Institut fiir Programmstrukturen
\ und Datenorganisation (IPD)
Lehrstuhl Prof. Dr.-Ing. Snelting

Karlsruher Institut fur Technologie

Elm-Reduce: Delta
Debugging Functional
Programs

Bachelorarbeit von
Philipp Kriiger

an der Fakultat fiir Informatik

781 Kb
© 586 Kb
N
]
g
[=]
T
g 391 Kb+
g
g
S
<
195 Kb
0 Kb+
0 500 1000 1500
Interestingness Test Invocations
Erstgutachter: Prof. Dr.-Ing. Gregor Snelting
Zweitgutachter: Prof. Dr. rer. nat. Bernhard Beckert

Betreuende Mitarbeiter: M.Sc. Sebastian Graf

Abgabedatum: 5. Juli 2019

.
KIT — Die Forschungsuniversitéit in der Helmholtz-Gemeinschaft WWWoklt . edu

Abstract

In many compiler issue trackers only bugs that have a minimal reproducible test
case are investigated. Since the reduction of projects with thousands of lines of code
to minimal test cases can be tedious to do manually, the barrier to reporting bugs is
high.

Delta-debugging can be used to automate this process. We show that traditional
delta-debugging tools are not sufficient to produce satisfyingly minimal reduction
results, because it is necessary to not only remove parts of source code, but also
replace them with language-specific constructs during reduction. The reduction speed
can also be improved significantly by ensuring well-formedness, e.g. well-typedness,
during reduction.

In this thesis, we develop the delta-debugging reducer Elm-reduce, which reduces
Elm projects from megabyte sizes to test cases below 2 times the size of the optimal
minimal test case. We also present reduction passes and techniques for implementing
them in functional programming languages.

Zusammenfassung

In vielen Compiler Bug-Trackern werden nur Bugs bearbeitet, welche einen mi-
nimalen, reproduzierbaren Testfall haben. Da das Minimieren von tausendzeiligen
Projekten zu einem minimalen Testfall allerdings sehr aufwéndig sein kann, ist die
Hiirde zum Melden von Bugs hoch.

Delta-debugging kann dann verwendet werden, um diesen Prozess zu automatisie-
ren. Wir zeigen, dass herkommliche Delta-debugging Werkzeuge fiir die funktionale
Programmiersprache Elm nicht ausreichend sind, um zufriedenstellend minimale
Reduktionsergebnisse zu produzieren, weil es bei es der Reduktion notwendig ist,
nicht nur Teile des Quelltexts zu loschen, sondern auch mit programmiersprachen-
spezifischen Konstrukten zu ersetzen. Auflerdem kann die Reduktion signifikant
beschleunigt werden, wenn man bei jedem Reduktionsschritt ein gewisses Mafl an
Wohlgeformtheit, z.B. Typkorrektheit, erhalt.

In dieser Arbeit entwickeln wir einen Delta-debugging Reduzierer Elm-reduce,
welcher Elm Projekte von Megabytegrofien zu Testféllen, welche weniger als 2-mal so
grof} sind wie der optimale minimale Testfall, reduziert. Auflerdem présentieren wir
Reduktionspésse und Methodiken, um diese in funktionalen Programmiersprachen
zu implementieren.

Contents

L. Introductionl

2. Basics and Related Work

2.1. The Elm Programming Language|
2.1.1. Terminology|.
[2.1.2. T'he compiler architecture|

[2.2. Delta Debuggingl

2.3, C-Reducel

[4.1.1. Elm Compiler Bugs|
[4.1.2. Elm Projects|,

[4.2.1. Naive Approach|.

A

[>.1. Improving Performance|.
[p.2. Isolating Failure-Inducing Input|
[>.3. Reducing Code Generation Bugs|.
[>.4. Finding Compiler Bugs|,

APP q

[A.1. Incrementally Reducing Graphs|
[A.2. Applicative Functor Laws for Reductions
[A.2.1. Identity]

Contents

[A.2.2. Composition|.
[A.2.3. Homomorphism|
(A.2.4. Interchangel,
[A.3. Associativity Law tfor Reductions|

N O Ul W N

1. Introduction

In August 2018 the 0.19 Version of the Elm compiler was released. Teams running
Elm in production were eager to update because of great improvements in compiler
speed. However, some users reported that it crashed when they tried to compile
their projects that were of 35,000 lines of code or mord]

From a compiler writer’s perspective, this is an unfortunate situation: The bigger
the projects crashing the compiler are, the harder it is to track down the root cause
of the issue. Among all the source code she has to figure out what part actually
caused it. Here, delta debugging comes into play: The whole source code is the test
case and running the compiler is the test. Then, parts of the source code are deleted
and the compiler is run again while making sure the error still occurs. Some have
figured out this task manually and collected test cases that were as small as 5 lines
of code.

Reducing source code while maintaining a compiler error is not an easy task:
Consider this, not fully reduced program crashing the compiler when invoking it via
elm make File.elm --debug:

import Array
type Message = Message (Array.Array ())

main : Platform.Program () () Message
main =
Debug.todo 77

Line based reduction would not be able to produce a smaller example in this case
(except for blank lines). For example: Removing line 3 and therefore the Message
datatype Definition would make this program ill-formed: The reference to Message
in main’s type annotation couldn’t be resolved. This causes the compiler to exit with
a naming error - the correct behavior - before it even tries to generate code, which is
where the fault lies.

It would even be impossible to produce a smaller example when reducing by
character, except for renaming the ‘Message’ datatype or removing white space. Any
other change to a character would make this program ill-formed, which would, again,
prevent the bug form occuring. For this reason, current language-agnostic reducers
that work only by removing characters perform very badly, producing test cases of
over 50 times the size of minimal test cases (figure . It is especially hard for

"https://github.com/elm/compiler/issues/1802

https://github.com/elm/compiler/issues/1802

Ol W N~

strongly typed functional languages, as they have a particularly strong notion of
well-formedness.

The key idea is to not only remove parts of the test case during reduction but to
replace them with language-specific constructs. This can also significantly speed up
reduction, as there is a higher chance of bugs triggering when the compiler does not
exit early due to ill-formed source code.

Let us apply these key ideas to our example: We inline the type declaration for
Message, substituting it with Array.Array () everywhere it is referenced, obtaining
a smaller test case that still crashes the compiler.

import Array

main : Platform.Program () () (Array.Array ())
main =
Debug.todo 77

Of course, it is also possible to have bugs in the compiler code that checks the
well-formed-ness. In these cases, it is still useful for reduction to keep well-formed-ness
of the rest of the source code. It is not a requirement for Elm-reduce that the test
case be parseable.

The goal of this thesis is to come up with an effective approach for reducing purely
functional source code.
Our contributions are:

e A list of reduction passes, sufficient for most reductions in a simpler purely
functional programming language, Elm.

e An approach to program reducer architecture in purely functional programming
languages.

e Elm-reduce, an Elm project reducer, similar to C-Reduce, which reduces Elm
compiler bugs to minimal test cases. It reduces projects to minimal test cases
very similar to the test case above.

\)

2. Basics and Related Work

2.1. The Elm Programming Language

Elm-Reduce is built specifically for reducing projects in the Elm Programming
Language. Elm started as Evan Czaplicki’s Senior thesis [1] but has since grown to
be a language used for commercial web-development]]]

Conceptually, Elm is part of the classic ‘ML’-family of programming languages,
featuring purity, lambdas, and higher-order functions. Function definitions look very
similar to Haskell’s:

member : a —> List a —> Bool
member X XS =
List .any (\a — a = x) xs

Figure 2.1.: An Elm function that checks whether a given element exists inside of a
given list. Function arguments are on the left-hand side of the equation
and function application is denoted by a space after List.any. Func-
tions are curried. The (\arg -> body) syntax is used to construct
anonymous functions (lambdas).

Elm has many properties common for ML-family languages, but uncommon for
languages, for which reducers are currently used or have been developed for, like C,
Javascript, Java or similar:

Purely Functional: It is impossible to change the value of bound names. (Global)
State must be handled explicitly by passing it to functions using it. All user-
defined functions must be side-effect free. This means that Elm is referentially
transparent.

