
Institut für Programmstrukturen
und Datenorganisation (IPD)

Lehrstuhl Prof. Dr.-Ing. Snelting

Locating and presenting
lexical references in a

theorem prover

Bachelorarbeit von

Joscha A. Mennicken

an der Fakultät für Informatik

Erstgutachter: Prof. Dr.-Ing. Gregor Snelting
Zweitgutachter: Prof. Dr. rer. nat. Bernhard Beckert
Betreuender Mitarbeiter: M. Sc. Sebastian Ullrich

Abgabedatum: 5. April 2022

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

Abstract

Being able to find other references to a symbol is a very useful tool, both when
exploring or navigating a code base and when planning and implementing refactorings.
However, theorem provers like Lean 4 are usuaully structured around individual files
and can’t easily answer project-wide queries.

In this thesis, I implement an infrastructure for project-wide symbol information.
I design ilean files containing symbol information and modify the Lean 4 compiler
to output them. I also modify the Lean 4 language server to load and reload ilean
files as well as incorporate symbol information from files opened and modified by the
user. I then use this infrastructure to implement finding references and workspace
symbol search as well as to improve the existing go-to-definition implementation.

This implementation has been merged into the Lean 4 project and can now be used
via the VSCode and Emacs plugins. Measurements show that it has no significant
impact on the compiler or language server performance.

Wenn man Quellcode liest oder durchsucht oder wenn man Refactorings vorbere-
itet oder durchführt, ist es sehr nützlich, die Referenzen eines Symbols finden zu
können. Die Struktur von Theorembeweisern wie Lean 4 basiert jedoch meistens auf
individuellen Dateien und ist nicht für projektweite Anfragen geeignet.

In dieser Arbeit implementiere ich eine Infrastruktur für projektweite Symbolin-
formationen. Dazu entwerfe ich ilean-Dateien, die Symbolinformationen enthalten,
und modifizieren den Lean-4-Compiler, sodass er ilean-Dateien erzeugen kann.
Zusätzlich modifiziere ich den Language Server, damit dieser aus ilean-Dateien
geladene Symbolinformationen sowie Symbolinformationen aus geoffneten und mod-
ifizierten Dateien zusammenstellen kann. Diese Infrastruktur verwende ich dann,
um Symbol-Referenzen zu finden, projektweite Symbolsuche durchzuführen und die
existierende Implementierung von go-to-definition zu verbessern.

Die Implementierung wurde in Lean 4 übernommen und kann jetzt durch das
VSCode-Plugin und das Emacs-Plugin verwendet werden. Messungen ergeben, dass
die Performanz des Compilers und Language Servers nicht signifikant beeinträchtigt
sind.

Contents
1 Introduction 7

2 Background 9
2.1 Lean 4 . 9

2.1.1 The language . 9
2.1.2 The compiler . 9

2.2 The Language Server Protocol (LSP) 10
2.3 The Lean 4 language server . 11
2.4 Related work . 12

2.4.1 The Language Server Index Format (LSIF) 12
2.4.2 Haskell’s hie files . 12

3 Design and Implementation 15
3.1 Initial design . 15

3.1.1 Extracting symbol information 15
3.1.2 Watchdog or worker . 17
3.1.3 Watchdog data structures . 18
3.1.4 The ilean file format . 19
3.1.5 The ilean-bundle files . 20

3.2 Revised design . 20
3.2.1 Getting rid of bundles . 21
3.2.2 Incremental updates . 22

3.3 Further applications of the new infrastructure 22

4 Evaluation 25
4.1 The size of ilean files . 25
4.2 Generating and loading ilean files 26
4.3 The textDocument/references request 27

5 Conclusion 31

5

1 Introduction
When working on programming projects, a lot of time is spent reading and navigating
the code. Thus, development environments usually include various means of code
navigation, for example searching for symbols, going to a symbol’s definition or
implementation, as well as finding all references of a symbol.

Finding a symbol’s references is useful in various situations. When working with
unknown code, it can be used to find out how definitions are commonly used. It can
be used to check whether all of a symbol’s usages are valid, or if the symbol has any
usages at all. It is also useful when editing and refactoring code. For example, when
replacing a function with a more general function, the original function’s references
can be updated one-by-one until no more references remain and the original function
can be deleted.

Even though it is useful, the Lean 4 language server — used by the Lean 4 VSCode,
Emacs, and Neovim plugins — does not support finding references. The server’s
architecture treats each opened lean file individually, with the file only having access
to its imports. It has no overview of the entire project. Such an overview is, however,
necessary to find all references of a symbol.

In this thesis, I implement an infrastructure to keep track of all symbol definitions
and usages in a Lean 4 project. This infrastructure is used to implement finding
references as well as to implement or improve a few other LSP requests.

In chapter 2, I will explain the technologies used. Chapter 3 describes the design
and implementation process. It describes an initial design, then a revised design
addressing issues encountered with the initial design. It also describes applications
of the implemented infrastructure. The performance of the final implementation is
then measured in chapter 4. Finally, chapter 5 interprets the measurements and lists
possible further applications for the implemented infrastructure.

7

2 Background

2.1 Lean 4
The Lean 4 project [1] is both a general purpose programming language and a theorem
prover implemented in that language. It is an open-source project1 developed mainly
by Leonardo de Moura at Microsoft Research and Sebastian Ullrich at KIT, but with
contributions from many others.

2.1.1 The language
The Lean 4 programming language is a functional, dependently typed language that
can be compiled via C code to binary executables. Similar to Haskell, functions are
pure by default and data structures are immutable. An example function in a style
similar to Haskell programs can be seen in listing 2.1. Side effects are managed via
monads and monad transformers. Lean 4 also has type classes and an extensive
do notation [2] that includes early returns, loops, mutable variables and automatic
monad lifting. An example for do notation can be seen in listing 2.2. In combination,
these features allow writing code in a functional as well as an imperative style.

