Pegasus: Efficient Data Transfers for PGAS
Languages on Non-Cache-Coherent Many-Cores

Manuel Mohr
Programming Paradigms Group
Karlsruhe Institute of Technology
manuel.mohr @kit.edu

Abstract—To improve scalability, some many-core architec-
tures abandon global cache coherence, but still provide a shared
address space. Partitioning the shared memory and communicat-
ing via messages is a safe way of programming such machines.
However, accessing pointered data structures from a foreign
memory partition is expensive due to the required serialization.

In this paper, we propose a novel data transfer technique
that avoids serialization overhead for pointered data structures
by managing cache coherence in software at object granularity.
We show that for PGAS programming languages, the compiler
and runtime system can completely handle the necessary cache
management, thus requiring no changes to application code.
Moreover, we explain how cache operations working on address
ranges complement our data transfer technique. We propose
a novel non-blocking implementation of range-based cache op-
erations by offloading them to an enhanced cache controller.
We evaluate our approach on a non-cache-coherent many-core
architecture using a distributed-kernel benchmark suite and
demonstrate a reduction of communication time of up to 39.8%.

I. INTRODUCTION

With increasing core counts, guaranteeing cache coherence
while maintaining performance and power efficiency is be-
coming increasingly difficult. Classical snooping protocols do
not scale beyond a relatively low number of cores while
directory-based protocols considerably increase latency and
power consumption [1, 2]. Hence, some architectures [3-6]
drop global cache coherence to improve scalability.

Fig. 1 shows a schematic view of such an architecture.
Cores have private caches and are connected by a scalable
interconnect, such as a network-on-chip, that handles on-chip
communication. Such architectures have a shared physical
address space, hence cores can read from and write to DRAM.
They also cache results in their private caches, however,
the hardware gives no coherence guarantees. Hence, these
machines cannot be directly programmed using the common
shared memory programming model.

One approach to deal with this situation is to provide the
missing cache coherence (at least partially) in software [7-10].
An alternative is to partition the shared memory between the
cores and let the cores communicate via explicit messages,
for which such architectures usually provide special hardware
support. Partitioning the memory means that every core only
accesses (and caches) addresses in its own memory partition,
hence the missing cache coherence does not cause problems.

However, message passing of pointered data structures
entails costly (de-)serialization. Consider the situation that
core S has a linked list in its memory partition and wants
to send it to core R. Core S must first convert the list to a

Carsten Tradowsky

Institute for Information Processing Technologies

Karlsruhe Institute of Technology
carsten.tradowsky @kit.edu

Core Core Core

(__Cache) (_Cache)

(Scalable interconnect DRAM
Core Core Core

(_Cache) (_Cache)

Fig. 1: A schematic view of a non-cache-coherent system. Private caches,
shared memory (DRAM), but no hardware cache coherence.

format suitable for message passing, i.e. serialize it to a byte
stream, which R then receives to reconstruct (deserialize) a
copy of the original list. The (de-)serialization causes a large
overhead, both memory-wise and computation-wise. As such
pointered data structures occur frequently in general-purpose
applications, especially if written in high-level object-oriented
languages, it is important to accelerate their transfer.

In this paper, we propose a novel approach for transferring
pointered data structures between shared memory partitions
without requiring coherent caches. We propose that the re-
ceiver directly accesses the data structure in the sender’s mem-
ory partition and makes a deep copy of it, i.e. clones it, in the
receiver’s partition, thereby avoiding the need for serialization
and temporary buffers. To guarantee correctness, the software
forces the necessary cache writebacks and invalidations. We
show that in a programming language following the partitioned
global address space (PGAS) model, the compiler and runtime
system can issue the cache operations fully automatically, thus
existing software does not have to be modified. As we manage
cache coherence in software on a coarse granularity (whole
objects), we show the need for range-based cache operations.
The contributions of this paper are:

1) a novel technique for transferring pointered data struc-
tures via shared memory on non-cache-coherent archi-
tectures based on software-managed cache coherence,

2) a compiler-assisted implementation that is fully auto-
matic, safe, and has zero overhead based on the PGAS
programming language X10,

3) an extensive evaluation measuring running times of dis-
tributed algorithm kernels on a non-cache-coherent many-
core architecture, demonstrating communication time re-
ductions of up to 39.8%, and

4) anovel implementation and an evaluation of non-blocking
range-based cache operations that offload work to an
enhanced cache controller with an area overhead of 15%
compared to the original cache controller.

