This is the author’s version of the article published in the Journal of Automated Software Engineering
The original publication is available at www.springerlink.com|(DOI|10.1007/s10515-009-0050-3)

On Temporal Path Conditions in Dependence Graphs

Andreas Lochbihler - Gregor Snelting

Abstract Program dependence graphs are a well-established device to represent pos-
sible information flow in a program. Path conditions in dependence graphs have been
proposed to express more detailed circumstances of a particular flow; they provide
precise necessary conditions for information flow along a path or chop in a depen-
dence graph. Ordinary boolean path conditions, however, cannot express temporal
properties, e.g. that for a specific flow it is necessary that some condition holds, and
later another specific condition holds.

In this contribution, we introduce temporal path conditions, which extend ordi-
nary path conditions by temporal operators in order to express temporal dependencies
between conditions for a flow. We present motivating examples, generation and sim-
plification rules, application of model checking to generate witnesses for a specific
flow, and a case study. We prove the following soundness property: if a temporal path
condition for a path is satisfiable, then the ordinary boolean path condition for the path
is satisfiable. The converse does not hold, indicating that temporal path conditions are
more precise.

Keywords program dependence graph - path condition - temporal logic - security
analysis

1 Introduction
Program dependence graphs (PDGs) are a well-established device to represent pos-

sible information flow in a program. They are used for program slicing, debugging,
reengineering, and security analysis, for example. Information flow control (IFC),

An extended abstract of the present article appeared in the 2007 Proceedings of the Seventh IEEE Interna-
tional Working Conference on Source Code Analysis and Manipulation (SCAM 2007). The research of A.
Lochbihler was partially supported by Deutsche Forschungsgemeinschaft, grant Sn11/9-1.

Andreas Lochbihler - Gregor Snelting
Lehrstuhl Programmierparadigmen, Universitit Karlsruhe (TH), Karlsruhe, Germany
E-mail: {lochbihl,snelting} @ipd.info.uni-karlsruhe.de

file:www.springerlink.com
http://dx.doi.org/10.1007/s10515-009-0050-3

a technique for discovering illegal flow from secret variables to public ports, can
be based on PDGs, resulting in a more precise analysis than previous type-based ap-
proaches (Snelting et al.[2006;[Hammer et al.[2006). PDGs today can handle medium-
sized programs in full C or Java, but can only indicate if an information flow between
two program points is possible or definitely impossible.

Path conditions in PDGs, first proposed by Snelting (Snelting|[1996), can express
more detailed circumstances of a particular flow (Snelting et al.[|2006); they provide
necessary and precise conditions for information flow along a path in a dependence
graph. Path conditions are boolean expressions over program variables, generated
from conditions in if or while statements, as well as additional constraints extracted
from a program. If a path condition cannot be satisfied, no information flow is possible
along a path even though the PDG may indicate otherwise. If a path condition can be
solved for the input variables (e.g. by using constraint solving techniques), the solved
condition represents a witness for illegal information flow: if the specific witness
values are fed to the program, the illegal flow becomes visible directly. This feature
might be quite useful in law suits.

Making path conditions work for full C and realistic programs required years of
theoretical and practical work (Robschink and Snelting[2002; |Robschink/2005} |Snelt-
ing et al.|2006). Today, path conditions have proven useful in realistic case studies.
Path conditions as implemented today have, however, one property which may reduce
precision: Boolean path conditions cannot express temporal properties, e.g. that for a
specific flow it is necessary that a specific condition holds, and later another specific
condition holds.

In this contribution, we introduce temporal path conditions, which extend ordi-
nary path conditions by temporal operators in order to express temporal dependencies
between conditions for a flow. We present motivating examples, generation and sim-
plification rules and a case study. Applying model checking generates witnesses for
a specific flow. We prove the following soundness property: if a temporal path condi-
tion for a path is satisfiable, then the ordinary boolean path condition for the path is
satisfiable, too. The converse does not hold, indicating that temporal path conditions
are more precise.

The essence of our work can be summarised as follows: Boolean path conditions
can be quite imprecise in the presence of loop-carried dependencies, but temporal
path conditions are not that more complicated to generate and simplify, and provide
considerably more insight into the detailed conditions for a flow. In this contribution,
we present their theoretical foundations, but we have not completely implemented
them yet.

This contribution is an extended version of the one published at SCAM 2007
(Lochbihler and Snelting|2007)). Apart from extra examples, definitions and intuition
in all major sections, the issues with loop-carried dependences and shortcomings of
boolean path conditions with respect to them are now discussed in detail in Sec.
Sec.[3.6|on how LTL path are automatically simplified has been largely rewritten as to
show how this can be done effectively. The last section now also outlines limitations
of and other possible areas of applications for temporal path conditions.

2 Path Conditions in Dependence Graphs

Our current work focuses on an imperative while programming language without
procedures. In the intraprocedural case, the program dependence graph is simple and
straightforward to generate. For interprocedural PDGs or multithreaded programs,
see e.g. (Tip|19935). Each program statement corresponds to a graph node, control de-
pendences and data dependences form the edges. If statement ¢ is control dependent
on s, i.e. the mere execution of ¢ depends on the evaluation of the conditional expres-
sion s (e.g. an if or while statement), there is an edge s-»¢ labelled by the control
condition c(s,?) for ¢ being executed depending on s, i.e. the while or if condition.
For example, if s is an if statement with condition » and ¢ and ¢’ are in the then
and else branch of s respectively, then s and s are labelled b and —b resp.
We assume that the program being analysed always terminates, i.e., only statements
inside the body of a while loop can be control dependent on the while condition.
The reflexive and transitive closure of - is written »*.

A data dependence edge s>t models variable x being assigned in s and used in
t without being reassigned in between. s>t is loop-carried iff there is a while loop
node u such that u-*s and u#*¢ which can be executed while x is being passed on
from s to ¢. Similarly, we say s>t leaves a while loop node u if u*s and not
u-»*t.

See Fig. [I] for an example program in the upper left corner and its CFG lower
right. Its PDG is shown on the right-hand side where control dependences are drawn
with dashed arrows, data dependences with solid ones. Instead of the control condi-
tion c(s,?), control dependences st are labelled with the evaluation result of the
condition of s, e.g. for an if statement s with condition b, the label F instead of —b
is used for all ¢ in the else branch of s. The data dependence 7->9 is loop-carried
because both 4»*7 and 4#*9 and 7 — 4 — 5 — 6 — 9 is a CFG path from 7 to 9
where x is not redefined in between. Equally, 5-t>4 and 5->5 are loop-carried. All
other data dependences are not loop-carried. The only data dependence that leaves a
loop is 9-%>11, which leaves the loop at node 4.

PDGs model information flow in a program: Data dependence edges represent
direct flows, in which a value computed at some statement is directly used in another
statement. Implicit flow, where the execution of a statement depends on the informa-
tion that reaches some other statement, is captured by control dependence. A path
7 :s —"t in the PDG means that information can possibly flow from s to 7. Slic-
ing exploits this property: By computing the backward slice BS (¢) 1= {s|s —*t}
for ¢, it conservatively approximates the set of statements that can influence ¢, i.e.
s influencing ¢ implies s € BS (¢). The forward slice FS(s) := {¢|s —*t} is the
set of all nodes that s can influence. The intersection of forward slice for s and
backward slice for 7 is the chop CH(s,#) = FS(s)NBS(¢) for s and 7. For exam-
ple, in Fig. [} BS(7) = {start,1,4,5,6,7} and FS(1) = {1,4,5,6,7,9,11}, hence
CH(1,7)={1,4,5,6,7}.

