
NEMESYS:
Near-Memory Graph Copy Enhanced System-Software

Sven Rheindt

Technical University of Munich

sven.rheindt@tum.de

Andreas Fried

Karlsruhe Institute of Technology

Oliver Lenke

Technical University of Munich

Lars Nolte

Technical University of Munich

Thomas Wild

Technical University of Munich

Andreas Herkersdorf

Technical University of Munich

ABSTRACT
Despite tackling the memory and power walls over the last decades,

new challenges for manycore architectures arose due to the emer-

gence of ever increasing memory intensiveness of applications with

big, irregular and cache unfriendly data sets. As data-to-task local-

ity is of key importance for system performance, the MEMSYS 2017

keynote speaker Peter Kogge showed evidence for the so-called

“locality wall”, that paved the path to near- and in-memory comput-

ing. The reduction of data movement is especially challenging on

tile-based architectures with physically distributed memory as they

often omit inter-tile cache coherence and thus require a different

programming model (e.g. PGAS).

Inter-tile communication in the PGAS paradigm is allowed via a

remote procedure call (RPC)-like programming language construct.

The more modern PGAS languages are object-oriented and thus the

RPC mechanism requires object graphs to be copied between tiles.

It is the system-software’s job to provide an efficient implementa-

tion of it since the transfer of such object graphs is crucial for the

performance of object-oriented applications on PGAS architectures.

We therefore propose NEMESYS: NEar-Memory Graph Copy

Enhanced SYstem-Software, which outsources the memory-inten-

sive and cache unfriendly graph copy operation to near-memory

hardware accelerators. As NEMESYS is an efficient implementation

of the PGAS RPC, it integrates these near-memory accelerators into

the system-software, opaque to the application programmer.

We integrated NEMESYS into an FPGA prototype and a dis-

tributed operating system running on a 4x4-tile design with a total

of 56 application cores and two memory tiles. The evaluation with

the X10 IMSuite benchmarks, featuring distributed graph algorithm

kernels, showed a speedup in execution time between 1.35x and

3.85x compared to a state of the art approach. The overall reduction

in communication time was between 40% and 82%.

KEYWORDS
Near-Memory Computing, Graph Copy Accelerator, PGAS, System-

Software, Data-to-Task Locality

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7206-0/19/09. . . $15.00

https://doi.org/10.1145/3357526.3357545

ACM Reference Format:
Sven Rheindt, Andreas Fried, Oliver Lenke, Lars Nolte, ThomasWild, andAn-

dreas Herkersdorf. 2019. NEMESYS: Near-Memory Graph Copy Enhanced

System-Software. In Proceedings of the International Symposium on Memory
Systems (MEMSYS ’19), September 30-October 3, 2019, Washington, DC, USA.
ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3357526.3357545

1 INTRODUCTION
Over the last decades, computer architecture overcame several per-

formance hindering obstacles. The memory and power walls have

been tackled by integrating manycore systems with sophisticated

memory architectures and cache hierarchies, as well as shifting to

tile-based architectures with physically distributed memories and

processing nodes [10, 12].

Data-to-task locality plays a vital role for the performance of

applications on such architectures. However, the emergence of

memory intensive applications – dominated by data access and

movement, with big and irregular data sets that become more and

more cache unfriendly – poses new challenges. The MEMSYS 2017

keynote speaker Peter Kogge therefore showed evidence that a new

wall, the so-called “locality wall”, exists and has to be overcome

[30]. Not only is this wall hindering performance, but data-to-task

locality is also highly responsible for the energy footprint of an ap-

plication. Many recent approaches therefore reduce data movement

by leveraging in- or near-memory computing [1, 21, 26, 29, 35, 40].

Tile-based architectures further face the challenge of providing

efficient and scalable inter-tile cache coherence and consistency.

The community is therefore unclear whether global coherence is

here to stay [4, 24]. While some architectures provide global [12] or

partial coherence [37], others omit hardware support for inter-tile

cache coherence and consistency [6, 7, 14, 20, 22, 31]. As those non-

coherent architectures do not easily support the shared memory

programming model, a different paradigm with explicit inter-tile

communication via messages has to be used.

One example is the partitioned global address space (PGAS) pro-

gramming model [11, 17, 19, 33], which divides the global address

space into partitions and assigns each of them to one tile. Threads

running on a tile may only freely access data in its partition of mem-

ory. To access another tile’s data, the thread needs to use a special,

remote procedure call (RPC)-like programming language construct

[19, 33]. In order to assist the inter-tile message passing and relieve

the processing cores of this duty, such architectures usually provide

dedicated hardware support, like a direct memory access (DMA)

engine, that speeds up copying of flat (i. e. non-pointered) data.

Besides all hardware architectural developments, data structures

in modern programming are getting more complex. In the past,

https://doi.org/10.1145/3357526.3357545
https://doi.org/10.1145/3357526.3357545

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA S. Rheindt, A. Fried, O. Lenke, L. Nolte, T. Wild, and A. Herkersdorf

Core

N
A

L2

NCACore

N
A L2

Core

N
A

L2

NCACore

N
A

G

B

S

D

S

PGAS MEM

G´

B´

D

DMA

1

2

3

4

(a) Message passing. (1) Core on S serializes G to source buffer B
(2) DMA unit transfers B to destination buffer B’ (3) Core on D de-
serializes B’ to G’ in destination partition D (4) Core on D uses G’.

Core

N
A

L2

Core

N
A L2

Core

N
A

L2

Core

N
A

S

D

S

PGAS MEM

G

G´4

3

2 1

D

(b) Pegasus. (1) Core on S writes back G to source partition S (2) Core
on S signals D to begin copying (3) Core on D copies graph to G’ in
destination partition D (4) Core on D uses G’.

Figure 1: Different approaches to graph copy. In both cases, an object graph is to be copied from tile S to tile D. Bold arrows
denote bulk data transfer, dotted arrows denote control/metadata messages, dashed arrows denote possible traffic due to cache
misses/evictions. To write back a graph to the memory a complete graph traversal is needed.

data was simply structured in arrays and records, whereas today’s

high-level languages (e.g. Java) organize data in object graphs with
several objects pointing to each other.

We consider the PGAS programming language X10 [33], where

pointered data structures are prevalent as well. As mentioned above,

the PGAS programmingmodel requires a special language construct

to transfer data between tiles. In X10 this RPC construct is called

“at statement”, which has the form at (p) func, where p denotes
the destination place 1 and func is the function to be executed there.

This function may access its lexical environment 2 on the remote

place p. To support this, the run-time system implicitly creates

an object graph (the closure) including all variables and objects

visible at the point of the at statement. It then transfers the closure

to the destination place’s partition, executes the function on the

destination place, and transfers the result (if present) back to the

source partition. To ensure that all object pointers stay intact, a

graph copy with proper pointer adjustment is necessary.

Hence, a good amount of effort has been invested into accelerat-

ing the transfer of such object graphs [25, 27]. As object graphs are

in general pointered data structures, a DMA engine is not able to

directly copy them without using costly (de-) serialization. Other-

wise, all the pointers in the copied graph would still point to the

objects in the original graph.

In the classical message passing variant, as depicted in Figure 1a,

the following steps are taken: (1) a core on the source tile S has to

serialize the object graph G into a buffer B, (2) the flattened structure

B is transferred via DMA into a buffer B’ on the destination tile D,

(3) a core on D deserializes B’ and reconstructs the graph G’.

Some message passing approaches either reduce the need for

the buffer B’ [8, 38], or even avoid the (de-) serialization overhead

[25, 27]. Mohr et al. presented Pegasus [25], an efficient way to

perform serialization-free graph copy operations in software. Since

1
In the X10 language, a tile and its memory partition are represented as a place.

2
The lexical environment denotes variables that were defined outside the at statement

data is crossing cache coherence boundaries, the run-time system

needs to manage the involved caches. As depicted in Figure 1b, the

Pegasus approach performs the following steps: (1) the sender S

has to traverse the graph G and write back
3
all objects of G from

its caches to its memory partition S, (2) S then signals and passes

metadata to the receiver D, (3) D in turn copies the graph directly

from the partition S into its partition D.

Despite the benefits of this approach, the aforementioned data-

to-task locality issue has not been resolved. Since the graph copy

operation (3) is performed via remote load-store operations through

the network-on-chip (NoC), its performance is limited. Furthermore,

the operation is not only performed “far from memory”, but also

an accelerator that relieves the CPUs from the graph copy duty is

missing (similar to a DMA unit for non-pointered data).

Due to the high importance of data-to-task locality and the

relevance of efficiently transferring object graphs, we propose

NEMESYS: NEar-Memory Graph Copy Enhanced SYstem-Software

for tile-based manycore architectures. We integrate near-memory

and near-cache graph (copy) accelerators into an architecture-aware

system-software. This synergy provides a performant and scalable

solution to mitigate the locality wall.

2 RELATEDWORK
Near-memory accelerators have seen much interest recently [1,

18, 26, 29, 35, 39, 40], as they promise to bridge the widening gap

between processor and memory performance, i. e. the memory wall.

Yitbarek et al. [40] proposed near-memory accelerators for four

different memory intensive tasks, namely string-compare, memcpy,
sorting and hashtable lookup. These operations are widely used by

many different applications. They integrated them into the bottom-

layer of each vault of a Hybird-Memory-Cube (HMC) [10].

3
We adhere to the following differentiation in cache terminology: 1) invalidate a cache

line, 2) writeback of a cache line to memory without invalidating it and 3) flush, which

is a combination of invalidate and writeback.

NEMESYS: Near-Memory Graph Copy Enhanced System-Software MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA

Table 1: Related work feature comparison.

Related

Work

Near-

Memory

HW-

Acc

System-

Software

object

oriented

graph

copy

PGAS

Yitbarek [40] ✓ ✓ ✗ ✗ ✗ ✗

Maas [23] ✗ ✓ ✓ ✓ ✗ ✗

Nguyen [27] ✗ ✗ ✓ ✓ ✓ ✗

Mohr [25] ✗ ✗ ✓ ✓ ✓ ✓

NEMESYS ✓ ✓ ✓ ✓ ✓ ✓

Near-memory accelerators have also been built for even more

complex operations: As examples for more numerically-oriented

tasks, Neggaz et al. [26] have developed a near-memory accelerator

for matrix multiplication, and Schuiki et al. [35] use an accelerator

to improve the performance of training neural networks. These

numerical tasks are highly regular, so the accelerators can easily

iterate over the data in hardware.

Ahn et al. [1], Ozdal et al. [29], and Li et al. [21] presented differ-

ent near-memory accelerators to efficiently process graphs. Their

approaches partition the graphs in memory and use several graph

processors in parallel to compute metrics such as PageRank on the

graphs. They attain flexibility by combining fixed-function acclera-

tors for common patterns such as scatter-gather with programmable

processing units.

Many of these near-memory accelerators have in common that

they are implemented on the HMC. However, they only use HMC’s

multiprocessing and distributed memory features for data paral-

lelism. They do not address the challenges arising from multiple

tasks acessing data concurrently.

Concerning accelerators dealing with object graphs, much work

has been done on hardware-assisted or fully hardware-implemen-

ted garbage collection. Maas et al. [23] presented an accelerator

that implements a concurrent mark-and-sweep garbage collector.

However, the garbage collector is tightly integrated with the CPU

rather than a separate near-memory unit. Bacon et al. [3] also

developed a hardware garbage collector, but they target systems

implemented on an FPGA, without necessarily having a CPU. Their

garbage collector is also not near-memory integrated.

On the other hand, there is also previous work that improves

object graph handling in software. Nguyen et al. [27] presented an

approach to transfer objects between Java Virtual Machine heaps

without full serialization. Their approach uses an object model

where objects can be transferred almost as they are to an interme-

diate buffer, sent over the network, and put directly into the remote

heap. The sender and receiver only slightly adjust the objects, e. g.

correcting for different heap origin addresses.