The rest of the paper is organized as follows. In Section II
we first formally state our problem and then study two
existing message-passing-based data transfer techniques. Sec-
tion III describes our novel cloning approach and presents
our compiler-assisted implementation for X10. In Section IV,
we demonstrate that range-based cache operations complement
our technique and present a novel non-blocking implementa-
tion. Next, Section V presents the performance improvements
as measured on a non-cache-coherent many-core architecture
and an evaluation of our hardware extension. Finally, Sec-
tion VI gives an overview of related work and Section VII
concludes the paper.

II. MOTIVATION AND BACKGROUND

In this section, we first describe the problem of transferring
pointered data structures in more detail. We then study two
message passing-based approaches before we turn to our novel
cloning technique in Section III.

Problem Statement: With partitioned shared memory, the
programming model prevents accesses to foreign memory par-
titions. Hence, if a core wants to work on some piece of data,
there must be a local copy of it in the core’s private memory
partition. For distributing data, non-cache-coherent many-core
architectures provide efficient message passing mechanisms.
If, for example, one core wants to distribute input data stored
in its own memory partition, it sends messages carrying the
data to the other cores. Each core then works on its local copy.

This works well if the input data has a “flat” memory layout,
e.g., a simple array of some primitive numeric type, which
is already in a format well-suited for a message. However,
programs, especially those written in high-level languages,
frequently use pointered data structures, such as linked lists or
trees. Additionally, we expect this to be common in programs
ported from a shared-memory programming model to run on a
non-cache-coherent architecture. It is important to understand
what it means to make a copy of a pointered data structure.

In general, we can represent a data structure by an object
graph, which is a directed graph where the vertices are objects
and an edge (z,y) means that z points to y. All object graphs
have a designated root object. Such an object graph can contain
cycles, e.g., the graph of a cyclic linked list.

We call data structures flat if their respective object graph
has a single vertex and no edges, and pointered otherwise.
Making a copy of an object graph in a different memory
partition requires creating a deep copy. Hence, we must copy
all objects reachable from the root and at the same time modify
the contained pointers so that they point to the newly created
objects. A shallow copy, obtained by bytewise copying of the
root object, is not sufficient as the contained references would
point to a different memory partition, which is unsafe.

Cache Terminology: Throughout this paper, we assume
a cache that offers three operations: invalidate, writeback,
and flush. Furthermore, we assume that all operations can be
executed on the cache line associated with a specific address
or on the whole cache. Invalidate marks a cache line as invalid,
meaning that the next time an address from the cached range

is accessed, it will be fetched from memory. Writeback writes
a dirty cache line back to memory. The cache line stays valid
after this operation. Flush combines writeback and invalidate.

Our starting point for all three approaches described in the
following is the transfer of an object graph G of a pointered
data structure from a sending core S to a receiving core R.
Fig. 2 shows schematics for all three approaches.

A. Message Passing

Classical message passing (MP) proceeds according to the
following three steps (see Fig. 2a):

1) S serializes GG into a contiguous buffer B located in its
private memory partition.

2) S sends the contents of B via one (or multiple, if the
maximum message size is limited) message(s) to R. This
may entail additional overhead for copying buffer contents
from shared memory to specialized local memory used
for message passing! and for splitting large messages into
smaller parts.

3) R writes the message contents to a contiguous buffer B’ in
R’s private memory partition. R then deserializes a copy
G’ of the object graph from B’.