Slicing can be used for IFC to capture both direct and implicit flows. If s is not in
BS (), then s cannot influence ¢ in the sense of noninterference, i.e. the public values
computed at ¢ do not depend on the secret inputs at s. Besides, IFC considers a variety
of kinds of information channels other than direct and implicit flows, see (Sabelfeld

Example program: SSA transform:
14i=3j; 114, =33

CFG:
2y =0; 2y =0;
3x=1; 3 x =1;

4 while (i<5) { 4 while (i=®(i1,13),¥2=®(y1,¥3),
x=P(%1,%3),12<6) {

5 i = i+k; 5 i3 = ir+k;
6 if (i<=4) 6 if (i3<=4)
7 x = a; 7 X3 = a;
8 else 8 else

9 y = X3 9 y3 = x5
10 } 10 }

11 z = y; 11 z = yz;

Fig. 1 An example program (upper left) with input variables a, j, k, and output variable z, its SSA trans-
form (upper right), its CFG (lower right), and its PDG (lower left).

and Myers|2003) for an overview. Since we assume that every program execution
terminates, we do not consider information flow via termination channels, although
this could easily be done by adjusting the notion of control dependence (Ranganath
et al.|2007). However, PDGs are not well-suited to discover flow through physical
side channels such as timing channels. In what follows, information flow will always
refer to direct and implicit flows.

2.1 Boolean Path Conditions

Slicing can be pretty imprecise because not every path in the PDG represents an actual
flow of information: Consider, for example, the program fragment:

1 ali + 3] = x;
2 if (1 > 10)
3 y = al2 x j - 42];

The standard PDG indicates an influence from line 1 to line 3, but the value of x can
only reach y if i > 10 and i 43 = 2% j —42. Hence

(i>10)A(i+3=2%j—42) (1)

is a necessary condition over program variables such that line 1 influences line 3.
More generally:

Definition 1 In a program execution r, statement s influences statement 7 (along the
PDG path 7) if r transports some information generated in s via control and data
dependence edges (in the same relative order as in 7) to ¢ where it is used. A path
condition PC(7) is a condition over program variables such that PC(7) is satisfiable
if an influence can occur along 7, i.e. there is a program execution in which s influ-
ences ¢ along 7. A path condition PC(s,7) for s and 7 is a condition over program
variables that is satisfiable if s influences ¢ in some execution r.

Originally, path conditions are boolean formulae whose variables are implicitly
quantified existentially (Snelting[1996)), i.e. satisfiability reduces to tautology. In the
following, we always omit to write the existential quantifiers. By definition, every
influence between s and ¢ occurs only along some PDG path 7 : s —* t between the
two statements s and 7. Thus, if we can compute PC(7) for every path 7 between s and
t, we also get a path condition for s and 7 by taking the disjunction of these conditions
for all paths between s and 7. In Fig.[I| we gete.g. PC(6,11) =PC(6%7->9-2>11)V
PC(6»9-2>11).

The core idea for path conditions for a PDG path 7 is that all nodes on 7 must be
executed if the influence along 7 occurs.

Definition 2 An execution condition for a PDG node v is a necessary condition over
program variables for v being executed.

Execution conditions are built from the control dependence relation: For a state-
ment to be executed, all conditions on at least one control dependence path from the
start node to the statement must be fulfilled. Thus, we get a preliminary version for
path conditions — PCg meaning boolean path condition:

E(v) :=\/ N clu,u); PCg(m) := \E(v))

p:start 9 v uPu'ep vnode in

Due to the absorption law for V, the disjunction in (2)) can be restricted to range
only over all cycle-free paths p, thus also being finite in the presence of unstructured
control flow, because cycles in the control dependence graph (CDG) do not contribute
to E(v) (Snelting|[1996). As an example, the execution condition for line 6 in Fig.
would be

E(7) = c(start,4) Ac(4,6) Ac(6,7) = (i <5)A (i < 4).

Note, however, that the two occurrences of i in E(7) refer to different runtime
instances of the program variable i because i gets reassigned in line 5. In order to
distinguish the is in E(7), we transform the program into static single assignment
(SSA) form (Cytron et al.[1991)). In SSA form, every variable occurs at most once on
the left hand side of an assignment. If necessary, we use extra indices to distinguish
between different SSA variants of a program variable x: Where control flow meets, we
introduce a @ function that selects the appropriate source according to control flow.
Thus, we ensure computing only correct execution conditions, i.e., they are satisfiable
if the statement can be executed.

For example, reconsider Fig. [} The program in the lower right corner shows
the SSA transform of the program above. Now, the execution condition for line 7 is
E(7) = (i2 < 5) A (i3 < 4) and for line 9, we get E(9) = (i2 < 5) A (i3 < 4). Without
SSA transformation, E(9) would be (i < 5) A (i < 4), which is not satisfiable and
not a necessary condition. Note that Boolean path conditions use SSA transforma-
tion only for generating conditions, not for data flow analysis, i.e. the PDG remains
unchanged. In particular, in Fig.[I] node 4 does nor define variable i.

To relate the variables introduced by SSA form in path conditions, & functions
are translated into & conditions, which are conjunctively added to the path condition.
In Fig. [} for example, i,=d(i;,13) becomes D (ir;i1,i3) := (i = i1) V (ir = i3).
Besides, there are also & conditions for data dependence edges s> on a path: Let i
be x’s SSA index in s and j the one in ¢. Then, the value of x; must equal x;’s value
for the influence to occur. Thus, we obtain the extra constraint d(s->1) = (x; = x;),
which we also add conjunctively.

Consider the following program with the SSA transform to the right:

1 a = true; 1 a; = true;

2if) {a=c; } 2 if (b) { a» = c; }
3 ... 3 a3 = P(ay, ap) ...
4 if (@) { x=1i; } 4 if (a3) { x=1; }

For a = c; inline 2 influencing x=i in line 4, the path condition for ¥ =
a=c-%>(a), (a) »x=1 with & conditions is

PCg(n) =E(a=c) AE((2)) AE(x=1) A d(a=c-4>(a)) Ad(as;ar,a2) =
(D) Atrue A(az) A (a3 =ap) A((az =ay) V (a3 = a2))

Note that ®(az;ai,az) does not subsume d(a=c-%4>(a)): PCp () demands that as
be true. With a; = ¢, we deduce that x=1 is only influenced if the program input c is
true.

When we compute PCg(s,7), simply taking the disjunction over PCg(7) for all
paths 7 : s —™* ¢ might result in an infinite formula, e.g. if the PDG contains a cycle
between s and ¢. Fortunately, we can eliminate cycles: If a cycle does not contain
a loop-carried data dependence, we may simply ignore the cycle (Snelting||1996).
Otherwise, no conditions are generated for the nodes on the cycle and all variables in
the condition that belong to nodes before the cycle are renamed. Thus, nodes before
and after the cycle are not related. For more details on how to construct boolean path
conditions, see (Snelting||1996; Robschink and Snelting2002; Snelting et al.|2006).

Obviously, one can imagine a variety of boolean path conditions for a specific
path 7, not only the one as presented above. These can be compared with the concept
of strength: Since we are interested in constructing path conditions that are as precise
as possible, it is desirable to limit the false witnesses to as few cases as possible.

Definition 3 (Snelting et al.|2006) Given two boolean path conditions, say PCg; and
PCg,, for the same PDG path 7, we say PCg; is stronger than PCpg, iff PCp; =
PCp>.

x = 0;

i=0;

while (i<=1) {
i=2;

1;

if (i>1) {
y =%

}

© M ND O WN
—
]
1

1 x1 =0;

i] = 0;

while (ip=d(i),i3),

x=d(x1,%3),12<=1) {
iz = 2;

w N

x3 = 1;

if (ip>1) {
Yy = X235
}

Fig. 2 Hidden loop-carried data dependences through & nodes.

