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Abstract
Register allocation is one of the most time-consuming parts of

the compilation process. Depending on the quality of the register
allocation, a large amount of shuffle code to move values between
registers is generated. In this paper, we propose a processor archi-
tecture extension to provide register file permutations by which
the shuffle code can be implemented more efficiently. We present
compiler support to utilize this extension, an evaluation regard-
ing performance and compilation time using the SPEC CINT2000
benchmark, as well as an analysis of area and frequency overhead of
our architecture implementation. We find that using our extension,
the number of executed instructions is reduced by up to 5.1% while
the compilation time is unaffected.

1. Introduction
Static Single Assignment (SSA) form has become a key property

of modern compiler intermediate languages [1, 8, 25]. SSA form
introduces the concept of φ-functions that select one of their
arguments depending on the control flow. While the semantics
of φ-functions are precisely defined, φ-functions are a theoretical
construct and must be translated into primitive machine operations
during code generation. This process is often called SSA elimination
or SSA destruction.

Traditionally, SSA form is destructed before register allocation
to make the resulting intermediate code compatible with non-SSA-
aware register allocators. However, premature SSA destruction
unnecessarily constrains register allocation [19]. Research in SSA-
based register allocation has lead to register allocators that directly
work on intermediate code in SSA form and sustain the SSA
property until after register allocation [5, 11, 21]. Here, the φ-
functions are still present in the register allocated program.

x = . . . ;
y = . . . ;
i f ( . . . ) {

t = x ;
x = y ;
y = t ;

}
a = x ;
b = y ;

(a) Source code.

x〈r1〉 = . . .
y〈r2〉 = . . .
condjump

a〈r1〉 = φ(x〈r1〉, y〈r2〉)
b〈r2〉 = φ(y〈r2〉, x〈r1〉)

(b) After register allocation.

x〈r1〉 = . . .
y〈r2〉 = . . .
condjump

a〈r1〉 = φ(x〈r1〉, y〈r1〉)
b〈r2〉 = φ(y〈r2〉, x〈r2〉)

r1 r2

(c) Inserted shuffle code.

Figure 1: SSA-based register allocation; x〈R〉: value x is kept in register R.

[Copyright notice will appear here once ’preprint’ option is removed.]

Figure 1a shows a simple program that defines two variables
x and y, swaps them if some non-constant condition holds, and
subsequently uses x and y. The control flow graph of the program in
SSA form after SSA-based register allocation is shown in Figure 1b.
We use the notation x〈R〉 to denote that the value x is kept in register
R at this program point. The conditional swapping of x and y in
the source program is completely encoded in the φ-functions. For
example, the first φ-function selects its first argument if the left
branch is taken and selects the second argument if the right branch
is taken, which complies with the semantics of the original program.

However, the φ-functions now choose between values held
in different registers. As no regular processor directly offers φ-
instructions, the φ-functions must be implemented using shuffle
code that compensates for register mismatches. In the example from
Figure 1b, this means that the compiler has to insert shuffle code that
swaps the contents of registers r1 and r2 in the second basic block.
In general, shuffle code must be also inserted before instructions
with register constraints if the required value is not already in the
correct register.

The amount of shuffle code that has to be inserted directly de-
pends on the quality of the copy coalescing that has been performed
during register allocation. Copy coalescing tries to reduce the cost
for moving values between registers as much as possible. As copy
coalescing is NP-complete [6], reducing the amount of shuffle code
comes at great cost in terms of compilation time. Therefore, in cer-
tain scenarios like just-in-time compilation, a high amount of shuffle
code cannot be avoided.

The semantics of φ-functions dictate that all φ-functions in a
basic block must be evaluated simultaneously. Hence, shuffle code
consists of parallel copy operations. We can visualize a parallel
copy using a register transfer graph (RTG). An RTG is a directed
graph, where nodes represent registers and edges represent copy
operations between registers. Every node has at most one incoming
edge, so each register contains an unambiguous value after all copy
operations have taken place. We will revisit RTGs in more detail
in Section 5. In our example, the RTG that is depicted in Figure 1c
states that r1 must be transferred to r2 and, in parallel, r2 must be
transferred to r1, effectively swapping r1 and r2.

r0 r1 r2 r3 r4 r5 r6 r7 r8

Figure 2: A more complex register transfer graph.

Generally, RTGs can be more complex, as shown in Figure 2. On
regular processor architectures, RTGs must be implemented using
register-register copies and, if existent, register-register swaps. For
large RTGs, this can lead to a substantial amount of code being
generated. Hence, it is desirable to be able to implement RTGs more
concisely, ideally with a single instruction. This would require fewer
instructions, and thus decrease code size and increase performance.

However, to implement an RTG in a single instruction, that
instruction would need to perform several write accesses to the
register file. In the example RTG from Figure 2, the value from r6
has to be written to both r2 and r7. As write ports on a register
file are expensive [14, 15, 32], that instruction could only be
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implemented as a multi-cycle instruction performing one write
access per cycle, but that would give away all performance benefits.

This paper proposes an alternative that, instead of modifying
the actual register contents in the register file, modifies the access
to the registers similar to register renaming. For the example in
Figure 1c, rather than exchanging the contents of registers r1 and r2,
just the access to these two registers is exchanged. The read access
to r1 in the last basic block will therefore lead to a read access
of r2 in the register file. This kind of register renaming is only
possible for permutations, e.g. exchanging two registers or the cycle
r2 → r3 → r4 → r5 → r6 from Figure 2. Permutations guarantee
that the number of accessible registers is not changed and that the
accessible contents are not changed. Therefore, permutations can
be implemented as a kind of register renaming (more background
information about permutations is summarized in Section 3). The
advantage of focusing on permutations of the register names rather
than exchanging the actual register contents is the reduced size of the
write ports. A register address (e.g. 5 bits to distinguish 32 different
registers) is typically significantly smaller than the register content
(e.g. 32 or 64 bits), which directly affects the size of the write ports.
The contributions of this paper are as follows:
1. a low-latency hardware implementation that supports permuta-

tions of register names,
2. an instruction set extension to access that hardware,
3. a compiler extension to automatically and efficiently implement

arbitrary RTGs, and hereby also the φ-function, using the ex-
tended instruction set and

4. an extensive evaluation and analysis of the complete system in
real world scenarios.
After discussing related work in Section 2, we present the

mathematical background for permutations in Section 3, followed
by our proposed extensions to the instruction set in Section 4.
Section 5 explains the compiler modifications to implement arbitrary
RTGs using the extended instruction set and Section 6 discusses the
necessary microarchitecture adaptions to implement the extended
instruction set. The results are presented and analyzed in Section 7,
and Section 8 concludes the paper.

2. Related Work
Register Allocation.The most influential approach to register allo-
cation is graph coloring [12]. Here, variables are abstracted to nodes
in the so-called interference graph. Two nodes are connected by an
edge if liveness analysis judged the two corresponding variables
live at the same time. A coloring of that graph then yields a correct
register allocation. In terms of coalescing (i.e. the reduction of copy
instructions in the code), two copy-related nodes in the interference
graph are fused. This can increase the register demand of the pro-
gram which in turn can lead to additional spill code. Hence, the
coalescing approach of original graph coloring is called aggressive
coalescing. Chaitin also showed that for every undirected graph there
exists a program, which has that graph as its interference graph [12].
Hence, graph coloring register allocation is NP-hard.