For systems which have a common address space, such as PGAS

systems, Mohr and Tradowsky [25] presented the more efficient

Pegasus approach. They do not need an intermediate buffer to

transfer an object graph, because the receiver can remotely read the

sender’s memory. Their approach allows for the sender’s and re-

ceiver’s caches to be incoherent, and synchronizes them in software.

However, they did not use hardware support except for range-based

cache operations.

Our work represents a synergy of the aspects discussed above:

We leverage near-memory accelerators to work on object graphs in

hardware, and integrate them into the runtime software of a PGAS

system. Our system is thereby able to copy pointered data between

the heaps of a PGAS system more efficiently.

Although we chose X10 [19, 33] as the programming language

to implement our work in, it applies to other languages as well.

First and foremost, the Chapel language [19] is quite similar to X10:

Activities run on locales (X10’s places) and can migrate between

them with the RPC-like on statement (X10’s at). While on the

other locale, they can implicitly access their lexical environment.

Therefore, given a suitable hardware architecture, Chapel can also

benefit from our work.

In contrast, earlier PGAS languages like UPC [11] use the single-

program-multiple-data (SPMD) paradigm. This means that they

have no mechanism to migrate activities, and instead provide ex-

plicit remote load-store primitives. To transfer a whole object graph,

the application programmer needs to write specialized code for the

concrete type(s) to be copied. We expect this approach to become

obsolete in future.

3 NEMESYS CONCEPT
Our NEMESYS approach mitigates the locality wall by leveraging

near-memory accelerated graph copy operations that are inher-

ently integrated into the system-software of a tile-based manycore

architecture. NEMESYS is an efficient implementation of the PGAS

remote procedure call and follows the hardware-software co-design

approach that is illustrated in Figure 2. Similar to the Pegasus RPC

(Figure 1b), the writeback of the source graph G to memory (1), the

signaling of the receiver D (2), the copying of the graph G to G’ (3)

and the execution of the function func (4) have to be performed.

However, the actual memory-intensive and cache unfriendly graph

writeback (1) and graph copy operations (3) are outsourced to near-

cache (NCA) and near-memory accelerators (NMA), respectively.

The following sections provide a brief overview of the NEMESYS

concept, while a more detailed description of the architecture is

given in Section 4.

NMACore

N
A

L2

NCACore

N
A L2

NCACore

N
A

L2

NCACore

N
A

S

D

S

PGAS MEM

1
2

3

4

G

G´

D

Figure 2: NEMESYS. Bold arrows denote bulk data transfer,
dotted arrows denote control/metadata messages, dashed ar-
rows denote possible traffic due to cache misses/evictions.
(1) NCA writes back G to source partition S (2) NCA signals
core on D (3) NMA copies G to G’ (4) Core on D uses G’.

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA S. Rheindt, A. Fried, O. Lenke, L. Nolte, T. Wild, and A. Herkersdorf

Mem
Tile

Mem
Tile

Core

L2

... Core TLM

NCA

N
A

Main Bus

L2 Bus

NMA

N
A

Core

Main Bus

BusTLM

Mem
Ctrl

Core

N
A

Main Bus

Mem Bus

PGAS
MEM

TLM

DMA

Figure 3: An overview of our hardware platform. Left: The 4x4 tile design with two memory tiles and the NoC. Unmarked
tiles are compute tiles, the small gray squares are NoC routers. Center/Right: Block diagrams of a compute and memory tile
respectively. TLM: Tile-local memory, NA: Network adapter. The CPU core on thememory tile only runs the operating system.
NEMESYS adds the near-cache accelerator (NCA) to the compute tiles, and the near-memory accelerator (NMA) to thememory
tiles. The requests to the NMA are buffered in a FIFO.

3.1 Near-Memory Integration
The key feature of NEMESYS is its near-memory and near-cache in-

tegration.We thereby achieve increased data-to-task locality, whose

absence is a major reason for the locality wall. Data movement is

reduced by bringing the graph copy operation close to the memory

instead of copying it remotely via the NoC. This not only lowers

data access latencies, but also decreases the NoC traffic, resulting

in an overall performance increase and energy savings.

Contrary to the approach presented by Mohr et al. [25], the

receiving tile D no longer has to perform the graph copy operation

remotely through its L2 cache. Therefore no unnecessary cache

pollution arises by the graph copy operation. This is especially

beneficial and important when the used data sets outgrow the

available cache capacity, which is a realistic scenario for many

applications [30]. We analyze this phenomenon in Section 5.4.6.

3.2 Graph Accelerators
The efficient support of object-oriented programming languages

for PGAS architectures is a key driver for NEMESYS. Integrating a

graph copy accelerator is advantageous for multiple reasons: (1) the

cores are relieved from the graph copy duty, (2) a dedicated hard-

waremodule works more efficiently in terms of performance, power,

as well as resources, (3) it is the natural replacement or enhance-

ment of a DMA unit to efficiently support graph- and pointer-based

data structures.

As depicted in Figures 2 and 3, each memory tile is equipped

with a near-memory accelerator (NMA) for graph copy that can be

triggered by any CPU in the system. The NMA has a FIFO to buffer

incoming requests. It automatically creates back-pressure, so that

no global locking is required in software. Upon completion, the

graph copy unit directly spawns a task to a core on the receiving tile

D, that executes the function func of the at statement at (D) func
on the copied graph G ′.

The proposed accelerator is capable of copying arbitrarily struc-

tured and sized object graphs by leveraging (1) the idea of pointer

reversal introduced by Schorr and Waite [34], as well as (2) an

extension of the object model as will be described in Section 4.3.1.

As tile-based architectures generally contain several memory

tiles in order to avoid access hot-spots, NEMESYS is also able to

efficiently copy graphs between memory partitions located on dif-

ferent tiles. The corresponding advanced mechanism is described

in Section 4.2.

As also depicted in Figures 2 and 3, each compute tile is equipped

with a near-cache accelerator unit (NCA) that is capable of two

different operations: (1) traversing an arbitrary object graph and is-

suing cache writeback commands for each of the objects. Upon com-

pletion, it can directly dispatch a user-defined task to the receiving

tile without additional system calls on sender side. (2) Performing

range-based cache operations (similar to [25]) with a subsequent

triggering of the graph copy accelerator with user-defined parame-

ters.

3.3 System-Software Integration
The NEMESYS approach tightly integrates near-memory and near-

cache accelerators at system-software instead of application level.

In contrast to several approaches [1, 21, 26, 29, 35] that utilize near-

memory accelerators directly in the application, NEMESYS does

not require any changes to the API or the application code. While

maintaining ease of programmability, the application programmer

can profit from the benefits of NEMESYS for all applications that

use PGAS remote procedure calls.

During the NEMESYS RPC, explained in Section 4.1, the graph

copy related operations are asynchronously offloaded to the NCA

and NMA, respectively. The involved cores are therefore not only

relieved of the graph writeback and copy duties, but can in par-

allel cope with other tasks instead of synchronously waiting on

the completion of the outsourced operations. The accelerators are

therefore equipped with task spawning capability to avoid unneces-

sary system calls. The whole transfer of the graph G from partition

S to partition D, including the necessary cache management, can

thus be performed with minimal software involvement. Only the

allocation of the destination buffer on tile D and the triggering of

the near-cache and near-memory accelerators remains a software

task.

NEMESYS: Near-Memory Graph Copy Enhanced System-Software MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA

4 NEMESYS ARCHITECTURE
Having describedNEMESYS conceptually, we nowpresent the archi-

tectural contribution. We describe the employed hardware-software

co-design approach with special focus on the system-software in-

tegration (Section 4.1) and the handling of inter-memory copying

(Section 4.2). We then give an overview of the necessary extensions

to the object model (Section 4.3.1) and the proposed hardware units

(Section 4.4). We further provide an abstract overview of the hard-

ware graph copy algorithm (Section 4.6) and details on an efficient

copy map (Section 4.5).

4.1 Hardware-Software Co-Design
We have already described the basic workings of a PGAS remote

procedure call in Section 1. Now, we present the necessary steps

in more detail, and also point out where hardware acceleration

units come into play. Figure 4 also illustrates the steps in a message

sequence chart.

We assume that an RPC call is to be made from the source tile S

to the destination tile D. In order to manage the RPC, the source

tile has to transmit some metadata, which is stored in the structure

M. This metadata includes the pointer G to the closure, its size,

and synchronization objects. The NEMESYS RPC then takes the

following steps:

(1a) The sender S allocates a metadata buffer M’ on D.

(1b) It then allocates and sets up a metadata structure M that

needs to be transfered to the receiver D (into M’).

(1c) S triggers the NCA graph writeback and dispatch unit, accom-

panied by the descriptor of task T1.

(1d) The NCA on tile S writes back the source graph G into its

memory partition and additionally measures G, before it

(1e) appends the measured graph size to the metadata M.

(2) The NCA on tile S initiates a DMA of the metadata M to M’

with subsequent invocation of the task T1 on D.

(3a) Based on the metadata information M’, T1 (on D) allocates a

destination buffer G’ in the memory partition of D, which is

to hold the copy of G.

(3b) D triggers the NCA invalidate-and-trigger unit, accompanied

with the command to trigger the NMA graph copy unit.
(3c) The NCA on tile D invalidates G’ before it triggers the NMA

to avoid cache evictions during the graph copy.

(3d) The NMA copies the graph G to G’ and spawns a task T2 on

D upon its completion.

(4) T2 then executes the function func on the copied graph G’.

(5) Either, the termination of the remote procedure call is sig-

naled back to S, or the result graph of (4) is copied back to S

applying the same mechanism (while reusing the metadata

structures M and M’).

Owing to the asynchronous offloading to the NCA and NMA,

the cores on S are relieved from RPC duties between steps (1c) to

(5). The cores on D are only needed for the RPC during (3a),(3b)

and (4). We thus provide an efficient remote procedure call with

minimal software involvement.

As the core’s L1 caches follow a write-through policy to allow

for tile-local snooping-based coherence, they only need to be inval-

idated at the beginning of step (3b) and (4).

S NCAS L2S D NCAD L2D NMA

1a

1b

1c

2 3a

3b

3d45

3b

1d

1e

3d

3c

MEM

Figure 4: Message sequence chart illustrating the hardware-
software co-design approach followed by the NEMESYS re-
mote procedure call.

4.2 Inter-Memory Graph Copy
To cope with several physical distributed memories, NEMESYS is

capable of an efficient inter-memory graph copy mechanism. If the

involved partitions are located on different physical memories, a

near-memory graph copy is not directly possible, as the NMA could

only access G’ remotely over the NoC via individual load-store

operations.

We therefore copy G via an intermediate buffer G* located in

the same physical memory as G. This requires a slight modification

(marked in bold) of the steps (1c)-(2).
(1c’) S triggers the NCAS graph writeback and dispatch unit, now

accompanied by the descriptor of task T3.

(1d) The NCAS writes back the source graph G into its memory

partition and additionally measures G, before it

(1e) appends the measured graph size to the metadata M,

(1f’) and invokes the task T3 locally on S itself.
(1g’) T3 (on S) allocates and invalidates the intermediate

buffer G* and appends a reference of it to the meta-
data M.

(2’) S then initiates a DMA of the metadata M to M’ with subse-

quent invocation of the task T1 on D.

In step (3c), the graph copy unit located in the tile of the source

graph G is triggered. This graph copy unit then follows a two-step

O

P Q

R

O∗ P∗ R∗ Q∗ O ′ P ′ R′ Q ′
DMA

S D

Figure 5: Inter-memory graph copy of the source graph G to
the destination graph G’ via the intermediate buffer G*. The
graph copy unit writes intermediate pointers (dashed, red)
to G*, which become valid (blue) in G’ after the DMA.