O 00 ~N O U
-

In the example at the very beginning of Sec.[2.1] the path condition in (T} for 1-%4>3
is stronger than PCp(1-%>3) = (i > 10), which ignores array indices.

2.2 Loop-Carried Data Dependences

While SSA form ensures that execution conditions are always correct, it does un-
fortunately not guarantee an SSA variable being constant during execution because
an assignment statement or @ node may be executed multiple times, e.g. if loops
are present. For the PDG path 7 := 7-%>9 in Fig. [} we obtain the path condition
E(7) AE(9) = (ip < 5) A (i3 < 4) A—=(i3 < 4), which is not satisfiable although the
value of a can reach y via x. As the data dependence edge 7-%>9 is loop-carried, E(9)
must hold at least one loop iteration later than E(7), i.e. we actually use the same vari-
able identifier i3 to refer to two different runtime assignments to i3. Hence, to obtain
correct path conditions, the variables before and after loop-carried data dependences
must be distinguished in a path condition. (Krinke{2003; Snelting et al.[2006) rename
SSA variables:

PC(7) = (i2 <5) A (i3 <4)A(iy <5)A=(i5 < 4). 3)
With & conditions, PCg(7) from (3) then fully reads:

PCp(7) =(iz <5)A (i3 <4)A((i2=i1) V(i =1i3))
Ay <S)A=(l3 <4 A (i =i7) V(B =i3)) A (x =)

Unfortunately, separating variable names at loop-carried data dependences is not
enough: Consider the program shown in the upper left corner in Fig. [2]and its PDG to

its right. The program below it is its SSA transform and the graph in the lower right
corner shows the PDG with & nodes for the SSA transform.
Note that the boolean path condition for 5-%>8 is incorrect:

PCg(52>8) = (i < 1)A(i2 > 1) = false,

although the path 5-%>8 is possible. This is because the edge 5->8, which itself
is loop-independent, subsumes the two edges 5-2¢>Phi(x) and Phi(x)-2>8, the first
of which is loop-carried due to node 3, i.e. 5-1>8 actually hides a loop-carried data
dependence. Thus, the two occurrences of variable i in PCp (5->8) ought to be sep-
arated. Such hidden loop-carried data dependences were not considered in (Snelting
et al.|2006). Since this problem can only arise when a data dependence edge leaves
a loop, we will conservatively assume that variables have also been separated at such
edges in the following.

Another problem arises when we consider the assignment to the quantified vari-
ables as a witness because such an assignment may be misleading:

1 if (i=0) 1 if (i;=0)

2 while (i<2) { 2 while (ip=®(i;,13), 12<2) {
3 i = i+1; 3 i3 = ip+1;

4 if (i=2) 4 if (i3=2)

5 foo(); 5 foo();

6 } 6)

For instance, in the above program (with its SSA transform to the right), consider the
execution condition for line 5 together with the & condition &(iz;i1,i3):

((H=0)A(L<2Q)A([B=2)A((lb=1i1)V (2 =13)) @

This implies that i must be equal to 0. However, whenever line 5 is executed, i,
cannot be equal to 0. The problem here is that (i = i3) in the & condition relates
the current value of i, to the value of i3 in the previous loop iteration, but i3 in the
execution condition refers to the current value.

Nonetheless, from a formal point of view, @]) is not incorrect in the sense of
Def. [T] if we consider that all variables are implicitly quantified existentially, i.e. (@)
is equivalent to true. In general, boolean path conditions being correct is not affected
by this problem because for our programming language, ® constraints cannot make
a path condition contradictory by themselves if there is an influencing program trace.
In fact, for practical purposes, this problem is significant because we are not only
interested in satisfiability, but also in witnesses, i.e. the assignments to the variables.

3 Temporal Path Conditions

Although boolean path conditions are quite strong in practice, we have seen in Sec.[2.2]
that problems arise in the presence of loops and loop-carried data dependences. What
is worse, boolean path conditions discard the order of the nodes on the path because
the A operator is commutative. In particular, we cannot express that some condition

Operator Formal semantics Intuitive meaning
(E,))EOS6 iff (E)k)EOforallk>j 6 holds from j on
(E,))EO® iff (&,j)F 0 forsome k> j 6 holds some time after j
(Z.)EQ® iff (Z,j+1)F06 6 holds at time j+ 1
(Z,))En% 6 iff (EZ,k)E6forsomek>jand 6 holds some time after j
(E,l)E O foralll, j<I<k and 7 holds until then

Table 1 Semantics of the temporal operators in LTL.

must hold only after some other condition is fulfilled, e.g. data dependences on a
PDG path induce a temporal execution order on the nodes on the path. To address
these issues, we propose temporal path conditions based on Linear Temporal Logic
(LTL).

3.1 Linear Temporal Logic

Formulae in LTL define predicates over infinite sequences of states. Propositional
LTL formulae use the standard boolean operators and the four temporal operators
always [, eventually ¢, next (), and until % to connect the boolean constants and
expressions over program variables of type boolean. An LTL formula is evaluated
over an infinite sequence of states, i.e. assignments to the formula’s variables. Given
such a sequence = and a position j € N, we write (Z, j) F 6 the LTL formula 6 holds
in & at time j. The boolean connectives behave as usual. For the semantics of the
temporal operators, see Table We say & satisfies 0, denoted by = F 0 iff (Z,0) F 6.
For notation, we assume that boolean operators bind stronger than temporal ones. For
more details, see (Clarke et al.|[2000).

In this article, we restrict ourselves to imperative programs in a while program-
ming language with scalar-only variables, i.e. we have boolean and integer variables,
assignments, if and while statements, but no gotos, no aliasing, no runtime excep-
tions and no side effects inside expressions.

Whereas LTL path conditions are based on the PDG, we obtain the state sequences
which can satisfy the LTL formula from program traces, i.e. executable paths in the
control flow graph (CFG) with variables assigned to their values. However, since con-
trol statements do not alter the program state, we project these traces to assignment-
only statements. As with boolean path conditions, transformating the program into
SSA form is mandatory. In case the program trace terminates, the last state is re-
peated infinitely often to make the sequence artificially infinite. For example, when
we execute the program in Fig. [T|with initial values a =2, j = 1, and k = 3, we obtain
the state sequence shown in Table[2]

3.2 Motivating example

As a motivating example, reconsider the program in Fig. [T} but now, assume that line
6 is replaced by if !(i<=4), i.e. the if’s predicate is negated. The boolean path

10

Time Line

a L b 3 jJ k x1 x x3 oy oy ¥y oz
0 start 2 1 1 1 1 3 1 L 1 1 1 1 1
1 1 2 1 1 1 1 3 1 1 1 1 1 1 1
2 2 2 1 1 1 1 3 L 1 1 0 1 1 1
3 3 2 1 1 1 1 3 1 1 1 0 1 1 1
4 5 2 1 1 4 1 3 1 1 1L 0 0 1L 1
5 7 2 1 1 4 1 3 1 1 2 0 0 1 1
6 5 2 1 4 7 1 3 1 2 2 0 0 1 1
7 9 2 1 4 7 1 3 1 2 2 0 0 2 1
8 11 2 1 7 7 1 3 1 2 2 0 2 2 2
9 exit 2 1 7 7 1 3 1 2 2 0 2 2 2
10 exit 2 1 7 7 1 3 1 2 2 0 2 2 2

Table 2 State sequence for the program in Fig. executed with initial values a =2, j =1, and k = 3.

condition for the path 7 = 7->9 (the only path along which 7 influences 9) is now
(without & conditions)

PCp (1) = (ia <5)A=(i3 <4) A <5)A (15 < 4), ®)

which is equivalent to (3) on p.[7} Clearly, for this influence to occur, line 7 must be
executed before line 9 and in between, execution must not leave the while loop in
line 4. This can be expressed by the formula

(ir < 5)A—(is <4) A(ia < 5) U ((ia < 5) A (i3 < 4)). ©6)
—_——
B7) HO)

In particular, we can deduce from @ that i3 must be decreased between line 7 and
line 9 being executed. We can use standard data flow analysis to obtain that i3 =
i» + k always holds after having visited node 7, i.e. we can substitute i; + k for i3 in
@. Hence, a constraint solver can deduce that £ > 0 must hold. Note that we can
obtain the same result from (3)) with the same techniques. However, in combination
with i3 being necessarily increased, we see that (@) is not satisfiable. Obviously, we
cannot prove (8) unsatisfiable because (®) < (@) and, in fact, the influence in the
original example can actually occur. (The LTL path condition for the original example
is satisfiable.)