Over the last decades, this technique has been improved and dif-
ferent coalescing techniques have been proposed. Briggs et al. [10]
derived criteria for conservative coalescing, which means that co-
alescing will never trade a copy for a spill. Park and Moon [26]
proposed optimistic coalescing, which is a conservative technique
that tries to undo aggressive coalescing in the case a spill was intro-
duced because of a coalesced copy.

Recently, different articles proposed performing register allo-
cation on SSA-form programs [5, 11, 21]. There, the interference
graph falls into the class of chordal graphs, which makes it colorable
in polynomial time. The difference to traditional graph coloring
allocation is that the φ-functions are still present after register al-
location [21]. The φ-functions in register-allocated SSA programs

correspond to parallel copy operations and can be implemented by
a sequence of swap and copy instructions. Rideau et al. [28] give a
formal proof for the implementation correctness of parallel copies.

Instead of implementing the parallel copies at the place where
the φ-function is (usually the end of the preceding basic blocks),
Bouchez et al. [4] proposed a technique to move the parallel copy
to other places such that its implementation involves fewer copies.
In our compiler, we use a faster but less sophisticated technique,
which leaves more parallel copies in the code. Essentially, we try to
hoist parallel copies inside a block to a location with less register
pressure. However, this technique is not a contribution of this paper
and it was enabled during all measurements presented in Section 7.

In SSA-based register allocation, it is up to the register assign-
ment or a coalescing post pass to find an assignment that involves
as few copies as possible. This problem is again NP-hard even on
SSA-form programs [6, 19]. Various coalescing techniques for SSA-
based register allocation have been proposed. Pereira et al. [27]
and Bouchez et al. [7] propose novel conservative criteria for node
coalescing. Hack and Goos [20] introduce recoloring to improve
a found coloring by trying to assign two copy-related nodes the
same color and [17] present an efficient ILP-based algorithm. Braun
et al. [9] and Colombet et al. [13] present biasing techniques for
the register assignment phase: Usually, the allocator chooses one
register out of a list of free registers. By biasing this choice, those
allocators try to pick the same registers for copy-related variables in
the first place instead of relying on a post pass like recoloring. Since
biasing usually produces colorings of inferior quality compared to
more heavyweight techniques like recoloring or even optimal ILP-
based ones, in this paper we propose to add hardware support to
alleviate some of the overhead of parallel copies.
Register Renaming.The register file permutation concept presented
here is a type renaming for register addresses. Register renaming
is also used to enable out-of-order processing in modern CPUs.
[29] provides an overview on register renaming background and
techniques. The main conceptual difference between permutation
and register renaming is that register renaming is transparent to
software, being a purely hardware-controlled technique, while
permutations are explicitly controlled by software.
Permutation in other ISAs. Permutation of values is supported in
SIMD extensions of some existing instruction set architectures, e.g.
Intel x86 [23] and PowerPC [16]. x86 offers PSHUFB (Packed Shuffle
Bytes) as part of SSE3, which permutes bytes in a 256-bit register,
with the permutation defined in a second operand register. Advanced
Vector Extension (AVX) introduced the VPERM* instructions which
do not perform in-place permutations, but write the permuted value
into a destination register. In addition, VPERM* instructions allow
value duplication. The PowerPC AltiVec extension offers the vperm
instruction, which extracts bytes from 2 128-bit source registers and
arranges them according to a user-definable mask into a 128-bit
destination register. As for VPERM*, value duplication is permitted.

Both ISAs allow permutation only on values within one (or two)
registers, but not between registers. Furthermore, the instructions are
limited to special registers for SIMD processing. For implementing
φ-functions, permutation of multiple general-purpose registers is
required, thus the above mentioned instructions cannot be used.

3. Mathematical Background of Permutations
Permutations can be expressed in cycle notation. In Equation (1),

the two-line notation of permutation σ on the left – with the first
row listing the elements xi and the second row the images σ(xi)
onto which they are mapped – is equivalent to the cycle notation on
the right.

σ =

(
1 2 3 4 5 6
3 5 2 6 1 4

)
= (1 3 2 5)(4 6) (1)
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Cycle notation describes a permutation σ as a product of cycles
(Equation (2)). A cycle ci is constructed by starting with an element
xk, which is not part of any other cycle, and appending the image of
the element σ(xk). The σ operator is applied on the last member of
this cycle, until xk = σd(xk), which is not appended to the cycle.
The cycle length |ci| is d.

σ =
∏

i ci
ci =

(
xk σ(xk) σ

2(xk) . . . σ
d−1(xk)

)
,∀j 6= i : xk /∈ cj

(2)

Elements that are not part of any cycle are fixed points of the
respective permutation, i.e., element xf and its image σ(xf ) are
equal. A cycle c of length d > 2 can be further decomposed into
two cycles c1, c2 with a combined length |c1| + |c2| = d + 1 as
shown in Equation (3).

ci =
(
xk σ(xk) σ(σ(xk)) · · · σd−1(xk)

)
=

(
xk · · · σd1(xk)

)(
σd1(xk) · · · σd−1(xk)

) (3)

For example, cycle (1 3 5) has a length of 3 and can be decom-
posed into cycles (1 3) and (3 5) with a combined length of 4.

As cycles allow for a compact representation of permutations and
any permutation can be decomposed into cycles, our permutation
instruction takes cycles as arguments.

4. Extensions to the Instruction Set Architecture
Permuting the register file is an extension to the base processor

capabilities. We have extended the SPARC V8 ISA [30] with new
permutation instructions that apply permutations to the register file.
Permutations can be expressed in different notations (see Section 3).
We use the cycle notation due to its compactness.

For register file permutation, the maximum length of a cycle
is the amount of logical registers (32 for our implementation).
However, instruction width limits the size of a cycle that can be
expressed by a single instruction. The opcode uses o bits of the
instruction word, leaving n−o bits for encoding a permutation, with
n being the instruction width. For 32 visible registers, dlog2(32)e =
5 bits are required to identify one register (i.e. encode one element
of the cycle). In our implementation for SPARC V8 we need 7 bits
for the opcode, leaving us with 25 bits for encoding the permutation.
This allows us to encode cycles with a length of up to 5 elements as
the immediate of the permutation instruction.

As stated in Section 1, the amount of shuffle code, and therefore
also the average size of an RTG depends on the quality of copy
coalescing. Using programs from the CINT2000 benchmark suite,
we found that for realistic coalescing schemes, the average size of
an RTG was 4.6 or less. Small RTGs with less than 5 nodes were
far more frequent than RTGs with more than 5 nodes. Therefore,
the ability to encode permutations of maximum size 5 matches the
needs when implementing RTGs. We will present more elaborate
results on the properties of RTGs in Section 7.2.