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA S. Rheindt, A. Fried, O. Lenke, L. Nolte, T. Wild, and A. Herkersdorf

procedure for step (3d), also depicted in Figure 5: (1) it copies G into

the intermediate buffer G* with all pointers adapted (dashed, red)

to point to the final addresses in the destination buffer G’, (2) G* is

transferred to G’ via normal DMA over the NoC.

There is no deserialization or other postprocessing needed at the

final destination. This is possible because the NMA knows about

the address of the final destination buffer. It can therefore set up the

pointers in the intermediate buffer (red dashed arrows in Figure 5)

in such a way that they match up after the DMA (blue arrows in

Figure 5).

The DMA is triggered by the graph copy unit and is performed

asynchronously, so that the graph copy unit can already serve

the next job from its FIFO queue. The task T2 is passed alongside

the DMA and is spawned onto tile D by the DMA-unit upon the

completion of the inter-memory data transfer. The performance

overhead of the additional DMA will be evaluated in Section 5.4.3.

4.3 Object Model
Before we describe the functionality of the graph accelerator hard-

ware units (Section 4.4), we present the underlying object model

and its necessary extension to be compatible with the accelerator.

See Figure 6 for an example object.

We use a simple object model for our prototype, which sup-

ports Java-like object-oriented languages. Each object begins with

a header followed by the payload. Each word (32 bits) of payload is

either a piece of primitive data, a pointer to another object, or part

of an array descriptor. An array descriptor consists of two words.

The first is a pointer to the array’s backing store, which holds the

data, and the second holds the number of elements in the array.

The object model allows arrays of primitive data or of pointers to

other objects.

The object header contains only the vptr (virtual pointer), which
points to the vtable (virtual table) of the object’s class. The first
word of the vtable in turn points to the class’s RTTI (run-time

type information) structure; the following words hold the function

pointers to the class’s virtually bound methods.

The RTTI structure contains class metadata used by run-time op-

erations such as checked type casts or reflection. Most importantly

for our purpose, it contains the size of the objects of this class, and

the pointer mask.
The pointer mask provides metadata about the object’s memory

layout. We follow the example of other runtime systems such as the

HotSpot VM [13] or the Go run-time [2], where similar metadata

is present to support the garbage collector. There is one pointer

mask for each type, which is located at the end of the type’s RTTI

structure, so that it can have variable size. The pointer mask is a

bit field, where two bits correspond to each word in an object. This

gives us four kinds of words to distinguish:

• 00 marks a word of data

• 01 marks a pointer to another object

• 10 marks a transient word (pointer or data)

• 11 marks the first word of an array descriptor

A transient word is one that must not be copied to the receiver’s

place but set to 0. Classes designate words as transient if they only

use them for caching data which the receiver can easily recompute.

vptr rtti
. . .

parent_src method_ptr size

parent_dst

offset ptr_mask 0

index ptr_mask 1

01 object_ptr vptr ptr_mask 2

00 data
.

10 transient

11 array_ptr data

00 array_length . . .

00 array_size

11 array_ptr pointer vptr

01 array_length

01 array_size . . .

. . . pointer vptr

. . .

Figure 6: Layout of an example object. Members added to
support NEMESYS are highlighted in gray.

To further distinguish between arrays of primitive data and

arrays of pointers, we use the pointer mask bits corresponding to

the second word of the array descriptor. Thus, arrays of data are

marked 1100 and arrays of pointers are marked 1101.

4.3.1 Object Model Extensions. We extend the object model in two

places in order to support the accelerator.

First, we add the size of the array in bytes to the array descriptor.

The compiler can compute this size from static type information,

but the accelerator unit needs it explicitly.

Second, the traversal algorithm needs some scratch space in ev-

ery object. We therefore extend the object header by four additional

words after the vptr. These are collectively known as the object’s

transition structure. We discuss its purpose in detail in Section 4.6.

4.4 Graph Accelerator Hardware Units
The near-cache and near-memory accelerator units, proposed in

Section 3.2 and described below in more detail, are deliberately

placed on dedicated buses next to the memory or cache, respectively.

This allows for their faster access, less load on the main bus, as well

as independence of the particular memory or cache controller.

4.4.1 The NCA Range-Operations Unit. Each NCA is equipped with

a range-operations unit that can perform cache operations on a

continuous address range, thereby relieving the CPUs of potentially

long-lasting cache operations. A range-operations unit was already

part of the Pegasus system [25], but we extend it with the capability

to directly trigger the NMA upon completion of the cache opera-

tions. We refer to this extended unit as the invalidate-and-trigger
unit.

NEMESYS: Near-Memory Graph Copy Enhanced System-Software MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA

4.4.2 The NCA Graph-Writeback-and-Dispatch Unit. Additionally,
each NCA features a graph writeback unit that traverses an ob-

ject graph and issues writeback commands for every cache line

of each object. The cache carries out these writeback commands

if the corresponding cache line is in modified state, else returns

immediately. In addition, the NCA counts the number of objects

in the graph, and sums up their total size including array backing

stores, obtained from the objects RTTI. The graph writeback fol-

lows a simple breadth-first-search algorithm: (1) It issues writeback

commands for the whole object. (2) Each pointer in an object is

pushed to a stack of outstanding objects, that is statically allocated

in the tiles memory partition. (3) It pops the next object from the

stack and proceeds with (1) until the stack is empty.

In order not to revisit objects in a cyclic graph, the NCA writes a

marker into the transition structure of each processed object, which

is checked before the writeback is issued.

To support asynchronous offloading, the graph writeback unit

can directly spawn tasks, even on other tiles. The core triggering

the NCA passes it the metadata gathered so far and a descriptor of

the taskT1. After that, the core is no longer involved in the process.

When the writeback is complete, the NCA stores the object count

and total graph size in the metadata M, issues a DMA transfer of M

to M’, and invokes the task T1 on the receiving tile D.

4.4.3 The NMA Graph-Copy Unit. The core component of the

NEMESYS approach is the near-memory graph copy accelerator,

which is capable of copying an object graph without intermedi-

ate software interaction. To avoid these up-calls to the operating

system, the receiver D allocates an appropriately sized destination
buffer beforehand, based on the result of the graph writeback unit

present in the metadata M’. The graph copy unit then uses an in-

ternal bump allocator to allocate the objects of the copied graph

consecutively in the destination buffer.

To avoid using a separate recursion stack, the graph copy algo-

rithm builds on the idea of pointer reversal introduced by Schorr

andWaite [34]. However, as we do not only deal with cons cells, our

algorithm is more complicated, and uses the transition structure

in the objects in G ′ to keep its state. We describe the algorithm in

more detail in Section 4.6.

We cannot use the transition structures of objects in G for two

reasons: (1) Another thread could be preparing to copy parts of G
concurrently. During its step (1d), it would overwrite G’s transi-
tion structure with stale data from the tile’s L2 cache. (2) As G is

still in the L2 cache, it may be evicted if another cache line (even

from an unrelated thread) aliases with it. Again, the eviction would

overwrite G’s transition structure. Therefore, we use the transition

structures of objects in G ′, as G ′ resides in its own buffer, which is

not in any L2 caches and not yet accessible to user threads.

In addition to handling recursion, we also need to detect cycles

in the object graph, or identify objects which we have already

started copying. Besides identifying them, we also need to obtain

the address of their copies in order to set the pointers to them. For

example, consider the object graphs in Figure 7. Assuming we have

already copied O , P , R to O ′, P ′, R′ and are now copying Q to Q ′,
we must not make a new copy of R, butQ ′ must point to R′ instead.

Therefore, we use a separate copy map to associate objects with

their copies. To find out whether we have already created a copy of

P R

O Q

P ′ R′

O ′ Q ′ R′′

Figure 7: A simple example of a cyclic object graph: Object
R is reachable from O in two ways. A correct graph copy
still must only make one copy of R, and not the separate R′′

marked in red.

the object R, we search for R in the copy map. If R is found in the

copy map, it returns R′. Otherwise, if the search returns NULL, we

create a new object R′ and add the mapping R 7→ R′ to the copy

map. We will now discuss the copy map in more detail.

4.5 Copy Map
We set aside a statically allocated buffer for the copy map in every

memory tile. This buffer is divided into two halves. To store the

mapping R 7→ R′ in the copy map, we store the address of R at a

certain offset in the first half, and the address of R′ at the same

offset in the second half. The offset where R is stored is decided by

the implementation chosen for the copy map.

The graph copy unit contains two such implementations, one

based on linear search, and one based on hashing. They provide a

trade-off between the initial setup time and the scaling behavior of

the copy map.

The linear search implementation stores the original addresses

consecutively in the first half of the copy map, and the addresses

of the copies in the same order in the second half. Searching for an

object requires iterating over the list. This method therefore scales

in O(o2) for object graphs of size o.
The second copymap implementation improves the performance

for large graphs by using a hashtable. For each new mapping R 7→
R′, R is inserted at the offset hash(R) in the first half, with collisions

being resolved by linear probing. R′ is inserted at the same offset

in the second half.

We use the family of universal hash functions H3 by Carter and

Wegman [5]: To hash n bits of input down to k bits, H3 defines a

set of functions hM parameterized by a k × n bit matrix M . The

hash hM (x) is then given by hM (x) =
⊕n−1

i=0 Mixi , where Mi is

the i-th column ofM , xi is the i-th bit of x , and ⊕ is the exclusive

or operation. This function is easily and cheaply implemented in

hardware, requiring nk gates for a fixed matrix.

In order to recognize empty slots, the first half of the hashmap

has to be initialized by zeroing it. We keep this overhead as low

as possible, by using hashmaps of variable size depending on the

number of objects in the graph. For an object graph with o objects,

the hashmap has 2
⌈log

2
o ⌉+1

slots. This yields a loading factor of

between 50 % (if o is a power of two) and ≈ 25 % (if o is a power of
two + 1). Since the number of hashmap slots is always a power of

two, we can simply use fewer bits of the hash function’s output to

select a slot.

The decision between the two variants, as well as the size of

the hashmap can be changed dynamically at run-time for every

triggering of the unit.

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA S. Rheindt, A. Fried, O. Lenke, L. Nolte, T. Wild, and A. Herkersdorf

4.6 Hardware Graph Copy Algorithm
The twomain operations of the graph copy algorithm are advancing
to a new object, and retreating to an object already visited. See

Algorithm 1 for a summary in pseudo code. Note that we present

the algorithm in a state-machine style, similar to the hardware

implementation.

As an example for advancing, consider the following situation:

We are copying an object from address O to O ′, and find a pointer

P at offset δ . Now, we must recursively copy the object at P (say, to

P ′) and then store P ′ at offset δ in O ′, i.e., we must advance to P ,
copy it recursively, and then retreat to O .

Our concern is that when we retreat from P to O , we can re-

sume copyingO . Therefore, we store the following in the transition

structure of P ′: O in the parent_src field and O ′ in the parent_dst
field. If we are copying a single pointer field, we store its offset δ
in the offset field of O ′’s transition structure. On the other hand,

if we iterate over an array of pointers, δ is the offset of the array

descriptor, and we additionally store the current array index in the

index field.

When we have finished copying P to P ′, it is time to retreat from
it. We have to go back to P ’s parent and set up to continue where

we left off when advancing to P .
First, we obtain O and O ′ from the transition structure of P ′,

and then δ (and i if necessary) from the transition structure of O ′.
Then, we store P ′ at offset δ inO ′ (or in the array) and increment δ
(or the array index). If we are still within O , we continue copying,
otherwise we retreat to O’s parent.

When we retreat from an object whose parent is NULL, we

know that we have completed copying the object graph’s root and

therefore the whole graph.

5 EVALUATION
In order to evaluate the effectiveness of our approach, we have

implemented the hardware units described in Section 4.4 into the

prototype platform described below (Section 5.1).