Lean 4 also has facilities for metaprogramming [3]. Using syntax definitions and
macros, the language can be extended at compile-time. This is used to implement
many parts of the Lean 4 syntax such as infix notation or the match expression.
When proving theorems with Lean 4, this is also used as part of automatic proof
searching.

In order to provide a good development experience, Lean 4 plugins for the VSCode,
Emacs, and Neovim editors exist. These are based on the Language Server Protocol
described in section 2.2 and the Lean 4 language server described in section 2.3, as
well as a widget system to interactively display the state of proofs (similar to Lean
3’s ProofWidgets [4]).

2.1.2 The compiler
The Lean 4 compiler works one lean file at a time.

It first opens the lean file and parses as well as elaborates its contents. Parsing
occurs in chunks that depend on the syntax being parsed which may include custom
syntax defined earlier. After being parsed, a chunk is then elaborated. Elaboration
is the process of interpreting the parsed syntax, undoing syntactic sugar, executing

1https://github.com/leanprover/lean4

9

https://github.com/leanprover/lean4

2.2. THE LANGUAGE SERVER PROTOCOL (LSP)

1 structure SourceFile where
2 name : String
3 lines : Nat
4
5 def totalLines : List SourceFile → Nat
6 | List.nil => 0
7 | List.cons { lines, .. } ns => lines + totalLines ns

Listing 2.1: Calculating the total amount of lines of a list of source files in an
explicit, functional style

1 def totalLines (files : List SourceFile) : Nat := Id.run do
2 let mut total := 0
3 for file in files do
4 total := total + file.lines
5 return total

Listing 2.2: Redefining the totalLines function from listing 2.1 in an imperative
style using do notation

macros, type checking, collecting definitions, and executing statements such as #eval
or #reduce.

As elaboration may execute arbitrary code in the form of macros or statements,
it may take arbitrarily long. Since theorem proving relies on these capabilities to
automate proof finding, loading files containing large proofs can take on the order
of minutes, not just seconds. During elaboration, further syntax or macros can be
defined. These are then available in the rest of the current file as well as in files
importing the current file. This makes the order of imports and the interleaving of
parser and elaborator important.

When the compiler has finished loading a file, it can then produce an olean and
a c file. The olean file contains a dumped in-memory representation of the file’s
processed contents. This representation can be loaded and saved with little overhead.
When a lean file imports another lean file, the compiler loads the other file’s olean
file before elaboration begins. When using Lean 4 as a programming language, the c
files produced this way can be compiled and linked with a C compiler like gcc to
produce a binary. When using Lean 4 as a theorem prover, no binary is produced
as proofs are verified via type checking. The c files can still be used to precompile
tactics (which are macros), resulting in shared libraries.

2.2 The Language Server Protocol (LSP)
The Language Server Protocol [5] is a protocol designed for communication between
text editors and programming language specific language servers. It was developed

10

2.3. THE LEAN 4 LANGUAGE SERVER

by Microsoft for the VSCode editor but is now used by other editors as well. The
protocol tries to solve the problem that every language needs a custom plugin for
every editor it wants to support. Since editor plugins work differently from editor to
editor, this would mean duplicated work.

The protocol defines communication between a text editor (the client) and a
language server. The server can provide language-specific features such as syntax
highlighting, information on hover, code completion, go-to-definition, find-references
searching for symbols by name, renaming symbols and modules, or reformatting
code.

Interaction between a client and a server begins when the user opens a file or
project. The editor figures out the programming language and the corresponding
language server. The protocol has a concept of workspaces so the editor only needs
to start one server process per project. It then starts a new server process and
attaches to its stdin and stdout for communication. Messages in the protocol consist
of HTTP-like headers followed by a JSON-RPC message as the body. Initially, the
client and server negotiate which features to use. This ensures that client and server
don’t need to implement all parts of the protocol. Then the client notifies the server
of changes, requests information or tells the server to perform actions.

2.3 The Lean 4 language server
The Lean 4 language server design is influenced by a few restrictions. Elaborating
and processing a file is CPU intensive and may take seconds or even multiple minutes.
During elaboration, arbitrary code may be executed. Unloading and reloading of
olean files would be difficult to implement as they are loaded via memory mapping.
This leads to a design where opened source files are handled individually. Instead of
using the contents of imported files, which would require the server to load them
and all transitive imports, their olean files from the last compilation are used.

The server is split up into two main parts, the watchdog and the file workers. The
watchdog is the process that is launched by and communicates directly with the
client. It spawns one worker for each file opened by the client. The worker then loads
the olean files of the imports and elaborates the file. When a file is changed, the
worker re-elaborates the file from that point on. This means that the worker knows
the current state of its own file as well as its imported files’ states from the last
compilation. Communication between the watchdog and the workers happens using
a subset of the Language Server Protocol with custom extensions. The watchdog
forwards most file-based LSP requests directly to the worker responsible for the file,
which then computes a reply that is forwarded by the watchdog to the client.

As the workers are in separate processes from the watchdog, the CPU intensive
processing of their file does not affect the watchdog or other workers, keeping other
files responsive in the editor. When a file’s imports are changed or the imported
olean files should be reloaded after a compilation, the watchdog can just restart the
worker. The watchdog can do the same if a worker hangs or crashes with no need

11

2.4. RELATED WORK

to restart the entire server. A disadvantage of this isolation is that cross-file LSP
requests such as finding references or searching for a symbol in the entire workspace
can’t be implemented as they depend on the contents of unopened files for which no
workers exist.

