Animating the Formalised Semantics
of a Java-like Language

Andreas Lochbihler! and Lukas Bulwahn?

! Karlsruher Institut fiir Technologie, andreas.lochbihler@kit.edu
2 Technische Universitdt Miinchen, bulwahn@in. tum.de

Abstract. Considerable effort has gone into the techniques of extract-
ing executable code from formal specifications and animating them. We
show how to apply these techniques to the large JinjaThreads formali-
sation. It models a substantial subset of multithreaded Java source and
bytecode in Isabelle/HOL and focuses on proofs and modularity whereas
code generation was of little concern in its design. Employing Isabelle’s
code generation facilities, we obtain a verified Java interpreter that is
sufficiently efficient for running small Java programs. To this end, we
present refined implementations for common notions such as the reflex-
ive transitive closure and Russell’s definite description operator. From
our experience, we distill simple guidelines on how to develop future
formalisations with executability in mind.

1 Introduction

In the last few years, substantial work has been devoted to the techniques and
tools for executing formal specifications from Isabelle/HOL, on the levels of both
prover infrastructure [BI8[9] and formalisations of foundational notions and con-
cepts [GTTITE]. But so far, applications (e.g. [419/20]) have been designed for
executability and restricted to purely functional specifications. A benchmark to
test whether the aforementioned techniques mix well and scale to large formali-
sations has been missing.

In this work, we study how to apply code generation techniques to the
JinjaThreads project [I5[T6/17], which formalises a substantial subset of multi-
threaded Java source and bytecode. JinjaThreads constitutes a good benchmark
for three reasons: (i) It is a large formalisation (70k lines of definitions and proofs)
that involves a broad range of advanced Isabelle features. (ii) As a programming
language, type system, and semantics, it has a built-in notion of execution. This
sets the goal for what should be executable. (iii) It focuses on proofs and modu-
larity rather than code generation, i.e. complications in specifications and proofs
for the sake of direct code generation were out of the question. Hence, it tests if
code generation works “in the wild” and not only for specialised developments.

Our main contribution here is to discuss what was needed to automatically
generate a well-formedness checker and an interpreter for JinjaThreads programs
from the Isabelle formalisation, and what the pitfalls were. Thereby, we demon-
strate how to combine the different techniques and tools such that changes to
the existing formalisation stay minimal. Our contributions fall into two parts.

On the system’s side, we enhanced Isabelle’s code generator for inductive
predicates (to obtain a mature tool for our needs. It now compiles inductive
definitions and first-order predicates, interpreted as logic programs, to functional
implementations. Furthermore, we present a practical method to overcome the
poor integratability of Isabelle’s code generator into Isabelle’s module system
(. Finally, we describe a tabled implementation of the reflexive transitive
closure (§2.3]) and an executable version of Russell’s definite description operator
(7 which are now part of the Isabelle/HOL library.

On JinjaThreads’ side, we animated the formalisation (see for an over-
view) through code generation: Many of its inductive definitions, we had to refine
for compilation or, if this was impossible, implement manually (and .
To obtain execution traces of JinjaThreads programs, we adapted the state rep-
resentation and formalised two schedulers (In we explain how to add
memoisation to avoid frequently recomputing common functions, e.g. lookup
functions, without polluting the existing formalisation. Clearly, as the generated
code naively interprets source code programs, we cannot expect it to be as effi-
cient as an optimising Java virutal machine (JVM). Nevertheless, we evaluated
the performance of the generated interpreter (Simple optimisations that
we describe there speed up the interpreter by three orders of magnitude. Hence,
it is sufficiently efficient to handle Java programs of a few hundred lines of code.

We conclude our contributions by distilling our experience into a few guide-
lines on how to develop formalisations to be executable ones. Rather than im-
posing drastic changes on the formalisation, they pinpoint common pitfalls. §]
explains why and how to avoid them.

The interpreter and the full formalisation is available online in the Archive
of Formal Proofs [I7]. To make the vast supply of Java programs available for
experimenting and testing with the semantics, we have written the (unverified)
conversion tool Java2linja as a plug-in to the Eclipse IDE. It converts Java class
declarations into JinjaThreads abstract syntax. The latest development version
is available at http://pp.info.uni-karlsruhe.de/git/Java2Jinja/.

1.1 Related work

Code generation (of functional implementations) from Isabelle/HOL is a well-
established business. Mari¢ [19] presents a formally verified implementation of
a SAT solver. In the CeTA project, Thiemann and Sternagel [20] generate a
self-contained executable termination checker for term rewriting systems. The
Flyspeck project uses code generation to compute the set of tame graphs [4]. All
these formalisations were developed with executability in mind. Complications
in proofs to obtain an efficiently executable implementation were willingly taken
and handling them are large contributions of these projects.

Code generation in Coq [I3] has been used in various developments, no-
tably the CompCert compiler [I2] and the certificate checkers in the MOBIUS
project [3]. Like in Isabelle, functional specifications pose no intrinsic problems.
Although code extraction is in principle possible for any Coq specification, math-
ematical theories can lead to “a nightmare in term of extracted code efficiency

http://pp.info.uni-karlsruhe.de/git/Java2Jinja/

and readability” [I3]. Hence, Coq’s users, too, are facing the problem of how to
extract (roughly) efficient code from specifications not aimed towards executabil-
ity. ACL2 and PVS translate only functional implementations to Common Lisp.

In [5], we have reported on generating code from non-functional specifica-
tions. Recently, Nipkow applied code generation for inductive predicates to an-
imate the semantics and various program analyses of an educational imperative
language (personal communication). All these applications were tiny formalisa-
tions compared to JinjaThreads.