Of course, one can come up with many different LTL path conditions for a specific
PDG path. Like in the boolean case, we say 0; is stronger than 6, iff 6; = 6,. In
what follows, we present the construction of LTL path conditions that are reasonably
strong.

3.3 Building Blocks for LTL Path Conditions

Clearly, execution conditions for PDG nodes as presented in Sec. 2| are also a core
concept of LTL path conditions. Yet, execution conditions for statements can be
strengthened by loop termination conditions: Suppose a node v is not control de-
pendent on a loop predicate node u, but u dominates v in the CFG, i.e. all CFG paths

11

from the start node to v contain u. When execution reaches v, 1 must have been ex-
ecuted and the loop terminated. Hence, the negated predicate of u must have held
the last time u has been executed. The loop termination condition L(v) for v is the
conjunction thereof over all such u.

SSA form allows us to refer to past values of a variable: The assignment Z; at time
Jj to SSA variable x; gives the value which was computed the last time the statement
at which x; is defined has been executed. Thus, L(v) must always hold in the LTL
model when v is executed. Hence, from now on, we assume that E(v) contains L(v)
(added conjunctively). For example, in Fig. |1} E(11) is now —(iz < 5).

Similarly, when a data dependence e = v->w leaves the while loop node u, —u
must hold at w. The loop termination condition L(e) for e is the conjunction of all such
u. If there is no such u, set L(e) = rrue. In Fig.[I| we have L(9-2>11) = —(i» < 3).
Note that L(s—>v) and L(v) need not always coincide: L(s->v) does not require the
loop predicate nodes to dominate v whereas 1(v) is independent of data dependences.

Further, in temporal path conditions, we can also utilise execution conditions for
data dependence edges:

Definition 4 Let s> be a data dependence edge and C the set of assignment nodes
which are on CFG paths p : s —* ¢ from s to ¢ such that x is not redefined on p. An
execution condition for s>t is a necessary condition over program variables for
any node in C being executed.

Obviously, E(s=>1) := \/,ccE(v) is a correct execution condition for s >7. In
Fig.[l] e.g., E(7%>9) = (i» < 5) and E(9-2>11) = (i» < 5) V ~(i» < 5) = true. Since
the models of interest for our LTL formulae contain only states for assignment nodes,
we have restricted C to assignment nodes.

However, we do not include & constraints from & functions since peculiarities
like in the example in Sec. Would make LTL path conditions incorrect. Yet, we do
not lose any precision: For single execution conditions, they never contribute to a con-
tradiction, and the constraints expressible by them for multiple execution conditions
are trivially satisfied by every program trace, i.e. every possible model of interest for
the LTL path condition. Though, we do include & conditions for data dependences in
LTL path conditions.

3.4 LTL Path Conditions for a Single Path

Given a PDG path 7 : s —* ¢, we want to generate an LTL formula 6 such that if an
influence can occur along 7, then the state sequence for 7 satisfies ¢ 0. In this case,
we say that 0 is a correct path condition for . Having presented the building blocks
for LTL path conditions in Sec. [3.3] we now present how to combine them to obtain
a correct path condition.

Fig. 3| shows the algorithm for computing the LTL path condition, which we de-
note by PCy (), for the path 7: If the path 7 consists of only a single node s (1. 1),
then the path condition only consists of the execution condition for s. Otherwise, let
e denote the first edge of the path 7 with source node s and target node s, and 7’ the
rest of w (11. 2-3).

12

Input: 7 : s —* ¢ path in the PDG
Output: PCy ()

PCPath(r)

1 if (7 has only one node s) return E(s)

2 let e, such that e, 7'=7

3 let s be the source node of e

4 if (e is a control dependence)

5 return (E(s) A PCPath(xt'))

6 else

7 return (E(s) AE(e) Z (L(e) A®(e)APCPath(xt')))

Fig. 3 Algorithm for LTL path conditions for a single PDG path 7.

If e is a control dependence edge, the path condition for 7 is the conjunction of
the execution condition for s and the path condition for the rest 7’ of 7 (11. 4-5). (Note
that PC (x') starts with the execution condition for ', i.e. if E(s) implies E(s’), then
E(s) can be omitted from PCy (7). While this is always the case in the setting of our
while language, this need not hold if control flow is unstructured.)

If e is a data dependence edge for variable x (1l. 6-7), then a necessary condition
for s influencing s’ via e = s-%>s' is that

1. sis executed,
the nodes on some CFG path from s to s’ are executed on which x is not redefined,
all loops that enclose s but not 5" have terminated.
s’ is executed, and
the value assigned to x at s reaches s'.
This directly gives the constraint E(s) AE(e) % (L(e) AE(s") A®(e)). Since E(s') is
already part of the path condition for the remaining path &', PCPath drops it in its
recursive call (1. 7).

For example, in Fig. E], consider 7t = 1-4>5,5-5>6,6%9. The LTL path condition
PCy (m) for 7 is

E(1) AE(1->5) (L(1->5) Ad (1-55) AE(S) A
E(5-5>6) % (L(5->6) A® (5-5>6) AE(6) AE(9))) =
true Atrue 7% (true A (iy = iz) A (i < 5)A (7
(ip <5) % (true A (i3 = i3) A (ip < 5)A
((i2 <5)A=(i3 < 4))))
which simplifies to (cf. Sec.[3.6)
Ol =) A2 <3) % ((i2 <5)A(iz > 4))). 8)

There is also a semantic justification for this algorithm: The main idea is that for
any program state sequence = = (&;);, if statement s influences ¢ along 7 in (&;) j<i<x.
then there is an [€ {j,...,k} such that in (&) <;<; s influences some s along e and
in (&);<i<k s" influences 7 along 7’. For data dependence edges on 7, this gives an %
operator each (1. 7 in Fig.[3). However, we can often omit it (cf. Sec. [3.6)). For control
dependence edges, there is no need for for an % operator: Since we do not have states
for control nodes, if 7 starts with a control dependence edge e, we have [= j, i.e. the
execution condition for s must obviously hold in ', too.

Nk

13

Input: PDG G = (V,E); cycle-free PDG path 7
Output: PCy(7)

PCPath’(G,)
if (7 has only one node s) return E(s)
let e,7’ such that e, n'=7
let s be the source and s’ the target node of e
let A be the set of data dependences on any cycle through s’ in G
if (A#0and s’ #1) set 0:=\/,c, E(a) else set 0:=false
if (e =s5»5")

return (E(s) A © % PCPath’(G,7'))
else

return (E(s) AE(e) % (L(e) Ad(e) AE(s') A

6 % (L(e) APCPath’(G, ©))))

O 00 1A N B WM —

—_
(=]

Fig. 4 Algorithm PCPath’ for LTL path conditions for cycle-free paths.