In total, MP requires four times as much memory as the initial

object graph G. Additionally, assembling B and reading B’

evicts large parts of the caches of S and R. However, MP also

works on machines without shared memory.

B. Message Passing via Shared Memory

Passing messages via non-cache-coherent shared memory

(MP-SHM) follows these three steps (see Fig. 2b):

1) write & writeback: S serializes G into a buffer B located
in its private memory partition. Then, S forces a writeback
for the cache lines of B from its local cache. The writeback
guarantees that R can read up-to-date values for B from
memory. It is trivial to determine the relevant cache lines,
as B is contiguous in memory and we know its starting
address and size. .S waits until all relevant cache lines have
been committed to memory.

2) notify: S sends a message carrying the starting address of
B to R. This informs R that it is now safe to read B.

3) read & invalidate: R deserializes from B a copy G’ of the
object graph. Then, R invalidates the cache lines relevant
for B. The cache invalidation is necessary to ensure that
B is actually read from memory, even if S reuses B.

Note that waiting until all updates to B are visible to other

cores may require special hardware support, e.g., some kind of

memory barrier. The order in which the hardware commits up-
dated cache lines to memory is not important, allowing weaker

memory models. MP-SHM avoids sending the contents of B

via a message by passing them via shared memory and avoids

allocating a buffer on the receiving side. Therefore, MP-SHM

is also beneficial for transferring flat data structures [11, 12].

However, MP-SHM still requires (de-)serializing the object

graph, potentially evicting parts of S°s and R’s caches.

'Because the shape of G' and therefore the size of B is only known at
runtime (as G can depend on input data), it is in general not possible to
directly serialize to local memory as it may be too small to hold B.

1@ 5 E ©) >R 51 @ > 2
@
S’s partition Y R’s partition S’s partition R’s partition S’s partition R’s partition
N EC) | |
G B | B G G B | ¢’ G ¢’

(a) Message passing.

(b) Message passing via shared memory.

(c) Cloning.

Fig. 2: Schematic comparison of approaches to transfer an object graph GG from sending core S to receiving core R.
Temporary buffers are denoted by B, B’; and G’ is the resulting copy of G.

IIT. CLONING

Our novel cloning approach (CLONE) works according to
the following three step scheme (see Fig. 2c¢):
1) writeback: S forces a writeback of all objects in G. For
each object we know its starting address and size. Hence,
by traversing G, we can write back the relevant cache lines
of each object. Then, S waits until all relevant cache lines
have been committed to memory.
notify: S sends a message carrying the address of the root
object of G to R. This notifies R that it is now safe to
clone G.
clone & invalidate: R clones G, resulting in G’. The clone
operation is a depth-first traversal of G' with cycle detection
(like serialization). Thus, we visit each object o exactly
once and directly create a copy o’ in R’s memory partition.
After creating o/, R invalidates the relevant cache lines
for o. Hence, after cloning, R’s cache does not contain
data from S°s memory partition (analogous to MP-SHM).

2)

3)

The main difference between CLONE and message passing-
based approaches is that it avoids serialization and requires
no temporary buffers. Thus, it is much more cache-friendly.
For flat data structures, CLONE is equivalent to MP-SHM.
In this case, there is no need for serialization on the sending
side (“G = B”) and “deserialization” is equivalent to copying
the single object, i.e. cloning it. Viewed this way, CLONE
is a generalization of MP-SHM from flat to pointered data
structures. Viewed another way, CLONE augments the widely-
used object cloning technique with explicit writebacks and
invalidations to allow its use on non-cache-coherent systems.

Implementation for PGAS Programming Languages

The PGAS model combines the message-passing and
shared-memory programming models: it explicitly exposes
data locality like in a distributed setting, but provides the
illusion of a shared global address space with the ability to
reference remote data items. PGAS programming languages
tightly integrate this model. Here, the compiler inserts com-
munication operations if remote data is accessed. Therefore,
the compiler has a full view of all types in the program and
at the same time controls the communication.