Static Typing: Every value’s type is and must be known at compile time (including
polymorphic types). If there is any function call which is ill-typed, elm will
generate a type-error at compile time before generating code. Elm has a
Hindley-Milner type system with limited extensible record typing (a subset of
Daan Leijen’s ‘Extensible Records with Scoped Labels’ [2]), which allows it to
infer types for any valid term. In this thesis, we reduce a test case with a bug
in the implementation of this type inferencer.

"https://elm-lang.org

https://elm-lang.org

2.1. THE ELM PROGRAMMING LANGUAGE

Record Types: Elm has some structural typing via its record types. These types
don’t have to be declared but can be used in-place like the function arrow
or tuple type constructor. However, they are most commonly used inside
type-aliases:

1 type alias Person =
2 { name : String
3 , age : Int

4

}

Algebraic Datatypes (ADTs): One can also define nominal sum-of-product types
via a type declaration (called data in Haskell and datatype in Standard ML):

1 type Result error value
2 = Ok value
3 | Err error

Compiled/Transpiled to Javascript: This makes it possible to run in the browser.
Once the Elm compiler succeeded compiling an application, a single Javascript
file is generated. Elm doesn’t use pre-built library artifacts when compiling
applications with libraries but builds a whole project from source. This means
that applications need access to their dependencies’ source code.

2.1.1. Terminology

Throughout this thesis, we refer to syntactic constructs and other terminology of
various kinds. We explain used terminology to avoid confusion:

Expression The right-hand side of the function definition in figure 2.1} is its body,
which we call expression. These are also often referred to as terms.

Subexpression An expression’s subexpression is one of the expressions it consists of.
The body of a lambda, a case of a case-of expression, the function or argument
in an application or the right-hand side of a field in a record constructor are
subexpressions.

Type Expression The right-hand side of the type-of operator (:) in figure 2.1]is a
type expression. Type expressions can also occur on the right-hand sides of
type aliases or in fields of type constructors.

Type Subexpression Just like expressions, type expressions can be nested by type
application. A type application’s arguments are what we refer to type subex-
pressions.

Module Dependency Graph A graph in which nodes are modules and directed
edges the dependencies going from referrer to dependency. Only acyclic module
dependencies are allowed by the Elm compiler.

10

2.2. DELTA DEBUGGING

Function Call Graph A graph in which nodes are functions and edges are possible
calls from a caller to the called function.

Declaration Dependency Graph A graph in which nodes are either functions or
type declarations. Edges denote references from referrer to target. Functions
are always sources in this graph, as only type declarations can be referred.

2.1.2. The compiler architecture

The elm compiler is a multi-pass compiler. Its phases are roughly the following:
e Parsing directly into a ‘Source’” AST

e Validating a Source AST to be a ‘Valid’ AST: Validation ensures that there
are no stale type annotations, that ports (for foreign Javascript interfacing) are
only used when the module is declared as ‘port module’ and similar.

e Resolving module imports and naming to a ‘canonicalized” Module: This
annotates each identifier with the module and package in which it was defined.

e Type checking: Function definitions are type-checked against their declared
type annotation, and if none is given, their type annotation is inferred. When
any definition is ill-typed, an error is raised.

e Optimization: An ‘Optimized’ AST is produced, which only includes code
that can be reached in the call graph from the ‘main’ definition and includes
some transformation passes preparing for compilation, for example, tail-call
optimization.

e Code generation: All code is rendered as javascript source code. The compiler
reuses cached Optimized ASTs from previous runs of the compiler, skipping
the compilation procedure for modules that didn’t change.

The compiler executes these phases for each module individually. The modules
get compiled in topological order: Every module’s dependency gets compiled before
itself.

This means that given a module A that depends on B, module B is fully compiled
before module A even begins type-checking or canonicalization phase.

2.2. Delta Debugging

Delta debugging, first developed by Andreas Zeller [3], is a methodology to narrow
down on failure-inducing input for a test case. When its input can be described as a
set of changes, or — for our purposes — tokens, the input can be shrunk by removing
tokens and asserting that the test case still fails.

11

2.3. C-REDUCE

Known examples of delta debugging are the git bisect tool, in which commits
are changes that can be removed, the QuickCheck shrink function for shrinking
random test cases or various compiler bug reduction tools that try to remove syntax
tokens from a test case while still crashing the compiler.

As delta debugging can be used for a variety of purposes, test cases are not referred
to as ‘successful’ or ‘failing’, but ‘interesting’ or ‘uninteresting’. The reduced test
cases are then usually checked for interestingness by an executable script that exits
with 0, when the test is interesting, or with a non-zero exit code otherwise. Delta
debugging algorithms can also be used to isolate failure-inducing input by reducing
an interesting and uninteresting test case side-by-side, while reducing the difference
between these, as is the case for git bisect, for example. Then, interestingness
tests can also report a test case as ‘unresolved’. In this thesis, we are only concerned
with producing minimal failing test cases, therefore our interestingness tests don’t
report unresolved-ness.

A test case is considered ‘1-minimal” when it is impossible to remove any token or
change from it while keeping the test case interesting. We will use the term ‘minimal’
to refer to ‘1-minimal’ in the rest of this thesis. We will use ‘optimal minimal’ test
case when it is the smallest test case we know of that reproduces an issue. Any
optimal minimal test case is therefore also 1-minimal.

In 2002, new delta debugging algorithms with very good asymptotic performance (in
terms of interestingness test invocations) were developed [4] and in 2006, ‘Hierarchical
Delta Debugging’ [5] was developed for performing better on tree-like test inputs.

2.3. C-Reduce

C-Reduce [6] is a test case reducer for C source code. Historically, C source code was
reduced using the input-format agnostic suite of reducers developed in [4]. However,
those would sometimes produce C source code with undefined behavioi} To avoid
undefined behavior during reduction, C-Reduce was developed. After every reduction,
C-Reduce asserts the defined-ness of the reduced C source code. Additionally, many C-
specific reduction passes were developed: Inlining functions, deleting function bodies,
lifting variables from function to global scope or removing a function parameter from
its definition and all call sites, for example. C-Reduce also attempts the original
DDmin reducers in-between those passes.

Their evaluation [6] shows that they not only have guaranteed defined behavior for
their minimal test cases but also substantially improved reduction speed and quality.

C-Reduce can be invoked with the --not-c flag, which turns off all C-specific
reduction passes, allowing us to run C-Reduce on Elm source code and with it all
DDmin algorithms as well.

2See the C99 language standard http://www.open-std.org/jtcl/sc22/wgl4/www/docs/n1256.
pdf, section J.2 ‘Undefined Behavior’.

12

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf

2.4. FIXED POINT

2.4. Fixed Point

Elm-reduce’s main looping mechanism works similar to C-Reduce: It repeatedly tries
to apply reductions, until no more reductions can be applied or reduced projects
become bigger than the original. This can be mathematically described by a fixed
point. Here we introduce relevant definitions and theorems.

Definition 1. Given a function f: A — A, a fizpoint (fized point) a € A is defined
by a solution to the fixpoint equation:

fla) =a (2.1)

Definition 2. A Complete Lattice is a partially ordered set L, with the following
property: FEach subset M C L has a least upper bound sup M and a greatest lower
bound inf M.

Theorem 1. Knaster-Tarski Theorem: Given a complete lattice L and a function
f: L — L with the monotony property Vx,y : x <y = f(z) < f(y), then the fized
points of f form a complete lattice.

From this theorem follows in particular that there is a greatest and a smallest
fixpoint.

2.5. The Applicative Functor

In section we develop an applicative functor aiding us in writing reductions, hence
we introduce it here.

Applicative functors were first described in a functional pearl by Conor McBride
and Ross Paterson [7]. Applicative functors are more powerful than functors but less
powerful than monads. Every monad is also an applicative functor.

Applicative functors require two operators, one operation that — intuitionally —
lifts a value to the applicative context, and an operation that performs function
application with a function and an argument in a context.

In Haskell applicative functors are defined in the standard library as a type class
(see figure , where the lifting function is defined as pure and the application
operation is implemented as an infix operator <*> so that using this syntax is similar
to ordinary function application with infix spaces.

