
1 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Institute for Program Structures and Data Organization, Karlsruhe Institute of Technology (KIT)

Hardware Acceleration for Programs in SSA Form
Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer,
Sebastian Hack, Jörg Henkel

KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association www.kit.edu

computer science

saarland
university

SSA-Based Register Allocation

2 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Not in Static Single
Assignment Form

In Static Single
Assignment Form

Frontend
M

iddle
end

B
ack

end

Parsing

Optimizations

Register Allocation

SSA-Based Register Allocation

2 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Not in Static Single
Assignment Form

In Static Single
Assignment Form

Frontend
M

iddle
end

B
ack

end

Parsing

Optimizations

Register Allocation

SSA-Based Register Allocation

2 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Not in Static Single
Assignment Form

In Static Single
Assignment Form

Frontend
M

iddle
end

B
ack

end

Parsing

Optimizations

SSA-Based
Register Allocation

SSA-Based Register Allocation

2 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Not in Static Single
Assignment Form

In Static Single
Assignment Form

Frontend
M

iddle
end

B
ack

end

Parsing

Optimizations

SSA-Based
Register Allocation

Fewer spills but more shuffle code

Register Transfer Graphs

3 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Shuffle code = parallel copy operations between registers

r1 r2 r3 r4 r5

Register Transfer Graph (RTG)
Nodes: Registers
Directed edge (r1, r2): After copies, value of r1 must be in r2
At most one incoming edge per node
No incoming edge: Register value is irrelevant after copies

Register Transfer Graphs

3 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Shuffle code = parallel copy operations between registers

r1 r2 r3 r4 r5

Register Transfer Graph (RTG)
Nodes: Registers
Directed edge (r1, r2): After copies, value of r1 must be in r2
At most one incoming edge per node
No incoming edge: Register value is irrelevant after copies

Motivation

4 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Number and size of RTGs depend on quality of allocation
Reduction is an NP-complete problem

r1 r2 r3 r4 r5 r6 r7 r8

⇒ On standard hardware, implementation may be expensive:
5% to 20% of all generated instructions (SPEC)

Motivation

4 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Number and size of RTGs depend on quality of allocation
Reduction is an NP-complete problem

r1 r2 r3 r4 r5 r6 r7 r8

⇒ On standard hardware, implementation may be expensive:
5% to 20% of all generated instructions (SPEC)

mov r2 , r1 xor r6 , r7 xor r4 , r5
mov r3 , r2 xor r6 , r5 xor r5 , r4
mov r7 , r8 xor r5 , r6 xor r4 , r3
xor r6 , r7 xor r6 , r5 xor r3 , r4
xor r7 , r6 xor r5 , r4 xor r4 , r3

Motivation

4 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Number and size of RTGs depend on quality of allocation
Reduction is an NP-complete problem

r1 r2 r3 r4 r5 r6 r7 r8

⇒ On standard hardware, implementation may be expensive:
5% to 20% of all generated instructions (SPEC)

Question 1: Is it possible to create an instruction set extension that
allows implementing an RTG in one processor cycle?

Question 2: Is it worth it?

Motivation

4 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Number and size of RTGs depend on quality of allocation
Reduction is an NP-complete problem

r1 r2 r3 r4 r5 r6 r7 r8

⇒ On standard hardware, implementation may be expensive:
5% to 20% of all generated instructions (SPEC)

Question 1: Is it possible to create an instruction set extension that
allows implementing an RTG in one processor cycle?

Question 2: Is it worth it?