PGAS languages enable a compiler-assisted implementation
of CLONE that is 1) fully automatic, i.e. requires no program
changes, 2) safe, i.e. ensures that exactly the necessary cache

lines are written back or invalidated, and 3) has zero overhead,
i.e. requires no additional data structures or communication for
coherence management. In our implementation of CLONE for
the PGAS language X10, the compiler generates specialized
writeback and cloning functions (corresponding to steps 1 and
3 of CLONE) per type. When a remote data item is accessed,
the compiler knows its type and generates code to invoke
the matching writeback and cloning functions on sender and
receiver, respectively.

The PGAS model prevents accesses to shared data from
different coherence domains on a logical level. Hence, we
do not need per-object data structures to manage access to
shared objects. Additionally, CLONE does not cause additional
communication for coherence management: the sending core
knows it has the most up-to-date version of its data as it is
located in the core’s private memory partition.

It is not intuitively clear that it is safe for R to access G
from S’s partition. For example, what if .S modifies G during
cloning? However, in this case the program contains a data
race, as it modifies a data item concurrent to a transfer of that
item. In programs with such data races, data transfers can be
corrupted independent of whether data is serialized or cloned.
Therefore, cloning is safe for correctly synchronized programs.

IV. HARDWARE EXTENSION

Both MP-SHM and CLONE manage cache coherence at
coarse granularity, i.e. operate on address ranges. When forc-
ing a writeback or an invalidation of an address range A, we
have to trigger the cache operation individually for each cache
line relevant for A. This can take a long time, so we would
like to accelerate this type of operation in hardware.

Moreover, we can hide the latency of the cache operations
by performing other actions. We force invalidations or write-
backs during object cloning when visiting each object. Hence,
we would like to trigger the necessary cache operations for
one object and have them executed in the background while
we continue with the next object in the graph.

In the following, we present our novel concept and imple-
mentation of non-blocking range-based cache operations (or
range operations for short) that achieves both of our goals.
Our range operations offload the work to an enhanced cache
controller. The underlying processor for our implementation
is a Gaisler LEON 3, which implements the SPARC V8 ISA.

Cache Memory Flags
Load-Store Tag 0 VD
Management Tag 1 VD
VD
CPU Cache Controller
| | VD
B
Range VD
Buffers VD
Bn
VD

Fig. 3: Schematic view of our modified cache architecture.

However, neither our concept nor our implementation are tied
to this particular ISA or microarchitecture.

Fig. 3 shows a schematic view of the modified cache archi-
tecture with changed parts of the cache controller highlighted
bold. First, we extend the cache controller with the ability
to invalidate, write back or flush multiple cache lines. This
adds the software interface (CPU view) according to the cache
operations and the hardware interface (cache view) to interact
with the cache memory and reset the flags accordingly. The
cache controller can modify one cache line per cycle.

Second, to make the range operations non-blocking, we add
range buffers B; to the cache controller. Each range buffer
holds a triple (s,e,t) of start address s, end address e, and
operation type ¢ (invalidation, writeback, or flush). Each time
the processor executes a range operation on a range A, the
cache controller stores A along with its operation type in a
range buffer according to the following rules:

(1) If there is no free range buffer, we halt the processor until
a buffer becomes free.

(ii) If A overlaps with a range A’ already stored in another

buffer, we halt the processor until A’ has been processed.

(iii) Otherwise, we store A and its type in a free range buffer.

Then, the processor continues executing the program. Every
time it executes a load or store to an address D, the cache
controller checks D against all stored ranges. If D € A for a
stored range A, we halt the processor until the operation on A
has finished. Otherwise, we perform a cache lookup as usual.

In every cycle, during which the processor does not execute
a load or store, the cache controller uses this spare cycle to
work on range operations. As long as there is at least one
range A stored in a range buffer, the cache controller applies
the respective operation to the next cache line relevant for A,
e.g., clearing a line’s valid bit for an invalidation. The cache
controller keeps track of its progress using an internal register.
It therefore takes at most n spare cycles to apply an operation
to a range spanning n cache lines.