The applicative functor has to obey the following laws:

pure id <x>uv = v, (Identity)
pure (0) <k>u <x>v <*>w = u <*k> (v <k>w), (Composition)
pure f <x>pure v = pure (f x), (Homomorphism)
u <x>pure y = pure ($ y) <*>u, (Interchange)
Yu, v, w.

(where (o) is function composition and ($ y) is a function that applies y to its
argument)

13

2.5. THE APPLICATIVE FUNCTOR

1 class Functor f => Applicative f where
2 pure :: a — f a
3 (<#>) == f (a —>Db) > f a—>1fD

Figure 2.2.: The (simplified) type class definition of an applicative functor in the
Haskell standard library.

14

SO W N =

3. Architecture and Implementation

At the time of writing, all source code and installation instructions of Elm-reduce
can be found at https://gitlab.com/matheus23/elm-reduce.

Before diving into an implementation overview or architecture, it makes sense to
present Elm-reduce in terms of its user interface, so one can better imagine how all
gears line up inside of the Implementation.

3.1. User Interface

Elm-reduce, from the user interface perspective, is a single executable elm-reduce,
which can be executed in the directory containing the Elm project of interest. It
takes the path to a shell script as a parameter. This shell script is the so-called
‘interestingness’ test. This is an example for one of the shell-scripts we run:

#1/bin /sh
rm —r elm—stuff
EXPECTED_ERR=
"elm: Map.!: given key is not an element in the map”
elm make —output=elm.js —debug src/Main.elm 2>&1 |
grep —qF "$EXPECTED_ERR”

This shell script first cleans the elm-stuff directory used by the elm compiler as
compilation cache, then runs the elm compiler using the --debug flag, and finally
checks whether the string ,elm: Map.!: given key is not an element in the map”
occurred in the compiler’s output. This is the error message generated by the elm
compiler on a particular compiler bug. Crucially, this script exits with exit code 0,
when the error occurred, marking the current project state as ‘interesting’, and exits
with exit code 1 otherwise. This is accomplished by greps behavior when passed the
‘quiet’ flag (-q).

Once started, the executable reports statistics about the current reduction progress:

Variant: Removed constructor KintoError
Reduced: 56.33% (10665 bytes)

Variant: Removed constructor field
Reduced: 56.22% (10644 bytes)

Variant: Deleted type declaration Msg
Detected errors in 1 module.

(...

15

https://gitlab.com/matheus23/elm-reduce

3.2. INTEGRATION WITH EXISTING SOLUTIONS

Could not reduce code size further.
Reduced code size: 1182 bytes(first invocation: 18932 bytes)

Elm-reduce will create a git commit for every reduction that resulted in a project
state that was still considered interesting. Having a git project initialized in the
project directory is therefore a prerequisite. Also, one doesn’t have to worry about
Elm-reduce changing the current project irreversibly, since it will only produce new
commits and never alter the previous git history.

As soon as there are no more reductions available, or all reductions result in an
uninteresting test case, Elm-reduce finishes and reports reduction statistics. The
resulting test case is then 1-minimal.

3.2. Integration with existing Solutions

Elm-reduce is written in Haskell, since the Elm compiler and the elm-format utility
are written in Haskell too. Because we're doing abstract syntax tree (AST) trans-
formations, but want to test for compiler errors (or any other interesting test cases)
via a simple shell script, we need to both have the elm project available as AST
and as source file on disk. We use the Elm compiler’s parser for parsing the file and
elm-format’s pretty printing for printing the file back to disk.

Initially, implementing Elm-reduce in terms of additional passes for C-Reduce was
considered, but ultimately decided against, because our high-level passes for reducing
modules by merging them would not fit the single-file architecture of C-Reduce.

3.3. Reduction loop Architecture

Before Elm-reduce begins its main loop that tries to find a fixpoint of reduction,
it prepares the Elm Project by vendoring dependencies and formatting all source
files. It also has passes like merging or deleting Elm modules that work across the
whole project and passes that work on single files. This results in two nested loops
of iteration as shown in figure [3.1]

Elm-reduce has a number of different reduction passes, each doing a certain kind
of code transformation. Removing dead definitions, reducing case-of expressions or
removing union type constructors for example. Some of these reductions can enable
more reductions for a different reduction pass, therefore it would not suffice to just
run each pass once. It is not easy to figure out which new reductions will be enabled,
because that is highly dependent on the bug tested, and therefore the interestingness
test.

For these reasons Elm-reduce works similarly to C-reduce: It will try a list of all
different passes after each other repeatedly. Each time making sure the resulting
project is shrunk in terms of some metric. The metric chosen for Elm-reduce is bytes
for all elm modules and the project’s elm. json file.

16

3.3. REDUCTION LOOP ARCHITECTURE

attempt
1. moving indirect to direct dependencies
2. vendoring direct dependencies

3. formatting source files

One iteration/ i

(attempt merging modules)

(remove dead modules)

(apply passes on given file sequentially) A

<more files to process?>

\
?
<reduced test case?)

Cattempt removing unused dependencies)

Figure 3.1.: Elm-reduce’s main loop architecture. ‘One iteration’ is what we modeled
as the function f that we compute its fixed-point of. Note that after
any pass we check the interestingness test and either git commit or
git reset changes.

17

3.4. PASSES

Because of the Knaster-Tarski Fixpoint Theorem, this loop is guaranteed to
terminate, as long as all passes take a finite amount of time:

e We model L as the set of all possible elm projects, which becomes a complete
lattice, when equipped with a metric m(p) = byteSize(p).

e Let r: L — L be the function applying all reduction passes to L one after
another once.

e We model f: L — L as the function applying all reductions via r, as long as
this would reduce the metric m, or behave like the identity function otherwise:

fp) = {r<p>, for m(r(p)) < m(p)

P, for m(r(p)) > m(p)

It also follows that the iterated loop computes the greatest fixpoint pg;,. Of course,
one would hope to find the smallest fixpoint, resulting in a smaller reduced project.
We don’t know of a reliable way to compute the smallest fixpoint, however.

Therefore, we suggest a different way of developing reducers to achieve better
results: Assume, there is a smaller fixpoint pg,.;, but Elm-reduce only reduced to
the fixpoint pyi;. The idea is to change f to f’ in a way, so that f'(pfiz) < Pfia,
and that [’ (Psmair) = Psman- S0 instead of trying to find another way to compute
fixpoints, we would try to find better reduction functions, resulting in fewer possible
fixpoints, therefore hoping that the greatest fixpoint is also the only fixpoint.

It is possible that a fixpoint pgm,q wouldn’t be reachable from f’ anymore, since
there needed to be another choice made earlier in f’s history, but in our experience,
looking at py;, and guessing psmqu made many reduction passes obvious and improved
Elm-reduce’s reduction behavior.

3.4. Passes

We categorize reduction passes similar to previous work [8] as either destructive
or non-destructive: They either preserve program semantics or don’t. These two
kinds of passes work in synergy: By destroying program semantics, destructive
passes break up dependencies between function declarations enabling reductions from
non-destructive passes.

3.4.1. Non-destructive Passes

These passes don’t change program semantics: If they were applied to a project and
run, it should run identically to before. Some of these passes are the main mechanism
through which bytes are removed from projects, e.g. the dead module or dead
definition removal passes, and their applicability is mostly enabled by destructive
passes.

18

3.4. PASSES

-

-
-
Css.Preprocess

Figure 3.2.: The module dependency graph of a test case project mid-reduction
before (left) and after (right) merging the module Css.Preprocess
into the Main module. Dotted edges indicate reducible points. Alter-
natively, the Hex module could be merged, but the Css.Structure
module couldn’t, because it has more than one referrer.

Note that any reduction on types in Elm is categorized as non-destructive by this
definition, because type declarations does not change execution, except for rare cases
when using Elm’s comparable, appendable or number type variable special cases.

Formatting

The very first pass Elm-reduce attempts is formatting all files using elm-formatl]
Since Elm-reduce uses elm-format as a library for printing out reduced variants of
Elm code internally, it is a prerequisite that the bug is not triggered by anything
related formatting. This pass ensures this baseline.