2.4 Related work

2.4.1 The Language Server Index Format (LSIF)
The Language Server Index Format [6] is a way to represent and store LSP information
about the files in a workspace. While the LSP includes requests that are interactive
(e.g. completion, searching) or that modify files (e.g. renaming symbols, formatting),
LSIF only describes the contents of files. This includes information related to the
file itself, such as folding ranges and locations of links, as well as information related
to specific ranges, for example definitions, references, and hover text.

The format is based on a directed graph. The graph is represented as a stream of
nodes, vertices and events, represented in JSON. Vertices represent files, ranges in a
file, LSP responses, and monikers. Different kinds of edges describe the relationship
between vertices. Monikers are strings that can be used to identify symbols across
LSIF dumps.

LSIF is a flexible format for static dumps of entire workspaces. However, the
Lean compiler and language server operate mostly on a single-file basis. In order for
LSIF to be used, it would need to be modified slightly, or each file would need to
be treated as a separate workspace. Incremental updates from the workers to the
watchdog as described in section 3.2.2 would also require some modifications in the
format or its interpretation. The format itself is simple to emit but not as simple
to interpret due to its flexibility. Because of the complexity of the format and the
changes necessary to adopt it for use with the Lean 4 compiler and language server,
a simpler format described in section 3.1.4 was developed instead.

2.4.2 Haskell’s hie files
Starting from version 8.8, the Glasgow Haskell Compiler (GHC) is able to generate hie
files [7, 8]. They contain a lot of information about their corresponding source file that
GHC knows during compilation but which would otherwise be lost once compilation
finishes. The files include information such as the types of each subexpression,
information on identifiers, and even the source code itself. As they contain a lot of
information, there are many possible applications for hie files, for example generating
LSIF files2 and static analysis3.

Once hie files for a project have been generated, hiedb4 can be used to load multiple
2https://github.com/mpickering/hie-lsif
3https://github.com/kowainik/stan
4https://github.com/wz1000/hiedb

12

https://github.com/mpickering/hie-lsif
https://github.com/kowainik/stan
https://github.com/wz1000/hiedb

2.4. RELATED WORK

hie files into an SQLite database for fast indexing and querying. hie files and hiedb
are used by the Haskell Language Server (HLS)5. During operation, HLS generates
its own hie files and loads them into a database using hiedb. This lets HLS persist
information across restarts and respond to queries immediately after starting even
though it is still loading the project. The database is also used for queries like finding
references.

ilean files and their use by the Lean 4 language server have similarities to hie files.
Both can be generated by the compiler and are used by their respective language
servers to provide fast queries across entire projects. However, ilean files were
created specifically for the task of providing reference information and intentionally
exclude other information to keep file size and memory usage small. While HLS loads
and type checks opened projects and generates its own hie files, the Lean language
server relies on the compiler’s ilean files for unopened lean files because loading
and type checking an entire large proof-heavy project would take too long.

5https://github.com/haskell/haskell-language-server

13

https://github.com/haskell/haskell-language-server

3 Design and Implementation
Finding all references of a symbol in a project requires analyzing the entire project.
As discussed in section 2.3, the language server works on files separately and uses the
olean files from the last compilation to fill in the gaps. However, olean files don’t
contain information about all of a file’s symbols including their position, only about
definitions and their positions. In addition, file workers only know about the file’s
dependencies, but not the files depending on their file. One can see how LSP requests
like finding a symbol’s definition are fairly easy to implement even if the definition is
in another file, but finding a symbol’s usages requires additional infrastructure.

3.1 Initial design
In the initial design, the compiler extracts the locations of symbol definitions and
usages during compilation. For each lean file, it saves this information in an ilean
file placed next to the file’s olean file. Then, the contents of all these ilean files
are collected and written into one ilean-bundle file. The ilean-bundle file only
contains the information of existing lean files, not old ilean files that haven’t been
cleaned up yet. In the revised design described in section 3.2, ilean-bundle files
were removed again.

When the language server is started, the watchdog loads all ilean-bundle files in
the root directories of the current olean search path. It also registers with the LSP
client to receive notifications whenever an ilean-bundle file is created, changed, or
deleted. When it receives such a notification and the ilean-bundle file is in a valid
location, it loads, reloads, or unloads the bundle. The workers send the watchdog
their file’s symbol information whenever they finish elaboration after their file was
changed. Finally, the watchdog responds to incoming find-reference requests using
its current symbol information. It does not initiate communication with the workers
for this.

3.1.1 Extracting symbol information
Symbol information must be extracted in two places: During compilation and in the
LSP worker. Luckily, they both use the same machinery and output InfoTrees. An
InfoTree is a tree-based data structure containing information from the elaboration
process, for example the names and types of variables and their location in the source
file. During compilation, the collection of InfoTrees must be enabled. However, this
was measured in section 4.2 to have no significant runtime impact.

15

3.1. INITIAL DESIGN

Finding identifiers in InfoTrees is straightforward: Look through the deepest
nodes of every branch (e.g. the leaf nodes) of every InfoTree. If it is an identifier in
an expression, the tree will include its full name and whether it is a definition or not.
If it is a struct field in a constructor, the tree will include its full name.

There are two kinds of identifiers in expressions, global (also called const) and
local (also called fvar). Global identifiers can be accessed from other definitions
later in the same file and through imports. Local identifiers are restricted to scopes
inside definitions or expressions and can’t be accessed outside those scopes. Global
identifiers are unique across files while local identifiers are not. This means that only
global identifiers need to be included in ilean files. Examples for the different kinds
of identifiers can be found in listing 3.1.

1 structure BookG where
2 titleG : Stringg

3 pagesG : Natg

4
5 def renameG (bookL : Bookg) (new_titleL : Stringg) : Bookg :=
6 let new_bookL := { bookℓ with titles := new_titleℓ }
7 new_bookℓ

Listing 3.1: Examples for different kinds of identifiers. Global identifiers are marked
with g and their definitions with G. Local identifiers are marked with ℓ

and their definitions with L. Struct fields in constructors are marked
with s.