An alternative approach for encoding permutations is storing
the permutation in a register. However, this would only increase
the maximum cycle length to 32/dlog2(32)e = 6-element cycles,
while sacrificing one register.

We have extended the SPARC V8 ISA with two instructions for
permuting register files: (i) permi5 applies a 5-cycle permutation
and (ii) permi23 applies a 2-cycle and a 3-cycle permutation, with
both cycles completely independent (i.e. no element from one cycle
is part of the other cycle). Both instructions use the same format,
given in Figure 3. The instructions have 5 operands, a, b, c, d and
e. Due to limitations of the free opcode space, a cannot be encoded
as 5 consecutive bits, but has to be split into the upper 3 bits a1 and
the lower 2 bits a2. For permi5, each argument corresponds to a
member of the 5-cycle; For permi23, a and b encode the 2-cycle,
while the 3-cycle is encoded with c, d, e. Cycles shorter than 5 are

0001 000a1 b c d e
31 27 21 19 14 9 4 0

a2

24

Figure 3: Format for permutation instructions, implemented for the SPARC V8 ISA.

encoded by repeating the last member of the cycle until permi5 has
5 elements, e.g.:

p e r m i 5 % r 2 , % r 3 , % r 3 , % r 3 , % r 3

would encode a swap of %r2 and %r3. permi23 can be used to
encode two 2-cycles using the same technique. The permi5 and
permi23 instructions are discerned by the hardware by comparing
the first two operands. If the register numbers are in ascending order
(i.e. a < b), the instruction is interpreted as permi5, otherwise as
permi23. In the remainder of the paper we will use permi when
referring to either permutation instruction.

5. Code Generation for Register Transfer Graphs
A register transfer graph (RTG) is a directed graph G = (V,E),

where a node v ∈ V represents a register and an edge (v, v′) ∈
E ⊆ V × V represents a copy operation that copies the value from
source register v to destination register v′. All copy operations in an
RTG are assumed to be performed in parallel. Therefore, each node
in the graph has at most one incoming edge, because the register
content is undefined if multiple concurrent copy operations write to
the same destination register. However, a node can have multiple
outgoing edges, which means that the register value is duplicated.

r0 r1 r2 r3 r4 r5 r6 r7 r8

Figure 4: Example register transfer graph.

Figure 4 shows a possible register transfer graph. In this case, the
graph has three connected components, i.e. three register transfer
subgraphs with disjoint node sets and disjoint edge sets. Each
component of an RTG is itself a valid RTG. In the example, the left
component, involving the registers r0, r1 and r2 expresses a cyclic
copying of values. In the following, we will call such components
cycles. A register transfer graph G1 = (V1, E1) is a cycle iff it is
connected and each node v ∈ V1 has exactly one incoming edge and
exactly one outgoing edge. The middle component shows a chain. A
register transfer graph G2 = (V2, E2) is a chain iff there is exactly
one node vS ∈ V2, the start node, with no incoming edges, exactly
one node vE ∈ V2, the end node, with no outgoing edges and there
exists a path of length |V2| from vS to vE . The component on the
right consists of a subgraph that swaps the contents of registers r6
and r7, and a subgraph that copies r7 to r8. However, this graph
does not consist of a cycle and a chain because the two subgraphs
are intertwined and do not comply with the definitions of cycle and
chain. It is, however, still a valid RTG because there does not exist a
node with more than one incoming edge.

5.1 Implementing RTGs on Regular Machines
When implementing an RTG, special care has to be taken that

the parallel copy semantics are preserved. On traditional machines,
implementing a given RTG G works as follows [19]:
1. While there is a node n with no outgoing edges: There must

be exactly one edge (n′, n) with n 6= n′ and we can insert a
register-register copy n′ → n, because the value in register n is
not needed anymore. Remove the edge (n′, n) from G’s edge
set and repeat step 1.

2. Now G is either empty or consists solely of cycles. Cycles of
length 1 (self-loops) do not generate any instructions. All cycles
of length 2 or greater can be implemented as follows:
• If there is a free register rt, a cycle (r1, . . . , rk) can be

implemented by k + 1 copies following the scheme rk →
rt, rk−1 → rk, . . . , rt → r1.
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• If there is no free register, a cycle of length k can be decom-
posed into k − 1 transpositions, which can be implemented
using k − 1 register-register swap instructions. If the instruc-
tion set does not offer a swap instruction, we can implement
each transposition using 3 xor instructions, requiring 3·(k−1)
xor instructions for the complete cycle.

5.2 Implementing RTGs Using Permutation Instructions
If permutation instructions are available, they can be exploited

during code generation for RTGs. To recap the capabilities of our
permutation instructions: the permi5 instruction can implement a
single cycle of maximum size 5, i.e. a cycle of size 2, 3, 4 or 5,
while the permi23 instruction can implement two cycles, the first
of which must be a cycle of size 2 and the second cycle can either
be of size 2 or 3.

The central questions at this point are:
1. Which RTGs can be implemented using only permutation instruc-

tions and no additional copies?
2. How can the remaining RTGs be converted into a form that can

then be implemented using permutation instructions and as few
additional copies as possible?

The first question can be answered concisely: every RTG that only
consists of cycles can be directly implemented using permutation
instructions. We say that such RTGs are in permutation form, as
a product of cycles defines a permutation. Thus, finding a valid
implementation for a graph in permutation form using only the
permi instructions is straightforward: Cycles of maximum size 5
can be directly translated into one permi5 instruction, while larger
cycles can be decomposed into a product of cycles of maximum
size 5 and then expressed using a series of permi5 instructions. In
general, this does not generate a short instruction sequence, because
it does not make use of the permi23 instruction. We will revisit the
problem of finding a good solution for expressing a given RTG in
permutation form using permutation instructions in Section 5.2.2.

5.2.1 Conversion into Permutation Form
This leaves the second question: how can the remaining RTGs be

converted into permutation form? First, let us look at chains. Chains
can be easily converted into cycles. Take the chain r3 → r4 → r5,
the middle component from Figure 4, as an example. Note that
because there is no self-loop r3 → r3, the value from r3 is only
needed in r4 after the parallel copy operation. Therefore, after the
parallel copy has finished the content of register r3 is irrelevant
to further program execution and r3 can be overwritten with an
arbitrary value. This allows us, as shown in Figure 5, to add the
artificial edge r5 → r3 to the graph, thereby converting it to a cycle
and reducing it to the aforementioned case.

r3 r4 r5 → r3 r4 r5

Figure 5: Converting a chain into a cycle by adding the artificial edge r5 → r3.

However, the rightmost component of the register transfer graph
from Figure 4 is neither a cycle nor a chain. The fundamental
problem with this class of graphs is that they duplicate values.
In the example, the value from r7 is written to both r6 and r8.
Permutations are injective functions, so a duplication of values is
inherently impossible. Therefore, the RTG must be modified in a
way that allows the conversion of at least a part of the graph into
permutation form. The general goal here is to make the resulting
graph as big as possible and to preserve existing cycles in the RTG
to maximize the potential benefit of using permutation instructions.