We will first discuss the hardware requirements of our implemen-

tation (Section 5.2), and then turn to performance measurements.

To evaluate the performance of the graph copy unit itself, we

measure its complexity over a range of microbenchmarks (Sec-

tion 5.3).

Finally, we also evaluate the performance of NEMESYS in the

context of complete applications (Section 5.4). We also measure

how using NEMESYS affects the load of the rest of the system

(Section 5.4.4), and we investigate the properties of the objects

graphs occuring in these “real-world” programs (Section 5.4.1).

5.1 Prototype Platform
We integrated NEMESYS into an existing tile-based MPSoC proto-

type platform and a distributed run-time system. The prototype

implementation features a 4 × 4 tile design with 14 compute and

two memory tiles, arranged as already depicted in Figure 3. The

global memory is physically distributed to the memory tiles, which

are each connected to an off-chip DDR-3 memory. Each compute

tile contains 5 cores with private L1 caches and a tile-local memory
(TLM), which holds the program text, OS data, and temporary user

data. All cores are Gaisler SPARC V8 LEON 3 [9, 36] processors. The

Algorithm 1 The graph traversal algorithm

1: state Advance(O , O ′, P , δ , i)
2: O ′.offset← δ
3: O ′.index ← i
4: P ′ ← create(size(P))
5: copyMap[P] ← P ′

6: P ′.parent_src ← O
7: P ′.parent_dst ← O ′

8: go to CopyWord(P , P ′, 0, 0)

9: state Retreat(P ′)
10: O ← P ′.parent_src
11: O ′ ← P ′.parent_dst
12: δ ← O ′.offset
13: if pointerMask(O, δ) = 11 then
14: i ← O ′.index
15: O ′[δ][i] ← P ′

16: go to CopyWord(O , O ′, δ , i + 1)
17: else
18: O ′[δ] ← P ′

19: go to CopyWord(O , O ′, δ + 1, 0)

20: state CopyWord(O , O ′, δ , i)
21: if δ ≥ size(O) then
22: go to Retreat(O ′)

23: if pointerMask(O, δ) = 00 then ▷ Copy data

24: O ′[δ] ← O[δ]
25: go to CopyWord(O , O ′, δ + 1, 0)

26: if pointerMask(O, δ) = 01 then ▷ Copy pointer

27: P ← O[δ]
28: if copyMap[P] = NULL then
29: go to Advance(O , O ′, P , δ , −1)
30: else
31: O ′[δ] ← copyMap[P]
32: go to CopyWord(O , O ′, δ + 1, 0)

33: if pointerMask(O, δ) = 11 then ▷ Copy array . . .

34: if i = 0 then
35: bytes ← O[δ + 2]
36: O ′[δ] ← create(bytes)
37: O ′[δ + 1] ← O[δ + 1]
38: O ′[δ + 2] ← bytes

39: if i ≥ O[δ + 1] then
40: go to CopyWord(O , O ′, δ + 3, 0)

41: if pointerMask(O, δ + 1) = 00 then ▷ . . . of data

42: memcpy(O ′[δ],O[δ],bytes)
43: go to CopyWord(O , O ′, δ + 3, 0)

44: if pointerMask(O, δ + 1) = 01 then ▷ . . . of pointers

45: P ← O[δ]
46: if copyMap[P] = NULL then
47: go to Advance(O , O ′, P , δ , i)
48: else
49: O ′[δ][i] ← copyMap[P]
50: go to CopyWord(O , O ′, δ , i + 1)

51: if pointerMask(O, δ) = 10 then ▷ Handle transient

52: O ′[δ] ← 0

53: go to CopyWord(O , O ′, δ + 1, 0)

NEMESYS: Near-Memory Graph Copy Enhanced System-Software MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA

Table 2: Cache and memory parameters.

Parameter Value Parameter Value

L1-I cache sets 2 LEON 3 freq. 50 MHz

L1-I cache set size 16 kByte L1 & L2 cache freq. 50 MHz

L1-I cache line size 32 Byte TLM freq. 50 MHz

L1-D cache sets 2 MEM ctrl freq. 100 MHz

L1-D cache set size 16 kByte NCA freq. 50 MHz

L1-D cache line size 16 Byte NMA freq. 100 MHz

L2 cache sets 4 L1 cache policy write-through

L2 cache set size 128 kByte L2 cache policy write-back

L2 cache line size 32 Byte L1 hit time 1 cycle

L2 hit time 20 cycles

Tile-local memory 8 MByte L2 miss time 90 cycles

PGAS MEM 2 · 1 GByte TLM acc. time 20 cycles

Table 3: Resource utilization on a Virtex-7 2000T FPGA. One
slice contains 4 LUTs, 8 Registers and 2 Muxes.

HWModule Slices LUT Register Mux BRAM DSP

NCA range-operations 165 425 357 0 0 0

NCA graph writeback 662 2064 766 12 0 0

NMA graph copy 1862 6078 1163 117 0 0

add. HMAP module 379 1273 554 10 0 0

NMA FIFO & trigger 547 1354 1264 0 5 0

LEON 3 core 2499 8160 2587 33 18 4

L2 cache 3440 6092 8898 100 139 0

MEM controller 4825 13275 11455 398 0 0

L1 caches inside a tile are kept coherent with classical bus snooping

coherence. Since one core per tile is dedicated to system tasks like

interrupt handling, a total of 56 cores are available for application

use. Each compute tile is further equipped with a L2 cache, that

caches accesses to the global memory. Table 2 gives an overview of

the core, cache, accelerator and memory configuration parameters.

The LEON 3 cores further run with enabled branch prediction and

floating-point unit.

The tiles are connected to the NoC routers by a network adapter

(NA), that is amongst others connected to the L2 cache back-end

to carry out its remote load-store operations. Besides that, the NA

can also bypass the L2 cache to perform DMA transfers, forward

remote task invocations, perform remote atomic operations [32],

as well as trigger commands to the NMA.

The implemented prototype system is synthesized on a proFPGA

system consisting of four Xilinx Virtex-7 2000T FPGAs [15]. The

whole prototype is operated at a clock frequency of 50 MHz due to

bottlenecks in components other than NCA and NMA. The DDR-3

memory controller runs at a minimum frequency of 100 MHz.

We run a distributed operating system [28] that is able to exploit

the described hardware features.

For benchmarking, we distinguish three variants of the platform:

(1) 4 × 4 design (twin) using 14 compute tiles and both memory

tiles.

(2) 4 × 4 design (single) using only the memory tile at grid

position (1,1). The memory tile at (3,3) is unused.

(3) 2 × 2 design using only the compute tiles at grid positions

(0,0), (0,1), (1,0), and the memory tile at (1,1).

5.2 Hardware Evaluation
When synthesized onto the Virtex-7 2000T FPGAs, the individual

modules have the resource utilization shown in Table 3. The NMA

graph copy unit including the hardware hashmap module is smaller

than a single LEON 3 core and much smaller than the memory

controller. The FIFO and the trigger and completion logic, connected

to the network adapter, adds 30%̇ resource overhead. The FIFO is

dimensioned to hold 16 incoming graph copy requests and further

performs the clock domain crossing between the network adapter

and the NMA. The NMA, with and without hashmap module, could

run at 164 MHz. Each NCA on the other hand is able to run at

261 MHz. As it is less complex than the graph copy unit, it also

requires significantly less resources than the NMA.When compared

to the L2 cache, the resources utilization is roughly one quarter,

excluding the cache memory itself. Both NMA and NCA thus have

a reasonable resource utilization and frequency.

5.3 Microbenchmarks
The goal of these measurements is to evaluate the performance of

the graph copy algorithm in terms of its setup time and scaling

behavior. To this end, we use four regular families of graphs, and

measure the time required for copying them as the graphs become

larger. Unless otherwise specified, we use the linear search copy

map in all benchmarks. Furthermore, we compare NEMESYS to the

software algorithm from Pegasus [25].

These benchmarks run as a bare-metal application on the mem-

ory tile. Thus, we measure only the effect of the NMA, without

influences from NoC timing or caching.

5.3.1 Single Large Object. First, we consider graphs consisting

of only one single object of increasing size without any pointers

or arrays. In this case, the graph copy decays to a normal DMA

operation. However, the graph copy unit still has to check the

pointer mask for every word, which will incur some overhead.

We can see in Figure 8a that the time taken is very regular, with

a fixed setup time of 25 µs, 0.04 µs (4 cycles) to 0.1 µs (10 cycles) for
every word copied, and 0.2 µs to 0.3 µs (20 to 30 cycles) extra when

the graph copy unit needs to fetch a new pointer mask.

Out of the 25 µs setup time, 2.8 µs are spent by the hardware unit
to copy the object metadata, and 22 µs are spent by the operating

system. Indeed, we find a constant difference of about 22 µs between
the time taken by the hardware unit and the total time, irrespective

of the size of the object.

The software implementation has less setup time (12 µs), but
scales worse at 1.4 µs per word copied. Thus, it becomes slower

than NEMESYS for objects larger than 8 words.

5.3.2 Primitive Array. In the second microbenchmark, the object

graphs consist of one small object containing only an array descrip-

tor, which points to an array of primitive data with increasing size.

Here, we expect the graph copy unit to perform as well as a DMA

unit, because it only needs to read once from the pointer mask

before copying the array.

The results in Figure 8b again show a constant setup time of

25 µs to start up and copy the first object. Starting at about 2048

array elements, the graph copy unit reaches its full performance of

0.02 µs (2 cycles) for every word copied. This is as fast as a DMA

unit could run on our platform.

The operating system time again stays at a constant 22 µs, which
becomes negligible with growing array size. For clarity, we do not

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA S. Rheindt, A. Fried, O. Lenke, L. Nolte, T. Wild, and A. Herkersdorf

0 10 20 30 40 50

0

20

40

60

80

g
r
a
p
h
c
o
p
y
d
u
r
a
t
i
o
n
[
m
i
c
r
o
s
e
c
o
n
d
s
]

(a) Single object. x: object payload size [words]
10

0
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8

10
−8

10
−5

10
−2

10
1

g
r
a
p
h
c
o
p
y
d
u
r
a
t
i
o
n
[
s
e
c
o
n
d
s
]

(b) Primitive array. x: primitive array size [words]

10
0

10
1

10
2

10
3

10
4

10
−5

10
−3

10
−1

10
1

g
r
a
p
h
c
o
p
y
d
u
r
a
t
i
o
n
[
s
e
c
o
n
d
s
]

(c) Doubly-linked list. x: list length [elements]
10

0
10

1
10

2
10

3
10

4

10
−5

10
−3

10
−1

10
1

g
r
a
p
h
c
o
p
y
d
u
r
a
t
i
o
n
[
s
e
c
o
n
d
s
]

(d) Array of objects. x: array length [elements]

Figure 8: Microbenchmark results. For each benchmark we compare the time taken by Pegasus (software) (), and by
NEMESYS (hardware) with linear search () and with hashing (). In Figure 8a, we also plot the time that the graph
copy unit is active () to show the operating system overhead. In Figures 8b to 8d, we plot the time taken per array element
or object with hollow markers (, , and respectively).

plot the total time and the time taken by the hardware separately

for the following benchmarks.

On the other hand, the software implementation already starts

with a higher setup time of 46 µs, and scales at 0.12 µs per word.

5.3.3 Doubly-linked list. Third, we measure the performance of

the graph copy unit on pointered structures. The first structure that

is evaluated is a doubly-linked list. For this benchmark, we also

compare the linear search and hashing approaches for the copy

map.

Figure 8c shows the results. Comparing the runtime of the linear

search and hashing copy maps for small objects, we see that the

overhead of initializing the hashtable is in fact negligible. Only

for lists of length 1 is there a 0.4 µs difference in the time that the

graph copy unit is active, but that difference is masked by operating

system jitter.