A special case where this approach needs to be augmented are parameters in
method signatures. Method parameters have two different local identifiers, one inside
the method signature (the signature identifier) and one inside the method body
(the body identifier). An example for this can be seen in listing 3.2. In terms of
references, a parameter’s identifiers should not be distinguished. For this, InfoTree
generation was modified so that the definition of a parameter’s signature identifier
exactly overlaps the definition of its body modifier. When identifiers are collected,
local identifiers with overlapping definitions are treated as the same identifier. In
listing 3.2, the identifiers a and b are combined, as well as c and d.

1 def mkTuple (tAB : Type) (vCD : ta) : Type × ta :=
2 (tb, vd)

Listing 3.2: Example for how method signatures and method bodies use different
identifiers for the same parameter. Different identifiers are marked with
different letters. Definitions are marked with uppercase letters while
usages are marked with lowercase letters. Only local identifiers are
marked.

16

3.1. INITIAL DESIGN

3.1.2 Watchdog or worker

After implementing the extraction of symbol information from InfoTrees, I modified
the worker to respond to references LSP requests. This initial approach was limited
to the contents of the worker’s file. In order to extend the approach to consider
entire projects, parts of the implementation would need to be distributed between
the watchdog and the workers. There were three main options.

As described in section 2.3, the workers themselves respond to most LSP requests
regarding their file. For cross-file references, more information is required. The first
idea was for a worker to request reference information from other workers before
responding. This way, the existing infrastructure for registering new request handlers
as well as locating symbols at a given source position could be used. However,
worker-to-worker communication has no existing infrastructure and would be difficult
to implement robustly. For example, a worker may be killed or crash before it has
a chance to respond. The overhead of communication may also lead to decreased
responsiveness. In addition, it is not clear how information for closed files should be
accessed. Each worker could load all ilean files, but this is unnecessary duplication
of resources. Alternatively, the watchdog could load ilean files and respond to
requests by workers. This would lead to even more communication complexity and
overhead.

The second idea was that the watchdog loads and reloads ilean files and responds
to requests. When responding, it queries the worker responsible for the request’s file
for the symbol at the request’s position. It then queries all workers for references
and uses the ilean information for all closed files. This approach solves the problem
of where the symbol information should be stored. It also utilizes the existing worker
infrastructure for finding symbols and references. Similar to the first approach,
this also comes with the disadvantage of complex communication. A request for
references would require the watchdog to send a request to each worker and wait for
the responses before responding itself. This two-way communication is again difficult
to implement robustly and carries with it some amount of overhead for each request.

The third idea — which I ended up implementing — is for the watchdog to contain
all information necessary to respond to requests for references. The workers send
the watchdog status updates when they finish re-elaborating after their file has been
changed. This requires only simple one-way communication. The communication
doesn’t occur for each request the watchdog receives, meaning that its overhead
is not as important. One possible issue is that the watchdog’s information may
become out-of-date when editing a file. During editing, the worker may not get to
fully elaborate the file and send updates to watchdog before the next change causes
it to re-elaborate. This issue is solved later via incremental updates, described in
section 3.2.2. The watchdog also becomes more complex. Stability and performance
issues in the watchdog affect the entire language server, while worker issues stay
confined to the worker.

17

3.1. INITIAL DESIGN

3.1.3 Watchdog data structures
The data structures used by the initial design to hold symbol information in the
watchdog can be seen in listing 3.3. Here, the term “reference” means a symbol’s
definition and its usages.

1 inductive RefIdent where -- An identifier for a reference is either
2 | const : Name → RefIdent -- a global identifier or
3 | fvar : FVarId → RefIdent -- a local identifier
4
5 structure RefInfo where -- Information about a reference
6 definition : Option Lsp.Range
7 usages : Array Lsp.Range
8
9 -- All references of a single module (i. e. source file)

10 def ModuleRefs := HashMap RefIdent RefInfo
11
12 -- All modules contained in an ilean-bundle file
13 def Bundle := HashMap Name ModuleRefs -- The keys are module names
14
15 structure References where
16 bundles : HashMap System.FilePath Bundle
17 overlays : HashMap Name (Nat × ModuleRefs) -- The keys are module names

Listing 3.3: Data structures for representing symbol information in the initial
design. Name and FVarId are the types used to identify global and
local identifiers respectively. Name is also used to identify modules.
Lsp.Range represents a range of characters in a source file, according
to the LSP standard. Nat is a natural number.

The watchdog stores a References value containing the information from the
ilean-bundle files as well as the information from all currently open files (called
overlays). These two are kept in separate HashMaps to make loading, reload-
ing and unloading of bundles and the opening and closing of files straightfor-
ward. In References.bundles, there is one entry for each ilean-bundle file. In
References.overlays, there is one entry for each open file. For querying, a References
object can be converted to a Bundle by first combining all bundles into a single
bundle and then overwriting ModuleRefs objects with their corresponding overlays. If
multiple bundles include the same module, one of the conflicting ModuleRefs objects
is chosen arbitrarily. They are all assumed to come from the same ilean file because
Lean 4 does not allow defining the same module multiple times.

For open files, the LSP protocol establishes a version number that strictly increases
after each change to the file. The workers include this number when sending their
file’s symbol information to the watchdog. The watchdog saves this number and
ignores any update that doesn’t increase the version number. This is to avoid

18

3.1. INITIAL DESIGN

inconsistencies if a worker sends updates out of order.
When receiving a request for references from the client, the watchdog executes two

steps: First, it needs to find the symbol for which references were requested. The
request itself only includes a file and a position within that file. To find the symbol,
the watchdog searches through all symbols in the file’s ModuleRefs object, obtaining
a RefIdent or aborting if no symbol is found at the position. Individual files are
expected to be on the order of tens to hundreds of lines long, so a linear search is
sufficient. Second, the watchdog needs to find all references to the symbol it just
found. For this, it looks up the symbol’s RefInfo in every ModuleRefs object. The
RefInfo.definition field is included (if present) if the request specifies to include
declarations, or excluded otherwise. To avoid replying with source locations inside
moved or deleted files, only ModuleRefs objects for which a corresponding source file
exists are included in this second search.