We will convert the original RTG into an RTG in permutation
form and a list of copy instructions that must be executed after the
instructions that implement the graph itself. At each node in the
graph that has more than one outgoing edge, the conversion must

keep exactly one of the edges and express all other edges by copy
instructions.

r6 r7 r8 → r6 r7 + r6 r8

Figure 6: Example for conversion of a graph, which is neither a cycle nor a chain, into
a graph in permutation form and a list of additional copies.

Consider the example in Figure 6, which is the right component
of the RTG from Figure 4. As outlined before, we can either keep
edge (r7, r6) or edge (r7, r8), and express the other one with a copy,
to obtain an RTG in permutation form. To prevent splitting the cycle,
we express (r7, r8) with a copy instruction in this case. However,
by doing this, we would not preserve the semantics of the parallel
copy because the copy instruction for (r7, r8) would be executed
after the instruction that implements the cycle and thus after r7 is
modified. Therefore, we have to copy r6 to r8 after the permutation
of values has taken place. Restoration of values is always possible
because permutations are injective functions, hence all values are
still accessible after a value permutation, even though they are held
in different registers.

In general, each connected component can contain at most one
cycle, as otherwise there would be a node with more than one
incoming edge. Each node of the cycle can in turn be the root of a
tree. Because we preserve the cycle, as described in the previous step,
we must now process the tree. Our goal here is, as mentioned before,
to require as few copies as possible and thus make the resulting RTG
in permutation form as big as possible.

r0

r1

r2 r3

r4

r5

r6

r7

r8

→

r0 r2 r3 r5 r8

r4 r7
+

r2 r1 r5 r6

r3 r4

Figure 7: Conversion of a tree-shaped RTG into a graph in permutation form and a list
of additional copies.

We use the following heuristics to transform a tree-structured
RTG G into another RTG G′ in permutation form and an associated
list of copy instructions: at each node r in G that has more than
one outgoing edge, we choose to keep the edge (r, r′) that is part
of the longest path starting from r. Consider the example from
Figure 7. There are three nodes that have more than one outgoing
edge: r0, r2 and r3. For example, at node r2 we can keep either
(r2, r3) or (r2, r4). In this case, we keep (r2, r3) because the path
(r2, r3, r5, r8) is longer than the path (r2, r4, r7).
5.2.2 Decomposition into Cycles

After this conversion is done, the resulting RTGG′ will only con-
sist of cyclic components. In other words, the graph now represents
a register permutation, expressed as a product of cycles. This per-
mutation must now be implemented with as few permi instructions
as possible. To start, let us look at an example where generating
optimal code is not immediately obvious.

r0 r1 r2 r3 r4 r5 r6 r7 r8

Figure 8: A sample RTG after conversion into permutation form.

Figure 8 shows an RTG consisting of a 3-cycle and a 6-cycle. A
simple code generation approach considers the graph components
in separation. Thus, it would first generate code to implement
the 3-cycle, which can be done with a single permi5 instruction.
The 6-cycle can be split up into a 5-cycle and a 2-cycle, thereby
requiring two permi5 instructions. However, this is not optimal, as
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the 3-cycle and the 2-cycle that has been split off the 6-cycle can
be implemented by a single permi23 instruction. Therefore, it is
crucial not to examine components in separation but to consider all
of them simultaneously.

We propose a greedy algorithm for finding a short permi
instruction sequence that implements a given RTG in permutation
form. The idea behind the algorithm is as follows. Implementing
an n-cycle requires n − 1 transpositions. The permi5 instruction
implements a cycle of maximum length 5, so it implements at most
4 transpositions. The permi23 instruction implements a cycle of
length 2 and a cycle of maximum length 3, a total of at most
1 + 2 = 3 transpositions. In this sense, the permi5 instruction
is more powerful than the permi23 instruction, because it can
implement one additional transposition.

This means that if there is a cycle of length 5 or more, it is
always optimal to emit as many fully-utilized permi5 instructions as
possible until the cycle size has been reduced to less than 5. It is also
optimal to implement 4-cycles with one permi5 instruction, even if
this leaves one transposition unused. Initially, it seems worthwhile to
split a 4-cycle c4 into a 2-cycle c2 and a 3-cycle c3 and to combine
them with other small cycles using the permi23 instruction. For
example, we could implement c2 and another 3-cycle c′3 using a
permi23 instruction, leaving us with c3. However, we now have
implemented one 4-cycle using one instruction, because we started
with c4 and c′3 and ended up with c3, so we could have also used
a permi5 for the 4-cycle. The same reasoning can be applied for
c3. Hence, only if multiple 2-cycles or 3-cycles are available at the
same time, the permi23 instruction has to be used.

Algorithm 1 Greedy algorithm for finding a short permi instruction
sequence to implement an RTG in permutation form.

implementRegisterTransferGraph(rtg):
insns← [] # List of generated instructions, initially empty
(longs, shorts)← collectCycles(rtg)

# First phase: only emit permi5 instructions
while longs 6= []:

cycle← longs.take()
while cycle.length() ≥ 4:

(cycle’, remainder)← split(cycle)
insns.add(Permi5(cycle’))
cycle← remainder

if cycle.length() > 0:
shorts.add(cycle) # Remember remainder

# Second phase: try to fully utilize permi23 instructions
(twos, threes)← sort(shorts)
while (twos 6= [] or threes 6= []):

if threes 6= []:
if twos 6= []:

insns.add(Permi23(twos.take(), threes.take()))
else if threes.size() ≥ 2:

(cycle2, cycle2’)← split(threes.take())
insns.add(Permi23(cycle2, threes.take()))
twos.add(cycle2’)

else:
insns.add(Permi5(threes.take()))

else if twos 6= []:
if twos.size() ≥ 2:

insns.add(Permi23(twos.take(), twos.take()))
else:

insns.add(Permi5(twos.take()))

Algorithm 1 shows the pseudo code of our greedy algorithm to
find a short sequence of permi instructions that implement a given
RTG in permutation form. We assume that 1-cycles (self-loops) have
been filtered out. The list operation take() is a destructive operation
that removes a list element and returns it. The algorithm consists
of an initialization step and two phases. During initialization, the
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Figure 9: Defining a new permutation using the permi5 instruction.

algorithm sorts all cycles into two lists: long cycles of length 4 or
more and short cycles of lengths 2 or 3. During the first phase, the
algorithm generates permi5 instructions for each long cycle until
its length has been reduced to 3 or less. The remaining cycle (if any)
is added to the list of short cycles. After the first phase has finished,
the list of long cycles is empty.

The second phase aims to fully utilize the permi23 instruction
by trying to implement multiple short cycles using one instruction.
If there is at least one 3-cycle left, we already found a perfect match
for the second part of our permi23 instruction. Therefore we want
to utilize the ability to swap two additional registers as well, if
possible. If there is a 2-cycle, it is certainly optimal to use it. If there
are no 2-cycles but other 3-cycles left, we split a 3-cycle into two
2-cycles, use one to fill our permi23 instruction and remember the
other one. Finally, if the 3-cycle was the last cycle left to implement,
we generate a permi5 instruction and are done. If we do not have
3-cycles but only 2-cycles left, we use a permi23 if we have at least
two 2-cycles and otherwise a permi5 for the last 2-cycle.
5.2.3 Time Complexity

We will analyze the worst case complexity of the algorithm
for an input RTG with n nodes. As each node has at most one
incoming edge, n is also an upper bound for the number of edges.
The conversion step needs to find all cycles in the graph, which
can be done in O(n) using, e.g., Tarjan’s SCC algorithm [31].
Additionally, the longest path starting from each node in the resulting
trees must be determined, which can also be done in O(n) using a
depth-first search.