The hashmap gains a clear advantage over linear search begin-

ning at lists of length 64. From this point onwards, it takes a constant

7.4 µs on average to copy each list element. On the other hand, the

time taken by the linear search is decidedly super-linear, showing

roughly the quadratic growth one would expect.

The software implementation, which also uses a hashmap, again

has a higher setup time than either hardware implementation. It

scales worse than the hashmap implementation of NEMESYS, but

beats the linear search starting at lists of length 1024.

From these measurements, we can conclude that hashing is the

preferred implementation of the copy map. However, if hardware

resources are at a premium, linear search gives competitive results

up to graphs of 64 objects.

5.3.4 Object Array. As the second benchmark with pointered struc-

tures, we investigate an array of objects. The object graphs consist

of one small object containing only an array descriptor that refers

to an array of pointers with increasing size. All these pointers refer

to different objects with a single word of payload.

This benchmark differs from the doubly-linked list benchmark,

because there is only one pointer to each object. This means that

all copy map searches will be unsuccessful, i. e. return NULL. The

linear search algorithm therefore always has to traverse the whole

list to verify that the pointer queried is not in it.

We find similar results in this benchmark as in the doubly-linked

list benchmark: Hashing outperforms linear search starting at 64 ele-

ments, and the software implementation outperforms the NEMESYS

approach using linear search for graphs larger than 1024 elements.

We can therefore conclude that our findings apply to a range of

differently structured object graphs.

NEMESYS: Near-Memory Graph Copy Enhanced System-Software MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA

Table 4: An overview of the IMSuite benchmarks with the input sets we use for each of them. For more information about the
benchmarks, see the IMSuite documentation [16].

Benchmark Abbrev. Description Input Input Description

bfsBellmanFord BF Breadth-first search in a graph using the Bellman-Ford

algorithm

64-spmax Sparse graph with 64 nodes and n logn edges

bfsDijkstra DST Breadth-first search in a graph using Dijkstra’s algorithm 64-rn Dense graph with 64 nodes and random adjacency

byzantine BY A solution of the Byzantine generals problem 16-spar-max Sparse graph with 16 nodes and n logn edges

dijkstraRouting DR Single-source routing through a graph with Dijkstra’s

algorithm

32-spar-weq-max Sparse graph with 32 nodes and n logn edges of equal

weight

dominatingSet DS Computation of a dominating set 32-spar-max Sparse graph with 32 nodes and n logn edges

kcommitte KC Partitioning a graph into k -committees 64-rn Dense graph with 64 nodes and random adjacency

leader_elect_lcr LCR Leader election in a unidirectional ring network 64 Ring of 64 nodes

leader_elect_hs HS Leader election in a bidirectional ring network 64 Ring of 64 nodes

leader_elect_dp DP Leader election in a general network 32-spar-max Sparse graph with 32 nodes and n logn edges

mis MIS Finding a maximal independent set in a graph 64-spmax Sparse graph with 64 nodes and n logn edges

mst MST Computation of a minimal spanning tree 32-spmax Sparse graph with 32 nodes and n logn edges

vertexColoring VC 3-coloring of a tree 64-rn Tree with 64 nodes

Table 5: Object graph statistics for each benchmark. The first three columns show overall statistics: The number of graph copy
operations performed by each benchmark, and the average number of objects and bytes copied in one operation. The rest
shows typical combinations of object count and graph size for each benchmark. The benchmarks DR, DS, and MST have two
common types of graph, the rest have only one. For each combination, we give the number of objects in the graph, its total
size, and the number of times a graph of this size is copied during the benchmark run.

small graphs (< 1000) medium graphs (< 10000) large graphs

Benchmark # copies avg. objects avg. size objects size count objects size count objects size count

BF 2150 10.5 16864 — — — — — — 10 16844 – 16848 1964

DST 8492 11.3 16548 — — — — — — 11 16912 – 16928 7720

BY 7362 16.5 1875 — — — 15 1820 – 1832 6144 — — —

DR 13550 6.7 2382 2 124 – 188 4850 11 4580 6134 — — —

DS 38778 8.7 2571 1 24 17856 14 4728 15764 — — —

KC 58224 10.4 709 10 688 – 700 63368 — — — — — —

LCR 17370 10.0 670 10 672 – 676 17006 — — — — — —

HS 46336 12.0 764 12 768 – 788 45992 — — — — — —

DP 8830 15.0 4582 — — — 14 – 15 4884 – 4908 6808 — — —

MIS 6168 13.4 16516 — — — — — — 13 16984 – 16988 5538

MST 18486 13.3 3618 1 24 4404 15 – 16 4800 – 4824 9856 — — —

VC 2388 16.5 16725 — — — — — — 15 – 16 17624 – 17648 1666

5.4 Macrobenchmarks
To investigate the influence of NEMESYS on whole applications,

we use the IMSuite benchmarks [16]. We describe their setup and

characterize their communication behavior by analyzing the object

graphs that are copied in Section 5.4.1. Using these benchmarks

and the evaluation setup described in Section 5.4.2, we investigate

a number of performance metrics in Sections 5.4.3 and 5.4.4. We

compare the overall run-time of NEMESYS against both message-

passing, the most-common related work, and Pegasus, the closest

related work. An in-depth analysis is then performed between

NEMESYS and Pegasus, including communication time and per-

formance counter metrics. We then continue with an analysis of

the design scalability (Section 5.4.5) and cache friendliness (Sec-

tion 5.4.6), as well as the effect of only using the NMA without the

NCA (Section 5.4.7).

5.4.1 Benchmark Description and Analysis. The IMSuite is a col-

lection of classical distributed algorithm kernels written to ex-

ploit the features of PGAS and X10. We use these benchmarks

in their iterative, concurrent, distributed variant without clocks

(IMSuite_Iterative/X10-FA). See Table 4 for an overview of the

benchmarks and the input sets we use. All IMSuite benchmarks are

built in a way that they distribute data, compute on it, and finally

gather and verify the results. Like the IMSuite authors, we only

measure the computation phase, the “region of interest” (RoI).

For each benchmark, we make a separate run and log all object

graphs that are copied (both closures and result values) and mea-

sure their number of objects and their total size. Table 5 shows

the number of copy operations for each benchmark and the aver-

age number of objects and graph size. Analyzing the data further,

we find that the majority of graphs to be copied have a similar

structure. With small variations, each benchmark has one or two

typical combinations of object count and graph size. These typical

combinations are also presented in Table 5.

5.4.2 Evaluation Setup. Based on the analysis of Table 5, our graphs
are so small that the hashing copy map will not perform better than

linear search. We therefore use the linear search copy map for all

benchmark runs.

We further carry out all measurements with the parameters spec-

ified in Table 2. Only when analyzing the cache friendliness in Sec-

tion 5.4.6, we vary the L2 cache set size between 8 and 128 kBytes.

We adhere to the following naming convention: “{MP, NEMESYS,

Pegasus}-{single, twin}” refers to message passing (MP), NEMESYS,

and Pegasus, using only one (single) or both (twin) memory tiles

present in the 4 × 4 design.

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA S. Rheindt, A. Fried, O. Lenke, L. Nolte, T. Wild, and A. Herkersdorf

BF DST BY DR DS KC DPHSLCR MIS MST VC

0

0.25

0.5

0.75

1

1.25
1 1 1 1 1 1 111 1 1 1

0
.8
5

0
.8
2

0
.9
1

0
.6
8 0
.8
3

0
.7
5 0
.9
1

0
.9
8

0
.9
9

0
.9
2

0
.9
7

0
.9
8

0
.2
6

0
.2
8

0
.5
2

0
.3
2

0
.3
2

0
.6
4

0
.3
5

0
.4
50
.6

0
.5
1

0
.3
4

0
.2
6

0
.3
5

0
.3
2 0
.5
1

0
.3

0
.3
3 0
.4
9

0
.3
7

0
.4
70
.6
1

0
.5
5

0
.3
8

0
.3
7

R
e
l
a
t
i
v
e
D
u
r
a
t
i
o
n

MP-single MP-twin NEMESYS-single NEMESYS-twin

BF DST BY DR DS KC DPHSLCR MIS MST VC

0

0.25

0.5

0.75

1

1.25

1 1 1 1 1 1 111 1 1 1

0
.7
4

0
.7
2 0
.9
1

0
.6
4 0
.7
8

0
.7
1 0
.8
7

0
.9
8

0
.9
6

0
.8
5

0
.9
2

0
.8
2

0
.2
6

0
.2
7

0
.4
9

0
.2
9

0
.3
3

0
.6
3

0
.3
7

0
.70
.7
4

0
.5
7

0
.4
3

0
.3
6

0
.3
4

0
.3
2 0
.4
8

0
.2
7

0
.3
4 0
.4
8

0
.3
9

0
.7
2

0
.7
4

0
.6
1

0
.4
7

0
.5
1

R
e
l
a
t
i
v
e
D
u
r
a
t
i
o
n

Pegasus-single Pegasus-twin NEMESYS-single NEMESYS-twin

Figure 9: Runtime measurements of the IMSuite benchmarks in the 4x4 configuration. Top: NEMESYS vs. Message-passing
(MP) normalized to MP-single. Bottom: NEMESYS vs. Pegasus normalized to Pegasus-single.

In order to gain more performance metrics than the overall

execution time, we add several performance counters both to the

hardware and the software. We reset them at the beginning of the

region of interest and read their values at its end.

In hardware, we first of all added performance counters to the

tiles that show the bus load and memory utilization. Second, each

network adapter provides metrics for its usage, i. e. how much time

it spends performing remote load-store operations. The NA further

gives average round-trip times for remote load-store operations.

Third, the NMA graph copy unit supplies metrics on its overall

runtime, as well as its memory accesses.

In software, we integrated two additional timers Tat and Tcom
that measure the overall time spent inside of at statements and the

communication time inside the at statement, respectively. An at
statement is composed of the communication time and the time

for the actual execution of the remote function Tf unc so that the

equation Tat = Tcom +Tf unc holds true.

5.4.3 Overall Run- and Communication Time. First of all, we com-

pare the overall runtime between the message passing (MP), Pega-

sus, and NEMESYS approaches. Figure 9 Top and Figure 9 Bottom

show the results for the overall execution times normalized to MP-

single and Pegasus-single, respectively. Figure 10 Top compares the

communication timesTcom for the NEMESYS and Pegasus variants

normalized to Pegasus-single. Figure 10 Bottom shows the fraction

Tcom / Tat of the communication time inside of the at statement

for each individual benchmark and variant.

Analyzing the runtimes, we observe:

(1) NEMESYS outperforms message-passing and Pegasus in ev-

ery case and mostly by far. The HS and LCR benchmark

show the least speedup due to their small graph sizes and

the thereby higher relative base overhead introduced by the

operating system (task creation, scheduling).

(2) Pegasus-twin performs better than Pegasus-single since the

two physically distributedmemory tilesmitigate thememory

access hot-spot.

(3) NEMESYS-twin has a small performance degradation com-

pared to the single variant. This is due to the overhead of the

extended RPCmechanism using the additional inter-memory

DMA.

(4) Although the total communication time reduces substantially

with NEMESYS (Figure 10 Top), the fraction of time spent in

communication stays roughly equal (Figure 10 Bottom). This

means that the computation itself also runs more quickly

with NEMESYS because the CPUs can focus on executing

application rather than runtime system code.

5.4.4 Effect on System Load. Since NEMESYS is a near-memory

approach, it relieves the NoC and the tile buses of memory traffic

during graph copies. The integrated hardware performance counter

numbers, provided in Table 6, yielded seven further important

observations that underline the results presented in Section 5.4.3.

The following observations become especially apparent by looking

at the mean values over all benchmarks.

(5) NEMESYS has fewer remote memory accesses and thus its

NA usage is reduced compared to Pegasus.