3.5 Path Conditions for Chops

Like with boolean path conditions, we generate LTL path conditions not only for
a single path, but also for two statements s and 7. Again, taking the disjunction of
PCy () over all paths 7 : s —* ¢ may result in infinite formulae if the PDG contains
cycles. Thus, we adapt our algorithm (cf. Fig. [d):

For a cycle-free path 7 : s —* t, PCPath’ computes an LTL path condition PCy (7)
that is satisfied by every program state sequence in which s influences ¢ along some
path 7’ from which we obtain 7 again by removing all cycles from 7’. The idea is to
conservatively ignore what may happen while the program execution is inside such a
cycle.

For example, consider the PDG on the right hand side of Fig. 5] and let 7 =
5-%>6,6-2>9. The new path condition for 7 is supposed to capture not only any in-
formation flow along 7 itself, but also along any other path 7’ that starts with the edge
5-%4>6 and ends with the edge 6-%>9, but that goes in between arbitrarily many times
through the cycle 6-2>7,7-%>6. To this end, we separately generate the constraints
for both subpaths of 7 before and after the cycle, i.e. 5-%>6 and 6-%>9. Then, we
join them again with an % operator such that its first operand is satisfied all the time
while execution remains inside the dependence cycle 6-%>7,7-%>6.

In general (Fig. {), we insert at every node v (v ¢ {s,7}) of the path 7 an extra
until operator (1l. 7, 10) whose first operand is a necessary execution condition 8 for
all nodes which control flow can reach when v influences itself via some cycle in the
PDG. Let A be the set of data dependences that are part of cycles which contain v
(1. 4). Since the PDG is finite, so is 4, i.e., 0 = \/,c4 E(a) is a finite, necessary condi-
tion for all states visited while v influences itself. We can ignore control dependence
because there are no states for control dependences in our model. If no such cycle
exists, this condition 6 is false (1. 5), i.e. the extra until operator is removed again by
simplification of the formula.

In Fig. [T (cf. (@), for example, let us look again at the acyclic path 7 = 1->5,
5-556,6-99. Cycles can only be added to 7 after the first edge, namely 5->5 and
5-i>4 495, but there is no cycle at node 6. Thus, PCPath’ computes the following

14

1 while (b) {
2 c = lc;

3 if (c) {
4 if (d)
5 a = b;
6 y = atx;
7 X =y;
8 if (!'d)
9 z =y;
10 }

11 d = false;
12y = 0;

13 }

Fig. 5 An example program and its PDG to show the extra % operator for cycles being necessary.

path condition where the additional parts (when compared to (7)) are set in bold face:

E(1) AE(1-55) % (L(1-55) Ad(1-5>5)A
E(5) A (E(5->5) VE(5->4)) 7 (L(1->5)A)
E(5) AE(5-56) Z (®(5-5>6) AE(6) A false % (E(9)))))

That is, we have included “E(4) A (E(4->4) VE(4-t>3)) % (L(1->4)” and “false %
in (7). Simplifying (9) removes the extra %/ operator again and we obtain (8) once
again.

Note that this need not always be the case: Consider Fig. [5] and the path p =
5-%9>6,6-2>7,72%>6,6-2>9. By removing the cycle from p, we obtain the path & =
5-%>6,6-%>9. PCy(7) (without & constraints) simplifies to d A (bAc) % (bAcA—d).
Note that PCy () is not satisfiable over the program traces.

In fact, line 5 can however influence line 9 via lines 6 and 7 some iterations later:
PCy () is not a correct path conditions for p, i.e., the extra operators in PCy. are in
general necessary. The problem here is that (b A ¢) is not an execution condition for
e = 7->6 because execution leaves the if branch while e’s value is being passed.
However, ﬁL(n) is correct and reads after simplification (without & constraints)
cANAANb U (bAcA—d). In this case, simplifying the LTL formula with the extra
% operator leads to a formula where the first operand of the % operator has been
weakened.

With PC. and PCPath’, we compute a path condition PCy (s,?) for two statements
s and ¢ by taking the disjunction over all cycle-free paths in the PDG G between s and
t. This is done by the algorithm PCChop shown in Fig. [6]

For example, consider again Fig. |1 The chop CH(1,9) contains eight acyclic
paths, namely: 7; = 1 -5>5->6 99, 1) = 1 ->5->6 979, 13 = 1 5 -4 96 -9,
Ty =1-">5>496974>9, 15 = 1->4 5659, 1, = 14065759, 17 =1 4>
495->699, and 1y = 1->4 95 >697-5>9. PCChop invokes PCPath’ for each
m;, 1 <i<8.As we have already seen above, PCPath’(ms) simplifies to @ on p.
Simplifying the formulae generated by PCPath’ for m;, 73, and 77 also yields (8). The

15

Input: PDG G = (V,E); nodes s,
Output: PCy (s,t)

PCChop(G, s, 1)

1 let I,(m;);er such that (;);c; enumerates
2 all cycle-free paths s —* 7 in G

3 return \/;.;PCPath’(G, m;)

Fig. 6 Algorithm PCChop for LTL path conditions for a chop between s and ¢ in the PDG G.

formulae generated for m,, 74, 7, and g are analogously simplified to
Q=) N (<3 U ((i3 <A A(ia <5) % ((ir <5) N\ (i3 >4)))) (10)

Hence, PCChop computes the disjunction of (8) and (T0), which is again simplified
to yield (8).

The next lemma shows that PCPath’ computes a path condition PCy(7) for a
cycle free path which is satisfied by any program trace which carries information
along some path 7’ from which we can obtain 7 again by removing cycles:

Lemma 1 (Correctness of the algorithm PCPath’) Let ' : s —* t be a PDG path
and let T be the path T’ from which all cycles have been removed. Let E be any state
sequences such that £ E QPCL(n'). Then E E O PCp (7).

Proof. Suppose an LTL formula X is of the form
AU (. NALU (...(...NA, % B))

for some LTL formula B and some boolean formulae A;, 1 <i <n. Then, &,j F X
implies that Z, j E (\/_| A;) % B for any state sequence = and time j. Hence, if p
is a cycle in 7', say ' = m{, p, 7}, then PCy(p, m}) is PC(p) in which PCy (7)) has
been conjunctively added to the execution condition for the last node on p. Moreover,
the part of PCy(p, 7)) up to PCy (7)) is of the above form, so if =, j F PCy(p,),
then also &, j = 6 % PCL(my) where 6 = \/,, %, ., E(u~>w) for all times j. If 7] is
empty, then O PCy(n') = OPCL(p, 7)) and from = F OPCL (') we get E F O(0 %
PCy (7)), which is equivalent to & £ QPCy (7). If) is not empty, then let 1 be
PCy(n) in which PCy (p, }) has been replaced by 8 % PCy(7}). As % is monotone
w.r.t. implication in the second operand, from = F ¢ PCy (') follows & F O 7.

When we apply the above reasoning to all cycles we have removed from 7’ to
obtain 7, we obtain a formula F which is structurally isomorphic to PCy (7). Since
the first operand of any % operator in PCy(7) is implied by the first operand of
the corresponding % in F, and %/ is monotone in both operands, we also get =
OWL(E). O

From this lemma and PCy (7') being correct for all paths 7/, it directly follows
that PCChop is correct:

Corollary 1 (Correctness of the algorithm PCChop) Let II be the set of all cycle-
free paths . s —* t. Then PCL(s,t) 1=\ ey PCL(T) is a correct path condition for
sandt.

16

El: trueZ A~ QA E10: A% BVAZ C~A% (BVC)

E2: falseZ A~ A B=A
El11:
E3: A % true ~> true AU BUC)~A%C
A=B

Ed4: A % false ~~ false | E12:
AU BUC)~B%C
E5: (A% B)~ OB CoA D—B
E13:
E6: A% (OB) ~ OB AU (BNCU D)~~A% D

ANB% (CA\DWE) ~ANDZE

E15: B=A C=A
E9: {false ~ false ’ ANBU C~B% C

E8: {true ~ true

Fig. 7 LTL equivalences as rewrite rules for simplifying path conditions.