The greedy decomposition algorithm generates one instruction
per iteration, thereby reducing the input size by at least 1 each
iteration. Hence, n is an upper bound for the number of iterations.
As splitting a cycle only takes constant time, the amount of work
done per iteration is in O(1), and thus the whole decomposition is
in O(n). In total, this leads to a linear worst case complexity.

6. Architecture Support for Register Permutation
6.1 Fundamental Pipeline Modifications

We present our implementation for hardware-based SSA support
using an in-order SPARC V8 architecture [30], however, the concept
is not restricted to this particular ISA or microarchitecture. The
underlying processor for the presented implementation is a Gaisler
LEON 3 [2], which uses an in-order 7-stage pipeline. An instruction
is retrieved in the Fetch stage, decoded in the Decode stage, and
operands are retrieved from the register file in the Register stage. For
arithmetic and branch instructions, the respective operation is done
in the Execute stage, while memory operations (e.g., Load & Store)
perform their operation in the Memory stage. The Exception stage is
used for interrupt and trap handling, and the result of an instruction
(if any) is written back to the register file in the Writeback stage. In
SPARC V8 architectures the register file is organized in multiple
register windows. While the register file may have enough space for
136 entries in an implementation with 8 windows, only 32 registers
are visible at a time, defined by the current window pointer. The
current window pointer is incremented or decremented by SPARC
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V8 instructions. Details about register windows can be found in the
SPARC V8 standard [30].

To support register file permutation the main extension is the
permutation table, which stores the current logical-to-physical
mapping of register addresses for all registers (i.e. 136 entries for 8
register windows used in our implementation). This corresponds to
a permutation written in two-line notation (left part of Equation (1)
in Section 3).

Figure 9 shows how a new permutation is applied to the register
file using the permi5 instruction (similar for permi23). The permu-
tation table is initialized with the identity (only registers r5 − r9
are shown), except for r8 and r9 which are exchanged. The process
consists of four steps, all of which happen in the Decode stage:
1. The instruction decoder recognizes a permi5 or permi23 in-

struction and extracts the 5 operands that define the cycles from
the instruction word.

2. As permutations are applied onto already existing permutations,
first the existing permutation is read from the permutation table.

3. Permutation instructions define a permutation on the current
window, thus the current window pointer is used to filter the
entries of the current window from the existing permutation that
was read in the previous step.

4. The cycle defined by the permutation instruction is applied to
the existing permutation and the resulting permutation is written
back to the permutation table.
The example in Figure 9 shows the resulting new permutation

that is written to the permutation table. According to the permi5
instruction, r5 should become r9, but as in the existing permutation
in the permutation table r9 is currently in r8, r5 becomes r8.
Figure 10 presents the pipeline activities of an add instruction
immediately following this permi5 instruction. It shows how the
existing permutation is applied to all register addresses before
accessing the register file.

p e r m i 5 % r 5 , % r 9 , % r 7 , % r 6 , % r 8
a d d % r 9 , % r 5 , % r 7 ; N o t e : % r 7 i s d e s t i n a t i o n reg i s t e r

Permutation instructions do not induce read-after-write hazards
in the pipeline, thus no extension of the pipeline forwarding logic
is required for permutation support. This is due to permutation
instructions committing their changes in the Decode stage, thus once
the following instruction (add in the example) is in the Decode stage
one cycle later, the permutation table has already been updated with
the new permutation. We call this characteristic early committing.

At system reset the permutation table is initialized with the
identity permutation, i.e. the physical address of a register is the
same as its logical address. Subsequent permutation instructions
change the permutation table. Permutations are transparent to the
operating system (OS), so OS code for context switches does not
need to be modified. For instance, if the OS wants to save r5 from a
task (to restore it later), it will actually access the physical register
where the value of r5 is currently stored (r8 in Figure 10). When

restoring r5 later, it may be written to a different register, however,
an access to r5 will provide the same data that was initially saved.

6.2 Exception Handling — Background and Issues

The architecture outlined in the previous section is capable of
executing programs using permutation instructions, unless traps are
encountered during execution. The SPARC V8 standard specifies
3 categories of traps: precise traps are induced by particular in-
structions, e.g. unknown instructions, trap-on-condition instructions
or instructions causing a register window overflow or underflow.
Deferred traps are caused by floating point and co-processor instruc-
tions and become visible after the instruction that caused them has
committed. Interrupting traps are caused by external interrupts, e.g.
timer interrupts or IO components notifying the processor that a
buffer is full. A bare metal program that does not use any IO com-
ponents and uses the register window in a way that does not incur
over- or underflows (e.g. by compiling the program in a way that
does not change the register window during function calls), can be
executed without encountering any traps. However, when executing
on a multi-tasking OS, the program is likely to be interrupted, e.g.
by the timer used to periodically invoke the OS scheduler, by the
page fault handler, by interrupts caused by peripherals, etc.

In the underlying architecture, traps are handled in the Exception
stage – the following issues would not occur, if trap handling was
performed in the earlier Decode stage.

After the trap handler code has finished, the program counter and
next program counter are restored and regular program execution is
resumed. It has to be ensured that instructions are not executed twice,
i.e. instructions already in the pipeline before the trap is detected
must not first proceed through the pipeline at the start of the trap
handler and then be executed again after the old program counter is
restored and the corresponding instruction is reloaded. Therefore,
all instructions already in the pipeline before the Exception stage at
the time of trap detection are automatically annulled by the pipeline.
This ensures that they are executed only once, after trap handling
has finished, and they are loaded into the pipeline again once the
old program counter is restored.

Due to their early committing characteristic, the permutation
instructions cannot be handled using the mechanism described
above, as they already modify the permutation table in the decode
stage. We differentiate between 3 cases for handling permutation
annulling during a trap:
• Permutations in the Fetch stage are flagged with an annul bit,

which inhibits updating the permutation table in the Decode stage.
• Permutations in the Decode stage are notified by a cancel signal,

which is sent at the time a trap is detected in the Exception stage.
In this case, the new permutation is created, but not written back
to the permutation table.
• Permutations in the Register, Execute, Memory and Exception

stages require special handling, as they can no longer be annulled
or cancelled, instead their effects need to be reverted. We discuss
the solution for this case in Section 6.3.
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Figure 12: Traps require reverting of up to 4 permutations, depending on pipeline
state.

It is imperative to handle all 3 cases, otherwise a permutation will
be applied to the register file twice, and registers will not contain
the values the program would expect, leading to a program crash.