3.1.4 The ilean file format
ilean files are a straightforward serialization of a ModuleRefs object into JSON.
An example lean file and corresponding ilean file can be found in listing 3.4 and
listing 3.5 respectively. They include a version number for future changes of the
format, as well as the name of the module they have been created from. Positions in
the source file are represented as a 4-element list of the form [start line, start
column, end line, end column] instead of objects in order to keep the files small.
ilean files only include global identifiers as local identifiers can’t be referenced from
other files.

1 def main : IO Unit :=
2 IO.println "Hello, world!"

Listing 3.4: An example lean file Main.lean in the module root. The corresponding
ilean file can be found in listing 3.5.

1 {
2 "version": 1,
3 "module": "Main",
4 "references": {
5 "c:IO": { "usages": [[0,11,0,13]], "definition": null }
6 "c:IO.println": { "usages": [[1,2,1,12]], "definition": null },
7 "c:main": { "usages": [], "definition": [0,4,0,8] },
8 "c:Unit": { "usages": [[0,14,0,18]], "definition": null },
9 }

10 }

Listing 3.5: The pretty-printed ilean file for listing 3.4.

19

3.2. REVISED DESIGN

The serialized format of ModuleRefs objects is also used for the worker-to-watchdog
updates described in section 3.1.2 and section 3.2.2. Here, the ModuleRefs objects
sent to the watchdog include local identifiers in addition to global ones. A prefix for
identifier names is used to distinguish between global (prefix c:) or local (prefix f:)
identifiers.

I chose the format of JSON in text files for multiple reasons. For one, it is easy to
use since the Language Server Protocol uses JSON and so JSON support was already
implemented. This includes automatic deriving of serialisation and deserialisation
implementations based on a data structure’s declaration. It also allows me to re-use
the same serialisation and deserialisation for worker-to-watchdog communication. As
JSON is a text-based format, it is easy to inspect and debug manually. Finally, it is
easy to decode and use from other languages.

3.1.5 The ilean-bundle files
In addition to ilean files, the initial design uses ilean-bundle files generated by
the build system. An ilean-bundle file is a JSON file that can contain the contents
of multiple ilean files. Lean 4 itself uses a cmake-based build system while Lean
4 projects often use Lake. Lake is a build system for Lean 4 projects and is itself
written in Lean 4. Neither of these build systems cleans up its artefacts on every
compilation. When a lean file is moved or deleted, its corresponding ilean file
stays around. If the language server loaded and used all ilean files, it could lead to
conflicts in common editing scenarios. For example, if a file is renamed, the same
symbols will be defined in the old and new ilean file. Duplicate definitions can also
occur if a definition is moved from one file to another.

To solve this problem, the build system generates ilean-bundle files after compil-
ing its lean files. It includes only the ilean files it just produced in the bundle. The
language server then loads the ilean-bundle files instead of the individual ilean
files, meaning it has a consistent view of the results of the last compilation. To avoid
the issue of outdated ilean-bundle files, the build system only generates a fixed
number of such files and updates them on every rebuild. A bundle is created by
calling a new binary with a list of ilean files as argument.

Two options were considered for the structure of ilean-bundle files. They could
either contain a list of existing lean or ilean files, or they could contain the contents
of the ilean files directly. The second option was chosen as it simplified loading the
files. In the revised design, ilean-bundle files were removed again. See section 3.2.1
for more information.

3.2 Revised design
The revised design tries to address a few issues found during or after implementation
of the initial design. It gets rid of ilean-bundle files. Instead, the server ignores all
ilean files for which no corresponding lean file exists. This change allows the worker

20

3.2. REVISED DESIGN

data structures to be simplified as well. More LSP requests are implemented using
the ilean infrastructure. In order to keep them as responsive as before, incremental
ilean updates from workers are implemented. Finally, handling of overlapping
symbols at the request positions is fixed.

While the initial design combined local identifiers whose definitions overlapped, it
did not consider the fact that global identifier definitions might also overlap. This
occurs in structure definitions. The structure’s name and its constructor function
are both defined in the same place. When searching for a structure’s references via
its definition, either the references of its name or of its constructor function were
shown, but not both. In the revised design, references for all definitions overlapping
the request position are shown.

3.2.1 Getting rid of bundles

I created ilean-bundle files to prevent outdated ilean files from being loaded.
Aside from that, they could also have been used to solve further issues. If the load
time of ilean-bundle files had been too long, they could have been structured
similarly to olean files, allowing them to be loaded via memory mapping. During
creation of ilean-bundle files, preprocessing like merging the symbol information
or deduplicating ranges could have been implemented. When loading ilean-bundle
files instead of ilean files, there are also less files and directories to watch for updates,
which could improve the language server’s performance when recompiling. However,
I encountered none of these issues during development.

On the other hand, ilean-bundle files add complexity to the build process. A
separate binary is called to create the ilean-bundle files, duplicating the ilean
files’ contents in the process. The watchdog already needs to find each module’s
lean file for the response to the request for references. This makes ilean-bundle
files redundant as the watchdog can simply ignore ilean files without a lean file.

Loading ilean-bundle files only behaves differently from loading ilean files
directly in very specific cases, for example when deleting a file, then compiling the
project and then creating a file with the same name again. Recompiling the project
is sufficient to bring the language server’s symbol information back into a consistent
state. Because ilean-bundle files add complexity but no benefit, they were removed.