V. EVALUATION

We analyze the performance of CLONE and compare it to
MP and MP-SHM. We first consider individual data transfers
and then look at distributed kernel benchmarks. We perform
all experiments on a non-cache-coherent architecture without
our hardware extensions. Finally, we investigate overhead and
benefit of our cache controller extension.

A. Setup
We conducted all running time measurements on an FPGA-
based implementation of a non-cache-coherent tiled many-

core architecture without our hardware extensions. The ar-
chitecture consists of 4 tiles with 4 cores each. Each tile
forms a coherence island, where cache coherence is guaranteed
by a classical bus snooping protocol. However, there is no
cache coherence between tiles. The tiles are connected by a
network on chip [13] (NoC).

All cores are Gaisler SPARC V8 LEON 3 [14, 15] proces-
sors. Each processor has a private 16 KiB 2-way instruction
cache and a private 8 KiB 2-way write-through L1 data cache.
Additionally, the 4 cores of each tile share a 64 KiB 4-way
write-back L2 cache. Each tile has 8 MiB of SRAM-based on-
chip memory. Message passing between tiles is implemented
using DMA transfers between on-chip memories. One of the
tiles has 256 MiB of DDR3 memory, used as shared memory,
attached to its internal bus. We do not use this tile during
our experiments; hence, the used cores all access the shared
memory via the NoC. The hardware design was synthesized
to a CHIPit Platinum system, a multi-FPGA platform based
on Xilinx Virtex 5 LX 330 FPGAs.

On the software side, we use X10 [16] as our PGAS
language. We use a modified X10 compiler [17] based on
version 2.3, with an adapted compiler backend to generate
SPARC code for our platform. As our operating system, we
use OctoPOS [18]. We compiled all C components of our soft-
ware stack using the official SPARC toolchain [19] provided
by Gaisler. We use platform-specific operations [20, sections
68.3.3 and 71.10.7] to force writebacks or invalidations of
L2 cache lines associated with specific addresses. The MP
approach did not have to split messages in our experiments.

We repeated each experiment 50 times. The standard devia-
tion for all runs was below 0.1%, so we omit giving standard
deviations and report minimum running times.

B. Individual Data Transfers

In the following, we look at individual transfers of pointered
data structures. We transfer a circular doubly linked list,
varying the number of elements n and the size per element E.
Table I shows the speedup of CLONE over MP-SHM for lists
from 1 to 256 elements with element sizes up to 4 KiB.

We see that, in general, speedups increase with increasing
element size and increasing total data size. CLONE is always as
fast as MP-SHM and provides speedups of up to 7.45x. Inter-
estingly, if the object graph consists of many small elements,
CLONE provides little or no benefit over MP-SHM. Here,
the overhead for traversing the object graph, which is needed
for both approaches, dominates and whether we serialize or
clone the data has little influence on the running time. For
object graphs that are significantly larger than the cache size
we observe high speedups. In these cases, serializing the object
graph into a buffer puts heavy load on the memory subsystem,
which is avoided by cloning.

C. Distributed Benchmark Kernels

We now compare the running times of X10 applications
using MP, MP-SHM, and CLONE. We use the X10 programs
from the IMSuite benchmark suite [21] as our test inputs.
IMSuite consists of 12 programs that implement popular,

Table I: Speedup of CLONE over MP-SHM for copying a circular doubly
linked list with n elements of size E.