Some formalisations of the JVM in theorem provers are directly executable.
The most complete is the M6 model of a JVM by Lui and Moore [14] in ACL2,
which covers the CLDC specification. Farzan et al. [7] report on a JVM for-
malisation in Maude’s rewriting logic. ACL2’s and Maude’s logics are directly
executable, i.e., they force the user to write only executable formalisations. While
JinjaThreads studies meta-language properties like type safety for a unified
model of Java and Java bytecode, these JVM formalisations aim at verifying
properties of individual programs. Atkey [I] presents an executable JVM model
in Coq. He concentrates on encoding defensive type checks as dependent types,
but does not provide any data on the efficiency.

1.2 Background: the Code Generator Framework and Refinement

Isabelle’s code generator [9] turns a set of equational theorems into a functional
program with the same equational rewrite system. As it builds on equational
logic, the translation guarantees partial correctness by construction and the user
may easily refine programs and data without affecting her formalisation globally.
Program refinement can separate code generation issues from the rest of the for-
malisation. As any (executable) equational theorem suffices for code generation,
the user may locally derive new (code) equations to use upon code generation.
Hence, existing definitions and proofs remain unaffected, which has been crucial
for JinjaThreads.

For data refinement, the user may replace constructors of a datatype by other
constants and derive equations that pattern-match on these new (pseudo-)con-
structors. Neither need the new constructors be injective and pairwise disjoint,
nor exhaust the type. Again, this is local as it affects only code generation, but
not the logical properties of the refined type. Conversely, one cannot exploit
the type’s new structure inside the logic. Only type constructors can be refined;
some special types (such as 'a = ’b option for maps) must first be wrapped in
an (isomorphic) type of their own (e.g. ('a,’ b) mapping).

Isabelle’s standard library defines such special-purpose types for sets and
maps with standard operations. Associative lists and red-black trees implement
them via data refinement. FinFuns [I8] are almost-everywhere constant func-
tions; they provide an executable universal quantifier thanks to data refinement
to associative lists. The Isabelle Collections Framework (ICF) [II] advocates
dealing with refinement in the logic instead of hiding it in the code generator. Lo-
cales, i.e. Isabelle modules, specify the abstract operations, concrete implemen-
tations interpret them. This allows for executing truly underspecified functions.

2 Code Generation in Isabelle

In this section, we present our contributions that JinjaThreads has motivated,
but that are generally applicable. Consequently, they have been integrated into
Isabelle’s main system and library. First, we present the code generator for in-
ductive predicates and our improvements to it (Then, we describe our
approach to overcome the problematic situation with code generation and lo-
cales (Finally, we sketch formalisations for enhanced implementations for
the reflexive transitive closure (and the definite description operator (,
which are employed in JinjaThreads’ type system, for example.

2.1 The Predicate Compiler

The predicate compiler [5] translates specifications of inductive predicates, i.e. the
introduction rules, into executable equational theorems for Isabelle’s code gen-
erator. The translation is based on the notion of modes. A mode partitions the
arguments into input and output. For a given predicate, the predicate compiler
infers the set of possible modes such that all terms are ground during execution.
Lazy sequences handle the non-determinism of inductive predicates. By default,
the equations implement a Prolog-style depth-first execution strategy. Since its
initial description [5], we improved the predicate compiler in four aspects:

First, mode annotations restrict the generation of code equations to modes of
interest. This is necessary because the set of modes is exponential in the number
of arguments of a predicate. Therefore, the space and time consumption of the
underlying mode inference algorithm grows exponentially in that number; for all
applications prior to JinjaThreads, this has never posed a problem. In case of
many arguments (up to 15 in JinjaThreads), the plain construction of this set
of modes burns up any available hardware resource. To sidestep this limitation,
modes can now be declared and hence they are not inferred, but only checked
to be consistent.

Second, we also improved the compilation scheme: The previous one sequen-
tially checked which of the introduction rules were applicable. Hence, the input
values were repeatedly compared to the terms in the conclusion of each intro-
duction rule by pattern matching. For large specifications, such as JinjaThreads’
semantics (contains 88 rules), this naive compilation made execution virtually
impossible due to the large number of rules. To obtain an efficient code expres-
sion, we modified the compilation scheme to partition the rules by patterns of the
input values first and then only compose the matching rules — this resembles sim-
ilar techniques in Prolog compilers, such as clause indexing and switch detection.
We report on the performance improvements due to this modification in

Third, the predicate compiler now offers non-intrusive program refinement,
i.e., the user can declare alternative introduction rules. For an example, see §3.3

Fourth, the predicate compiler was originally limited to the restricted syn-
tactic form of introduction rules. We added some preprocessing that transforms
definitions in predicate logic to a set of introduction rules. Type-safe method

overriding (§3.2)) gives an example.

2.2 Isabelle Locales and Code Generation

Locales [2] in Isabelle allow parametrised theory and proof development. In other
words, locales allow to prove theorems abstractly, relative to a set of fized param-
eters and assumptions. Interpretation of locales transfers theorems from their
abstract context to other (concrete) contexts by instantiating the parameters
and proving the assumptions. JinjaThreads uses locales to abstract over differ-
ent memory consistency models (and schedulers (, and to underspecify
operations on abstract data structures.

As code generation requires equational theorems in the (foundational) theory
context, theorems that reside in the context of a locale cannot serve as code equa-
tions directly, but must be transferred into the theory context. For example, con-
sider a locale L with one parameter p, one assumption A p and one definition f=
... that depends on p. Let g be a function in the theory context for which A (g z)
holds for all z. We want to generate code for f where p is instantiated to g z.