Merging Modules

This pass analyzes the module dependency graph and copies all function definitions,
type declarations, imports and exports from a module into its only referrer, if that
is the case. This enables passes, which would be too complicated across module
boundaries to work on the combined module. Ideally, and usually, as one of the first
passes, Elm-reduce combines all of a project’s modules into a single file.

Figure [3.2 shows how the module dependency graph is simplified by merging a
module into the main module. Also notice that doing a single merging step opens up
new possibilities for merging further modules. Given all merges are successful, it is
always possible to merge all modules of a project into a single module using these
incremental steps (see appendix for proofs).

lelm-format is the quasi status-quo formatter for Elm source code: https://github.com/avh4/
elm-format

19

https://github.com/avh4/elm-format
https://github.com/avh4/elm-format

3.4. PASSES

Deleting Dead Modules

When modules could not be merged for some reason, but there is no more dependency
on a module, this pass deletes it.

Vendoring Dependencies

This reduction copies a dependency’s source code into the project and links to it
directly, instead of referring to it in the project’s elm. json file. This process has
been referred to as dependency vendoring, but could also be described as ‘inlining’
dependencies, similar to how functions can be inlined.

This enables the reduction of code triggering bugs inside of dependencies. It is
also noteworthy that the “Map.!” bug will vanish once a specific dependency has
been vendored.

Removing Dead Function Definitions

Usually, about 80%] of Elm code consists of function definitions. Removing dead
function calls is the biggest factor in code reduction. This pass analyzes the call tree
inside of a module to determine functions which are never referenced by any other
function definition.

Removing Dead Type Declarations

This pass works analogous to removing dead functions: Type declarations are removed,
when no function type annotation or other type declaration references it anymore.
Both type aliases and union type declarations are removed in this pass.

Reducing Union Type Declarations

This pass reduces type declarations by removing constructors, removing fields from
constructors or reducing types inside the fields of constructors. Only constructors
that are not matched or constructed and therefore dead can be successfully removed,
because the interestingness test usually causes the Elm compiler to test for well-
typed-ness.

Figure shows what multiple such reductions applied on an example would look
like.

Converting Union Types to Type Aliases

When a type declaration is reduced so that it only has a single constructor with a
single field, this pass transforms it to a type alias with that single field’s type for its
body. This enables further reduction that is only defined or possible for type aliases.

2This number was determined as the ratio of function definition lines to total lines of code on one
of the open source test projects “webvim”: https://github.com/vim-dist/webvim, commit
b2£103c8

20

https://github.com/vim-dist/webvim

3.4. PASSES

type Response type Response

= Failure String 3
| Success Int Payload = = Success Payload
| Info Int

| Info (Maybe Int)

Figure 3.3.: Examples of union type declaration reductions: Removing the Failure
constructor, the Success constructors first field and reducing the Info
constructors first field.

type Response type alias Response =
=
= Success Payload Payload

Reducing Type Aliases

In Elm, most type alias definitions are aliases for record types. This pass tries
to remove record type fields or reduce the fields’ type expressions themselves by
replacing expressions with one of their subexpressions.

type alias Payload =)

P { route 'yString type alias Payload =
. = { page : Int

, page : Maybe Int)

}

Inlining Type Aliases

This pass substitutes all usages of type aliases with their body. This can eliminate
the type-alias being the source of a bug.

type alias Model =
{ name : String main
} = : Program () Msg
{ name : String }
main : Program () Msg Model

Reducing Type Expressions
In this pass type expressions in function type annotations, union constructor fields
and type aliases are replaced by one of their subexpressions.

tail tail
List a = : List a
—> Maybe (List a) —> Maybe Int

21

3.4. PASSES

Removing Imports

This pass removes unused imports from a module. This is both for aesthetic reasons,
since every other pass is implemented using the Elm compilers parser, which automat-
ically adds default imports to parsed modules, and for enabling further optimization
by deleting now unreferenced modules.

Removing Dead Dependencies

This pass removes dependencies from the elm. json file, for both aesthetic reasons
and for eliminating dependencies as the cause of issues.

Moving Indirect to Direct Dependencies

This pass moves dependencies in the elm. json file from the ‘indirect’ section to the
‘direct’ dependency section. The indirect dependency section lists all dependencies-
of-dependencies of a project. They are not exposed to the current project and cannot
be imported, but can be imported by its dependencies. Moving dependencies from
the ‘indirect’ section to the ‘direct’ section causes the “Map.!” to vanish.

3.4.2. Destructive Passes

These three passes change program semantics to enable further optimizations. While
they themselves don’t contribute much to the reduction directly, they are crucial.
If these passes would not be applied, the program semantics would have to stay
the same throughout reduction, and its impossible to reduce a project substantially
without changing semantics.

Stubbing

This pass replaces function definition bodies with a stub. This stub is an expression
which type-checks against any type in elm, its essentially an infinite loop:

let
undefinedValue_. _ =
undefinedValue_ ()
in undefinedValue_ ()

This expression uses an unusual identifier to avoid shadowing any top-level defini-
tions, as that is not allowed in Elm.

Removing function bodies is the best way to simplify the function call graph, as
this removes all outgoing edges from a node.

Reducing Case Expressions

This pass simplifies the patterns matched in case expressions, removes cases from
case expressions or replaces a case expression by one of its cases’ body completely.

22

3.4. PASSES

update msg m =
case msg of
PaymentAdded p —>
(emptyPayments
msg m update msg m =
, Cmd. none case msg of
) - =
= (emptyPayments
Refetch — msg m
(m , Cmd.none
, fetchPayments)
Fetched
KintoError
m. client

Figure 3.4.: Example of two steps of the case reduction pass. The PaymentAdded
constructor match was replaced with a wildcard. As a result, the
Refetch case could be removed. Note that this code is a simplified
variant of some intermediate step in the reduction of a test case project,
hence doesn’t make much sense anymore.

This can reduce dependencies on some constructors or types of their fields, enabling
more reductions with union type or type alias reduction.

Figure [3.4] shows an example of this pass.

Reduce Expressions to Subexpressions

This pass works similar to the type expression reduction pass, but on value-level
expressions. It replaces expressions with one of their subexpressions. For example,
an if-expression is replaced with either its then or else branch, a let definition with
its body or one of its definitions or a function call with one of its arguments.

This reduction is attempted at any depth level of an expression, therefore there are
many ways to apply it, making it infeasible to apply at early stages, but instead it is
applied as one of the last passes, when the code base already shrunk substantially.

The following example is adapted from a real-world reduction case. Notice, how
this pass can change types of expressions, for example, changing the inferred type of
the update function. In this case, this still triggered a bug in the Elm inferencer,
therefore still keeping the test case interesting.

23

[\

3.5. REDUCTION COMBINATORS

update msg m =
(emptyPayments msg m N update msg m =
, Cmd.none emptyPayments msg m

)

3.5. Reduction combinators

Reducing abstract data types for ASTs was a common task while implementing
the goals for this thesis in elm-reduce. Often we were confronted with situations,
in which we wanted to reduce small parts of our ASTs, while leaving irrelevant
information intact. In this thesis we used an applicative functor we call Reductions,
which we later realized was first defined by Joachim Breitnerf’] Writing reductions
in applicative style and interpreting reductions as an effect greatly reduces code
complexity. For this reason we present an introduction to them in this thesis.

Lets say we want to reduce the list of fields of an elm constructor. Working only
on a list of elements, we can produce a list of variations like following:

reduce :: [a] — [[a]]
reduce [] = []
reduce (x:xs) = xs : map ((:) x) (reduce xs)

Another important requirement was that we would only do one reduction at a
time. If we were doing more than that, we might not know which reduction caused
our test to become uninteresting. Note that reduce only removes one element at a
time at maximum:

> reduce [1,2,3]
[[2,3],[1,3],[1,2]]

However, if we want to produce reductions of a pair of lists, one would think of the
list monad as a way to combine reductions of first elements and reductions of the
second elements, but this would always generate variants with multiple reductions
applied at once:

> traverse reduce (Pair [1,2,3] [4,5,6])
[Pair [2,3] [5.,6],Pair [2,3] [4.,6],...]