Listing 3.6 shows the watchdog’s new representation of symbol information after
the removal of ilean-bundle files. References.bundles has been replaced with
References.ileans, with one fewer level of HashMap nesting. Next to the ModuleRefs
objects loaded from ilean files, the ilean file’s path is stored to make unloading
easier. Aside from the bug fix described in section 3.2, the implementation of the
request for references has not changed. When querying Requests, Requests.ileans
and Requests.overlays are still merged into a single HashMap from module names to
ModuleRefs objects.

21

3.3. FURTHER APPLICATIONS OF THE NEW INFRASTRUCTURE

1 structure References where
2 -- The Name keys in these hash maps are module names
3 ileans : HashMap Name (System.FilePath × ModuleRefs)
4 overlays : HashMap Name (Nat × ModuleRefs)

Listing 3.6: Data structures for representing symbol information in the revised
design. The definition of ModuleRefs is the same as in listing 3.3.

3.2.2 Incremental updates
When a worker responds to an LSP request like textDocument/definition or
textDocument/hover, it doesn’t require the file to be evaluated fully. Instead, it
waits until enough of the file has been elaborated and then replies immediately.
For example, the file only needs to be elaborated up to the request position for a
textDocument/definition request. In contrast, the initial implementation required
the worker to process the entire file and update the watchdog before a request would
see the new state.

Incremental updates as implemented in the revised design sit in-between those
two options. After a file is changed, the worker sends the information for all
unchanged chunks along with the new file version number to the watchdog, replacing
the watchdog’s earlier (now outdated) information about the file. Whenever it
has processed a new chunk of the input file, the worker immediately sends that
information to the watchdog as well. When it finishes processing the file, the worker
sends the entire file’s information to the watchdog again, but this time in a single
packet, and the watchdog overwrites its old information with this new information.
This is done to avoid inconsistencies that may arise from reassembling partial file
information. The watchdog answers requests with only the information it has at
the time of the request. It does not wait for all relevant chunks to be processed by
worker first.

3.3 Further applications of the new infrastructure
Once I implemented the textDocument/references request, I used the symbol
information infrastructure to implement and augment other requests.

Workspace symbol search via the workspace/symbol request lets the user search
for a symbol in the current workspace. Since the watchdog has the names of all
symbols from the current project as well as any dependencies with ilean files in
the olean search path, this request is easy to implement1. Symbols containing the
characters of the query in order (but not necessarily consecutively) are returned as
the search result.

The textDocument/definition request was adapted to search for the definition
in the watchdog’s symbol information and only pass on the request to the responsible

1https://github.com/leanprover/lean4/pull/964

22

https://github.com/leanprover/lean4/pull/964

3.3. FURTHER APPLICATIONS OF THE NEW INFRASTRUCTURE

worker if the search was unsuccessful2. Previously, it would be forwarded to the
watchdog immediately, which would then look up the location of the symbol’s
definition in the imported olean file. If the file containing the definition had been
changed since the last compilation, the olean file’s location information was out-of-
date and editors would show the wrong location. Because the watchdog now inspects
its symbol information first, the correct location is returned if the file containing the
definition is already open.

The textDocument/documentHighlight request was implemented by Lars König
using symbol information inside the worker3. This request lets editors highlight all
occurrences of the symbol under the cursor in the current file.

2https://github.com/leanprover/lean4/pull/979
3https://github.com/leanprover/lean4/pull/969

23

https://github.com/leanprover/lean4/pull/979
https://github.com/leanprover/lean4/pull/969

4 Evaluation

In this chapter, the performance and behaviour of the revised implementation is
inspected. The language server being tested is compiled from commit d2cc5b4a1 in
the Lean 4 repository. The language server is being used on code from the same
commit.

4.1 The size of ilean files
This section investigates the size of ilean files compared to the size of their cor-
responding lean files. For this, the size of 499 lean files and their ilean files are
graphed in figure 4.1. These are all the lean files of the Lean 4 project excluding
Leanc.lean, Leanpkg.lean and the lake submodule.

Using a logarithmic scale, the size relationship appears mostly linear. The ilean
files tend to be a bit larger than their lean files. There is a group of ilean files
which appear to stay small independently of the size of their lean files. There are
also a few outliers whose ilean files are a lot smaller than the lean files, but not
small enough to end up in the previously mentioned group.

The linearity is expected because lean files usually consist mostly of global
definitions that use other global definitions in their bodies. If lean files deviate
from this structure, the corresponding ilean file can shrink. For example, lean
files with long comments lead to smaller ilean files. Similar to comments, imports
don’t count as symbols either. The same can happen if a lean file defines macros
or syntaxes as those definitions don’t show up in the InfoTree in the same way as
normal definitions. Yet another way to shrink ilean files is to use mostly local
symbols like function arguments or let or where bindings. These effects lead to the
outliers in the graph.

The group of ilean files with empty references, marked as hollow circles in the
graph, exists due to the same effects that produce the other outliers. The Lean 4
project contains quite a few files that exist just to import other files. Sometimes,
these importing files also contain a few macro definitions. Even though these ilean
files contain no reference information, they are not entirely empty and their size
varies. This is because every ilean file contains a file format version number and
the module name of the lean file. As the module names vary, the ilean sizes vary
as well.

1https://github.com/leanprover/lean4/commit/d2cc5b4a8325f3da0ceec551769920b2eab4ed70

25

https://github.com/leanprover/lean4/commit/d2cc5b4a8325f3da0ceec551769920b2eab4ed70

4.2. GENERATING AND LOADING ILEAN FILES

101 102 103 104 105101

102

103

104

105

lean size [bytes]

il
ea

n
siz

e
[b

yt
es

]

nonempty references field
empty references field

Figure 4.1: Size of lean files and corresponding ilean files. If the references
field in the ilean file has at least one reference, a solid circle is used.
Otherwise, an empty circle is used.