The Isabelle code generator tutorial proposes interpretation and definition:
One instantiates p by g z and discharges the assumption with A (g z), for
arbitrary z. This yields the code equation f (g z) = ... which is ill-formed
because the left-hand side applies f to the non-constructor constant g. For code
generation, one must manually define a new function f’ by ' z = f (g z) and
derive f” z = ... as code equation. This approach is unsatisfactory for two
reasons: It requires to manually re-define all dependent locale definitions in the
theory context (and for each interpretation), and the interpretation must be
unconditional, i.e., A (g z) must hold for all z. In JinjaThreads, the latter is
often violated, e.g. g z satisfies A only if z is well-formed.

To overcome these deficiencies, our new approach splits the locale L into two:
Ly and L. Ly fixes the parameter p and defines £, L inherits from Ly, assumes
A p, and contains the proofs from L. Since Ly makes no assumptions on p, the
locale implementation exports the equation f = ... in Ly as an unconditional
equation Lg.f p = ... in the theory context which directly serves as code equa-
tion. For execution, we merely pass g z to Lg.f. We use this scalable approach
throughout JinjaThreads. Its drawback is that the existence of a model for £, as
required for its definition, must not depend on L’s assumptions; e.g. the termina-
tion argument of a general recursive function must not require L’s assumptions.
Many typical definitions (all in JinjaThreads) satisfy this restriction.

2.3 Tabling the Reflexive Transitive Closure

The reflexive transitive closure (RTC) is commonly used in formalisations, also
in JinjaThreads’ subtyping relation. Here, we present how a simple refinement
implements a tabling depth-first execution of the RT'C. By default, the predicate
compiler uses the two introduction rules below for code generation.

rTy rtery z

rtcrxx rtcr x z

Compiling them in a Prolog-style depth-first fashion leads to non-termination
when the underlying relation r has reachable cycles. Hence, Berghofer imple-

mented a tabled version of RT'C that detects cycles and short-circuits the search
in that case (cf. acknowledgements). The predicate rtc-tab r xs x z expresses
that z is reachable in r from x without visiting any node in xs:

x ¢ set xs ray rte-tab r (x-xs) y z

rte-tabr xs © x rte-tabr xs x z

For execution, the terminating rtc-tab implements RTC via program refinement
with the equality rtc r = rtc-tab r [].

2.4 An Executable Definite Description Operator

Russell’s definite description operator ¢ and Hilbert’s choice € extract a deter-
ministic function from a relational formulation. Like any underspecified function,
they pose a challenge for code generation [8], because their axiomatisations are
not unconditional equations. Hence, we can only execute them via program re-
finement, i.e., we must derive such an equation from the axiomatisation. This is
only possible for inputs for which the specification fixes a unique return value,
e.g. singleton sets for ¢ and €, as any implementation returns a fully specified
value. Now, we construct an executable implementation for ¢ using the predicate
compiler. Our execution strategy is as follows: We enumerate all values satisfying
the predicate. If there is exactly one such value, we return it; otherwise, we throw
a exception. To enumerate values efficiently, we rely on the predicate compiler.

For technical reasons, it works in terms of the type ’‘a pred [B], which is
isomorphic to ‘a = bool. The Pred constructor and the eval selector allow to
convert between ‘a pred and 'a = bool. Then, the type of sequences ‘a seq im-
plements 'a pred via data refinement with the lazy constructor Seq :: (unit =
'a seq) = 'a pred. The type 'a seq has a richer structure with the construc-
tors Empty, Insert, and Join. Empty and Insert are self-explanatory; Join P xq
represents the union of the enumeration P and the values in the sequence zgq.

First, we lift ¢ to ‘a pred by defining the A = (wx. eval A x). Then, we
define by the operation singleton :: (unit = ‘a) = ’a pred = 'a that returns
for a singleton enumeration the contained element and a (lazy) default value
otherwise. We prove ([2) to implement the via singleton, which exploits reflexivity
of HOL’s equality for non-singleton enumerations.

singleton default A = (if . eval A x then . eval A x else default ()) (1)
the A = singleton (A_. the A) A (2)

Having refined 'a pred to 'a seq, we prove as code equation for singleton:

singleton default (Seq f) = (case f () of
Empty = throw default

| Insert © P = if is-empty P then x

else let y = singleton default P in if x = y then x else throw default
| Join P xq = if is-empty P then the-only default xq

else if null xq then singleton default P

else let x = singleton default P; y = the-only default xq in
if x = y then x else throw default)

3)

The predicate is-empty (null) tests if the enumeration (the sequence) contains no
element. The operation the-only is singleton’s analogon for 'a seq with a similar
code equation. In HOL, throw, defined by throw f= f (), just applies the unit
value. The generated code for throw raises an exception without evaluating its
argument, a unit closure. This ensures partial correctness for singleton and the,
i.e., if the code terminates normally, the computed value is correct.

To execute definitions with Russell’s ¢ operator, one proceeds as follows:
Given a definition ¢ = (tz. P x), one runs the predicate compiler on P to obtain
the function that enumerates x, i.e., the mode assigns the argument to be output.
This yields an executable function P-o with P = eval P-o. Unfolding definitions,
one obtains the code equation ¢ = the P-o.

Note that the test x = y in requires that equality on the predicate’s ele-
ments is executable. If this is not the case (e.g. functions as elements), we provide
an altered equation where throw default replaces if x = y then x else throw default
in . Then, the computation also fails when the enumeration is actually a sin-
gleton, but contains the same element multiple times.