Instead, we want to accumulate different variants, reducing either side of a pair.
We can do this by reducing its parts and accumulating the results, mapping the
original values to them:

> map (flip Pair [4,5,6]) (reduce [1,2,3])
> ++ map (Pair [1,2,3]) (reduce [4,5,6])
[Pair [2.,3] [4.5,6],...,Pair [1,2,3] [5.,6],...]

3Published as the library ,successors” on hackage: http://hackage.haskell.org/package/
SUCCessors.

24

http://hackage.haskell.org/package/successors
http://hackage.haskell.org/package/successors

CO 1O Ui Wi

el el el el e e
O UL WD~ OO

3.5. REDUCTION COMBINATORS

data Union = Union String [String| [(String, [Type])]

unionReductions :: Union —> [Union]
unionReductions (Union name typeParams constructors) =
map (Union name typeParams)
(reduce constructors
++ reduceElems constrReductions constructors)

reduceElems :: (a — [a]) — [a] — [[a]]
reduceElems reduceElem [|] = []
reduceElems reduceElem (x:xs) =

map (\x —> x’:xs) (reduceElem x)

++ map (\xs’ —> x:xs’) (reduceElems reduceElem xs)

constrReductions :: (String, [Type]) — [(String,[Type])]
constrReductions (name, fields) =
map (name,) (reduce fields)

Figure 3.5.: Defining the list of reductions of a Union type without the ‘Reductions’
Applicative. It is crucial that only one reduction happened in the output
list of variants (which is why the list applicative is not an option). Note
the similarity of reduceElems’ signature to traverse's.

This works, but is significantly more cumbersome than simply traversing with
reduce. The clumsiness becomes very apparent when we try to do this with some
semi-real-world code, like reducing union constructors and their fields (see Figure

53).

Let us instead define a reductions datatype with an Applicative and Semigroup
instance and a function that generates reductions by removing elements of a list.

25

O 1 O Ui W N =

11
12
13
14
15
16
17
18
19
20

3.5. REDUCTION COMBINATORS

data Reductions a = Reductions
{ original :: a
, variants :: [a] }

deriving (Show, Functor)

instance Applicative Reductions where

pure x = Reductions x []
(Reductions f f’) <%> (Reductions a a’) =
Reductions (f a)
(map ($ a) f’ ++ map f a’)

instance Semigroup (Reductions a) where

li
li
li

(Reductions a a’) <> (Reductions - b’) =
Reductions a (a’ <> b’)

stReductions :: |a
stReductions =

] — Reductions [a]
Reductions [] []

[]
stReductions (x:xs) =
Reductions (x:xs) [xs]
<> fmap ((:) x) (listReductions xs)

traverse now only applies one change at a time:

> variants $ traverse listReductions (Pair [1,2,3] [4,5,6])
[Pair [2.3] [4,5,6]
,Pair [1,3] [4,5,6]
,Pair [1,2] [4,5,6]
,Pair [1,2,3] [5,6]
,Pair [1,2,3] [4,6]
,Pair [1,2,3] [4,5]]

The benefits of having an Applicative are not only being able to use traverse

but also that they integrate well with lenses and prisms! See figure [3.6] for a real-world
side-by-side comparison.

26

In appendix we prove the Reductions applicative functor to be lawful.

© 00 1O UL W N

3.5. REDUCTION COMBINATORS

)

unionReductions Union —> Reductions Union
unionReductions ’ (Union name typeParams constructors) =
Union name typeParams <$>
(listReductions <> traverse (_2 listReductions))
constructors

9

— more general varitant also defined in ’lens’ package
-2 :: Functor f = (a —> f b) —> (x, a) —> f (x, b)
2 f (x, a) = fmap (x,) (f a)

Figure 3.6.: Writing a reducer for union type constructors using our Reductions
Applicative. Proofs for its instances can be found in appendix [A.2] and

A3

27

4. Evaluation

In this chapter, we evaluate Elm-reduce in terms of reduction quality and reduction
speed. We begin by introducing the different test cases in terms of bugs and projects,
try to evaluate existing solutions like C-Reduce and finally look at our results.
Even though we try to compare Elm-reduce to C-Reduce, no reducer can handle
whole Elm projects by itself, except for Elm-reduce, which makes comparisons tricky.

4.1. Test Cases

In this section, we will discuss the test cases we chose to evaluate. Test cases are
composed of a compiler bug and a project that triggers that bug. Some of our test
cases are ‘real-world’, in the sense that these test cases have occurred for users during
development without them intending to trigger the bug. Others were test cases we
manufactured by implanting compiler-bug-triggering code into real-world projects.

4.1.1. Elm Compiler Bugs

It is important to test Elm-reduce with as many bugs as possible because different
bugs demand different reduction behavior. For example, some bugs happen during
compilation and some during the type-checking phase. Elm-reduce won’t successfully
trigger a code-generation bug when generating an ill-typed variant, but can success-
fully trigger a bug with an ill-typed variant when the bug occurs during type-checking.
Of course, Elm-reduce doesn’t have to know about which phase the bug is triggered
in or whether the code base is currently well-typed, it merely knows whether the bug
occurs or not, but that will influence which passes are successful.

For every compiler bug, we will present a minimal test case that is still human-
readable and formatted with elm-format, so that identifier length does not affect
minimality, and clever formatting only has a limited impact.

29

O O Ul Wi

4.1. TEST CASES

‘Map.!" crash

This bug is widely known in the Elm community. There are multiple bug reports
for it in the Elm compiler issue tracker, this meta-issue lists some: https://github.
com/elm/compiler/issues/1851 One of many minimal test cases for this bug is
following code:

module Main exposing (main)

import Array

main : Platform.Program () () (Array.Array ())
maln =

Debug.todo 7 ...7

This bug can be triggered by referencing an opaque, higher-kinded type from
an imported library, in this case, Array from elm/core. The compiler has to be
invoked with the --debug flag, and must be brought into code-generation phase (the
--output parameter must not be /dev/null) so that the bug occurs:

$ elm make src/Main.elm —output=elm.js —debug
Success! Compiled 1 module.
elm: Map.!: given key is not an element in the map

CallStack (from HasCallStack):
error , called at ./Data/Map/Internal.hs:610:17 in
containers —0.5.11.0 —[hash |: Data.Map. Internal

This bug is interesting to us, because it affected lots of users and happens during
code generation, requiring well-typed code in all reduction steps. Program semantics
— and therefore function bodies — are completely irrelevant to this bug, which makes
it a special case for our reducer.

‘index-out-of-bounds’ crash

This bug was reported in the compiler issue https://github.com/elm/compiler/
issues/1890. A slightly smaller test case than the reported one is the following:

30

https://github.com/elm/compiler/issues/1851
https://github.com/elm/compiler/issues/1851
https://github.com/elm/compiler/issues/1890
https://github.com/elm/compiler/issues/1890

O 1O Ui Wi

e el el el e
O UL WD~ OO

4.1. TEST CASES

module Main exposing (emptyPayments, update)

emptyPayments model =
let
extendedldx =
model . expandedIndex
in
update model

update model =
let
paymentsBefore =
model . payments
in
emptyPayments

This seems to trigger a bug during type inference with mutually recursive functions
and extensible records. The compiler crashes before it can type-check all expressions,
so its minimal test case does not have to be type-correct (notice the missing argument
to emptyPayments in line 14).

$ elm make Main.elm

elm: ./Data/Vector/Generic/Mutable.hs:703 (modify):

index out of bounds (3,3)

CallStack (from HasCallStack):
error , called at ./Data/Vector/Internal/Check.hs:87:5 in
vector —0.12.0.1 —[hash |: Data. Vector.Internal . Check

elm: thread blocked indefinitely in an MVar operation

We chose to investigate this bug because it has quite a complex minimal test case
with multiple top-level definitions.

‘out-of-memory’ crash

This bug was first reported in an Elm compiler issue: https://github.com/elm/
compiler/issues/1700. A minimal test case is the following:

31

https://github.com/elm/compiler/issues/1700
https://github.com/elm/compiler/issues/1700

© 00 O Ul Wi~

4.1. TEST CASES

module Main exposing (listUnique)

listUnique elem unique =
if List.member elem unique then
unique

else
unique :: elem

This program would be well-typed if the variable names ‘unique’ and ‘elem’ were
switched. If not switched, they cause this expression to have an infinite type. During
type-checking, elm gets stuck in an infinite loop and consumes unlimited amounts of
memory:

$ ulimit —v 2048000 # Limit wvirtual memory usage
$ elm make src/Main.elm
elm: out of memory

We chose to investigate this bug because it has to be reduced at the expression
level.