Element size E (in bytes)

n 26 27 28 29 210 211 212
20 1.32x 1.33x 1.34x 1.35x 1.39x 1.39x 1.40x
21 1.28x 1.30x 1.36x 1.38x 1.45x 1.42x 1.45x
22 1.26x 1.33x 1.36x 1.39x 1.40x 1.47x 1.52x
23 1.25x 1.31x 1.37x 1.38x 1.45x 1.51x 1.58x
2% 1.13x 1.21x 1.31x 1.30x 1.44x 1.57x 1.77x
25 1.05x 1.22x 1.27x 1.36x 1.54x 1.73x 1.86x
26 1.01x 1.17x 1.30x 1.47x 1.68x 1.78x 1.84x
27 1.03x 1.16x 1.33x 1.54x 1.69x 1.77x 5.62x
28 1.04x 1.19x 1.36x 1.54x 1.70x 5.20x 7.45x

mostly graph-based distributed algorithm kernels, such as
computation of dominating sets, spanning trees, and vertex
colorings. Being distributed in nature means that, when run on
a non-cache-coherent architecture, the programs must commu-
nicate between coherence domains. Hence, they are a good fit
for assessing data transfer performance. The sizes of the test
programs range from 300 loc to 1000 loc.

We use the iterative X10-FA configuration of the benchmark
programs with the input data set of size 64. We use the
running time measurement infrastructure already present in the
programs. We modified the programs so that they contain their
input data as our test platform does not provide a file system.
Input data is read during the initialization phase, which is not
included in the running time measurements.

The upper half of Table II shows the running times of
all benchmarks for the three tested variants. First, we see
clear differences in the running times between the three
variants, which means that due to their distributed nature,
the benchmark kernels spend a significant portion of their
running time for communication. We see that exploiting shared
memory for data transfers on non-cache-coherent architectures
is crucial: for most benchmarks, there is a large gap between
MP and the other two variants as MP does not exploit shared
memory.

The lower table half shows the reduction of the time spent
for communication as well as the overall speedup of CLONE
over MP and MP-SHM. We instrumented the programs to
determine the time spent for communication. On average,
CLONE provides a 34.5% reduction in communication time
relative to MP, translating into an average speedup of 1.17x.
Compared to MP-SHM, CLONE achieves an average com-
munication time reduction of 8.1%, resulting in an average
speedup of 1.05x.

For every test case, CLONE is at least as fast as MP-
SHM. Here, the speedup depends on how expensive it is to
serialize the data structures transferred by the test cases. In-
strumentation revealed that the programs where the speedup is
significantly above average frequently transfer larger pointered
data structures, e.g., of size 8 KiB for MST, where CLONE
achieves a communication time reduction of 39.8%, resulting
in a speedup of 1.24x.

D. Hardware Support

We implemented our proposed range operations as an ex-
tension to the cache controller of the Gaisler LEON3 pro-
cessor [14]. Table IIT shows that compared to the unmodified
cache controller, about 15% of additional logic is necessary
to implement non-blocking range operations with one range
buffer on the Xilinx XUPVS5 Virtex-5 FPGA.

As explained in Section IV, our implementation needs at
most n spare cycles to execute a range operation on a range
spanning n cache lines. We instrumented the programs from
IMSuite and found that the average object graph size is
257.3 B. On our system, the minimum cache line size is 16 B.
Hence, there must be at least 17 spare cycles between two
range operations to avoid blocking. Analysis of the generated
code for performing writebacks and invalidations showed that
this is fulfilled. In both cases, we use a resizable hash set
to detect cycles in the object graph. Operating on the hash
set involves enough arithmetic and control flow instructions
to hide the range operation’s latency. Therefore, executing a
range operation during CLONE takes one cycle from the view
of the processor for the average object graph.

VI. RELATED WORK

Data Transfers: Urefia et al. [11] present an MPI im-
plementation that transfers large messages via shared memory
on the Intel SCC. This is basically the MP-SHM approach,
however, shared memory is marked uncacheable, thus Urefia
et al. do not need to force writebacks or invalidations. There is
prior work on using X10 on the Intel SCC [22]. However, the
authors used the default MP approach. Christgau et al. [12]
present an approach for software-managed cache coherence to
accelerate MPI one-sided communication on the Intel SCC. In
contrast to our work, they only consider flat objects.