3 JinjaThreads: Well-formedness Checker and Interpreter

In this section, we first give an overview of JinjaThreads (§3.1)). Then, we present
how to obtain an executable well-formedness checker and interpreter for Jinja-
Threads, and what the pitfalls are (to . We employ program and data
refinement such that lookup functions are precomputed rather than recomputed
whenever needed (§3.5). In we evaluate the efficiency of the interpreter on

a standard producer-consumer program.

3.1 Overview of JinjaThreads

Building on Jinja [I0] by Klein and Nipkow, JinjaThreads models a substantial
subset of multithreaded Java source and bytecode. Figure [l shows the overall
structure: The three major parts are the source and bytecode formalisations and
a compiler between them. Source and bytecode share declarations of classes,
fields and methods, the subtyping relation, and standard well-formedness con-
straints. The source code part defines the source code syntax, a single-threaded
small-step semantics, and additional well-formedness constraints (such as a static
type system and definite assignment). It contains a type safety proof via progress
and preservation. The bytecode part formalises bytecode instructions, a virtual
machine (VM) for individual threads, and a bytecode verifier. The type safety
proof shows that verified bytecode cannot violate type checks in the defensive
VM. For both parts, JinjaThreads defines two concurrent semantics: (i) inter-
leaving semantics for the individual threads, which provides sequential consis-
tency (SC) as memory consistency model (MCM) — schedulers allow to generate
specific interleavings; (ii) the Java memory model (JMM) as an axiomatic spec-
ification of legal executions. Finally, the compiler translates source code into
bytecode in two stages and is verified with respect to the concurrent semantics.

For all definitions in shaded boxes, we have generated code via Isabelle’s code
generator. We highlight the necessary steps using examples from well-formedness

I
:| interleaving |‘—| scheduler | | Java memory model |:
:::::::::::::::::I__';
:| small-step semantics |: i Suiaiuei el :| virtual machine |:
I | ! verified compiler | I |
\ type safet, ! | ! | type safet, << !
: P Y —T stage 1 stage 2 p—>! yb M !
:| well-formedness |: """"""""" :| bytecode verifier |:
I I
| ___ source code ___ L] bytecode ____ :

| declarations, subtyping, lookup functions, global well-formedness |

Fig. 1. Structure of JinjaThreads

(§3.2)), the small-step semantics (§3.3)), and the scheduler (§3.4)). The compiler’s
definition, a functional implementation, is directly executable. The bytecode
verifier requires adaptations similar to well-formedness. For the VM, we had to
manually transform its functional specification to use Isabelle’s special-purpose
type for sets (c.f. . The JMM is purely axiomatic, finding an operational
model would be a complicated task that we have not attempted.

3.2 The Type System and Well-formedness Conditions

A JinjaThreads program is given as a list of class declarations. Among others,
well-formedness requires that its class hierarchy is acyclic with Object at the
top, method overriding is type safe, and the program obeys the rules of the type
system. Thus, a well-formedness checker must include a type checker. The type
system relies on the subclass and subtype relation, least upper bounds (lub)
w.r.t. the subtype relation, and lookup functions for fields and methods. To turn
these into executable equations, we do the following:

The subclass relation =<* is the RTC of the direct subclass relation, which
is defined inductively. As the standard execution mechanism for the RTC leads
to non-termination in case of cyclic class hierarchies, we use the tabled RTC as
described in This ensures that querying <* always terminates, i.e., we can
reliably detect cyclic class hierarchies when checking well-formedness.

The subtype relation :<, another inductive predicate, extends <* to arrays
and primitive types. Checking whether one type is a subtype of another is exe-
cutable. For acyclic class hierarchies with Object at the top, non-primitive types
form an upper semi-lattice w.r.t. : <, i.e. unique lubs exist for existing types. How-
ever, compiling the declarative definition of lub to an executable function with
the predicate compiler fails, because it would require to enumerate all supertypes
of a given type. Therefore, we provide a functional implementation, join, to com-
pute lubs for acyclic class hierarchies with Object at the top. For cyclic ones, lubs
need not be unique, so the functional implementation’s behaviour is undefined.

Field and method lookup recurse over the class hierarchy. To avoid definitional
problems in case of cyclic class hierarchies, JinjaThreads defines them relation-
ally as inductive predicates and the lookup functions using the definite descrip-
tion operator . We refine them to use the executable operator the following §2.4]

P,t F (null. M (map Val vs), s) = (THROW NullPointer, s) CALLNULL

is-Vals es

- CALLNULL2
P,t+ (null. M(es),s) — (THROW NullPointer, s)

Fig. 2. Original and alternative introduction rule of the small-step semantics.

The type system E F e :: T for source code statements is defined inductively,
too. Even type checking requires type inference. Consider, e.g. the rule below for
assignments to a local variable V' whose type T is given by the environment E:

EV =|T| EtFe:U U:<T V' # this
EFV :.=e¢e: Void

When the predicate compiler compiles _ F _ :: _ it must choose either to enu-
merate all subtypes of T and type-check e against each, or to infer e’s type and
check for U :< T'. Note that in case V := e is type-incorrect, the former approach
might not terminate as e.g. Object has infinitely many subtypes. To force the
predicate compiler to choose the latter, we disallow enumeration of subtypes via
mode annotations.

For type inference, the rule for the conditional operator - ? _ : _in Java
requires to compute the lub of types of the second and third argument. As the
declarative definition of the type system uses the declarative lub definition, type
inference (and thus type checking) is not executable. For code generation, we
therefore copy the definition for _F _:: _ replacing lub with the executable join
function. Then, we prove that both versions agree on acyclic class hierarchies
with Object at the top, but we cannot refine the declarative definition because
equality only holds under acyclicity.