Proof. By Lem.[1} PCy (%) = PCL(7) for all paths 7’ : s —* ¢ such that 7 is
©’ without the cycles in ', thus PCL(n") = PCy(s,7) by definition of PCL(s,?). If s
influences ¢ via some path p : s —* 7, we have that £ = PC(p) for some program
state sequence E, because PCy (p) is correct. Thus, also = E PCy (s,7). O

3.6 Simplifying LTL Path Conditions

Path conditions tend to become very long very quickly as programs increase in size.
Thus, we must simplify them before examining them further. First, there are numer-
ous equivalences for LTL formulae, i.e., in many cases, we can greatly simplify a
formula by applying LTL identities (as we have done so far in examples). Fig.
shows a number of LTL equivalences as rewrite rules which we have found useful
for simplifying path conditions. Note that this list is not complete. The rewrite rules
and [E14] have implications as premises. By construction of path condi-
tions, the first operand of an % operator is always a boolean formula and at most one
operand of any maximal conjunction is not boolean. Hence, the right-hand sides of
these rules are always instantiated with boolean formulae. Their antecedent, however,
may be instantiated with formulae that contain % operators, which are never in the
scope of a negation operator. Thus, by using the LTL implication A % B = AV B,
we can reduce implications in the rules’ premises to the boolean level where SAT or
SMT solvers can be applied to decide them automatically. In fact, SAT solvers are
sufficiently powerful for most of them because frequently a program predicate occurs
multiple times in a formula, i.e. we do not interpret boolean program expressions, but
treat them like propositional variables.
For example, the path condition in (9) on p.[T4]is

true Atrue % (true A (iy = i2) A (i2 < 5)A ((i2 < 5)V (i2 < 5)) % (true A
(2 <5S)NA(i2 <5) % ((i3=1i3) A (i2 < 5)Afalse % ((i» < 5)A—(i3 < 4)))))

17

After having simplified all boolean trivialities in this formula, we apply to it the sim-
plification rules [E1]and [E2] and obtain:

O((il = i2) A (iz < 5) A (iz < 5) /4 ((iz < 5)/\(i2 < 5) v ((i2 < 5) AN (i3 > 4))))
A B C

to which we apply [E15]as indicated:
<>((i1 = i2) A (i2 < 5) A (i2 < 5) /4 ((i2 < 5) /4 ((iz < 5) AN (i3 > 4))))

but now, we can directly apply which removes the additional % operator that
has been introduced to account for cycles at node 3:

Qi1 =) A(i2 <5S)A (2 <5) % ((i2 <5) N (i3 >4)))

Applying[E15|once more yields (§) on p.[12]

Also, we can often simplify LTL path conditions by slightly weakening them
using LTL implications instead of equivalences. Since they are only necessary condi-
tions for an influence, this does not affect their correctness. For example, we have the
two extra rewrite rules with lower priority than the rules in Fig.

11: (A% C)V (B% C) ~ (AVB) % C
2. A% (BWC)~ (AVB)% C

Although all the rules are a powerful means to make path conditions understand-
able, instead of greatly simplifying a formula we ought to not create unnecessary
formula parts in the first place: By construction, an LTL path condition is a formula
of nested % operators. The argument we used to prove that an SSA transformation is
not sufficient for boolean path conditions shows us that we cannot completely avoid
% operators. Besides, loop termination conditions require them, too. For example,
the % operator along 9-%>11 in Fig.[l]| separates the loop predicate (i, < 5) from its
termination condition —(i; < 5). If we were to remove this operator, we inevitably
would have to drop some of the constraints to preserve correctness. Sometimes, how-
ever, we may drop the %/ operator introduced by a data dependence:

Lemma 2 Let n:s —*t be a PDG path and u-$>v a data dependence in T that is not
loop-carried and does not leave a loop. Then, by conjunctively adding all operands
of the maximal conjunction that contains the % operator for u=>v in PC1(7) (or in
PC\(7) after it having been simplified with , except for the % term, loop termi-
nation conditions, and ® conditions for loop-carried data dependences, to the U ’s
second operand, we obtain a correct path condition.

A slightly stronger lemma is shown in (Lochbihler|[2006). The key idea is that
all SSA variables that occur in the maximal conjunction are defined in nodes which
cannot be executed between u and v. Hence, they have the same value at both states
before and after the % operator.

For example (Fig.[T), let 7 be as in (7) and (§) on p.[T2} Note that both 5-t>6 and
1-5>5 are not loop-carried and 5-5>6 does not leave a loop. By Lem. Pl we can take

18

what is underlined and insert these terms (set in bold face) after the % operator for

56 into (7):
true Atrue % (true A (iy = i) A (ia < 5) A (ia <5) % (true A (i3 = i3)A
(i2 < 5) N ((i2 < 5) A=(i3 < 4))Atrue A (i1 =) A (iz <5)))

Since % is monotone w.r.t. implication, we can now drop the underlined terms and
then apply the above simplification techniques to get

O((ir = i2) A (ia <5) A= (i3 > 4)),

which contains one temporal operator less than (8).

Lem. [2| seems to make formulae grow, but this is only due to its formulation. In
fact, we employ it to move constraints (by dropping the original terms) into the scope
of an % operator nested more deeply and then apply and [12| to properly
remove the % operator.

Regarding path conditions for chops, the next lemma utilises the disjunctive ab-
sorption law “If A implies B then A V B < B” such that we only have to consider
fewer paths in the outer disjunction (11. 1-2 in Fig.[6).

Lemma 3 Let t,p be PDG paths. If for some suffix o of &, { PCy (o) implies $ PCL(p),

then O PCL (1) = O PCL(p). If p is a prefix of m, then PCL (%) = PCL(p).

_ Proof. For the first claim suppose that the state sequence £ = 7(5,-),-@; satisfies
QPCL(m). Let # = 0’, 0 such that O PCL(0) = O PCL(p). Then PCL(x) is of the
form

AgNAy U (.../\Ak% (Ak+1 /\A;{Jr] NAgio U ())) an

condition for ¢’ PCL (o)

Hence, there is a time j such that (Z, j) F PCL(0). Therefore Z F { PCy (o). From
this, the claim follows with ¢ PCy (o) = O PCL(p).

For the second claim, let 6’ = p and @ = ¢’, 6. Then, PCL(7) is of the form
shown in (TT). Let 8 be PCy(7) with PCy (o) replaced by true. Since % is monotone
w.r.t. implication, if we have PCy(7) = 0 and 6 < PCy(p). 0

Once simplification is done, we look for large conjunctions of boolean conditions
and feed them to a constraint solver to see whether they are satisfiable at all. If not,
we immediately know that there is no program execution for any path that generates
this type of constraint. In case we compute the LTL path condition for a chop, we
drop these paths from the outermost disjunction (cf. Cor. [T} 11. 1-2 in Fig. [6).

To increase chances of showing unsatisfiability we can include extra constraints
which can be generated from other analysis techniques for data and control flow.
For example, there is only a single definition for every SSA variable. Hence, we can
back-substitute these definitions in the formula until we reach a & function definition,
provided we do not pass along a loop-carried data dependence and no definition of
the variables introduced by the substitution can possibly be executed along the data
dependence edges for the substitution. Similarly, when control flow passes along a
data dependence edge, we often know how a @ function must evaluate because we
can rule out some other CFG paths. In the motivating example from Sec. [3.2] (cf.

1 i] = 0;
2 while (iz=¢’(i1,i3);b) {
3 X = z;

4 dz=iptl;

5 if (i3=2) {
6 y = X;
7}

8 z = a;

9}

Fig. 8 Example program in SSA form to show that Lem.and other analysis techniques are not orthogo-
nal.