Fundamental Hardware Constraints

5 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Changing contents of multiple registers in one cycle very costly

Idea: Modify access to register file instead of contents

Swap r1 and r2: Exchange the access to r1 and r2

r1

r2

42

23

Register File

⇒ Restriction to permutations of registers

Fundamental Hardware Constraints

5 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Changing contents of multiple registers in one cycle very costly
Idea: Modify access to register file instead of contents

Swap r1 and r2: Exchange the access to r1 and r2

r1

r2

42

23

Register File

⇒ Restriction to permutations of registers

Fundamental Hardware Constraints

5 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Changing contents of multiple registers in one cycle very costly
Idea: Modify access to register file instead of contents

Swap r1 and r2: Exchange the access to r1 and r2

r1

r2

42

23

Register File

⇒ Restriction to permutations of registers

Fundamental Hardware Constraints

5 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Changing contents of multiple registers in one cycle very costly
Idea: Modify access to register file instead of contents

Swap r1 and r2: Exchange the access to r1 and r2

r1

r2

42

23

Register File

⇒ Restriction to permutations of registers

ISA Extension

6 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Add permutation instructions to SPARC V8 ISA
32 registers⇒ 5 bits to identify one register
7 bits for opcode⇒ 25 bits left for encoding 5 register numbers

0001 000a1 b c d e
31 27 21 19 14 9 4 0

a2

24

Two new instructions:
permi5: Implement cyclic RTG with up to 5 elements
permi23: Implement two independent cycles with 2 and up to 3
elements

ISA Extension

6 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Add permutation instructions to SPARC V8 ISA
32 registers⇒ 5 bits to identify one register
7 bits for opcode⇒ 25 bits left for encoding 5 register numbers

0001 000a1 b c d e
31 27 21 19 14 9 4 0

a2

24

Two new instructions:
permi5: Implement cyclic RTG with up to 5 elements
permi23: Implement two independent cycles with 2 and up to 3
elements

Examples

7 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

r1 r2 r3 r4 r5 permi5 r1, r2, r3, r4, r5

r1 r2 permi5 r1, r2

r1 r2 r3 r4 permi23 r1, r2, r3, r4

Examples

7 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

r1 r2 r3 r4 r5 permi5 r1, r2, r3, r4, r5

r1 r2 permi5 r1, r2

r1 r2 r3 r4 permi23 r1, r2, r3, r4

Examples

7 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

r1 r2 r3 r4 r5 permi5 r1, r2, r3, r4, r5

r1 r2 permi5 r1, r2

r1 r2 r3 r4 permi23 r1, r2, r3, r4

Code Generation

8 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Goal: Generate efficient code using permi instructions for all RTGs
Question: Which RTGs can be implemented using only permi?

RTGs in permutation form

Permutation can be written as a product of cycles
Cycles can be implemented with permis

r1 r2

r3 r4 r5

In general: RTGs can duplicate values

Permutations are injective
Value duplication impossible

r1 r2

r3 r4 r5

Code Generation

8 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Goal: Generate efficient code using permi instructions for all RTGs
Question: Which RTGs can be implemented using only permi?

RTGs in permutation form
Permutation can be written as a product of cycles
Cycles can be implemented with permis

r1 r2

r3 r4 r5

In general: RTGs can duplicate values

Permutations are injective
Value duplication impossible

r1 r2

r3 r4 r5

Code Generation

8 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Goal: Generate efficient code using permi instructions for all RTGs
Question: Which RTGs can be implemented using only permi?

RTGs in permutation form
Permutation can be written as a product of cycles
Cycles can be implemented with permis

r1 r2

r3 r4 r5

In general: RTGs can duplicate values
Permutations are injective
Value duplication impossible