6.3 Concept for Exception-safe Permutation
Assuming the permutation state ρ of the register file, a permu-

tation σ that is applied on top of ρ can be reverted by applying the
inverse permutation σ−1:

σ−1(σ(ρ)) = ρ (4)

This allows reversion of all permutations that need to be annulled
due to a trap, by applying inverse permutations in the reverse order
the original permutations were applied. Assuming the pipeline state
at the time of a trap shown in Figure 12, four inverse permutations
need to be applied in the reverse order to restore the original state ρ:

σ−1
1 σ−1

2 σ−1
3 σ−1

4 (σ4σ3σ2σ1(ρ)) = ρ (5)

The implementation of this concept requires that the arguments
(i.e. the cycle) of a permutation instruction are propagated through
the pipeline up to the Exception stage. This requires 4 additional
25-bit wide pipeline registers and 4 corresponding 1-bit registers,
which indicate whether the instruction was a permutation. The
Exception stage is extended to check whether at least one of
the instructions in the Register, Execute, Memory or Exception
stages was a permutation. If no permutations were detected in
these stages, exception handling continues as usual, otherwise the
pipeline is halted and each of the mentioned stages is checked
for a permutation in the order Register → Execute → Memory
→ Exception. If a permutation is detected, an inverse permutation
is computed and applied to the permutation table like a regular
permutation. One inverse permutation can be computed and applied
per cycle, thus permutation inversion can take up to 4 cycles per trap.
Implementing inversion as a multi-cycle operation is necessary to
prevent increasing critical path length (and thus reducing processor
frequency). Inverse permutations can be generated by reversing
the cycle of the original permutation (i.e. reversing the order
of the arguments of the permutation) and applying the resulting
permutation. The extensions for permutation reversion during trap
occurrence are shown in Figure 11 for an example where one
permutation is reverted. The hardware extensions for exception-
safe permutations described in this section are implemented in our
FPGA prototype as well.

7. Experimental Evaluation
Our experimental evaluation consists of three parts: First, we

analyze the structure of the RTGs in our test inputs and investigate
the runtime of our code generation approach. Second, we determine
the quality of the executables produced by our code generation
approach in terms of precise dynamic instruction counts and then
validate these numbers by measuring the actual runtime of the same
executables on our hardware prototype. Third, we discuss the impact
of permutation reversion and present an area and frequency overhead
analysis for our hardware prototype implementation.

7.1 Setup
We have implemented the code generation strategy described in

Section 5 in libFIRM [8]. This compiler features a mature SPARC
backend and multiple completely SSA-based register allocators
and copy coalescing schemes. As compiler input, we used the test

programs contained in the integer part CINT2000 of the CPU2000
benchmark suite [22]. We excluded the program 252.eon from the
measurements because the frontend does not support C++ code.

All compile time measurements were performed on an Intel Core
i7 workstation with 3.4 GHz and 16 GB RAM using Linux kernel
3.5. To measure the quality of the generated code, we modified
QEMU [3] to count the number of executed instructions and to
support our ISA extension consisting of the permi instructions.
Using QEMU, we were able to obtain precise dynamic instruction
counts for the generated executables. All programs were compiled
in soft-float mode because our prototype did not have an FPU.

To validate the results acquired from QEMU, we conducted
runtime measurements on an FPGA prototype implementation of a
CPU supporting our proposed instruction set extension as described
in Section 6, in the following called LEON3-P. The Gaisler LEON
3 CPU served as a basis for this prototype. We synthesized a
LEON 3 System-on-Chip design for the Xilinx Virtex-5 based
ML509 evaluation board, with the CPU configured with 32 kB
instruction cache, 32 kB data cache, 8 register windows, no FPU and
a hardware multiplier. We used a Buildroot Linux (kernel version
2.6.36) distribution for benchmarking.

To test our architecture extension with a varying number of
RTGs and RTGs of varying complexity, we used four different copy
coalescing strategies, ordered from best to worst coalescing quality.

ILP An integer linear programming-based copy coalescer [17].
This produces RTGs with minimal cost according to the cost model.
The cost incurred for a parallel copy is the number of unequally
assigned registers multiplied by the estimated execution frequency
of the parallel copy. Note that the number of unequally assigned
registers is an estimate for the number of copy and swap operations
that have to be generated for the parallel copy. In our experiments,
we set the ILP solver’s timeout to 5 minutes per instance of the
coalescing problem. If the time limit was exceeded, we used the
best solution found so far. Note that exceeding the time limit does
not imply the non-optimality of the found solution. In some cases,
although the solution is optimal, the solver cannot prove this fact in
time. The solver used in these experiments was Gurobi 5.10 [18].

Recoloring A recoloring approach, which is currently one of
the best conservative coalescing heuristics [20], resulting in RTGs
with slightly higher costs.

Biased A biased coloring approach that yields good coalescing
results while offering very fast allocation [9]. For our benchmarks,
we disabled the initial preference analysis. In this configuration, the
approach is highly suitable for just-in-time compilation scenarios.
The generated code contains RTGs of higher cost than with the
recoloring approach.

Naive This approach does not perform any sophisticated copy
coalescing at all. Except for trying to avoid copy instructions because
of register constraints, no effort is made to coalesce copies. In
general, this results in RTGs with high costs.
For each coalescing strategy, we inspected the properties of typical
register transfer graphs occurring in our test programs to estimate
the potential benefit of using permutation instructions. Furthermore,
for each of the four coalescing strategies, we tested two compiler
configurations: one that generated permutation instructions using the
code generation strategy presented in Section 5 and one that emitted
regular SPARC code. For each of the resulting eight compiler
configurations, we measured the compilation time and the quality
of the generated code.

7.2 Register Transfer Graph Properties
The number and properties of RTGs are directly dependent on

the used coalescing strategy, which tries to minimize the cost of
RTGs according to a cost model. For ease of presentation, we will
use the number of RTGs and their average size as an approximation
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for the costs assigned to the RTGs. In general, the number and sizes
of RTGs and their costs are highly correlated. For each coalescing
strategy, we analyzed the number and average size of RTGs over
all programs of the CINT2000 benchmark suite. Moreover, we
checked what percentage of RTGs do not duplicate any values, i.e.
can be implemented only with our permi instructions and without
additional copy instructions.

Number Average No value
Coalescer of RTGs size duplication
ILP (best) 77 783 2.9 74%
Recoloring 78 194 2.9 74%
Biased 178 812 4.6 54%
Naive (worst) 185 035 6.6 89%

Table 1: Register transfer graph properties.

Table 1 show that the number of RTGs as well as the average
complexity of an RTG, represented by its number of nodes, increase
with decreasing coalescing quality. Furthermore, depending on the
coalescing scheme, between about half and almost 90% of the
RTGs did not duplicate any values, i.e. did not need additional
copy instructions. For the RTGs that did need additional copies, on
average 1.26 copies per RTG were needed for the ILP, the recoloring
and the naive coalescing, and 1.99 copies per RTG were needed for
the biased coalescing approach. This means that the vast majority of
RTGs already are in permutation form or very close to it. Thus, few
additional copy instructions must be inserted during the conversion
step presented in Section 5.2.1, and most of the work can be done
using only permutation instructions.

