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Introduction & Motivation

Static Single Assignment (SSA) form has become key pro-
perty of compiler intermediate languages

Traditionally: SSA form destructed before register allocation

Recent research: SSA-based register allocation

x = . . . ;
y = . . . ;
i f ( . . . ) {

t = x ;
x = y ;
y = t ;

}
a = x ;
b = y ;

x〈r1〉 = . . .
y〈r2〉 = . . .
condjump

a〈r1〉 = φ(x〈r1〉, y〈r2〉)
b〈r2〉 = φ(y〈r2〉, x〈r1〉)

x〈r1〉 = . . .
y〈r2〉 = . . .
condjump

a〈r1〉 = φ(x〈r1〉, y〈r1〉)
b〈r2〉 = φ(y〈r2〉, x〈r2〉)

r1 r2

Shuffle Code

φ-functions still present after register allocation

⇒ Must be implemented using shuffle code

Shuffle code amount depends on copy coalescing quality

r1 r2 r3 r4 r5 r6 r7 r8 r9

On traditional machines: many instructions to implement

Goal: Implement shuffle code in one instruction

Fundamental hardware constraint: multiple write ports on
register file extremely costly

⇒ Restriction to register permutations

Instruction Set Extension
Addition of permutation instructions to SPARC V8 ISA:

32 integer registers⇒ 5 bits to identify one register

7 bits for opcode ⇒ 25 bits left for encoding 5 register
numbers

0001 000a1 b c d e
31 27 21 19 14 9 4 0
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24

Two new instructions:

permi5: Apply one cyclic permutation with up to 5 ele-
ments

permi23: Apply two independent cycles with 2 and up to
3 elements

Code Generation

Register Transfer Graphs

Directed graph G = (V, E)
Each node v ∈ V represents register

Each edge (v, v′) represents copy operation from v to v′

Each node has at most one incoming edge

All copy operations assumed to be performed in parallel

r1 r2

r3 r4 r5

r1 r2

r3 r4 r5

RTGs only consisting of cycles (permutation form) can be
implemented using only permi instructions

In general: RTGs can duplicate values

Permutations are injective, value duplication impossible

⇒ Two-phase approach to extract sub-RTG in permutation form

Phase 1: Conversion into Permutation Form

Input: Arbitrary RTG r1

r2

r3 r4

r5

r6

r7

r8

r9

Heuristics: At each node with > 1 outgoing edge:
Keep edge that is part of longest path starting at node
Output: RTG in permutation form + list of copy instructions

r1 r3 r4 r6 r9

r5 r8
+

mov r3, r2
mov r6, r7
mov r4, r5

Phase 2: Decomposition into Cycles

Input: RTG in permutation form

Output: List of permi instructions that implement RTG

Greedy algorithm with linear runtime shown on right

implementRegisterTransferGraph(rtg):
insns← [] # List of generated instructions, initially empty
(longs, shorts)← collectCycles(rtg)

# First phase: only emit permi5 instructions
while longs 6= []:

cycle← longs.take()
while cycle.length() ≥ 4:

(cycle’, remainder)← split(cycle)
insns.add(Permi5(cycle’))
cycle← remainder

if cycle.length() > 0:
shorts.add(cycle) # Remember remainder

# Second phase: try to fully utilize permi23 instructions
(twos, threes)← sort(shorts)
while (twos 6= [] or threes 6= []):

if threes 6= []:
if twos 6= []:

insns.add(Permi23(twos.take(), threes.take()))
else if threes.size() ≥ 2:

(cycle2, cycle2’)← split(threes.take())
insns.add(Permi23(cycle2, threes.take()))
twos.add(cycle2’)

else:
insns.add(Permi5(threes.take()))

else if twos 6= []:
if twos.size() ≥ 2:

insns.add(Permi23(twos.take(), twos.take()))
else:

insns.add(Permi5(twos.take()))

Hardware Implementation
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add instruction going through pipeline stages

Key component: permutation table in Decode stage

Contains mapping logical→ physical register address

Physical address used when accessing register file
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r9 → r7write new

permutation

permi instruction going through pipeline stages

Applying permutation permi5 r5 r9 r7 r6 r8:

Permutation performed in Decode stage (early committing)

No changes to forwarding logic required

Permutations may need to be reversed if trap occurs
(OS scheduler, I/O activity, etc.)

Regular SPARC instructions: annul instructions

permi instructions: check previous pipeline stages for
permi instructions

• If any: apply inverse permutations to permutation table
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Pipeline snapshot during permutation reversion

Experimental Evaluation & Conclusion
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Copy
Coalescing

ILP
Recoloring
Biased
Naive

# instructions per RTG SPARC Our system Reduction

ILP (best) 1.86 1.14 38.6%
Recolor 2.04 1.14 44.0%
Biased 2.99 1.54 48.5%
Naive (worst) 5.12 1.85 63.7%

L© – Gaisler LEON 3 Processor
P© – Permutator Extension
S© – Other SoC components (DDR

Controller, Ethernet, Debug Unit, etc.)

FPGA Base Our Over-
Utilization system system head

LUTs 21% 31% 44%
Slices 41% 55% 31%
Flip-flops 11% 12% 16%
BlockRAMs 19% 19% 0%
Frequency 80 MHz 80 MHz 0%
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Experimental Setup

Implemented code generation strategy in libFirm compiler

SPEC CPU2000 benchmark suite as input programs

Modified QEMU to support permi instructions

Ability to get precise dynamic instruction counts

Hardware prototype based on Gaisler LEON 3 processor

Measurements on hardware prototype implementation on
Virtex-5 FPGA

Conclusion

Novel approach to accelerate shuffle code by hardware
extension

New instructions added to standard instruction set

Code generation approach producing efficient code fast

Extensive evaluation including FPGA prototype implemen-
tation

Universal speedup, number of executed instructions re-
duced by up to 5.1%