4.1.2. Elm Projects

It is very hard to find whole projects to reduce that trigger compiler bugs. In the
Elm compiler issue tracker, many compiler bugs are reported, but these only contain
the minimal, reduced test cases, usually a single file size between 10-20 lines of code.
Some issues mentioned, they had to manually reduce their project of sizes above
30 thousand lines of codd’] but it is hard to gain access to these because they are
proprietary code.

We looked through commit messages on GitHub mentioning ‘Map.!” and ‘Elm’
and found some projects to test, as well as one project of our own that triggered the
same compiler bug.

we-connect: https://github.com/dillonkearns/we-connect, modified not to

vendor a library so that this project still triggers the bug. 2510 lines of
codd?]

webvim: https://github.com/chendesheng/webvim. 15513 lines of code. A web-
based code editor with vim inputs.

flatawesome: https://gitlab.com/matheus23/flatawesome-elm. 2006 lines of
code. A single-page-app for managing a shared flat.

"https://github.com/elm/compiler/issues/1802
?Measured using the command-line utility ‘cloc’, does not include empty lines or comments.

32

https://github.com/dillonkearns/we-connect
https://github.com/chendesheng/webvim
https://gitlab.com/matheus23/flatawesome-elm
https://github.com/elm/compiler/issues/1802

4.2. RESULTS

4.2. Results

When evaluating reduction on Elm projects we use the count of interestingness test
(test script) invocations (named ‘steps’ in the following table) opposed to CPU time
as metric for performance. This has multiple advantages:

e [t is more independent of system resources than CPU time.

e We can compare reductions on the same code base for different test scripts and
obtain results independent of the test script execution times. We can use this
to compare reductions for different bugs.

e The same metric is used by other delta debugging research [4].

We also use lines of formatted code as a metric for the quality of reduction, because
that makes the metric independent of identifier naming and formatting choices. The
formatting style is determined by the non-configurable elm-format formatter with
only a limited way of influencing newline placement.

4.2.1. Naive Approach

At first, we take a look at a naive approach using C-Reduce to do most of the
reduction. We chose to compare to C-Reduce because its —-not-c option makes
it a great general purpose reducer and there exists no other Elm-specific reducer
today. Unfortunately, C-Reduce cannot be run on multiple input files easilyE]. Usually,
C-Reduce is run on C projects by first running the C preprocessor which concatenates
all C files. We do a similar, but much more sophisticated form of preprocessing to
combine all EIm modules into a single file so that it can be reduced with C-Reduce.
We do this using Elm-reduce’s merge-module passes.

We ignore testing a naive approach with the DDmin implementations because they
are included with C-Reduce in terms of passes.

To get the most direct comparison to what Elm-reduce does we ran C-Reduce on
the webvim project with the ‘Map.!” bug. After vendoring libraries and merging all
modules into one file, Main.elm, we executed c-reduce ./testscript Main.elm
-not-c. The results of this reduction can be seen in the first three columns of figure
M1l The reduction took more than 8 days 24h a day on a low-tier virtual serverf]

Although we initially planned on doing this comparison for all combinations of
bugs and projects, we had to reconsider, since it would have taken us approximately
10 weeks to test this and that was out of our time constraints.

31t is possible to run C-Reduce with multiple files, but during reduction, it will get rid of all directory
structure of input files and saves files on top-level. So for example module Update.Caret and
View.Caret would clash.

41 CPU, 1GB RAM with 2 GB swap, SSD. Reads and writes should have been in-memory because
reduction happens in the /tmp directory, which is mounted in tmpfs.

33

4.2. RESULTS

webvim we-connect (no vendoring)
Pass worked failed | worked failed
pass_clex 3790 681,495 321 113694
pass_lines 6208 461,202 1222 66724
pass_balanced 817 11,863 274 2317
pass_peep 60 6098) 1354
pass_ints 48 744 2 72
pass_indent 3 8 0 0
pass_blank 1 0 1 0
Total 10,927 1,161,410 1825 184,161
Percentage 0.93% 99.07% | 0.98% 99.02%
Size (factor from optimal) | 768 (153.6x) 290 (58x)

Figure 4.1.: This table summarizes the tested runs of a naive approach using the
existing C-Reduce reducer with the ——not-c flag. Size is measured in
lines of code, the number in brackets is by what factor the resulting
minimal test case is bigger than the optimal, minimal test case.

To save time, we changed the way we tested the C-Reduce reduction. However,
this substantially changes the circumstances in which the reduction is performed in
compared to reductions using Elm-reduce. Concretely, we

e reduced test case size by skipping the dependency vendoring
e do not reduce the project configuration elm. json file

e changed the test case to the ‘we-connect’ project, which is about a sixth the
size of webvim

The reduction took about a day on the same server with. Its results are summarized
in the last 2 columns of figure [£.1] Keep in mind that this does not speak for C-
Reduce’s performance in general, as — to our knowledge — it is the best reducer for C
code currently available.

4.2.2. Elm-reduce

To get a feeling of what impact different projects and interestingness tests have on
the reduction time and behavior of Elm-reduce, we ran it on all 9 combinations
of project-bug combinations. Some combinations are manufactured: All ‘Map.!’
bug test cases happened in this form to users, which we consider them ‘real-world’,
whereas all other bugs were implanted into the projects.

The results of these can be seen in figure We also provide the optimal minimal
test case in comparison to Elm-reduce’s minimal test case. From the size column, we

34

4.2. RESULTS

can see that Elm-reduce consistently produces the same test cases for the ‘Map.!’
and ‘out-of-memory’ bugs. There seems to be room for improvement in comparison
to the optimal minimal test case, but this only due to newline formatting.

It does not consistently produce similar test cases for the ‘out-of-bounds’ bug,
because sometimes the implanted functions have different amounts of parameters,
causing some extra lines. Removing parameters of top-level functions is not a pass in
Elm-reduce yet, as it is quite difficult to get right in a way that keeps well-typed-ness.

For a more detailed view of the reduction evolution, we take a look at figure [4.3]
which shows all Elm-reduce reduction evolutions we ran in comparison. While in
general, they all perform similarly, there are some noticeable differences:

e The Map.! bug results in smaller peak project sizes during reduction, because
it always prevents a library from being vendored. This is the library from
which our opaque, higher-kinded type is referred from. When it is vendored,
the bug vanishes.

e Many reductions perform identical or almost identical for some iterations: The
‘flatawesome out of bounds’ and ‘flatawesome out of memory’ or the ‘webvim
out of bounds’ and ‘webvim out of memory’. The reason for this could be
that the bugs were planted in the same function definitions, causing identical
reduction up until function-body-specific passes.

You might have noticed that in figure [4.2] reducing webvim projects takes less test
case invocations than reducing flatawesome projects, even though flatawesome only
has about 2,000 lines of code, and webvim had about 15,000. We can also see this
in figure [£.3} There is a huge flat reduction curve for all ‘flatawesome‘ reductions
between iteration 250 and 1250. During these iterations, Elm-reduce removes dead
function definitions from the elm-css package, a library that replicates all CSSﬂ
properties as functions. The slope appears flat, because Elm-reduce removes function
definitions one by one, and there a lot of small functions to remove.