r1 r2

r3 r4 r5

Two-Phase Approach

9 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Arbitrary RTG r1

r2

r3 r4

r5

r6

r7

r8

r9

Phase 1:
Conversion

r1 r3 r4 r6 r9

r5 r8
+

mov r3, r2
mov r6, r7
mov r4, r5

Phase 2:
Decomposition

permi5 r1, r3, r4, r6, r9
permi5 r5, r8

Two-Phase Approach

9 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Arbitrary RTG r1

r2

r3 r4

r5

r6

r7

r8

r9

Phase 1:
Conversion

r1 r3 r4 r6 r9

r5 r8
+

mov r3, r2
mov r6, r7
mov r4, r5

Phase 2:
Decomposition

permi5 r1, r3, r4, r6, r9
permi5 r5, r8

Two-Phase Approach

9 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Arbitrary RTG r1

r2

r3 r4

r5

r6

r7

r8

r9

Phase 1:
Conversion

r1 r3 r4 r6 r9

r5 r8
+

mov r3, r2
mov r6, r7
mov r4, r5

Phase 2:
Decomposition

permi5 r1, r3, r4, r6, r9
permi5 r5, r8

Conversion into Permutation Form

10 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

r1

r2

r3 r4 r5 r6 →

r1 r3 r4 r5 r6

+

mov r3, r2

At each node with > 1 outgoing edge: keep edge that is part of
longest path starting at node

Conversion into Permutation Form

10 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

r1

r2

r3 r4 r5 r6 →

r1 r3 r4 r5 r6

+

mov r3, r2

At each node with > 1 outgoing edge: keep edge that is part of
longest path starting at node

Conversion into Permutation Form

10 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

r1

r2

r3 r4 r5 r6 →

r1 r3 r4 r5 r6

+

mov r3, r2

At each node with > 1 outgoing edge: keep edge that is part of
longest path starting at node

Conversion into Permutation Form

10 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

r1

r2

r3 r4 r5 r6 →

r1 r3 r4 r5 r6

+

mov r3, r2

At each node with > 1 outgoing edge: keep edge that is part of
longest path starting at node

Conversion into Permutation Form

10 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

r1

r2

r3 r4 r5 r6 →

r1 r3 r4 r5 r6

+

mov r3, r2

At each node with > 1 outgoing edge: keep edge that is part of
longest path starting at node

Conversion into Permutation Form

10 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

r1

r2

r3 r4 r5 r6 →

r1 r3 r4 r5 r6

+

mov r3, r2

At each node with > 1 outgoing edge: keep edge that is part of
longest path starting at node

Conversion into Permutation Form

10 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

r1

r2

r3 r4 r5 r6 →

r1 r3 r4 r5 r6

+

mov r3, r2

At each node with > 1 outgoing edge: keep edge that is part of
longest path starting at node

Conversion into Permutation Form

10 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

r1

r2

r3 r4 r5 r6 →

r1 r3 r4 r5 r6

+

mov r3, r2

At each node with > 1 outgoing edge: keep edge that is part of
longest path starting at node

Decomposition into Cycles

11 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

After conversion: Implement RTG in permutation form with as few
permis as possible
Need to combine multiple cycles to exploit permi23

r1 r2 r3 r4 r5 r6 r7 r8 r9

permi5
permi23

Decomposition into Cycles

11 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

After conversion: Implement RTG in permutation form with as few
permis as possible
Need to combine multiple cycles to exploit permi23

r1 r2 r3 r4 r5 r6 r7 r8 r9

permi5
permi23

Decomposition into Cycles

11 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

After conversion: Implement RTG in permutation form with as few
permis as possible
Need to combine multiple cycles to exploit permi23

r1 r2 r3 r4 r5 r6 r7 r8 r9

permi5
permi23

Decomposition into Cycles

11 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

After conversion: Implement RTG in permutation form with as few
permis as possible
Need to combine multiple cycles to exploit permi23

r1 r2 r3 r4 r5 r6 r7 r8 r9

permi5
permi23

Decomposition into Cycles

12 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Greedy decomposition algorithm with linear runtime

Phase 1
While there is a cycle of size 4 or more: use permi5 to implement it

Phase 2: Only cycles of size ≤ 3 left

If 2-cycle and 3-cycle available: combine using permi23
If only 2-cycles available: combine in pairs using permi23
If only 3-cycles available: combine in groups of three using permi23

Decomposition into Cycles

12 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Greedy decomposition algorithm with linear runtime