Overriding method M with parameter types T's and return type T in class
C with direct superclass D is type-safe if

VI's'T"'m. FDsees M: Ts' =T =m = Ts <|TsA\T:<T'

where - D sees M : T's' — T' = m denotes that D sees M with parameter types
T's', return type T" and body m. The predicate compiler preprocesses the condi-
tion to an inductive predicate and compiles it to an executable equation (cf. .
After these preparations, well-formedness no longer poses any difficulties
for code generation. Note that all the setup relies on program refinement only,
the existing formalisation remains untouched. Stating and proving alternative
equations requires between 5 lines for :< and 220 lines for the type system.

3.3 The Semantics

The small-step semantics is parametric in the MCM. Thus, we model shared
memory abstractly in terms of read and write functions for values and type
information as locale parameters, following the splitting principle from
The small-step semantics for source code is another inductive predicate. The
predicate compiler processes 84 of 88 introduction rules automatically. For the

others, we must provide alternative introduction rules via program refinement.
Fig. 2] shows the rule which is representative for the four, for thread
t invoking the method M with parameter values vs on the null pointer in the
state s, which raises a NullPointer exception. Mapping the injection Val of values
into expressions over the list of values vs expresses that all parameters have
already evaluated to values. This rule violates the desired mode for executing
the semantics because its execution would require pattern-matching against the
term map Val vs. The remedy is to declare the alternative introduction rule
We replace map Val vs by es and instead use the guard is-Vals es
that predicates that all elements in es are of the form Val v for some v. To access
vs in other parts of the rule (as is necessary in one of the others), we replace vs
with map the-Val es where the-Val is the destructor for the constructor Val.
Mode annotations for executing the small-step semantics are crucial. The
abstraction of the MCM in a locale adds 6 parameters to the small-step semantics
in the theory context, which consequently allows a monstrous number of modes.
For code generation, we only use SC as MCM, because the JMM is axiomatic
and thus not executable. SC models the shared heap as a function from addresses
(natural numbers) to objects and arrays. Allocation must find a fresh address,
i.e. one not in the heap’s domain. Originally, this was defined via Hilbert’s un-
derspecified (and thus not executable) € operator . For code generation, we
had to change new-Addr’s specification to the least fresh address, replacing &
with LEAST. Then, we proved and @ to search for the least fresh address.

new-Addr h = if (3a. h a = None) then |ea. h a = None| else None (4)
new-Addr h = gen-new-Addr h 0 (5)
gen-new-Addr h n = if (h n = None) then |n] else gen-new-Addr h (n+1) (6)

3.4 The Scheduler
Executing the interleaving semantics poses three problems:

1. The multithreaded state consists of functions of type - = _ option for locks,
thread-local states and the monitor’s wait sets. Neither quantifying over
these maps’ domains (e.g. to decide whether all threads have terminated)
nor picking one of its elements (e.g. to remove an arbitrary thread from a
wait set upon notification) are executable.

2. The state space of all possible interleavings is usually too large to be effec-
tively enumerable. Therefore, one wants to pick one typical interleaving.

3. JinjaThreads programs that might not terminate should at least produce a
prefix of the observable operations of such an infinite run.

To address the first, we previously [I8] proposed to replace these maps with Fin-
Funs, a generalisation of finite maps. Although quantification over the domain
then becomes executable, it turned out that choosing an underspecified element
remains unexecutable. We therefore only use them for lock management. For
the pool of thread-local states and the wait set, we instead follow the ICF ap-
proach [I1]. We replace the functions with abstract operations whose signatures

and properties we specify in two locales. Picking an arbitrary element remains
underspecified, but this is now explicit inside the logic, not HOL’s metalogic.
Before code generation, we instantiate the locales with concrete data structure
implementations like red-black trees and thus resolve the underspecification.

As to the second problem, we do not use the predicate compiler, as it would
produce a depth-first search that enumerates all possible interleavings. The first
few interleavings would be such that one thread executes completely (or until it
blocks), then the next thread executes completely, etc. Interesting interleavings
would occur only very much later — or never at all, if one of the preceding ones
did not terminate. Instead, we let a scheduler pick the next thread at each step.

Formally, a scheduler consists of two operations (that we specify abstractly
in two locales again): The function schedule takes the scheduler’s state and the
multithreaded state, and returns either a thread together with its next transition
and the updated scheduler state, or None to denote that the interleaving has fin-
ished or is deadlocked. The other function wakeup chooses from a monitor’s wait
set the thread to be notified. In terms of these two functions, we define a deter-
ministic, executable step function that updates the multithreaded state just like
the non-deterministic interleaving semantics does. To obtain a complete inter-
leaving as a potentially infinite trace, we corecursively unfold this step function.
Then, we formally prove that this in fact yields a possible interleaving.

We have instantiated this specification with two concrete schedulers: a round-
robin scheduler and a random scheduler based on a pseudo-random number gen-
erator. The most intricate problem is how to obtain (as a function) the thread’s
step from the (relational) small-step semantics, once the scheduler has decided
which thread to execute. Fortunately, the semantics under SC is deterministic, if
we purge transitions whose preconditions are not met by the current state. Thus,
we use the the operator again, but without equality checks (, as the result
states contain functions (the heap) for which checking equality is not executable.