7.3 Compile Time
We measured the runtime of our code generation approach

described in Section 5 compiling the entire CINT2000 benchmark
set and compared it to the default version implemented in libFIRM.

Default [ms] Our code gen. [ms]
RTG impl. (total) 629.1 917.3

conversion 394.3 413.7
decomposition 234.8 503.6

Backend (total) 63 598.0 63 927.0

Table 2: Time spent for RTG implementation during the compilation process.

Table 2 shows the compilation time measurements for the biased
coalescing strategy. This compiler configuration has the fastest
register allocation and copy coalescing while producing a high
number of non-trivial RTGs, which means that the relative compile
time impact of our code generation scheme is larger than in all other
configurations.

We divide the total time needed for implementing RTGs into
the time needed for the conversion step and the time needed for the
decomposition step. The two steps correspond to the conversion
into permutation form and to the cycle decomposition presented in
Section 5. In the default implementation of libFIRM, the conversion
corresponds to the first step presented in Section 5.1 and the
decomposition corresponds to the second step.

We found that the runtime of the initial conversion into permuta-
tion form is nearly identical for both systems. This is not surprising,
considering that, as presented in Section 7.2, at least half of the RTGs
do not require additional copies and thus can be left untouched by
the conversion step. Moreover, if an RTG does require copies, on
average it only requires between one and two copies, depending
on the coalescing scheme. Hence, the conversion step has a low
influence, both on the compile time and on the code quality.

The time needed for the decomposition step increases by a factor
of 2.1. This was to be expected considering the more complex

nature of our permutation instructions. To put these numbers into
perspective, we included the total time spent in the backend, i.e.
the total time for code selection, instruction scheduling, register
allocation and emitting of assembly code. The total time spent in
the backend increases by 0.5%, so the presented code generation
approach does not cause significant overhead.

7.4 Code Quality
We evaluated the quality of the generated code using two

experiments:
1. We performed a full run of the CINT2000 benchmark suite,

collecting precise dynamic instruction counts using our modified
QEMU version.

2. We validated these results by measuring the runtime of the same
executables on our FPGA prototype.

Table 3 shows the absolute number of executed instructions for each
run and the change of the dynamic instruction count of the version
using permutation instructions relative to the regular SPARC version.
The results are shown for each of the four coalescing schemes.

As expected from the numbers presented in Section 7.2, the
benefit of using permutation instructions directly depends on the
quality of coalescing: the worse the coalescing, the higher the
benefit of using permutation instructions. However, regardless of
the coalescing scheme used, every program profited from the use
of permutation instructions. For the biased coalescing scheme,
suitable for just-in-time compilation scenarios, the number of
executed instructions is reduced by up to 5.1%. Even using the
optimal coalescing solution, permutation instructions can reduce the
instruction count by up to 1.9%.

Interestingly, the use of permutation instructions can often more
than compensate for a copy coalescing of lower quality: For 8 of the
11 tested programs, the executable with permutation instructions and
shuffle code produced by the worst copy coalescing scheme (naive)
executes fewer instructions than the regular SPARC version with
shuffle code produced by the next best coalescing scheme (biased).

In some cases, the solution found by the ILP coalescing approach
executes more instructions than the executable produced by the
recoloring scheme, which can happen due to two reasons. First, if
the ILP solver exceeds its timeout, the best solution found up to this
point might be worse than the solution found by the recoloring
scheme. Second, the cost model, which is based on statically-
computed execution frequencies, might not reflect the actual runtime
profile of the program. Hence, the optimal solution according to the
cost model can be worse in practice.

To validate the results presented in Table 3, we measured the
runtime of the same executables on our FPGA prototype. As our test
platform ran at a clock speed of 80 MHz and had only 32 kB of data
cache, we used the reduced input dataset distribution provided by
SPEC [24]. The reduced inputs preserve the profile of the original
programs while significantly reducing the runtime. We ran each
executable ten times (to prevent random effects by DRAM, Linux
task scheduler, interrupts etc.) and determined the lowest runtime.

Table 4 shows the runtimes of the executables. In general, the
measurements on our FPGA prototype support our observations
from the QEMU runs: the worse the coalescing, the higher the
speedup gained using permutation instructions. Also, the magnitude
of the speedups matches the magnitude of the instruction count
reductions for each of the four coalescing configurations. Again,
every program ran faster with permutation instructions. For the
biased coalescing scheme, we measured speedups of up to 1.07×.

Besides the general inaccuracy of timing measurements, we
identified two possible reasons why the numbers from Tables 3
and 4 do not exactly match with each other. First, the reduced
input datasets do not perfectly preserve the program profiles. Thus,
program sections that contain a lot of permutation instructions
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ILP Recoloring Biased Naive
Benchmark SPARC LEON3-P Change SPARC LEON3-P Change SPARC LEON3-P Change SPARC LEON3-P Change
164.gzip 427.3 424.5 −0.7% 428.7 424.4 −1.0% 450.5 441.8 −1.9% 542.9 454.1 −16.4%
175.vpr 2 204.9 2 199.2 −0.3% 2 209.5 2 201.8 −0.3% 2 252.9 2 229.8 −1.0% 2 309.3 2 230.7 −3.4%
176.gcc 184.5 183.7 −0.4% 184.8 183.8 −0.5% 197.1 191.8 −2.7% 215.9 191.2 −11.4%
181.mcf 64.6 63.4 −1.9% 64.7 63.4 −1.9% 68.0 66.0 −2.8% 71.5 65.9 −7.8%
186.crafty 251.4 248.9 −1.0% 251.0 249.0 −0.8% 276.1 265.3 −3.9% 315.2 267.4 −15.2%
197.parser 515.0 510.5 −0.9% 515.7 510.4 −1.0% 539.1 524.4 −2.7% 617.4 539.7 −12.6%
253.perlbmk 558.3 555.2 −0.6% 531.8 531.0 −0.1% 550.9 541.0 −1.8% 611.6 551.1 −9.9%
254.gap 243.7 243.1 −0.3% 243.6 241.3 −0.9% 257.6 252.4 −2.0% 275.4 255.9 −7.1%
255.vortex 358.9 357.0 −0.5% 361.0 358.1 −0.8% 402.1 381.6 −5.1% 467.3 396.9 −15.1%
256.bzip2 331.0 330.0 −0.3% 333.1 331.1 −0.6% 360.2 349.2 −3.1% 393.1 348.5 −11.3%
300.twolf 1 261.2 1 256.9 −0.3% 1 261.5 1 257.1 −0.3% 1 275.0 1 264.7 −0.8% 1 288.9 1 264.7 −1.9%

Table 3: Number of executed instructions (in billions) executed during a full run of the CINT2000 benchmark suite. Results are shown separately for each coalescing scheme.