(6) In the Pegasus-twin variant, the resolved hot-spots lead to

reduced average round-trip times for remote load-store op-

erations. This also lowers the percentage in NA usage, since

the average latency is lower.

(7) NEMESYS produces fewer total memory accesses (MEM

usage in MBytes) due to reduced cache pollution: The object

graph does not evict other data from the caches since it is

not copied by a CPU.

(8) NEMESYS-twin produces additional memory accesses due to

the intermediate copy followed by the inter-memory DMA.

NEMESYS: Near-Memory Graph Copy Enhanced System-Software MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA

BF DST BY DR DS KC DPHSLCR MIS MST VC

0

0.25

0.5

0.75

1

1 1 1 1 1 1 111 1 1 1

0
.6
5

0
.6
2

0
.8
6

0
.6
2

0
.6
7

0
.6
4

0
.7
3

0
.9
3

0
.8
6

0
.6
8

0
.7
2

0
.6
8

0
.2
1

0
.1
8

0
.4
2

0
.2
4

0
.2
9

0
.5
2

0
.2
90
.4
8

0
.6

0
.3
4

0
.2
5

0
.2

0
.2

0
.1
7 0
.3
5

0
.1
8

0
.2
3

0
.3
5

0
.2
5

0
.4
7

0
.5
2

0
.3
1

0
.2
7

0
.2
4

R
e
l
a
t
i
v
e
D
u
r
a
t
i
o
n

Pegasus-single Pegasus-twin NEMESYS-single NEMESYS-twin

BF DST BY DR DS KC DPHSLCR MIS MST VC

0

0.25

0.5

0.75

1

0
.5
9

0
.5
2

0
.4
9

0
.5

0
.5
3

0
.4
7

0
.5

0
.8
1

0
.6
6

0
.4
4

0
.7
5

0
.8
4

0
.6

0
.5
3

0
.4
9

0
.5 0
.5
3

0
.4
8

0
.4
7

0
.8
2

0
.6
7

0
.4

0
.7
1 0
.8
6

0
.5
4

0
.4
5

0
.4 0
.4
3

0
.4
6

0
.4

0
.4
2

0
.6
6

0
.5
2

0
.3
2

0
.6

0
.9
5

0
.5
1

0
.4
4

0
.3
9

0
.3
9

0
.4
4

0
.4

0
.4
1

0
.6
9

0
.5
5

0
.2
9

0
.6
4

0
.9
5

R
e
l
a
t
i
v
e
D
u
r
a
t
i
o
n

Pegasus-single Pegasus-twin NEMESYS-single NEMESYS-twin

Figure 10: Communication timemeasurements of the IMSuite benchmarks in the 4x4 configuration. Top: Total communication
timeTcom normalized to Pegasus-single. Bottom: FractionTcom /Tat of the communication time inside of the at statement for
each individual benchmark and variant.

BF DST BY DR DS KC DPHSLCR MIS MST VC

0

0.5

1

1.5

1
.2
3

1
.2
1

0
.9
8

1
.0
4

1
.1

0
.9
8

1
.1
3

1
.1
2

1
.0
8

1
.1
4

1
.2
4

1
.4

1 1 1 1 1 1 111 1 1 1

0
.5
3

0
.5
4

0
.5
8

0
.4
9

0
.5
4

0
.6
9

0
.5
8

0
.7
1

0
.7 0
.7
7

0
.6
5

0
.7
8

R
e
l
a
t
i
v
e
D
u
r
a
t
i
o
n

Message-Passing Pegasus NEMESYS

Figure 11: Overall runtime of the IMSuite benchmarks withmessage passing, Pegasus, and NEMESYS on the 2x2 configuration.
Times are normalized to Pegasus.

(9) NEMESYS further has more memory accesses per time. In

both twin variants, this number is lower than their single

pendant since it distributes onto two different memory tiles.

(10) The analysis further yields that no variant is compute bound

since the memory access times dominate. Further trying

various core counts per tile did not significantly influence

the results (not shown).

(11) Especially for the high performing NEMESYS benchmarks,

the NMA utilization and memory accesses are much higher

than for LCR or HS.

Table 6 further shows that one single NMA can take on the

communication needs of at least 14 compute tiles. We can see that

even with one memory tile (i. e. one NMA serving 14 compute tiles),

the mean NMA utilization is roughly 50% with a peak usage of

90.5 % for the DR benchmark. Using two memory tiles each NMA

utilization halves to 25.1 % with a peak usage of only 52 %. As real

world applications consist of a mixture of the benchmark kernels

the mean utilization is a good indicator for the to be expected

NMA utilization. We can therefore conclude that it is reasonable to

provide one NMA for at least 14 compute tiles since it does not yet

run at its capacity limit. In particular, the NEMESYS-twin variant

shows that 7 compute tiles cannot fully load one NMA.

5.4.5 Scalability Analysis. Figure 11 shows results for a 2×2 design
running on 3 compute tiles. Comparing these results with those in

Figure 9 Top and Figure 9 Bottom,we can investigate howNEMESYS

compares to Pegasus in its scaling behavior.

For most benchmarks, we see that NEMESYS yields a larger

speedup on a 4 × 4 design than on a 2 × 2 design, both with one

and two memory tiles. This is because the amount of communi-

cation grows super-linearly with the number of tiles (see Gupta

and Nandivada [16]), and the NMA does not run at full capacity on

the 2 × 2 design. Then, on the 4 × 4 design, the NMA gets utilized

better, whereas the software implementation has to deal with more

communication work per CPU available.

On the other hand, some benchmarks do not show such a marked

increase in speedup, most notably LCR and HS. This is because

these benchmarks communicate with many small graphs between

tiles (see Table 5). Therefore, the communication overhead in this

case does not lie in the copy operation itself, but in the operating

system (task creation, scheduling).

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA S. Rheindt, A. Fried, O. Lenke, L. Nolte, T. Wild, and A. Herkersdorf

Table 6: Performance countermetrics forNEMESYS andPegasus, each for both the single and twin variant. The shownnumbers
are averaged over all compute or memory tiles, respectively. CPU bus load: % of time the CPU accesses the bus. NA usage: %
of time performing remote load-store operations. MEM usage: % of total runtime and total accessed Megabytes. Avg. cycles:
average latency for a remote load-store operation.

(a) NEMESYS-single.
CPU NA MEM usage in MEM via NMA avg. cycles

Benchmark bus load usage % MBytes NA NMA util. load store

BF 5.3 % 11.5 % 67.2 % 53 22.7 % 44.5 % 68.3 % 318 234

DST 5.2 % 25.6 % 67.9 % 232 27.4 % 40.5 % 66.1 % 479 392

BY 6.7 % 13.9 % 45.7 % 52 26.3 % 19.4 % 55.8 % 289 212

DR 11.6 % 30.3 % 76.5 % 67 38.6 % 37.9 % 90.5 % 460 361

DS 7.6 % 16.4 % 55.3 % 223 26.0 % 29.3 % 64.7 % 319 241

KC 12.3 % 46.9 % 56.3 % 281 40.5 % 15.8 % 64.2 % 506 444

LCR 9.9 % 16.3 % 35.7 % 106 28.0 % 7.7 % 28.7 % 291 233

HS 7.7 % 10.1 % 32.6 % 266 23.5 % 9.1 % 33.0 % 220 150

DP 4.9 % 12.6 % 41.3 % 103 22.8 % 18.5 % 41.3 % 295 219

MIS 4.8 % 10.8 % 39.8 % 299 26.6 % 13.2 % 21.7 % 225 151

MST 3.7 % 5.8 % 26.4 % 170 13.7 % 12.7 % 25.2 % 236 166

VC 3.9 % 4.1 % 45.5 % 60 14.3 % 31.2 % 46.0 % 186 94

Mean 7.0 % 20.9 % 49.2 % 159 25.9 % 32.3 % 50.5 % 319 241

(b) Pegasus-single.
CPU NA MEM usage in avg. cycles

Benchmark bus load usage % MBytes load store

BF 3.5 % 33.5 % 27.5 % 133 346 296

DST 3.4 % 38.4 % 44.6 % 554 381 331

BY 6.7 % 14.2 % 31.4 % 77 244 204

DR 7.0 % 48.5 % 50.5 % 167 445 389

DS 5.0 % 30.8 % 40.7 % 543 338 288

KC 12.5 % 45.7 % 45.5 % 402 445 403

LCR 10.4 % 13.7 % 30.2 % 128 226 183

HS 8.3 % 10.5 % 27.5 % 346 191 135

DP 3.7 % 19.6 % 32.0 % 230 287 234

MIS 4.1 % 23.4 % 39.3 % 523 279 220

MST 3.1 % 13.6 % 23.0 % 359 273 218

VC 3.5 % 22.5 % 35.7 % 127 283 232

Mean 5.9 % 26.2 % 37.2 % 299 311 261

(c) NEMESYS-twin.
CPU NA MEM usage in MEM via NMA avg. cycles

Benchmark bus load usage % MBytes NA NMA util. load store

BF 4.3 % 15.6 % 41.1 % 86 24.5 % 16.6 % 28.4 % 571 436

DST 5.0 % 25.3 % 44.5 % 362 27.4 % 17.1 % 30.6 % 542 421

BY 7.3 % 11.3 % 28.1 % 65 18.2 % 9.9 % 27.5 % 228 146

DR 14.2 % 35.7 % 56.6 % 97 36.6 % 20.0 % 52.0 % 507 367

DS 8.2 % 19.0 % 36.6 % 317 22.5 % 14.1 % 33.8 % 382 256

KC 17.4 % 31.6 % 40.7 % 322 30.6 % 10.1 % 40.3 % 276 205

LCR 10.5 % 10.6 % 19.1 % 116 15.3 % 3.8 % 13.5 % 191 128

HS 7.7 % 7.8 % 17.1 % 298 12.8 % 4.3 % 14.2 % 172 104

DP 4.9 % 11.6 % 25.6 % 141 17.0 % 8.6 % 20.2 % 287 183

MIS 4.6 % 10.4 % 24.0 % 393 17.9 % 6.1 % 11.0 % 228 144

MST 3.6 % 5.1 % 11.0 % 217 7.0 % 4.0 % 12.0 % 221 130

VC 2.9 % 4.6 % 25.1 % 94 14.3 % 10.8 % 17.9 % 256 123

Mean 7.6 % 15.7 % 30.8 % 209 20.4 % 10.5 % 25.1 % 322 220

(d) Pegasus-twin.
CPU NA MEM usage in avg. cycles

Benchmark bus load usage % MBytes load store

BF 4.7 % 25.7 % 30.9 % 133 208 150

DST 4.7 % 28.6 % 31.1 % 555 215 158

BY 7.3 % 9.8 % 17.1 % 77 160 105

DR 10.8 % 36.3 % 39.3 % 167 225 166

DS 6.9 % 21.4 % 26.2 % 543 194 135

KC 17.8 % 28.6 % 31.8 % 402 212 159

LCR 11.1 % 9.7 % 15.8 % 128 157 102

HS 8.8 % 8.4 % 14.1 % 346 151 93

DP 4.3 % 13.7 % 18.5 % 230 182 124

MIS 4.8 % 17.7 % 23.0 % 523 188 124

MST 3.4 % 8.9 % 8.8 % 341 172 112

VC 4.2 % 16.7 % 21.9 % 127 185 124

Mean 7.4 % 18.8 % 23.2 % 298 188 129

BF DST BY DR DS KC DPHSLCR MIS MST VC

0

0.5

1

1.5

1
.1
9

1
.1
6

1
.0
9

1
.2
5

1
.1
1

1
.1
8

1
.0
9

1
.0
8

1
.1
4

1
.2
6

1
.0
7

1
.1
9

1
.0
9

1
.0
9

1
.0
5

1
.1
4

1
.0
5

1
.0
8

1
.0
5

1
.0
3

1
.0
7

1
.1
4

1
.0
3

1
.0
9

1 1 1 1 1 1 111 1 1 1

R
e
l
a
t
i
v
e
D
u
r
a
t
i
o
n

NEMESYS-4x8 kB NEMESYS-4x16 kB NEMESYS-4x128 kB

BF DST BY DR DS KC DPHSLCR MIS MST VC

0

0.5

1

1.5

2

1
.5

1
.4
2

1
.1
9

1
.3

1
.1
7

1
.2
7

1
.1
2

1
.1
1

1
.1
5 1
.4
3

1
.0
9

1
.5
6

1
.1
2

1
.1
2

1
.1
1

1
.2
1

1
.1

1
.1
2

1
.0
8

1
.0
3

1
.0
7

1
.1
5

1
.0
5

1
.1
2

1 1 1 1 1 1 111 1 1 1

R
e
l
a
t
i
v
e
D
u
r
a
t
i
o
n

Pegasus-4x8 kB Pegasus-4x16 kB Pegasus-4x128 kB

Figure 12: Influence of cache size on the overall runtime of the IMSuite benchmarks. Top: NEMESYS-single. Bottom: Pegasus-
single. Both variants use the 4x4 configuration with single DDR and 4-way associative cache. Times are normalized to a L2
cache size of 4x128 kByte, i. e. 4 sets à 128 kByte.