Corecursive traces also solve the third problem. We instruct the code genera-
tor to implement possibly infinite lists lazily. For Haskell, this is the default; for
the other target languages, data and program refinement provide an easy setup.

Formalising the scheduler did not affect the rest of the formalisation. It re-
quired 2357 lines of definitions and proofs, 20% of which only declare locales.

3.5 Tabulation

An execution of a JinjaThreads (or, similarly, Java) program frequently checks
type casts and performs method lookups. However, with the above setup, the
semantics recomputes the subtype relation and lookup functions at every type
cast and method call from scratch. Here, we show how to leverage program and
data refinement to avoid such recomputations with only minimal changes to
the formalisation itself. We precompute the subclass relation, field and method
lookup (a standard technique for VMs) and store them in mappings (cf. .
Fig. |3| sketches the necessary steps.

In JinjaThreads, a program declaration used to be a list of class declarations,
i.e. of type ‘m cdecl list, abbreviated as ‘m prog. For data refinement (cf. , we
turn the abbreviation into a type of its own, wrapping the old type (1. 1 in Fig. (3]).

1 datatype 'm prog = Program 'm cdecl list

definition prog-impl-invar P’ ¢ s f m = (¢ = Mapping (class (Program P')) A...)
typedef 'm prog-impl = {(P’,c,s, f,m) | prog-impl-invar P’ ¢ s f m}

morphisms impl-of Abs-prog

definition ProgDecl = Program o fst o impl-of

code_datatype ProgDecl

lemma [code]: class (ProgDecl P) = lookup (fst (snd (impl-of P)))

definition tabulate P’ = Abs-prog (P’, tabulate-class P’, tabulate-subcls P’ ...)
lemma [code]: Program = ProgDecl o tabulate

w N

0~ O O

Fig. 3. Tabulation for lookup functions and the subclass relation.

Next, we define the type ‘m prog-impl (1. 3). Apart from the original program
declaration (as a list P’), its elements (P’, ¢, s, f,m) consist of mappings from
class names to (i) the class declaration (c), (ii) the set of its superclasses (s), and
(iii) two mappings for field and method lookup with field and method names as
keys (f and m). The invariant prog-impl-invar (1. 2) states that the mappings
correctly tabulate the lookup functions and subclass relation. Then, we define
(1. 4) and declare (1. 5) the new constructor ProgDecl :: 'm prog-impl = 'm prog
for data refinement, which (in the logic) only extracts the program declaration.

For the lookup functions, the subclass relation, and the associated constants
that the predicate compiler has introduced, we next prove code equations that
implement them via lookup in the respective mapping — see 1. 6 for class dec-
laration lookup. This program refinement suffices to avoid recomputing lookup
functions and the subclass relation during execution.

However, the generated code now expects the input program to come with
the correctly precomputed mappings. Thus, we define tabulate (1. 7) and auxil-
iary functions that tabulate the lookup functions and subclass relation in these
mappings for a given list P’ of class declarations. Finally, we implement the
former constructor Program (1. 8) in terms of tabulate and ProgDecl.

As most of JinjaThreads treats a program declaration opaquely, introducing
'm prog as a type of its own was painless; we edited just 143 lines out of 70k,
i.e. .2%. The remaining program and data refinement took about 600 lines.

3.6 Efficiency of the Interpreter

Although we cannot expect the generated interpreter to be as efficient as an
optimising JVM, to see whether it is suited to run small programs, we have eval-
uated it on a standard producer-buffer-consumer example. The producer thread
allocates n objects and enqueues them in the buffer, which can store 10 elements
at the same time. Concurrently, the consumer thread dequeues n objects from
the buffer. Table[l|lists the running times for different code generator setups. All
tests ran on a Pentium DualCore E5300 2.6GHz with 2GB RAM using Poly/ML
5.4.1 and Ubuntu GNU/Linux 9.10.

With the adaptations from to §3.4] only, the code is unbearably slow
(column 1). For n = 100, interpreting the program takes 37 min, i.e. 2,240.3s.
As the main bottleneck, we identified the naive compilation scheme for the small-
step semantics. By switching to the improved compilation scheme (column 2)

without with |almost heap as with
n|adjustments|indexing| strict |red-black tree|tabulation
10 229.9 1.9 1 <.1 <.1
100 2,240.3 14.1 1.7 7 .6
1,000 — 625.6 | 492.3 7.2 6.2
10,000 — — — 71.8 62.6
Table 1. Timing (in seconds) for running the producer-consumer example on n objects
for different adjustments to the interpreter; — denotes timeout after 1h.

in the predicate compiler (, we sped up the interpreter by two orders of
magnitude. The definite descriptor the that extracts the result configuration
from the enumerations, strictly evaluates all branches. Hence, explicit laziness
in the generated code is unnecessary. If we remove the most obvious constructions
due to laziness from the code equations that we compiled under the improved
scheme, a program run with n = 100 takes only 1.7s (column 3).

As n increases, another bottleneck shows up: memory allocation (cf. .
Since the heap is modelled as a function and writes as function updates, i.e. clo-
sures, finding the next fresh address takes time quadratic in the number of
previous allocations. Thus, interpreting the example program is quadratic in
n although the program itself only requires linearly many steps. To speed up
allocation and read access, we replaced the function by a red-black tree with
addresses as keys. Combined with the other improvements, this already provides
a decent interpreter (column 4): Run times grow linearly in n as expected.

Finally, we also added tabulation (cf. §3.5]), where the mappings are for sim-
plicity implemented as associative lists. Surprisingly, the speed-up (less than
15%) is modest. The reason might be the tiny class hierarchy of the example
program for which lookups functions terminate quickly.