ILP Recoloring Biased Naive
Benchmark SPARC LEON3-P Change SPARC LEON3-P Change SPARC LEON3-P Change SPARC LEON3-P Change
164.gzip 256.8 255.6 −0.5% 257.4 255.8 −0.6% 263.1 258.3 −1.8% 278.2 261.3 −6.1%
175.vpr 446.6 443.6 −0.7% 448.3 445.7 −0.6% 456.4 452.6 −0.8% 466.9 464.5 −0.5%
176.gcc 175.9 175.0 −0.5% 175.8 175.4 −0.2% 190.9 185.2 −3.0% 210.8 186.5 −11.5%
181.mcf 45.5 45.5 −0.2% 45.6 45.5 −0.2% 45.7 45.2 −1.0% 45.9 45.5 −0.7%
186.crafty 59.3 59.3 −0.1% 59.7 58.4 −2.2% 64.3 62.6 −2.8% 71.7 63.2 −11.8%
197.parser 123.7 123.6 −0.1% 126.2 123.2 −2.4% 128.5 124.7 −3.0% 139.3 125.9 −9.7%
253.perlbmk 127.9 125.2 −2.1% 124.8 123.7 −0.9% 131.6 125.0 −5.0% 141.2 126.7 −10.2%
254.gap 31.1 30.9 −0.7% 31.2 31.0 −0.4% 33.3 32.1 −3.6% 34.8 32.6 −6.3%
255.vortex 51.4 51.0 −0.7% 51.5 51.1 −0.8% 56.8 52.9 −7.0% 65.2 56.1 −14.1%
256.bzip2 171.4 170.8 −0.3% 172.2 171.2 −0.6% 177.9 175.4 −1.4% 187.3 176.5 −5.7%
300.twolf 90.9 88.7 −2.4% 91.5 89.5 −2.2% 92.6 90.6 −2.2% 95.8 91.7 −4.3%

Table 4: Runtime (in seconds) of the executables on the FPGA prototype. Reduced input data sets were used. Results are shown separately for each coalescing scheme.

SPARC Per LEON3-P Per Change
RTG RTG

ILP (best) 144 356 1.86 88 670 1.14 −38.6%
Recolor 159 511 2.04 89 274 1.14 −44.0%
Biased 534 378 2.99 275 079 1.54 −48.5%
Naive (worst) 947 439 5.12 343 582 1.85 −63.7%

Table 5: Number of instructions generated for implementing RTGs.

might be underrepresented or overrepresented in the profile of
the run with the reduced input, leading to a lower or to a higher
speedup, respectively. Second, the dynamic instruction counting
mechanism treats all instructions equally. However, in reality, load
and store instructions can take multiple cycles to execute in case
of a cache miss. Frequent cache misses increase the total runtime
of the program, while the time spent in the program sections that
contain a lot of permutation instructions remains constant. This
leads to a speedup that is lower than what one would expect from
the instruction count reduction.

Table 5 shows the total number of instructions generated for
implementing the RTGs of all programs of the CINT2000 bench-
mark suite. The numbers confirm the expressivity of the presented
permutation instructions as RTGs can be implemented more con-
cisely, reducing the number of needed instructions by up to 63.7%.
As every SPARC instruction, including our permi instructions, is
encoded with 4 bytes, this also means that the code size induced by
implementing RTGs is reduced by the same percentage. Addition-
ally, regardless of the coalescing scheme, the average RTG can be
implemented using fewer than two instructions when permi instruc-
tions are available, whereas up to 5.12 instructions are needed using
the regular instruction set.

7.5 Permutation Reverts
We have measured the impact of permutation reversion, which

is required to handle traps (see Sections 6.2 and 6.3). The measure-
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Figure 13: Ratio of time spent for permutation reversion to total runtime of each SPEC
benchmark. Data gathered from FPGA prototype using the reduced input dataset.

ments were performed using a performance counter in our FPGA
implementation, which counts the cycles spent for reversion. Fig-
ure 13 shows the ratio of time spent for reversion compared to total
application runtime. If traps were occurring with the same frequency
for all applications, the ratio would be the same. However, the large
spread of nearly 104 shows that for some applications window over-
flow/underflow traps (e.g. due to recursion) or traps due to I/O or
syscalls occur more frequently. Still, the performance loss due to
permutation reversion is always below 0.1% (i.e. 10−3).

7.6 Area Overhead
Table 6 shows the resource usage for the base system compared

to the LEON3-P. The LEON3-P implementation uses multiple large
multiplexers for extracting the current window and applying the
new permutation to the existing one. When using an FPGA as target
technology, multiplexers are realized by Look-up tables (LUTs),
which explains the increased number of required LUTs. As — to the
best of our knowledge — there are no publicly available memory-
compilers for multi-port memories targeting ASICs, we focused our
evaluation on FPGAs. However, multiplexer synthesis is discussed
in [14], stating that “Multiplexers are expensive in FPGAs and cheap
in ASICs”. Therefore, it can be assumed that the area overhead of
an ASIC implementation would be considerably smaller.
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base system LEON3-P Overhead
LUTs 15 024 (21%) 21 630 (31%) 44%
Slices 7 249 (41%) 9 507 (55%) 31%
Flip-flops 7 607 (11%) 8 851 (12%) 16%
BlockRAMs 28 (19%) 28 (19%) 0%
Frequency 80 MHz 80 MHz 0%

Table 6: Hardware implementation comparison between base system and LEON3-P
with 8 register windows. FPGA resource utilization percentage in parentheses.

Figure 14: Floorplan of our
FPGA implementation.
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Figure 15: Design space exploration for different
number of register windows.

Additional flip-flops are required for storing the logical-physical
register address mapping (highlighted table component in Figures 9
and 10). Compared to the base system, there is no frequency loss,
as the decode (where the extensions for register file permutation are
added) and exception (where permutation reverts are performed
if necessary) stages are not the critical path in the system. No
additional on-chip block memory (BlockRAM) is required.

Figure 14 shows the floorplan of the placed and routed LEON3-P
design on the Virtex-5 LX110T FPGA. The main logic of the
permutator — multiplexers and permutation table — is in the purple
area P©. The LEON 3 CPU is located in the yellow area L©, while
the remaining components in the system (e.g. DDR controller, debug
unit, bus arbiter, etc.) are in the green area S©.

We have synthesized the design with different amounts of register
windows to analyze the impact on area. The number of LUTs and
Flip-flops are shown in Figure 15. The amount of required LUTs
— which contribute the largest part to the area overhead — can
be reduced significantly (approximately by half) by decreasing the
amount of register windows from 8 to 2. The reason is the reduction
of the size of the multiplexers used for extracting the current window
from the permutation table. However, programs that make use of
nested function calls generally profit from a large number of register
windows, thus the amount of register windows is a performance-area
trade-off determined at design time.

8. Conclusion
In this paper, we presented a novel approach to accelerate the

execution of shuffle code by a hardware extension for register file
permutations. We demonstrated how our hardware extension can be
integrated and exposed in a standard architecture. Additionally, we
showed that our adapted compiler can efficiently utilize the modified
hardware. The concept was evaluated using QEMU as well as an
FPGA prototype executing the SPEC CINT2000 benchmark under
Linux. Using our proposed extensions, the number of executed
instructions is reduced by up to 5.1% while the compilation time is
unaffected.
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