4.2 Generating and loading ilean files
In order to generate ilean files, InfoTrees need to be captured during compilation.
This is normally disabled and enabling it has some overhead. In a pull request2 to
the Lean 4 repo, Sebastian Ullrich determined that the performance overhead of
enabling it is not too large.

When the language server is initially started, it loads all ilean files it can find
on the olean search path. When the LSP client notifies it of ilean file changes, it
loads, reloads or unloads the affected files. The Lean 4 project has 545 ilean files
which the server loads in approximately 300 ms. During compilation, ilean files are
reloaded as soon as the LSP client detects they have changed. Because the initial
ilean loading is only performed once and because compilation takes a lot longer
than the 300 ms a full ilean reload takes, the overhead of loading ilean files is not
noticeable in practice.

Most individual ilean files take less than 1 ms to load, with the longest load time
being about 6.5 ms. Figure 4.2 shows the load times of all ilean files, averaged
over several full ilean reloads. The load time appears to be roughly proportional to
the file size, with a nonzero overhead per file. There is a single reference-less ilean

2https://github.com/leanprover/lean4/pull/834

26

https://github.com/leanprover/lean4/pull/834

4.3. THE TEXTDOCUMENT/REFERENCES REQUEST

file with a longer load time than all other reference-less ilean files. It is the file
Std/Data.ilean, which was loaded first on every full ilean reload. Even though
multiple such reloads were performed consecutively, this ilean file consistently took
longer to load.

102 103 104 105

10−2

10−1

100

101

ilean size [bytes]

lo
ad

tim
e

[m
s]

nonempty references field
empty references field

Figure 4.2: Size and load time of ilean files. If the references field in the
ilean file has at least one reference, a solid circle is used. Otherwise,
an empty circle is used.

The resident set size of the watchdog with all ilean files loaded is approximately
75 MiB. When loading no ilean files, its resident set size is approximately 47 MiB.
In comparison, a single worker might use multiple hundred mebibytes of memory. For
example, a worker for Lean/Server/Watchdog.lean uses 250-300 MiB of memory
and a worker for Lean.lean uses 350-400 MiB of memory. Compared to those, the
watchdog’s overhead is acceptable. Since workers don’t store their symbol information
after sending it to the watchdog, their memory usage while not elaborating a file is
not affected.

4.3 The textDocument/references request
This section investigates the performance of the textDocument/references request
implementation for the 20 most commonly used symbols in the Lean 4 code base.
For this, multiple requests were made per symbol. The request location was the

27

4.3. THE TEXTDOCUMENT/REFERENCES REQUEST

symbol’s definition. Only the file containing the definition was open at the time of
the request. Times measured were rounded up to the nearest millisecond.

The table in figure 4.3 shows two different times for each symbol. The search time
is the time it took the server to find the symbol based on the request position as
well as to then find the symbol’s references. The total time includes serializing and
printing the response. The table also includes the amount of occurrences of each
symbol as well as the amount of files it occurs in. The amount of files a symbol is
used in does not directly depend on the amount of occurrences. Some symbols like
Bool and its constructors are used in most files while other symbols like Lean.Syntax
are confined to a smaller set of files but used similarly frequently.

Symbol References Files Search [ms] Total [ms]
Lean.Expr 3332 170 5 30
Option.some 2187 288 8 24
Array 2153 238 7 23
Option.none 2020 289 8 23
Lean.Name 1995 226 7 21
Nat 1954 236 7 21
Pure.pure 1933 242 7 21
Bool 1930 293 8 22
Bool.false 1416 253 7 18
Lean.Syntax 1341 108 4 14
Lean.Meta.MetaM 1290 136 4 14
Bool.true 1243 232 7 16
Option 1217 246 7 16
String 1075 145 5 13
List 1057 169 5 13
Unit 1055 200 6 14
Array.size 1039 150 5 13
Lean.Syntax.getOp 757 67 3 9
Array.push 661 160 5 10
Lean.Elab.Term.TermElabM 627 43 3 7

Figure 4.3: Time required to find references of the 20 most commonly used symbols
in the Lean 4 code base. The search time includes resolving the request
position and finding the references. The total time includes the search
time as well as serializing the response. Both times are rounded up to
the nearest millisecond. The table includes how often the symbol is
referenced in the source code and in how many files it appears.

A symbol’s search time seems to follow the amount of files the symbol is in. The
symbol’s total occurrences don’t seem to have a big influence, meaning the search
time is dominated by per-file overhead. During the search, the module of each loaded

28

4.3. THE TEXTDOCUMENT/REFERENCES REQUEST

ilean file containing the requested symbol is resolved, resulting in the path of the
lean file defining the module. Then, this path is resolved into an absolute path so it
can be converted into a file URL. These two steps are the main source of per-file
overhead. If they are bypassed by using empty strings as the file URLs, the search
time for Option.some drops from 8 ms to about 2 ms and the total time from 24 ms
to about 11 ms.

The total time follows the amount of references more closely than the amount of
files, although in some cases the per-file overhead discussed in the previous paragraph
is large enough to make a difference. For example, the total time for Option is
larger than the total time for Lean.Syntax even though the latter has over 100 more
references. The reason for this seems to be serialization of the response into JSON, as
writing the serialized response to stdout and flushing it only takes a few microseconds.

The serialization overhead depends on the size of the response. The response
includes a file URL and a range for each reference, leading to redundant file URLs if
there are multiple references in the same file. This leads to responses multiple hundred
kibibytes in size. For example, the response to a textDocument/references request
for Option.some is approximately 350 KiB large. The reduction of the total time
when replacing all file URLs with empty strings is also explained by the serialization
overhead.