We also ran the tests with the code generated in Haskell (compiled with
Glasgow Haskell Compiler 6.10.4) and OCaml (compiled to native code with
OCaml 3.11.1). The Haskell code is about 60% slower than the ML and the
OCaml code takes between 2 to 5 times as much time as ML. Still, the different
adjustments to the interpreter affect the run times similarly to ML.

As JinjaThreads also has a verified compiler and a virtual machine, we also
ran the virtual machine on the compiled code. The virtual machine is 6 to 7
times faster than the source code interpreter with red-black trees for the heap:
Pushing 10,000 objects through the buffer takes 9.6 s with tabulation and 11.9s
without. Clearly, rewriting expressions in the small-step semantics is slower than
pattern-matching on instructions. Still, our interpreter and VM are still far from
a commercial VM: The Java HotSpot VM takes only 30 ms for 10,000 objects.

In [14], Lui and Moore test their JVM formalisation M6 in ACL2 on a sim-
ple parallel factorial algorithm. To compare our interpreter with theirs, we have
converted the Java program to JinjaThreads with our Java2Jinja tool. For com-
puting 10! with five threads in parallel, our source code semantics takes 26.7s
and the VM just 0.2s. The M6 takes 6.2s when run in the ACL2 interpreter,
version 2.7 with GNU CLISP 2.42.

4 Guidelines for Executable Formalisations

From our experience with JinjaThreads, we have distilled the following guidelines
to easily obtain executable formalisations in Isabelle.

Awvoid Hilbert’s € operator! Hilbert’s choice cannot express underspecifica-
tion adequately as, in HOL’s model, its interpretation is fully specified. Partial
correctness of the code generator guarantees that all evaluations in the functional
language hold in every model. Thus, one cannot replace it by any implementing
function that chooses one suitable value consistently and fixes the underspecified
function to one concrete model. Instead, use one of the following alternatives:

1. Change the definition to make the choice deterministic and implementable,
e.g. always pick the least element.

2. Use locales for intra-logical underspecification and instantiate the choice op-
erator to a concrete implementation by locale interpretation.

3. Switch to a relational description and prove the correctness for all values.

The first is least intrusive to the formalisation, but requires changes to the
original specification. To execute the deterministic choice, one needs to run the
predicate compiler on the choice property and use the executable definite descrip-
tor for predicates (7 or implement a suitable search algorithm via program
refinement, as we did for memory allocation (§3.3)).

The second is the most flexible, but also tedious as the locale does not au-
tomatically setup proof automation and lacks true polymorphism. We use this
approach e.g. to specify schedulers Care must be taken in combination with
data refinement via the code generator, as the choice must not depend on the
additional structure that the interpretation introduces.

The last option completely avoids underspecification, but relinquishes the
functional implementation. For code generation, one should either (i) apply the
predicate compiler to obtain code that computes all possible implementations
for the specification, or (ii) provide a functional implementation and show cor-
rectness (cf. . For this, one must typically replace the involved types with
others that have additional structure.

Structure locales wisely! Modular specifications, i.e. locales, and code gener-
ation do not (yet) go well together (cf. §2.2). To combine them, one best adheres
to the following discipline: One locale Sig fixes the parameters’ signatures and
contains all definitions that depend on the parameters. Another locale Spec
extends Sig and states the assumptions about the parameters; all proofs that
depend on the properties go into Spec. For functions and inductive predicates
of Sig, one feeds the equational theorems and introduction rules exported into
the theory context to the code generator or predicate compiler, resp. To obtain
the (correctness) theorems, instantiate Spec and prove the assumptions.

Annotate predicates with modes! Mode annotations for predicates instruct
the predicate compiler to generate only modes of interest, not all modes that
its mode analysis can infer. They provide three benefits. First, if the predicate
has many parameters, analysing all modes can quickly become computationally

intractable (cf. — in this case, they are necessary. Second, they ease main-
tenance and debugging as they fail immediately after adjustments: If changes
in the development disable a mode of interest, an error message indicates which
clauses are to blame. Without annotations, the missing mode might remain
undiscovered until much later, which then complicates correcting errors. Third,
some not annotated, but inferable modes might lead to generation of slow or
non-terminating functions. By disallowing them, the predicate compiler cannot
accidentally pick one of them when it compiles a subsequent predicate.

5 Conclusion and Future Work

Originally, the JinjaThreads formalisation aimed to investigate semantics prop-
erties of concurrent Java; executability was of little concern throughout its de-
velopment. At the start, subtleties in the formalisation inhibited executing the
specifications. After we had substantially improved the code generation of in-
ductive predicates and manually adapted and extended the formalisation, we
obtained a Java interpreter with decent performance. We found solutions on how
to marry code generation with locales and how to adequately handle underspeci-
fication and the definite description operator. From our experience, we extracted
guidelines on how to develop future formalisations with executability in mind.

JinjaThreads’ predecessor Jinja [10] has been developed eight years ago. Com-
paring the efforts and results to obtain executability, we note the following im-
provements: First, Jinja’s code generator setup relied on manual and unsound
translations, e.g. sets as raw lists and ad hoc implementations for Hilbert’s € op-
erator. In contrast, we adapted the formalisation such that the unsound trans-
lations are no longer necessary. Instead, we use safe implementations for sets
from Isabelle’s library and model underspecification explicitly inside the logic.
Second, the Jinja interpreter can loop infinitely when it executes ill-formed pro-
grams, but Jinja lacks a well-formedness checker. Employing our new implemen-
tations (cf. , JinjaThreads now offers a decision procedure for checking well-
formedness. Third, the (now outdated) predicate compiler, which Jinja uses, gen-
erates code directly in the functional target language. Thus, interweaving purely
functional and logical computations as, e.g. in the JinjaThreads scheduler would
have been impossible within the logic, but required editing the generated code.
Exploiting program and data refinement, we obtained a sound and executable
definite description operator (§2.4) to link both worlds.