Most closely related is the work of Prescher et al. [23, 24].
They present MESH, a C++ framework for distributed shared
memory that supports non-cache-coherent architectures. While
we focus on data replication, MESH allows choosing be-
tween different sharing models (replication, central instance,
and mixtures of both). However, MESH is library-based as
opposed to our compiler- and language-based approach. As
such, existing software must be modified to be used with
MESH. Moreover, their implementation requires a consistency
controller object per shared object and triggers additional
communication for coherence management. We avoid this
overhead, as we manage coherence in a more restricted en-
vironment under control of the compiler.

The evaluation of all previously mentioned papers was
hindered by the fact that the SCC does not provide fine-
grained cache control. This supports our case for range-based
cache operations. To the best of our knowledge, it makes
our evaluation the first to investigate software-based cache
coherence on a non-cache-coherent architecture with fine-
grained cache control.

Range-Based Cache Operations: Range-based cache op-
erations have been implemented before. The ARM1136J(F)-S

Table II: Upper half: Running times (in seconds) of all test programs from IMSuite for each of the three variants MP, MP-SHM, and CLONE.
Lower half: Reduction of communication time and overall speedups of CLONE over MP and MP-SHM.

Benchmark

BF DST BY DR DS MIS KC DP HS LCR MST VC Geomean
MP 1.30 9.35 736.79 83.22 50.92 1.75 27.10 36.59 43.86 14.24 69.82 1.60
MP-SHM 1.17 7.94 677.27 8213 47.24 1.60 25.86 34.14 34.81 1192 62.87 1.30
CLONE 1.13 7.35 658.39 80.42 4549 1.57 25,84 3261 34.00 11.88 50.70 1.26
Reductionyp 33.7% 57.6% 282% 225% 22.0% 33.7% 125% 352% 56.2% 49.0% 50.9% 50.1% 34.5%
Reductionyp-sum 9.7% 28.4% 8.6% 15.0% 8.3% 7. 7% 0.3% 17.3% 9.9% 1.8% 39.8% 9.5% 8.1%
Speedupmp 1.15x 1.27x 1.12x 1.03x 1.12x 1.12x 1.06x 1.12x 1.29x 1.20x 1.38x 1.27x 1.17x
Speedupyp-sum 1.03x 1.08x 1.03x 1.02x 1.04x 1.02x 1.00x 1.05x 1.02x 1.00x 1.24x 1.03x 1.05x%
Table III: Additional resources for the implementation of non-blocking

REFERENCES

range operations compared to original cache controller.

Additional resources

absolute relative

Slices 1489 15.2%

Register 623 14.6%

LUT 1491 15.0%
BRAM 1 4.9%

processors [25, sec. 3.3.17] can perform writebacks and in-
validations of address ranges via a system control coproces-
sor. In contrast, our concept does only require an enhanced
cache controller instead of a full-blown coprocessor. Other
articles [12, 24] conclude that cache operations working on
address ranges are desirable on non-cache-coherent architec-
tures. However, to the best of our knowledge, our work is
the first to explore an actual hardware implementation in the
context of such an architecture.

VII. CONCLUSION

In this paper, we proposed a new technique to transfer point-
ered data structures on non-cache-coherent shared memory
systems. Our novel cloning approach avoids serialization by
managing cache coherence in software at object granularity.
We presented a compiler-assisted implementation for PGAS
languages that is fully automatic, safe, and has zero overhead.
Our experimental results using a distributed-kernel benchmark
suite show that using our technique reduces communication
time by up to 39.8%. Additionally, we demonstrated that
cache operations on address ranges are desirable on non-
cache-coherent architectures. We showed that for 15% addi-
tional hardware resources, an existing cache controller can
be extended with an efficient non-blocking implementation
of range operations. Our approach forms a new point in the
design space of non-cache-coherent shared memory systems:
the PGAS model hides shared memory from the user (as it is in
general unsafe to use due to missing cache coherence) but data
transfers of pointered data structures are accelerated through
a compiler-assisted approach that exploits shared memory.