NEMESYS: Near-Memory Graph Copy Enhanced System-Software MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA

BF DST BY DR DS KC DPHSLCR MIS MST VC

0

0.25

0.5

0.75

1
1 1 1 1 1 1 111 1 1 1

0
.2
8

0
.3

0
.6
4

0
.3
3

0
.4

0
.7
6

0
.4
5

0
.9
2

0
.9
1

0
.5
8

0
.5
4

0
.4
4

0
.2
6

0
.2
7

0
.4
9

0
.2
9

0
.3
3

0
.6
3

0
.3
7

0
.70
.7
4

0
.5
7

0
.4
3

0
.3
6

R
e
l
a
t
i
v
e
D
u
r
a
t
i
o
n

Pegasus-single NEMESYS-single-noNCA NEMESYS-single

Figure 13: Effect of the near-cache accelerators (NCA) on the overall runtime. This plot compares Pegasus (no accelerators),
noNCA (only the NMA) and NEMESYS (both NMA and NCA). Each configuration uses the 4x4 configuration with single DDR.

5.4.6 Analysis of Cache Friendliness. In order to analyze whether

the size of the data sets has an unfair influence on the evaluation,

we ran the benchmarks with different L2 cache sizes. As shown

in Table 5, the biggest graph size is roughly 16 kBytes. We thus

use the 4-way associative L2 cache with small (8 kByte), medium

(16 kByte) or large (128 kByte) set sizes, respectively.

Section 5.4.4 Top and Section 5.4.4 Bottom show cache analysis

results for NEMESYS-single and Pegasus-single.We omit the figures

for the twin variants as they lead to almost identical ratios between

Pegasus and NEMESYS. The analysis shows that Pegasus’ runtime

generally slows down more with smaller caches. This is because

the graph copy operations run on the CPUs, so larger caches help

avoiding remote load-store operations.

5.4.7 Effect of Near-Cache Accelerators. In some designs, including

the NCA on every tile may be too costly in terms of hardware

resources. Therefore, we also investigate how much benefit we get

from just having the NMA on every memory tile, and triggering

the (much simpler) range-operations unit from software.

Figure 13 shows the results. We can see that we already get most

of the speedup just from having the NMA, while the NCA still adds

a measurable speedup on top of that. Again, LCR and HS stand out.

This is because their small object graphs take a relatively longer

time to write back to DDR. On the other hand, the large arrays used

by the other benchmarks just require one range-operation to write

back the whole array.

6 FUTUREWORK
6.1 Garbage Collector Integration
Being part of an object-oriented system, NEMESYS should play

well with garbage collection. However, the garbage collector does

not see the destination buffer as separate objects. There are three

possible solutions: (1) Build an object-aware garbage collector, i. e.
one which re-uses the object metadata provided in the RTTI struc-

tures. This garbage collector would identify the contents of the

destination buffer as separate objects by their metadata and han-

dle them accordingly. (2) If the allocator/garbage collector needs

separate metadata, the graph copy unit could leave gaps between

the objects. Then, we could extend the garbage collector with an

operation that takes an existing buffer in memory and adds it to

the garbage collector heap as a separate object. Thus, we divide

the destination buffer into individual objects which the garbage

collector can reclaim independently. Or (3) allocate separate buffers

for the objects beforehand and pass a list of pointers to these buffers

to the NMA.

For now, our concern is that the benchmarks against the software

implementation are fair. Therefore, we emulate higher allocator

load by allocating as many dummy objects after each hardware

graph copy as there were objects in the graph.

6.2 Hardware Garbage Collection
Furthermore, NEMESYS itself can be used as a garbage collector

with some extensions. It already implements the core functionality

of a semi-space garbage collector: it can traverse an object graph

starting at its root and copy all reachable objects to a newly allocated

buffer. However, a garbage collector usually keeps a set of several

root objects (global and local variables, stack slots, etc.). The object

graphs rooted at these objects must be viewed as one graph with

multiple roots for the purposes of garbage collection. This is easily

achieved with NEMESYS by not resetting the copy map and the

destination buffer after each copy. The garbage collection driver

can then pass each garbage collection root to NEMESYS in turn.

7 CONCLUSION
We presented NEMESYS, a technique to speed up copying object

graphs using a near-memory accelerator. We applied our technique

to the runtime system of a PGAS prototype platform, and evalu-

ated its performance on distributed algorithm kernels. NEMESYS

achieved speedups of up to 3.8× in benchmarks where large object

graphs had to be copied, and 1.35× when the object graphs were

small. Furthermore, we found that with NEMESYS the CPUs spend

more time executing user rather than runtime system code.

We envision that hardware units like ours will be tightly in-

tegrated into the memories they operate on in the future. They

will become the generalized equivalent of DMA units as software

engineering shifts towards high-level languages. NEMESYS thus

provides a more efficient way to move data where it is needed in a

distributed system. This allows applications to benefit from data

locality more often and overcome the looming locality wall.

ACKNOWLEDGEMENTS
This work was funded by the Deutsche Forschungsgemeinschaft

(DFG, German Research Foundation) – project number 146371743

– TRR 89: Invasive Computing. We thank Richard Petri for the

implementation and evaluation of performance counter metrics,

as well as Nora Pohle, Anh Vu Doan, Florian Schmaus, and the

anonymous reviewers for their valuable comments.

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA S. Rheindt, A. Fried, O. Lenke, L. Nolte, T. Wild, and A. Herkersdorf

REFERENCES
[1] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.

2015. A scalable processing-in-memory accelerator for parallel graph processing.

In Proceedings of the 42nd Annual International Symposium on Computer Archi-
tecture, Portland, OR, USA, June 13-17, 2015. 105–117. https://doi.org/10.1145/

2749469.2750386

[2] The Go authors. 2019. mbitmap.go. https://go.googlesource.com/go/+/

d41a0a0690ccb699401c7c8904999895b2c92511/src/runtime/mbitmap.go

[3] David F. Bacon, Perry Cheng, and Sunil Shukla. 2013. And then There Were None:

A Stall-free Real-time Garbage Collector for Reconfigurable Hardware. Commun.
ACM 56, 12 (Dec. 2013), 101–109. https://doi.org/10.1145/2534706.2534726

[4] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev,

M. Frans Kaashoek, Robert Tappan Morris, and Nickolai Zeldovich. 2010. An

Analysis of Linux Scalability to Many Cores. In 9th USENIX Symposium on Oper-
ating Systems Design and Implementation, OSDI 2010, October 4-6, 2010, Vancouver,
BC, Canada, Proceedings. 1–16. http://www.usenix.org/events/osdi10/tech/full_

papers/Boyd-Wickizer.pdf

[5] J.Lawrence Carter andMarkN.Wegman. 1979. Universal classes of hash functions.

J. Comput. System Sci. 18, 2 (1979), 143 – 154. https://doi.org/10.1016/0022-

0000(79)90044-8

[6] N. P. Carter, A. Agrawal, S. Borkar, R. Cledat, H. David, D. Dunning, J. Fryman, I.

Ganev, R. A. Golliver, R. Knauerhase, R. Lethin, B. Meister, A. K. Mishra, W. R.

Pinfold, J. Teller, J. Torrellas, N. Vasilache, G. Venkatesh, and J. Xu. 2013. Run-

nemede: An architecture for Ubiquitous High-Performance Computing. In 2013
IEEE 19th International Symposium on High Performance Computer Architecture
(HPCA). 198–209. https://doi.org/10.1109/HPCA.2013.6522319

[7] Byn Choi, Rakesh Komuravelli, Hyojin Sung, Robert Smolinski, NimaHonarmand,

Sarita V. Adve, Vikram S. Adve, Nicholas P. Carter, and Ching-Tsun Chou. 2011.

DeNovo: Rethinking the Memory Hierarchy for Disciplined Parallelism. In 2011
International Conference on Parallel Architectures and Compilation Techniques,
PACT 2011, Galveston, TX, USA, October 10-14, 2011. 155–166. https://doi.org/10.

1109/PACT.2011.21

[8] Steffen Christgau and Bettina Schnor. 2016. Software-managed Cache Co-

herence for fast One-Sided Communication. In Proceedings of the 7th Interna-
tional Workshop on Programming Models and Applications for Multicores and
Manycores, PMAM@PPoPP 2016, Barcelona, Spain, March 12-16, 2016. 69–77.
https://doi.org/10.1145/2883404.2883409

[9] Cobham Gaisler. 2010. LEON 3.
[10] Hybrid Memory Cube Consortium. 2019. Hybird Memory Cube Specification

2.1. http://hybridmemorycube.org/files/SiteDownloads/HMC-30G-VSR_HMCC_

Specification_Rev2.1_20151105.pdf

[11] UPC Consortium, Dan Bonachea, and Gary Funck. 2013. UPC Language and
Library Specifications, Version 1.3. Technical Report. https://doi.org/10.2172/

1134233

[12] Tilera Corp. 2009. TILE-Gx Processor Family Product Brief (archived).
https://web.archive.org/web/20100411035435/http://www.tilera.com/pdf/

PB025_TILE-Gx_Processor_A_v3.pdf

[13] Oracle Corporation. 2019. instanceKlass.hpp. https://hg.openjdk.java.net/jdk10/

jdk10/hotspot/file/5ab7a67bc155/src/share/vm/oops/instanceKlass.hpp

[14] Y. Durand, P. M. Carpenter, S. Adami, A. Bilas, D. Dutoit, A. Farcy, G. Gaydadjiev,

J. Goodacre, M. Katevenis, M. Marazakis, E. Matus, I. Mavroidis, and J. Thomson.

2014. EUROSERVER: Energy Efficient Node for European Micro-Servers. In 2014
17th Euromicro Conference on Digital System Design. 206–213. https://doi.org/10.

1109/DSD.2014.15

[15] PRO DESIGN Electronic GmbH. 2019. FPGA Module XC7V2000T.
https://www.profpga.com/products/fpga-modules-overview/virtex-7-

based/profpga-xc7v2000t

[16] Suyash Gupta and V. Krishna Nandivada. 2015. IMSuite: A benchmark suite for

simulating distributed algorithms. J. Parallel Distrib. Comput. 75 (2015), 1–19.
https://doi.org/10.1016/j.jpdc.2014.10.010

[17] Paul N. Hilfinger, Dan Bonachea, David Gay, Susan Graham, Ben Liblit, Geoff

Pike, and Katherine Yelick. 2001. Titanium Language Reference Manual. Technical
Report. Berkeley, CA, USA.