Fig. [T), we know that i3 = i» +k when we are at node 7, i.e. in (6) on p. we
substitute i3 by i» +k in E(7), so we deduce that k > 0. Moreover, since we must have
executed 7 beforehand in a previous loop iteration, the & function &(iy,i3) must have
evaluated to i3. With this, @ gives us that i3 must be decreased whereas k > 0 makes
i3 being increased, a contradiction.

Unfortunately, this approach interferes with the simplification offered by Lem.
Consider the program in SSA form in Fig.[8] The path condition PCy(7) for & =
8-%>3,3-%>6 is after simplification with[E2]

(D)N(b) % ((B) N (b) % ((b) A\ (i3 =2))).
Now, we add i3 = ip + 1, which must hold at line 6, and get
O)ND) % ()N (b) % ((D)N(i3=2) A (i3 =i2+1))).
From 8 -%>3, we know that i, = i3 must hold at line 3. Thus, we add this, too:
(LYN(B) % ((b) N(i2=i3) N(b) % (D) N\ (i3=2) A\ (i3 =ir+1)))

If we were now to apply the ideas of Lem. 2]to 3->6, we would no longer be con-
servative, because

YN () % (b) N2 =i3) AN(B) % (2 =i3) N(D)A (i3 =2) Aliz =i2+1)))

is equivalent to false, even though in every program execution in which the loop is
entered the value of a reaches y via z and y.

Due to the intricacies involved with simplification, we have not yet implemented
this additional approach. Note that although we can analyse temporal path conditions
in this way by combining a number of other static analyses, our focus lies on model
checking them (cf. Sec.[3).

3.7 Comparing Boolean and LTL Path Conditions

In the motivating example of Sec. we have seen that temporal path conditions are
more precise than boolean path conditions. The next theorem shows that we can de-
rive a satisfying assignment for the boolean path condition from a satisfying program
trace of the corresponding LTL path condition:

20

Theorem 1 (Soundness of LTL Path Conditions) Let w : s —* ¢ be a cycle-free
PDG path and let 0 denote the path condition for &t (and all paths from which we
can obtain T by removing cycles) in which all unnecessary % operators for data
dependences have been dropped (cf. Lem. 2) and % operators for all cycles that
must be inserted into T have been included (cf. Sec.[3.3). Let n denote the boolean
path condition for w, in which variables have been separated as necessary. Then, a
satisfying assignment for 1 can be constructed from a satisfying program trace for 6.

A proof can be found in (Lochbihler][2006). Theoremﬂ] says that if a witness for
an influence along a PDG path 7 is found for the LTL formula then we can obtain
a satisfying assignment for the boolean path condition from the witness. The idea
is that separation of variables in 1] corresponds to % operators that have not been
removed in 0, i.e., every maximal boolean conjunction in 6 corresponds to a con-
junction of atomic formulae in 77, which are not related to other parts of 1, and vice
versa. These atomic formulae are all contained in one maximal conjunction of 8 ex-
cept for @ constraints from P functions. However, these & constraints cannot turn
the conjunction of atomic formulae unsatisfiable if there is a witness for the influence.
Since all atomic formulae of 1 are covered by conjunctions in 6, we can construct a
satisfying assignment from the witness for 7.

Apart from temporal operators, loop termination conditions, which we cannot
easily include in boolean path conditions, make LTL path conditions more precise.
For example, consider the following program skeleton where we have a data depen-
dence e w.r.t. x that leaves a loop:

if (...) while (b) ... x = ...
if (b)) ... x ...

In this case, the loop termination condition for e gives the constraint —b, but the
execution condition for e’s target statement is b, a contradiction, i.e. no information
can flow along e.

3.8 LTL vs. CTL

LTL is a natural choice for temporal path conditions when we look at a single path,
but for chops, other logics such as CTL may come to mind. We restrict our com-
parison to LTL and CTL here because these are the most popular temporal logics
for which high-performance model checkers are available. Considering LTL to be a
part of CTL* (Clarke et al.|2000), we actually have, for a path condition 6, that no
influence is possible if the program model does not satisfy A—¢ 6. In LTL, every
part of the formula refers to the same program trace whereas in CTL, subformulae
under the scope of different path quantifiers may be fulfilled in different program
traces. However, due to the specific structure of path conditions, we can prefix every
% subformulae with the existential path quantifier E to obtain a correct CTL path
condition which is equally strong. Yet, path quantifiers impede simplification; e.g., if
we want to simplify the path condition 6 for a chop more aggressively, we can factor
out a common suffix of the influence path: We drop its path condition 7] in 6 and add

21

it conjunctively again: 8 A { 7. With CTL, this trick is impossible since we cannot
ensure that ¢ 1 holds in the same program trace as 6 does.

In general, model checking for LTL has a worst-case complexity that is exponen-
tial in the size of the formula whereas for CTL the worst case complexity is linear
in the length of the formula. It is linear in the size of the program for both of them
(Clarke et al.|2000). In light of the rapid growth in size for path condition, this seems
to be a telling argument for CTL.

But, in fact, we only use a small subset of LTL: At most one operand in every
maximal conjunction of an LTL path condition is not a boolean formula. Hence, when
the LTL formula is converted into a Biichi automaton for model checking, this can be
done in time linear in the size of the formula and the automaton’s states set has linear
size, too. Thus, model checking an LTL path condition is also linear both in the state
space and the formula length.

4 Case Study

In this section, we present a short case study in which we have applied LTL path
conditions to discover a way of manipulating a weighing scale. A more detailed de-
scription can be found in (Lochbihler2006). Fig. [shows a fragment from the mea-
surement software of a fictitious cheese weighing scale. There are two input ports
inputl and input?2 from which the keystrokes and the weight sensor data, respec-
tively, are read. In normal mode, the measurement software computes the weight in kg
from the weight sensor data and the calibration factor kal kg (1l. 28-29). In service
mode, which is activated by entering a specific sequence of key strokes (ll. §-19), the
calibration factor can be adjusted by the keyboard (11. 21-27). We want to check if we
can manipulate the weight value u_kg — shown on the display — by the keyboard. The
corresponding path condition for p_keyb influencing u_kg is

PCL(3.1,29) v PCL(10,29) V PCL(26,29) V PCL (32,29) v PCy (35,29)

where 3.1 refers to the first statement in 1. 3. Fig. [10] shows the chop between II. 3,
10, 26, 32, 35 and 29, which has been closed under control dependence. Note that 26
and 32 are not part of the chop, i.e. slicing is already able to deduce that these two
statements cannot influence 29. Hence, there is no need to compute PCy(26,29) and
PCy.(32,29) because both are false.