Acknowledgments: Thanks to the whole InvasIC team, espe-
cially those who helped to build the platform used in the eval-
vation, and to Michael Mechler for implementing the range
operations. This work was supported by the German Research
Foundation (DFG) as part of the Transregional Collaborative
Research Center “Invasive Computing” (SFB/TR 89).

(1]
(2]

(3]
(4]
(3]
(6]
(7]
(8]

(9]
(10]

(1]

[12]

(13]

(14]

[15]
(16]

(17]
(18]
(19]
(20]
(21]
[22]

(23]

(24]

(25]

B. Choi et al., “Denovo: Rethinking the memory hierarchy for
disciplined parallelism,” in PACT, 2011, pp. 155-166.

S. Kaxiras et al., “SARC coherence: Scaling directory cache
coherence in performance and power,” IEEE Micro, vol. 30,
no. 5, pp. 54-65, Sept 2010.

J. Howard et al., “A 48-core IA-32 message-passing processor
with DVFS in 45nm CMOS,” in ISSCC, Feb 2010, pp. 108-109.
N. P. Carter et al., “Runnemede: An architecture for ubiquitous
high-performance computing,” in HPCA, 2013, pp. 198-209.
S. Lyberis et al., “Formic: Cost-efficient and scalable prototyp-
ing of manycore architectures,” in FCCM, 2012, pp. 61-64.

Y. Durand et al., “Euroserver: Energy efficient node for euro-
pean micro-servers,” in DSD, August 2014, pp. 206-213.

J. H. Kelm et al., “Cohesion: A hybrid memory model for
accelerators,” in ISCA, 2010, pp. 429-440.

T. J. Ashby et al., “Software-based cache coherence with
hardware-assisted selective self-invalidations using bloom fil-
ters,” IEEE TC, vol. 60, no. 4, pp. 472-483, Apr. 2011.

X. Zhou et al., “A case for software managed coherence in
manycore processors,” in USENIX, 2010.

S. V. Adve et al., “Comparison of hardware and software cache
coherence schemes,” in ISCA, 1991, pp. 298-308.

I. A. C. Urena et al., “RCKMPI - lightweight MPI implementa-
tion for Intel’s single-chip cloud computer (SCC),” in EuroMPI,
2011, pp. 208-217.

S. Christgau et al., “Software-managed cache coherence for fast
one-sided communication,” in PMAM, 2016, pp. 69-77.

J. Heisswolf et al., “The invasive network on chip - a multi-
objective many-core communication infrastructure,” in ARCS,
Feb. 2014, pp. 1-8.

Cobham Gaisler, “LEON 3, http://gaisler.com/index.php/
products/processors/leon3, retrieved on 2016-09-09.

SPARC Inc., “The SPARC architecture manual, version 8.”

V. Saraswat et al., “X10 language specification,” IBM, Tech.
Rep., June 2015.

M. Braun et al., “An X10 compiler for invasive architectures,”
Karlsruhe Institute of Technology, Tech. Rep. 9, 2012.

B. Oechslein et al., “OctoPOS: A parallel operating system for
invasive computing,” in SFMA, 2011, pp. 9-14.

Cobham Gaisler, “LEON bare-C cross compilation system.”
Cobham Gaisler, “GRLIB IP Core User’s Manual.”

S. Gupta and V. K. Nandivada, “IMSuite: A benchmark suite
for simulating distributed algorithms,” Journal of Parallel and
Distributed Computing, vol. 75, pp. 1-19, 2015.

K. Chapman et al., “X10 on the single-chip cloud computer,”
in X710, 2011, pp. 7:1-7:8.

T. Prescher, R. Rotta, and J. Nolte, “Flexible sharing and
replication mechanisms for hybrid memory architectures,” in
MARC, vol. 55, 2011, pp. 67-72.

R. Rotta, T. Prescher, J. Traue, and J. Nolte, “Data sharing
mechanisms for parallel graph algorithms on the Intel SCC,” in
MARC, 2012, pp. 13-18.

ARM, ARM1136J-S technical reference manual, r1p5 ed., 2009.