5¢‘Cascading Style Sheet’

35

4.2. RESULTS

Project Bug ‘ steps runtime ‘ size (LoC) optimal factor
webvim Map.! 2094 64 min 14 8 1.75x
we-connect Map.! 1674 36 min 14 8 1.75x
flatawesome Map.! 2056 55 min 14 8 1.75x
webvim out-of-bounds | 1695 23 min 19 17 1.12x
we-connect out-of-bounds | 1751 47 min 21 17 1.24x
flatawesome out-of-bounds | 2485 47 min 20 17 1.18x
webvim out-of-memory | 1525 26 min 15 9 1.67x
we-connect out-of-memory | 1720 36 min 15 9 1.67x
flatawesome out-of-memory | 2183 64 min 15 9 1.67x

Figure 4.2.: This table compares the reductions of different projects with bugs
implanted. ‘Steps’ are the number of interestingness test invocations,
‘rumtime’ the execution time on the same virtual server as the tests
for C-Reduce, and ‘size’ the reduced project’s size in formatted lines
of code. The ‘optimal’ column is the size of what we believe are the
optimal minimal test cases from section [§.1.I] The factor column gives
a size factor comparison between optimal and actual test case. We
evaluate test case quality using lines of code so that identifier length
does not affect results.

flatawesome Map.!
flatawesome out-of-bounds
732 Kb~ —— flatawesome out-of-memory
—— we-connect Map.!
—— we—connect out-of-bounds
488 Kb - —— we~—connect out-of-memory
webvim Map.!
webvim out-of-bounds

244 Kb - webvim out—-of-memory

Aggregated Project Size

0 Kb~

0 500 1000 1500 2000 2500
Interestingness Test Invocations

Figure 4.3.: This figure compares Elm-reduce reductions of all test project-bug

combinations. For each reduction, it shows the test case size against
the amount of interestingness test invocations.

36

LE

= 0nun o o o o o o (@ =] —N 0
S oo T T T T T T 110
c 3352 2 2] 2 3 SR |g2g
¢ 885 S S o 5] %) o 355
> ez =] =] > = © z\ﬁ ::%
s TTE = g L 7o Tk EESs
732K D88 © S g g 3 £ mog
Qg i i s} 5 1oy ol LI
IE|R S IS o ® T o F BS%
o o = o) Q o o ot 228
3 /o o =} <) o gl [7°L
of i] =] > =
£ | o o IS 5 £ =]
o4 1> > o 9} [CHI) (L
S o o = & o
£ € =1
(] () 1=}
o (S 5
(O]
N
n
5 488 Kb+
(]
o
T
°
I
©
o>
o
[*2]
g |
|
244 Kb .
0Kb A
0 500 1000 1500
Interestingness Test Invocations
Figure 4.4.: Elm-reduce reduction progress for the ‘we-connect’ project and the ‘Map.!" bug. Files are colored individually,

Main.elm is green. The vertical bars mark changes in the passes used. The trailing number on some of the pass’
names is the index of fixpoint iteration. More than 95% reduction is achieved within the first iteration (trailing 0),
but the whole reduction takes 3 iterations to end up at a fixpoint. The resulting project size is 903 bytes with a
14 lines of code Main.elm file.

SLINSHY ¢V

4.2. RESULTS

Figure |4.4| gives a very detailed look at what happens during the reduction: Project
size dramatically increases from initial size to the peak due to two passes: Dependency
vendoring copies all dependencies’ source into the project and the merging modules
pass increases identifier length. There is a small dent during the increase to the peak
because the dead module removal pass deletes all vendored library modules that are
never referenced.

At the peak, all modules were combined into the Main.elm file and from here on,
all passes (except for dependency removal) are only applied to this file. Because
there are still lots of vendored library functions never referenced, Elm-reduce spends
343 test executions removing dead functions. Then the next 286 test invocations all
function bodies are replaced with a stub. In the graph, we can see huge reductions,
when big function bodies are eliminated. The following dead definition removal pass
is very linear because all functions removed have approximately the same size: Their
body in most cases only consists of our stub.

At this point, there exist no more function definitions in our code base, except for
a stubbed definition for main. Elm-reduce now narrows down the type declaration
that causes the Map.! bug by removing all irrelevant type declarations and doing
some inlining and reduction passes, as described in chapter

After 1597 test invocations Elm-reduce applied all passes once and reduced project
size by about 95% in comparison to its peak. It now proceeds with additional runs
of all passes to find the fixpoint, and after 2 more runs of all passes, a fixpoint was
found.

In some cases the second fixpoint iteration does significantly more work than
in this example: In the reduction fo ‘webvim’, some modules can’t be merged
because of a complicated identifier shadowing problem that would require substantial
implementation effort to account for. In this case Elm-reduce simply removes the
modules in the second fixpoint iteration, because they are not referenced anymore.
We believe that there are more such cases in which another fixpoint iteration can
pick up new reduction opportunities.

38

5. Conclusion and Future Work

Our results show that general delta debugging approaches don’t work, when test case
data validity is sophisticated, as is the case with source code. 1-minimal test cases in
terms of input characters are not satisfyingly close to the actual minimal test cases.
We need language-specific reduction passes to replace deleted parts of input with,
so we still have valid source code. All of Elm-reduce’s destructive passes not only
remove characters from source code but also replace them with language-specific
constructs like pattern match wildcards or specific source code expressions.

5.1. Improving Performance

Elm-reduce’s main metric was the quality of the resulting minimal reduction, but we
didn’t optimize regarding reduction performance. However, Looking at the reduction
process closely we identified some possible performance improvements.

Careful Selection of next Reduction

Sometimes, Elm-reduce attempts to delete a function that can’t be removed without
failing the interestingness test, but when it moves on to deleting another function, it
comes back to try deleting the previous function again. However, those contain the
triggering expression for an interestingness test, so the interestingness test will always
fail on these attempts. Because Elm-reduce repeatedly attempts reducing them after
every successful reduce, this leads to between 2-3 times as much interestingness test
invocations more than if we were more careful with which functions to reduce next.

Reducing in Batches

The delta debugging algorithms have good performance because they attempt to
reduce bigger batches of data at once. Because we have a complex graph of depen-
dencies between functions and type declarations, we have to be careful reducing
only nodes that are not referred. Removing those frees up the nodes they referred
to for reduction. We could try removing more function definitions at the same
time without generating stale references by better analyzing the dependency graph
between functions.

39

5.2. ISOLATING FAILURE-INDUCING INPUT

5.2. Isolating Failure-Inducing Input

In the Elm compiler issue tracker, bug reporters are asked to submit both a minimal
test case that reproduces the bug as well as the minimal change that needs to be
applied to the test case to stop it from reproducing the bug.

Finding this minimal change can also be automated by reducing both an interesting
and uninteresting variant at the same time [4], trying to reduce the difference (‘delta’).
For this, it would be necessary to have an additional return type for interestingness
tests: unresolved.

5.3. Reducing Code Generation Bugs

We believe it is possible to even test complicated code-generation bugs. The big issue
with code-gen bugs is that it is sometimes necessary to provide input data to the
issue-generating bug, for example, a code-generation bug on a website might only
trigger, when there a feature is accessed with complex user interaction.

All code paths that the user interaction touches can’t be reduced. Consider a
code-gen bug that it is usually triggered by a particular browser action when clicking
a button. It is impossible to remove the button from the source code, even though
it would be possible to trigger the bug simply by running the action the button
produces at website loading time.

However, if the user interaction were reduced in tandem with the source code,
even bugs that were triggered by complex user interaction could reduce to minimal
test cases. In Elm, it would be possible to record user interaction and replay them,
because of its elegant runtime system design. Elm-reduce would then need more
sophisticated reduction passes like beta reduction and inlining so that it would weave
together test data with test case code.

5.4. Finding Compiler Bugs

Elm-reduce can only reduce compiler bugs that were already triggered in some project,
but it can’t prevent compiler bugs before they happen to users. This could be solved
by trying to find compiler bugs by compiling random, ‘fuzzed’ source code.

Fuzzed test cases often contain lots of irrelevant data, which could then be removed
by Elm-reduce. These fuzzer-reducer combinations have been very successful at
finding compiler bugs [9][10].

40

Bibliography

1]

2]

E. Czaplicki and S. Chong, “Asynchronous functional reactive programming for
guis,” in ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013 (H. Boehm
and C. Flanagan, eds.), pp. 411-422, ACM, 2013.

D. Leijen, “Extensible records with scoped labels,” in Revised Selected Papers
from the Sizth Symposium on Trends in Functional Programming, TFP 2005,
Tallinn, Estonia, 253-24 September 2005. (M. C. J. D. van Eekelen, ed.), vol. 6
of Trends in Functional Programming, pp. 179-194, Intellect, 2005.