Phase 1
While there is a cycle of size 4 or more: use permi5 to implement it

Phase 2: Only cycles of size ≤ 3 left

If 2-cycle and 3-cycle available: combine using permi23
If only 2-cycles available: combine in pairs using permi23
If only 3-cycles available: combine in groups of three using permi23

r1 r2 r3 r4

permi5

Decomposition into Cycles

12 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Greedy decomposition algorithm with linear runtime

Phase 1
While there is a cycle of size 4 or more: use permi5 to implement it

Phase 2: Only cycles of size ≤ 3 left

If 2-cycle and 3-cycle available: combine using permi23
If only 2-cycles available: combine in pairs using permi23
If only 3-cycles available: combine in groups of three using permi23

r1 r2 r3 r4 r5 r6 r7

permi5

Decomposition into Cycles

12 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Greedy decomposition algorithm with linear runtime

Phase 1
While there is a cycle of size 4 or more: use permi5 to implement it

Phase 2: Only cycles of size ≤ 3 left

If 2-cycle and 3-cycle available: combine using permi23
If only 2-cycles available: combine in pairs using permi23
If only 3-cycles available: combine in groups of three using permi23

Decomposition into Cycles

12 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Greedy decomposition algorithm with linear runtime

Phase 1
While there is a cycle of size 4 or more: use permi5 to implement it

Phase 2: Only cycles of size ≤ 3 left
If 2-cycle and 3-cycle available: combine using permi23

If only 2-cycles available: combine in pairs using permi23
If only 3-cycles available: combine in groups of three using permi23

r1 r2 r3 r4 r5

permi23

Decomposition into Cycles

12 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Greedy decomposition algorithm with linear runtime

Phase 1
While there is a cycle of size 4 or more: use permi5 to implement it

Phase 2: Only cycles of size ≤ 3 left
If 2-cycle and 3-cycle available: combine using permi23
If only 2-cycles available: combine in pairs using permi23

If only 3-cycles available: combine in groups of three using permi23

r1 r2 r3 r4 r5 r6 r7 r8

permi23 permi23

Decomposition into Cycles

12 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Greedy decomposition algorithm with linear runtime

Phase 1
While there is a cycle of size 4 or more: use permi5 to implement it

Phase 2: Only cycles of size ≤ 3 left
If 2-cycle and 3-cycle available: combine using permi23
If only 2-cycles available: combine in pairs using permi23
If only 3-cycles available: combine in groups of three using permi23

r1 r2 r3 r4 r5 r6 r7 r8 r9

permi23
permi23

Base Architecture

13 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Underlying architecture: Gaisler LEON3, 7-stage pipeline
Example: add r9 r5 r7

Fetch Decode Register Execute Memory Exception Writeback

I$

in
sn

reg data

r5 1233

r7 3105

r9 7404

Operand
Regs

r5

r7

Operand
Data

1233

3105
4338

Result
Data

+ 4338

Result
Data

4338

Result
Data

add

Operation

add

Operation

5 7add 9

Instruction Word

Register File

reg data

r5 1233

r7 3105

r9 4338

Register File
ALU

Result
Reg

r9

Result
Reg

r9

Result
Reg

r9

Result
Reg

r9

Result
Reg

r9

For permi support: modifications of Decode and Exception stages

Permutation Support

14 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Key component: permutation table in Decode stage
Contains mapping logical→ physical register address
Physical address from permutation table used when accessing register file

Initialized with identity at system reset

Fetch Decode Register

I$

in
sn

reg data

r6 6410

r7 3105

r8 7404

Operand
Regs

r8

r6

Operand
Data

7404

6410

add

Operation

add

Operation

5 7add 9

Instruction Word

Register File

log phys

r5

r7

r9

r8

r6

r7

Result
Reg

r7

Result
Reg

r7
lookup phys.
register addrs

Applying new Permutations

15 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Applying permutation permi5 r5 r9 r7 r6 r8

