

Chair for Programming Paradigms Chair for Embedded Systems

Hardware Acceleration for Programs in SSA Form

Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer, Sebastian Hack, Jörg Henkel

Introduction & Motivation

- Static Single Assignment (SSA) form has become key property of compiler intermediate languages
- Traditionally: SSA form destructed before register allocation
- Recent research: SSA-based register allocation

Shuffle Code

- ϕ -functions still present after register allocation
- \Rightarrow Must be implemented using *shuffle code*
- Shuffle code amount depends on copy coalescing quality

$$r_1 \leftarrow r_2 \leftarrow r_3$$
 r_4 r_5 r_6 $r_7 \rightarrow r_8 \rightarrow r_9$

On traditional machines: many instructions to implement

Instruction Set Extension

Addition of permutation instructions to SPARC V8 ISA:

- 32 integer registers \Rightarrow 5 bits to identify one register
- 7 bits for opcode \Rightarrow 25 bits left for encoding 5 register numbers

31	27	24	21	19	14	9	4	0
0001	a_1	000	a ₂	b	С	d	е	

- Goal: Implement shuffle code in one instruction
- Fundamental hardware constraint: multiple write ports on register file extremely costly
- \Rightarrow Restriction to *register permutations*

Two new instructions:

- permi5: Apply one cyclic permutation with up to 5 elements
- permi23: Apply two independent cycles with 2 and up to 3 elements

Code Generation

Register Transfer Graphs

• Directed graph G = (V, E)

- Each node $v \in V$ represents register
- Each edge (v, v') represents copy operation from v to v'
- Each node has at most one incoming edge
- All copy operations assumed to be performed *in parallel*

- RTGs only consisting of cycles (*permutation form*) can be implemented using only permi instructions
- In general: RTGs can duplicate values
- Permutations are injective, value duplication impossible
- \Rightarrow Two-phase approach to extract sub-RTG in permutation form

Phase 1: Conversion into Permutation Form

Input: Arbitrary RTG

 $r_5 \rightarrow r_8$

Heuristics: At each node with > 1 outgoing edge: Keep edge that is part of longest path starting at node **Output:** RTG in permutation form + list of copy instructions

Phase 2: Decomposition into Cycles

Input: RTG in permutation form **Output:** List of permi instructions that implement RTG • Greedy algorithm with linear runtime shown on right

implementRegisterTransferGraph(rtg): insns \leftarrow [] # List of generated instructions, initially empty $(longs, shorts) \leftarrow collectCycles(rtg)$

```
# First phase: only emit permi5 instructions
while longs \neq []:
   cycle \leftarrow longs.take()
   while cycle.length() \geq 4:
       (cycle', remainder) \leftarrow split(cycle)
       insns.add(Permi5(cycle'))
       cycle \leftarrow remainder
   if cycle.length() > 0:
       shorts.add(cycle) # Remember remainder
# Second phase: try to fully utilize permi23 instructions
```

```
(twos, threes) \leftarrow sort(shorts)
while (twos \neq [] or threes \neq []):
   if threes \neq []:
       if twos \neq []:
            insns.add(Permi23(twos.take(), threes.take()))
       else if threes.size() \geq 2:
            (cycle2, cycle2') \leftarrow split(threes.take())
            insns.add(Permi23(cycle2, threes.take()))
           twos.add(cycle2')
        else:
            insns.add(Permi5(threes.take()))
    else if twos \neq []:
       if twos.size() \geq 2:
            insns.add(Permi23(twos.take(), twos.take()))
        else:
            insns.add(Permi5(twos.take()))
```

Hardware Implementation

Key component: *permutation table* in Decode stage

- Contains mapping logical \rightarrow physical register address
- Physical address used when accessing register file

permi instruction going through pipeline stages

- Applying permutation permi5 r5 r9 r7 r6 r8:
- Permutation performed in Decode stage (*early committing*)
- No changes to forwarding logic required

S

Permutations may need to be *reversed* if trap occurs (OS scheduler, I/O activity, etc.)

- Regular SPARC instructions: annul instructions
- *permi* instructions: check previous pipeline stages for permi instructions
 - If any: apply inverse permutations to permutation table

Pipeline snapshot during permutation reversion

Experimental Evaluation & Conclusion

Experimental Setup

- Implemented code generation strategy in libFirm compiler
- SPEC CPU2000 benchmark suite as input programs
- Modified QEMU to support permi instructions
- Ability to get precise dynamic instruction counts

# instructions per RTG	SPARC	Our system	Reduction
ILP (best)	1.86	1.14	38.6%
Recolor	2.04	1.14	44.0%
Biased	2.99	1.54	48.5%
Naive (worst)	5.12	1.85	63.7%

	U	tilizatic	system		system		head			
			JTs		21	%	31	%	44	%
		SI	ices		41	%	55	5%	31	%
	ſ		ip-flop	11% 19%		12% 19%		16% 0%		
	e	Bl	ockRA							
		Fr	equen	су	80 M	Hz	80 M	Hz	0	%
Levert time / total time / $10^{-6} - 01^{-7} - 01$	jin 15. NPi 16		nct crath	Parset 1.Parset	5.Peripmit		p.vortet 250	ptip2	0. ^{twoft}	

Hardware prototype based on Gaisler LEON 3 processor

Measurements on hardware prototype implementation on Virtex-5 FPGA

Conclusion

- Novel approach to accelerate shuffle code by hardware extension
- New instructions added to standard instruction set
- Code generation approach producing efficient code fast
- Extensive evaluation including FPGA prototype implementation
- Universal speedup, number of executed instructions reduced by up to 5.1%

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