A. Zeller, “Yesterday, my program worked. today, it does not. why?,” in Software
Engineering - ESEC/FSE’99, Tth European Software Engineering Conference,
Held Jointly with the 7th ACM SIGSOFT Symposium on the Foundations of
Software Engineering, Toulouse, France, September 1999, Proceedings (O. Nier-
strasz and M. Lemoine, eds.), vol. 1687 of Lecture Notes in Computer Science,
pp- 253-267, Springer, 1999.

A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing input,”
IEEFE Trans. Software Eng., vol. 28, no. 2, pp. 183-200, 2002.

G. Misherghi and Z. Su, “HDD: hierarchical delta debugging,” in 28th Interna-
tional Conference on Software Engineering (ICSE 2006), Shanghai, China, May
20-28, 2006 (L. J. Osterweil, H. D. Rombach, and M. L. Soffa, eds.), pp. 142-151,
ACM, 2006.

J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang, “Test-case
reduction for C compiler bugs,” in ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’12, Beijing, China - June 11 - 16,
2012 (J. Vitek, H. Lin, and F. Tip, eds.), pp. 335-346, ACM, 2012.

C. McBride and R. Paterson, “Applicative programming with effects,” J. Funct.
Program., vol. 18, no. 1, pp. 1-13, 2008.

T. M. StroBner, “Firmreduce: Automated test-case reduction for graph-based
compilers,” Sept. 2018.

X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding bugs
in C compilers,” in Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2011, San Jose, CA,

41

Bibliography

USA, June 4-8, 2011 (M. W. Hall and D. A. Padua, eds.), pp. 283-294, ACM,
2011.

[10] G. Samuel GroB, “Fuzzilli.” https://github.com/googleprojectzero/
fuzzilli, 2019.

42

https://github.com/googleprojectzero/fuzzilli
https://github.com/googleprojectzero/fuzzilli

Erklarung

Hiermit erklédre ich, Philipp Kriiger, dass ich die vorliegende Bachelorarbeit selbst-
sténdig verfasst habe und keine anderen als die angegebenen Quellen und Hilfsmittel
benutzt habe, die wortlich oder inhaltlich {ibernommenen Stellen als solche kenntlich
gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis

beachtet habe.

Ort, Datum Unterschrift

43

A. Appendix

A.1. Incrementally Reducing Graphs

Claim. For all directed, acyclic graphs (DAGs) G = (V, E) with |V| > 1 and ezactly
one source vy € V' there exists a vertex v € V' with exvactly one in-going edge e € E
tov.

Proof. Let G be a DAG with |V| > 1 and exactly one source s € V.

deg~(v) < 1, because there is only one vertex preceding it in the topological sort
P.
deg~(v) > 0, because if it were not, both Up(1) = Vs and v,y would be sources of
the graph G.
Therefore deg™(v) = 1 with a single edge e incoming to vertex wv. O

Claim. Let G = (V,E) be a DAG with exactly one source vs and |V| > 1. Let
e € E be a single in-going edge that must exist according to the above claim. The
edge-contracted graph G' = G /e is a DAG and has exactly one source vs.

Proof. The resulting graph is a DAG, because edge contraction on simple graphs
does not introduce loops.

It must have exactly one source v,, because all other vertices v; were reachable
from v, and all v; € V' are also reachable by v,:
Let p be the path that v; could be reached from v,. If the contracted edge e was part
of p, then there exists a path p’ that is obtained from contracting the edge e out of
p that connects v, to v; in G’. If the contracted edge e was not part of p, then the
same path connects v, and v; in G'. O

Claim. A DAG with a single source vs can be contracted with the above edge con-
tractions to a graph containing only a single vertex.

Proof. Either the graph G = (V| E) is only a single vertex and we are done, or it
has |V| > 1 and is contractible inductively with the above edge contractions, which

always reduce graph size and either produce a DAG with a single source and either
V]=1or |V|>1. O

45

A.2. APPLICATIVE FUNCTOR LAWS FOR REDUCTIONS

A.2. Applicative Functor Laws for Reductions

A.2.1. ldentity

Claim. Yvr. pure id <x>vr = vr

Proof. Let vr = Reductions v vs, then

pure id <x>vr
= Reductions id [] <x>vr
= Reductions (id v)
(map (3 v) [] ++ map id vs)
= Reductions v ([] ++ map id vs)
= Reductions v vs

=ur
A.2.2. Composition
Claim.
Yur, vr, wr.
pure (0) <> ur <k>vr <> wr
= ur <*> (vr <*>wr)
Proof. Let

ur = Reductions u us
vr = Reductions v vs

wr = Reductions w ws

46

A.2. APPLICATIVE FUNCTOR LAWS FOR REDUCTIONS

Then

pure (0) <kx>ur <> vr <s>wr
= Reductions (o) [| <x> ur <x>vr <> wr
= Reductions ((o) u)
(map ($ u) [| ++ map (o) us)
<> ur <> Wr
= Reductions ((o) u) (map (o) us)
k> vr <k>wr
= Reductions ((o) u v)
(map (3 v) (map (o) us)
++map ((0) u) v3)
<)*>wr
= Reductions ((o) u v)
(map (Ag. (o) g v) us
++ map (\f. (o) u f) vs)
<k>wr

= Reductions ((o) u v w)

= Reductions ((o) u v w)
(map (A\g. (o) g v w) us
++ map (Af. (o) u f w) vs
++4 map (Ma. (o) u v a) ws

)

= Reductions (u (v w))
(map (Ag. g (v w)) us
++map (Af. u (f w)) vs
++4 map (Aa. u (v a)) ws

)

= Reductions (u (v w))
(map (Ag. g (v w)) us
++ map u

(map (\f. f w) vs
+4 map v ws)

)

= ur <xk> 47

Reductions (v w) (map (Af. f w) vs ++ map v ws)
= ur <x> (vr <*>wr)

A.3. ASSOCIATIVITY LAW FOR REDUCTIONS

A.2.3. Homomorphism
Claim. Vf, x. pure f <x>pure x = pure (f z)
Proof.
pure f <x> pure x
= Reductions f [|] <*> Reductions z ||

= Reductions (f x) (map ($ z) [] ++ map f |])
= Reductions (f x) |]

= pure (f x)

A.2.4. Interchange

Claim. Yur,z. ur <x> pure y = pure ($ y) <x>ur

Proof. Let ur = Reductions u us, then

ur <> pure y
= ur <x> Reductions y ||
= Reductions (u y) (map ($ y) us ++ map u [])
= Reductions (($ y) u) (map ($ y) us)
= Reductions (($ y) u) (map ($ w) [] ++ map ($ y) us)
= Reductions ($ y) [] <+*> Reductions u us
= pure ($ y) <*>ur

A.3. Associativity Law for Reductions

This law is required for Reductions to be a semigroup.
Claim. Var, yr, zr. xr <> (yr <> zr) = (xr <>yr) <> zr

Proof. Let

xr = Reductions x s
yr = Reductions y ys

zr = Reductions z zs

48

A.3. ASSOCIATIVITY LAW FOR REDUCTIONS

Then

xr <> (yr <> zr)
= xr <> Reductions y (ys ++ zs)
= Reductions x (xs ++ (ys ++ zs))
= Reductions x ((xs ++ ys) ++ zs)
= (Reductions z (xs ++ ys)) <> Reductions z zs
= (Reductions x s <> Reductions y ys) <> zr
= (ar <>yr) <> zr

49

	Introduction
	Basics and Related Work
	The Elm Programming Language
	Terminology
	The compiler architecture

	Delta Debugging
	C-Reduce
	Fixed Point
	The Applicative Functor

	Architecture and Implementation
	User Interface
	Integration with existing Solutions
	Reduction loop Architecture
	Passes
	Non-destructive Passes
	Destructive Passes

	Reduction combinators

	Evaluation
	Test Cases
	Elm Compiler Bugs
	Elm Projects

	Results
	Naive Approach
	Elm-reduce

	Conclusion and Future Work
	Improving Performance
	Isolating Failure-Inducing Input
	Reducing Code Generation Bugs
	Finding Compiler Bugs

	Appendix
	Incrementally Reducing Graphs
	Applicative Functor Laws for Reductions
	Identity
	Composition
	Homomorphism
	Interchange

	Associativity Law for Reductions