29

5 Conclusion
I have implemented reference and symbol search for the Lean 4 language server.
For this, I developed the ilean file format and modified the compiler to produce
ilean files. I also modified the server to load symbol information from ilean files
and to combine the information with incremental symbol information from the
individual file workers. Finally, I implemented the textDocument/references and
workspace/symbol LSP requests and fixed the textDocument/definition request
to jump to the correct source position in more cases.

As can be seen in chapter 4, the implementation’s performance is adequate for
interactive use. References requests take tens of milliseconds to complete, which is
short enough to not cause noticeable delays. The additional overhead during compi-
lation is also small enough to not be a nuisance. Other requests like the workspace
symbol search may take longer than 100 ms with specially crafted queries, but this
is still fast enough for a search. The workspace symbol search implementation was
modified by others to include fuzzy search functionality between my implementation
and this evaluation.

When I was familiarizing myself with the Lean 4 code base, go-to-references would
often have been useful. Once the implementation was far enough along for basic
reference searching, I began using it immediately. By now, it has been merged into
Lean 4’s master branch123 and is being used by others4.

In the future, the infrastructure introduced by this implementation could also
be used to implement even more LSP requests or features. It represents a view of
the entire project based on the last compilation for unopened files and the current
content of opened files. Previously, no part of the language server had a view of
the entire project. Now, parts of it are already used to implement the definition
and documentHighlight requests and other features like renaming symbols, code
lenses showing the amount of usages5 or warnings about unused symbols could also
benefit from it. As ilean files are JSON and thus easy to parse from most languages,
programs for static analysis of projects via their symbol infoormation are also easier
to write. Possible examples would be programs to detect unused symbols, to lint
identifiers, or to prevent symbols whose namespace doesn’t match the file’s module
name from being defined. External programs operating on ilean files could also
benefit from including more information in ilean files, similar to the applications of

1https://github.com/leanprover/lean4/pull/835
2https://github.com/leanprover/lean4/pull/925
3See also section 3.3
4https://github.com/leanprover/vscode-lean4/issues/156
5https://github.com/leanprover/lean4/pull/975

31

https://github.com/leanprover/lean4/pull/835
https://github.com/leanprover/lean4/pull/925
https://github.com/leanprover/vscode-lean4/issues/156
https://github.com/leanprover/lean4/pull/975

hie files described in section 2.4.2.

32

Bibliography
[1] L. de Moura and S. Ullrich, “The lean 4 theorem prover and programming

language,” in Automated Deduction – CADE 28 (A. Platzer and G. Sutcliffe,
eds.), (Cham), pp. 625–635, Springer International Publishing, 2021.

[2] “The do notation.” https://leanprover.github.io/lean4/doc/do.html. Re-
trieved: 25 Mar. 2022.

[3] S. Ullrich and L. de Moura, “Beyond notations: Hygienic macro expansion for
theorem proving languages,” in Automated Reasoning (N. Peltier and V. Sofronie-
Stokkermans, eds.), (Cham), pp. 167–182, Springer International Publishing,
2020.

[4] E. W. Ayers, M. Jamnik, and W. T. Gowers, “A Graphical User Interface Frame-
work for Formal Verification,” in 12th International Conference on Interactive
Theorem Proving (ITP 2021) (L. Cohen and C. Kaliszyk, eds.), vol. 193 of Leib-
niz International Proceedings in Informatics (LIPIcs), (Dagstuhl, Germany),
pp. 4:1–4:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

[5] “Language Server Protocol Specification - 3.16.” https://microsoft.github.
io/language-server-protocol/specification.html. Retrieved: 23 Mar.
2022.

[6] “Language Server Index Format Specification - 0.6.0.” https://microsoft.
github.io/language-server-protocol/specifications/lsif/0.6.0/
specification. Retrieved: 23 Mar. 2022.

[7] Z. Duggal, “HIE Files - coming soon to a GHC near you!.” https://www.haskell.
org/ghc/blog/20190626-HIEFiles.html. Retrieved: 29 Mar. 2022.

[8] “hie files.” https://gitlab.haskell.org/ghc/ghc/-/wikis/hie-files. Re-
trieved: 29 Mar. 2022.

33

https://leanprover.github.io/lean4/doc/do.html
https://microsoft.github.io/language-server-protocol/specification.html
https://microsoft.github.io/language-server-protocol/specification.html
https://microsoft.github.io/language-server-protocol/specifications/lsif/0.6.0/specification
https://microsoft.github.io/language-server-protocol/specifications/lsif/0.6.0/specification
https://microsoft.github.io/language-server-protocol/specifications/lsif/0.6.0/specification
https://www.haskell.org/ghc/blog/20190626-HIEFiles.html
https://www.haskell.org/ghc/blog/20190626-HIEFiles.html
https://gitlab.haskell.org/ghc/ghc/-/wikis/hie-files

Erklärung

Hiermit erkläre ich, Joscha A. Mennicken, dass ich die vorliegende Bachelorarbeit
selbstständig verfasst habe und keine anderen als die angegebenen Quellen und
Hilfsmittel benutzt habe, die wörtlich oder inhaltlich übernommenen Stellen als solche
kenntlich gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher
Praxis beachtet habe.

Ort, Datum Unterschrift

35

	Introduction
	Background
	Lean 4
	The language
	The compiler

	The Language Server Protocol (LSP)
	The Lean 4 language server
	Related work
	The Language Server Index Format (LSIF)
	Haskell's hie files

	Design and Implementation
	Initial design
	Extracting symbol information
	Watchdog or worker
	Watchdog data structures
	The ilean file format
	The ilean-bundle files

	Revised design
	Getting rid of bundles
	Incremental updates

	Further applications of the new infrastructure

	Evaluation
	The size of ilean files
	Generating and loading ilean files
	The textDocument/references request

	Conclusion

