in the
scheme x : Y where x is the vertex identifier and Y is the label. We can clearly see
that the two graphs are isomorphic.

The carve function has to include the structure of the target info without using
the specific vertex identifiers. The TargetGraph includes such vertex identifiers. We
first reassign these identifers by traversing the target graph. Since all our target
graphs have a very simple structure, this is an easy exercise and consistently assigns
the same vertex identifiers for isomorphic target patterns. This translation of old
vertex identifiers (Vertex) to new vertex identifiers (Newvertex) is expressed in the
function vertexTranslate. We