Fetch Decode

I$

in
sn

9 7permi 5

Instruction Word

log phys

r5

r6

r7

r5

r6

r7
re

tr
ie

ve
 o

ld
pe

rm
ut

at
io

n

6 8

r8 r9

r9 r8

generate new
permutation

r5 → r8
r6 → r9
r7 → r6
r8 → r5
r9 → r7write new

permutation

Permutation applied in Decode stage (early committing)
No changes to forwarding logic required

Results

16 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Experimental evaluation
Implemented code generation strategy in libFIRM

Used SPEC CPU2000 benchmark suite as input programs
Modified SPARC emulator to support permi instructions

Ability to get precise dynamic instruction counts

Validation by measurements on FPGA prototype implementation
By running Linux on FPGA prototype, ability to reuse executables

Compile Time

17 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Default [ms] Our code gen. [ms] Relative
Backend (total) 63 598.0 63 927.0 +0.5%

Code generation does not cause significant overhead

Code Quality

18 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Four different register allocator configurations:

ILP Recoloring Biased Naive

Increasing RTG size

Increasing number of RTGs

Decreasing compilation time

Code Quality

19 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Benchmark ILP Recoloring Biased Naive
164.gzip −0.7% −1.0% −1.9% −16.4%
175.vpr −0.3% −0.3% −1.0% −3.4%
176.gcc −0.4% −0.5% −2.7% −11.4%
181.mcf −1.9% −1.9% −2.8% −7.8%
186.crafty −1.0% −0.8% −3.9% −15.2%
197.parser −0.9% −1.0% −2.7% −12.6%
253.perlbmk −0.6% −0.1% −1.8% −9.9%
254.gap −0.3% −0.9% −2.0% −7.1%
255.vortex −0.5% −0.8% −5.1% −15.1%
256.bzip2 −0.3% −0.6% −3.1% −11.3%
300.twolf −0.3% −0.3% −0.8% −1.9%

Relative change of number of executed instructions

Universal reduction, up to 5.1% for realistic scenarios
The worse the register allocation, the higher the benefit using permis
Confirmation by FPGA measurements, speedup up to 1.07

Code Quality

19 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Benchmark ILP Recoloring Biased Naive
164.gzip −0.7% −1.0% −1.9% −16.4%
175.vpr −0.3% −0.3% −1.0% −3.4%
176.gcc −0.4% −0.5% −2.7% −11.4%
181.mcf −1.9% −1.9% −2.8% −7.8%
186.crafty −1.0% −0.8% −3.9% −15.2%
197.parser −0.9% −1.0% −2.7% −12.6%
253.perlbmk −0.6% −0.1% −1.8% −9.9%
254.gap −0.3% −0.9% −2.0% −7.1%
255.vortex −0.5% −0.8% −5.1% −15.1%
256.bzip2 −0.3% −0.6% −3.1% −11.3%
300.twolf −0.3% −0.3% −0.8% −1.9%

Relative change of number of executed instructions
Universal reduction, up to 5.1% for realistic scenarios
The worse the register allocation, the higher the benefit using permis
Confirmation by FPGA measurements, speedup up to 1.07

Area Overhead

20 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Base system Our system Overhead
Frequency 80 MHz 80 MHz 0%
BlockRAMs 28 28 0%
Flip-flops 7 607 8 851 16%
LUTs 15 024 21 630 44%
Slices 7 249 9 507 31%

Frequency unaffected
Logical-physical mapping⇒ increase in FF usage
Large multiplexers⇒ increase in LUT usage

Considerably smaller overhead for ASIC implementation

Conclusion

21 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Summary
Novel approach to accelerate shuffle code by hardware extension
New instructions added to standard instruction set
Code generation approach producing efficient code fast
Extensive evaluation including FPGA prototype implementation
Universal speedup, instruction count reduction up to 5.1%

22 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Backup Slides

RTG Semantics

23 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

r1 r2 r3 r4 r5 r6

RTG Semantics

23 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

r1 r2 r3 r4 r5 r6

Exception Handling

24 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Early committing can cause problems due to traps
Timer interrupts to invoke OS scheduler
SPARC window overflows/underflows caused by nested function calls