[18] Byungchul Hong, Gwangsun Kim, Jung Ho Ahn, Yongkee Kwon, Hongsik Kim,

and John Kim. 2016. Accelerating Linked-list Traversal Through Near-Data

Processing. In Proceedings of the 2016 International Conference on Parallel Archi-
tectures and Compilation, PACT 2016, Haifa, Israel, September 11-15, 2016. 113–124.
https://doi.org/10.1145/2967938.2967958

[19] Cray Inc. 2019. Chapel Language Specification. https://chapel-lang.org/docs/

_downloads/chapelLanguageSpec.pdf

[20] John H. Kelm, Daniel R. Johnson, William Tuohy, Steven S. Lumetta, and Sanjay J.

Patel. 2011. Cohesion: An Adaptive Hybrid Memory Model for Accelerators.

IEEE Micro 31, 1 (2011), 42–55. https://doi.org/10.1109/MM.2011.8

[21] Gushu Li, Guohao Dai, Shuangchen Li, Yu Wang, and Yuan Xie. 2018. GraphIA:

an in-situ accelerator for large-scale graph processing. In Proceedings of the
International Symposium on Memory Systems, MEMSYS 2018, Old Town Alexandria,
VA, USA, October 01-04, 2018. 79–84. https://doi.org/10.1145/3240302.3240312

[22] S. Lyberis, G. Kalokerinos, M. Lygerakis, V. Papaefstathiou, D. Tsaliagkos, M. Kat-

evenis, D. Pnevmatikatos, and D. Nikolopoulos. 2012. Formic: Cost-efficient and

Scalable Prototyping of Manycore Architectures. In 2012 IEEE 20th International
Symposium on Field-Programmable Custom Computing Machines. 61–64.

[23] Martin Maas, Krste Asanović, and John Kubiatowicz. 2018. A Hardware Accelera-

tor for Tracing Garbage Collection. In Proceedings of the 45th Annual International
Symposium on Computer Architecture (ISCA ’18). IEEE Press, Piscataway, NJ, USA,

138–151. https://doi.org/10.1109/ISCA.2018.00022

[24] Milo M. K. Martin, Mark D. Hill, and Daniel J. Sorin. 2012. Why on-chip cache

coherence is here to stay. Commun. ACM 55, 7 (2012), 78–89. https://doi.org/10.

1145/2209249.2209269

[25] Manuel Mohr and Carsten Tradowsky. 2017. Pegasus: efficient data transfers for

PGAS languages on non-cache-coherent many-cores. In Proceedings of the Con-
ference on Design, Automation & Test in Europe. European Design and Automation

Association, 1785–1790.

[26] Mohamed Ayoub Neggaz, Hasan Erdem Yantir, Smaïl Niar, AhmedM. Eltawil, and

Fadi J. Kurdahi. 2018. Rapid in-memory matrix multiplication using associative

processor. In 2018 Design, Automation & Test in Europe Conference & Exhibition,
DATE 2018, Dresden, Germany, March 19-23, 2018. 985–990. https://doi.org/10.

23919/DATE.2018.8342152

[27] Khanh Nguyen, Lu Fang, Christian Navasca, Guoqing Xu, Brian Demsky, and

Shan Lu. 2018. Skyway: Connecting managed heaps in distributed big data

systems. In ACM SIGPLAN Notices, Vol. 53. ACM, 56–69.

[28] Benjamin Oechslein, Jens Schedel, Jürgen Kleinöder, Lars Bauer, Jörg Henkel,

Daniel Lohmann, and Wolfgang Schröder-Preikschat. 2011. OctoPOS: A Parallel

Operating System for Invasive Computing. In Proceedings of the International
Workshop on Systems for Future Multi-Core Architectures (SFMA) (2011-04-10/2011-
04-13) (Sixth International ACM/EuroSys European Conference on Computer Sys-
tems (EuroSys)), Ross McIlroy, Joe Sventek, Tim Harris, and Timothy Roscoe

(Eds.), Vol. USB Proceedings. EuroSys, 9–14.

[29] Muhammet Mustafa Ozdal, Serif Yesil, Taemin Kim, Andrey Ayupov, John Greth,

Steven M. Burns, and Özcan Özturk. 2016. Energy Efficient Architecture for

Graph Analytics Accelerators. In 43rd ACM/IEEE Annual International Symposium
on Computer Architecture, ISCA 2016, Seoul, South Korea, June 18-22, 2016. 166–177.
https://doi.org/10.1109/ISCA.2016.24

[30] Peter Kogge. 2017. Memory Intensive Computing, the 3rdWall, and the Need
for Innovation in Architecture. Univ. of Notre Dame. https://memsys.io/wp-

content/uploads/2017/12/The_Wall.pdf

[31] Sven Rheindt, Sebastian Maier, Florian Schmaus, Thomas Wild, Wolfgang

Schröder-Preikschat, and Andreas Herkersdorf. 2019. SHARQ: Software-Defined

Hardware-Managed Queues for Tile-Based Manycore Architectures. In Interna-
tional Conference on Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS XIX). Samos, Greece.

[32] Sven Rheindt, Andreas Schenk, Akshay Srivatsa, Thomas Wild, and Andreas

Herkersdorf. 2018. CaCAO: Complex and Compositional Atomic Operations for

NoC-Based Manycore Platforms. In Architecture of Computing Systems - ARCS
2018 - 31st International Conference, Braunschweig, Germany, April 9-12, 2018,
Proceedings. 139–152. https://doi.org/10.1007/978-3-319-77610-1_11

[33] Vijay Saraswat, Bard Bloom, Igor Peshansky, Olivier Tardieu, and David Grove.

2019. X10 Language Specification. http://x10.sourceforge.net/documentation/

languagespec/x10-latest.pdf

[34] H. Schorr and W. M. Waite. 1967. An Efficient Machine-independent Procedure

for Garbage Collection in Various List Structures. Commun. ACM 10, 8 (Aug.

1967), 501–506. https://doi.org/10.1145/363534.363554

[35] Fabian Schuiki, Michael Schaffner, Frank K. Gürkaynak, and Luca Benini. 2019.

A Scalable Near-Memory Architecture for Training Deep Neural Networks on

Large In-Memory Datasets. IEEE Trans. Computers 68, 4 (2019), 484–497. https:

//doi.org/10.1109/TC.2018.2876312

[36] SPARC Inc. 1992. The SPARC Architecture Manual, Version 8 (sav080si9308 ed.).
[37] Akshay Srivatsa, Sven Rheindt, Dirk Gabriel, Thomas Wild, and Andreas Herk-

ersdorf. 2019. CoD: Coherence-on-Demand – Runtime Adaptable Working Set

Coherence for DSM-based Manycore Architectures. In International Conference
on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS
XIX). Samos, Greece.

[38] Isaías A. Comprés Ureña, Michael Riepen, and Michael Konow. 2011. RCKMPI -

Lightweight MPI Implementation for Intel’s Single-chip Cloud Computer (SCC).

In Recent Advances in the Message Passing Interface - 18th European MPI Users’
Group Meeting, EuroMPI 2011, Santorini, Greece, September 18-21, 2011. Proceedings.
208–217. https://doi.org/10.1007/978-3-642-24449-0_24

[39] Lisa Wu, Raymond J. Barker, Martha A. Kim, and Kenneth A. Ross. 2013. Navi-

gating big data with high-throughput, energy-efficient data partitioning. In The
40th Annual International Symposium on Computer Architecture, ISCA’13, Tel-Aviv,
Israel, June 23-27, 2013. 249–260. https://doi.org/10.1145/2485922.2485944

[40] Salessawi Ferede Yitbarek, Tao Yang, Reetuparna Das, and Todd M. Austin. 2016.

Exploring specialized near-memory processing for data intensive operations. In

2016 Design, Automation & Test in Europe Conference & Exhibition, DATE 2016,
Dresden, Germany, March 14-18, 2016. 1449–1452.

https://doi.org/10.1145/2749469.2750386
https://doi.org/10.1145/2749469.2750386
https://go.googlesource.com/go/+/d41a0a0690ccb699401c7c8904999895b2c92511/src/runtime/mbitmap.go
https://go.googlesource.com/go/+/d41a0a0690ccb699401c7c8904999895b2c92511/src/runtime/mbitmap.go
https://doi.org/10.1145/2534706.2534726
http://www.usenix.org/events/osdi10/tech/full_papers/Boyd-Wickizer.pdf
http://www.usenix.org/events/osdi10/tech/full_papers/Boyd-Wickizer.pdf
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1109/HPCA.2013.6522319
https://doi.org/10.1109/PACT.2011.21
https://doi.org/10.1109/PACT.2011.21
https://doi.org/10.1145/2883404.2883409
http://hybridmemorycube.org/files/SiteDownloads/HMC-30G-VSR_HMCC_Specification_Rev2.1_20151105.pdf
http://hybridmemorycube.org/files/SiteDownloads/HMC-30G-VSR_HMCC_Specification_Rev2.1_20151105.pdf
https://doi.org/10.2172/1134233
https://doi.org/10.2172/1134233
https://web.archive.org/web/20100411035435/http://www.tilera.com/pdf/PB025_TILE-Gx_Processor_A_v3.pdf
https://web.archive.org/web/20100411035435/http://www.tilera.com/pdf/PB025_TILE-Gx_Processor_A_v3.pdf
https://hg.openjdk.java.net/jdk10/jdk10/hotspot/file/5ab7a67bc155/src/share/vm/oops/instanceKlass.hpp
https://hg.openjdk.java.net/jdk10/jdk10/hotspot/file/5ab7a67bc155/src/share/vm/oops/instanceKlass.hpp
https://doi.org/10.1109/DSD.2014.15
https://doi.org/10.1109/DSD.2014.15
https://www.profpga.com/products/fpga-modules-overview/virtex-7-based/profpga-xc7v2000t
https://www.profpga.com/products/fpga-modules-overview/virtex-7-based/profpga-xc7v2000t
https://doi.org/10.1016/j.jpdc.2014.10.010
https://doi.org/10.1145/2967938.2967958
https://chapel-lang.org/docs/_downloads/chapelLanguageSpec.pdf
https://chapel-lang.org/docs/_downloads/chapelLanguageSpec.pdf
https://doi.org/10.1109/MM.2011.8
https://doi.org/10.1145/3240302.3240312
https://doi.org/10.1109/ISCA.2018.00022
https://doi.org/10.1145/2209249.2209269
https://doi.org/10.1145/2209249.2209269
https://doi.org/10.23919/DATE.2018.8342152
https://doi.org/10.23919/DATE.2018.8342152
https://doi.org/10.1109/ISCA.2016.24
https://memsys.io/wp-content/uploads/2017/12/The_Wall.pdf
https://memsys.io/wp-content/uploads/2017/12/The_Wall.pdf
https://doi.org/10.1007/978-3-319-77610-1_11
http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf
http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf
https://doi.org/10.1145/363534.363554
https://doi.org/10.1109/TC.2018.2876312
https://doi.org/10.1109/TC.2018.2876312
https://doi.org/10.1007/978-3-642-24449-0_24
https://doi.org/10.1145/2485922.2485944

	Abstract
	1 Introduction
	2 Related Work
	3 Nemesys Concept
	3.1 Near-Memory Integration
	3.2 Graph Accelerators
	3.3 System-Software Integration

	4 Nemesys Architecture
	4.1 Hardware-Software Co-Design
	4.2 Inter-Memory Graph Copy
	4.3 Object Model
	4.4 Graph Accelerator Hardware Units
	4.5 Copy Map
	4.6 Hardware Graph Copy Algorithm

	5 Evaluation
	5.1 Prototype Platform
	5.2 Hardware Evaluation
	5.3 Microbenchmarks
	5.4 Macrobenchmarks

	6 Future Work
	6.1 Garbage Collector Integration
	6.2 Hardware Garbage Collection

	7 Conclusion
	References