Thanks to these increased efforts, we reach a new level of confidence in the
generated code, which would have been impossible with the tools eight years ago.
Still, this extensive case study revealed some pressing issues for code generation:

To execute JinjaThreads’ virtual machine specification we employ implemen-
tations for common set operations. The necessary refinement is conceptionally
straightforward, but requires a tremendous effort if done manually. This step
should be automated.

The lack of integration between locales and code generation requires all users
to follow a rather strict discipline (cf. §2.2). A solution on Isabelle’s side that
integrates locales and code generation needs to be addressed in the future.

Acknowledgements We thank F. Haftmann for invaluable help with the code gen-
erator, S. Berghofer for improving the RTC, J. Thedering and A. Zea for their
work on Java2linja, and J. Blanchette, A. Popescu, M. Hecker, D. Lohner, and
the anonymous reviewers for comments on earlier drafts. We acknowledge fund-
ing from DFG grants Sn11/10-1,2 and DFG doctorate program 1480 (PUMA).

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Atkey, R.: CoqJVM: An executable specification of the Java virtual machine using
dependent types. In: TYPES’08. LNCS, vol. 4941. Springer 18-32 (2008)
Ballarin, C.: Interpretation of locales in Isabelle: Theories and proof contexts. In:
MKM’06. LNAI, vol. 4108, pp. 31-43. Springer (2006)

Barthe, G., Crégut, P., Grégoire, B., Jensen, T., Pichardie, D.: The MOBIUS proof
carrying code infrastructure. In: FMCO’08. LNCS, vol. 5382. Springer 1-24 (2008)
Bauer, G., Nipkow, T.: Flyspeck I: Tame graphs. In Klein, G., Nipkow, T., Paulson,
L. (eds.) The Archive of Formal Proofs. http://afp.sourceforge.net/entries/
Flyspeck-Tame.shtml| (2006) Formal proof development.

Berghofer, S., Bulwahn, L., Haftmann, F.: Turning inductive into equational spec-
ifications. In: TPHOLs’09. LNCS, vol. 5674, pp. 131-146. Springer (2009)
Bulwahn, L., Krauss, A., Haftmann, F., Erkok, L., Matthews, J.: Imperative func-
tional programming with Isabelle/HOL. In: TPHOLs08. LNCS, vol. 5170, pp.
134-149. Springer (2008)

Farzan, A., Meseguer, J., Rosu, G.: Formal JVM code analysis in JavaFAN. In:
AMAST’04. LNCS, vol. 3116, pp. 147-150. Springer (2004)

Haftmann, F.: Data refinement (raffinement) in Isabelle/HOL This is a draft of
an envisaged publication still to be elaborated which, applying the usual rules of
academic confidentiality, can be inspected at http://www4.in.tum.de/~haftmann/
pdf/data_refinement_haftmann.pdf.

Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
FLOPS’10. LNCS, vol. 6009, pp. 103—-117. Springer (2010)

Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, virtual
machine and compiler. ACM Trans. Progr. Lang. Sys. 28, 619-695 (2006)
Lammich, P., Lochbihler, A.: The Isabelle Collections Framework. In: ITP’10.
LNCS, vol. 6172, pp. 339-354. Springer (2010)

Leroy, X.: A formally verified compiler back-end. J. Autom. Reasoning 43(4),
363-446 (2009)

Letouzey, P.: Extraction in Coq: An overview. In: Logic and Theory of Algorithms.
LNCS, vol. 5028. Springer 359-369 (2008)

Liu, H., Moore, J.S.: Executable JVM model for analytical reasoning: A study. In:
IVME’03, pp. 15-23. ACM (2003)

Lochbihler, A.: Type safe nondeterminism — a formal semantics of Java threads.
In: Workshop on Foundations of Object-Oriented Languages (FOOL’08). (2008)
Lochbihler, A.: Verifying a compiler for Java threads. In: ESOP’10. LNCS, vol.
6012, pp. 427-447. Springer (2010)

Lochbihler, A.: Jinja with threads. In Klein, G., Nipkow, T., Paulson, L.
(eds.) The Archive of Formal Proofs. http://afp.sourceforge.net/entries/
JinjaThreads.shtml (2007) Formal proof development.

Lochbihler, A.: Formalising FinFuns — generating code for functions as data from
Isabelle/HOL. In: TPHOLs’09. LNCS, vol. 5674, pp. 310-326. Springer (2009)
Marié, F.: Formal verification of a modern SAT solver by shallow embedding into
Isabelle/HOL. Theor. Comput. Sci. 411(50), 4333-4356 (2010)

Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In:
TPHOLs’09. LNCS, vol. 5674, pp. 452-468. Springer (2009)

http://afp.sourceforge.net/entries/Flyspeck-Tame.shtml
http://afp.sourceforge.net/entries/Flyspeck-Tame.shtml
http://www4.in.tum.de/~haftmann/pdf/data_refinement_haftmann.pdf
http://www4.in.tum.de/~haftmann/pdf/data_refinement_haftmann.pdf
http://afp.sourceforge.net/entries/JinjaThreads.shtml
http://afp.sourceforge.net/entries/JinjaThreads.shtml

	Animating the Formalised Semantics of a Java-like Language