Trap handling in LEON3:

mov
call
permi

Register

-
Execute Memory

mov
Exception

call
Decode

-
Fetch

-
Writeback

permi -

permi executed twice – permutation applied twice→ program crash
Instructions that commit after exception stage can be annulled
permi: revert effect of permutations executed before trap

Exception Handling

24 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Early committing can cause problems due to traps
Timer interrupts to invoke OS scheduler
SPARC window overflows/underflows caused by nested function calls

Trap handling in LEON3:

mov
call
permi

Register

-
Execute

-
Memory

mov
Exception

call
Decode

-
Fetch

-
Writeback

permi

permi executed twice – permutation applied twice→ program crash
Instructions that commit after exception stage can be annulled
permi: revert effect of permutations executed before trap

Exception Handling

24 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Early committing can cause problems due to traps
Timer interrupts to invoke OS scheduler
SPARC window overflows/underflows caused by nested function calls

Trap handling in LEON3:

mov
call
permi

Trap
Handler

Register

-
Execute

-
Memory

-
Exception

-
Decode

-
Fetch

permi
Writeback

-

permi executed twice – permutation applied twice→ program crash
Instructions that commit after exception stage can be annulled
permi: revert effect of permutations executed before trap

Reverting Permutations

25 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

Permutation history buffer tracks last 4 instructions
Exception Stage: if a trap occurs, check permutation history buffer for
permi instructions
If any occur, go through history buffer in reverse order

For each permi: apply inverse permutation to permutation table

Decode

- --

log phys

r5

r6

r7

r8

r9

r6

- -

r8 r5

r9 r7

generate new
permutation

r5 → r5
r6 → r6
r7 → r7
r8 → r9
r9 → r8

write new
permutation

Register Execute Memory Exception

Permutation cycle

- -- - -

inverted cycle

6 78 9 5

9 75

Permutation cycle

6 8

Permutation cycle

- -- - -

Permutation cycle

- -- - -re
tr

ie
ve

 o
ld

pe
rm

ut
at

io
n

user-defined cycle

select

permis will be re-executed after trap handler
⇒ Register File in expected state

Reversion Effects

26 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

● ●

●

●

●
●

●

●
●

● ●

10−8
10−7
10−6
10−5
10−4
10−3

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rte

x

25
6.

bz
ip2

30
0.

tw
olfre

ve
rt

 ti
m

e
/ t

ot
al

 ti
m

e

φ-functions

27 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

x = . . . ;
y = . . . ;
i f (. . .) {

t = x ;
x = y ;
y = t ;

}
a = x ;
b = y ;

x

〈r1〉

= . . .
y

〈r2〉

= . . .
condjump

a

〈r1〉

= φ(x

〈r1〉

, y

〈 〉

)

b

〈r2〉

= φ(y

〈r2〉

, x

〈 〉

)

φ-functions

27 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

x = . . . ;
y = . . . ;
i f (. . .) {

t = x ;
x = y ;
y = t ;

}
a = x ;
b = y ;

x 〈r1〉 = . . .
y 〈r2〉 = . . .
condjump

a〈r1〉 = φ(x 〈r1〉, y 〈r2〉)
b〈r2〉 = φ(y 〈r2〉, x 〈r1〉)

φ-functions

27 October 1, 2013 Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack,
Jörg Henkel – Hardware Acceleration for Programs in SSA Form

IPD, ITEC

KIT

x = . . . ;
y = . . . ;
i f (. . .) {

t = x ;
x = y ;
y = t ;

}
a = x ;
b = y ;

x 〈r1〉 = . . .
y 〈r2〉 = . . .
condjump

a〈r1〉 = φ(x 〈r1〉, y 〈r1〉)
b〈r2〉 = φ(y 〈r2〉, x 〈r2〉)

r1 r2