The remaining path condition (without SSA indices and & constraints, but with
the prefixed ¢) simplifies to

O((mode =5) N ((p_keyb = 43) V (p_keyb = 45)) ANO(p_weigh > 0)). (12)

Thus, we know that one of the calibration keys 43 and 45 must be hit while we are in
service mode (mode = 5) and later, some weight must be placed on the weight sensor.
However, this path condition does not give any information about how to activate the
service mode. By applying constant propagation along data dependences, we elimi-
nate most of the edges in the upper half of Fig.[I0|before taking the disjunction over

N
(3]

1 mode = 0;

2 skO = 65; skl = 43; sk2 = 66; sk3 = 45; sk4 = 13;
3 p_keyb = inputl; p_weigh = input2;

4 while (true) {

5 if (p_keyb = 27)

6 mode = 0O;

7 else {

8 if ((mode = 4) && (p_keyb = sk4)) {
9 mode = 5;

10 p_keyb = inputl;

11 }

12 if ((mode = 3) && (p_keyb = sk3))
13 mode = 4

14 if ((mode = 2) && (p_keyb = sk2))
15 mode = 3;

16 if ((mode = 1) && (p_keyb = sk1))
17 mode = 2;

18 if ((mode = 0) && (p_keyb = sk0))
19 mode = 1;
20 }
21 if (mode = 5) {
22 if (p_keyb = 43)
23 kal_kg = kal_kg+1;
24 if (p_keyb = 45)
25 kal_kg = kal_kg-1;
26 p_keyb = inputl;
27}
28 if (p_weigh > 0)
29 u_kg = p_weigh * kal_kg;
30 if (p_keyb = 13)
31 for (i = 0; i < 8; i++) {
32 p_keyb = inputl;
33 output = p_keyb;
34 }

35 p_keyb = inputl;
36 p_weigh = input2;
37 }

Fig. 9 A cheese scale measurement software with service mode.

all cycle-free influence paths. This way, less simplification with Lem. [3|is done and
we obtain

O((mode = 0) A (p-keyb = sk0) A Q((mode = 1) A (p-keyb = sk1)A\
O((mode =2) N\ (p_keyb = sk2) A O((mode = 3) A (p_keyb = sk3) A\
O((mode = 4) A (p_keyb = skd) A O((mode = 5)A

((p—keyb = 43) V (p-keyb = 45) A O(p-weigh > 0)))))))

13)

We see that we must enter the service mode activation keys in the correct order to
calibrate the scale. Model checking, however, reveals that the keys need not be hit
consecutively and that neither (I2)) nor (T3)) are sufficient conditions for the influence
to occur.

23

Fig. 10 Chop between p_keyb in 1l. 3, 10, 26, 32, 35 and u_kg in 1. 29 for the program in Fig.El which

has been closed under control dependence.

24

5 Path Conditions and Model Checking

In the previous section, we have seen that LTL path conditions can become quite
complex even for smallish programs. Thus, the larger a program is, the more difficult
it becomes to decide whether a path condition is satisfiable without tool support.
Boolean path conditions are therefore fed to a constraint solver which simplifies them
as far as possible and maybe can solve them for the program’s input variables. The
equivalent to a constraint solver for boolean path conditions is the model checker for
LTL ones: If we transform a program into a model for a model checker, we can use
the model checker to find satisfying state sequences for LTL path conditions.

However, this transformation is by no means trivial. We must combine slicing
with program abstraction (Corbett et al.|[2000; [Dwyer et al|2001) to compute an
abstract interpretation of the program as a model for the model checker. Moreover,
the model must keep track of SSA variables that occur in the path condition to check.
However, it turns out that this does not severely increase the number of reachable
states as many distinguished variables have the same value anyway.

If the model checker of our choice tries to find a satisfying state sequence for
the LTL formula (as e.g. the explicit state model checker SPIN does with its “never
claims” (Holzmann|2003)), we simply give the simplified path condition to the model
checker and run it on the program model. If the model checker tries to falsify the LTL
input specification (as does e.g. the symbolic model checker NuSMV (Cimatti et al.
1999)), we have to input the negated LTL path condition. Note that the theory of
symbolic model checking (McMillan|[1992) also allows to compute the set of initial
program states from which satisfying state sequences start, i.e. to solve the LTL path
condition for the program’s input variables.

Let us now return to the example of Sec. |4} Note that the path condition in
does not say that we must enter the service mode activation keys consecutively. This
is revealed when we apply model checking: We have coded a model for the measure-
ment software for the model checkers SPIN and NuSMV and run both of them on
the formula as sketched above. In order not to run into difficulties due to the state
explosion problem, we have reduced the range of int variables in the following way:

Six symbolic values for p_keyb and input1l that represent the keys with key
codes 13, 27, 43, 45, 65, 66 and one for subsuming all other key codes

Three values for the weight sensor p_weigh and input2: 0, 1, 2

Five values for mode: O to 5

kal_kg ranges from -5 to 5 plus an additional “unknown” which corresponds to
the top element in the abstract interpretation lattice.

These restrictions are conservative approximations because static analysis, in partic-
ular interval-based analysis, yields that either a variable always remains in their re-
stricted range or, as in the case of p_keyb, an additional value is introduced to model
all values; similarly for kal_kg. Reading from the input ports returns an arbitrary
value in the range of the input port.

NuSMYV generates a trace that directly enters service mode and changes the cal-
ibration factor, the keycode sequence starting with 65, 43, 66, 45, 13, 66, other, 45,
other. Then, it puts some weight on the scale. The overall output path including a

25

loop at the end contains 34 states. In contrast to that, SPIN reveals that typing al-
most randomly on the keyboard long enough leads to us accidentally entering service
mode (the activation keys are not pressed consecutively) and allows to manipulate
the displayed value. The model found by SPIN consists of 2053 steps. Thus, model
checking has revealed a witness for the undesired manipulation of the weight on the
display.

6 Related Work

The standard approach to IFC is via type systems. See (Sabelfeld and Myers|2003) for
an overview. While type systems are a fast approach, they usually lack precision. For
example, most type systems incorrectly classify if (h) 1=1; else 1=0; 1=2; as
insecure (where h is the secret variable and 1 is the public variable whose result value
must not depend on h’s initial value).

Darvas/Héhnle/Sands (Darvas et al.|[2005) proposed to use Dynamic Logic and
a theorem prover for information flow control. Program variables are classified as
public or secret and a formula, which contains the program of interest, is set up to
ensure that the initial state of the secret variables has no effect on the result in the
public variables. The user then proves the formula using a semi-automatic theorem
prover. This approach is not automatic and the user must provide loop invariants.

Hong et al. (Hong et al.[2003)) also use temporal formulae for static program anal-
ysis: They use the CFG to construct CTL formulae that express a condition for data
flow from a variable definition to its use. Construction rules for different coverage
criteria are provided. These formulae, which are built from predicates for a variable
being defined or used in a state and for execution being in a specific state, are fed
to the model checker SMV to automatically generate test cases. Their approach ig-
nores control dependence and is not conservative. While this is perfectly acceptable
for their application, it is unable to find all potential security leaks.

In (Ammons et al.|2002), Ammons/Bodik/Larus automatically extract specifica-
tion automata from dynamic program traces for the correct temporal usage of APIs
and ADTs based on the assumption that most usage is correct. Incorrect usage is
eliminated from the specification automata while they are being simplified. Verifica-
tion tools such as model checkers are then used to find bugs in programs w.r.t. using
the API/ADT. Although they also extract temporal specifications automatically, their
extraction is not static and aggressive simplification cannot guarantee that no security
leaks creep in or are missed.

Xie and Chou (Xie and Chou|2002) propose to translate static program analyses
into SAT problems. Like us, they use SSA form, but they avoid the problem of re-
peatedly executing an assignment by heavily abstracting loops in that only the last
iteration of every loop is modelled. Thus, loop-carried data dependences cannot be
handled properly.

Recently, path-sensitive static program analyses (Ball and Rajamani|2001} Fischer,
et al.|2005; |Dhurjati et al.|2006) have become popular. However, directly formulat-
ing precise IFC conditions in these terms is not easy: The SLAM project (Ball and
Rajamani|2002)) provides a general path-sensitive data flow analysis (Ball and Raja-

26

mani |2001) which operates on boolean programs abstracted from C programs. As a
consequence, exploiting arithmetic to prove a path unfeasible is not possible.

Fischer et al. (Fischer et al.|2005) from the BLAST project propose data flow
analysis with path predicates: Their merge operation does not join data flow facts
from paths if their predicates differ, but keeps track of them separately. If necessary,
they can iteratively enlarge the predicate set and thus refine the analysis. Neverthe-
less, multiple loop iterations are hard to distinguish that way and temporal properties
cannot be modelled in the predicate set.

ESP (Dhurjati et al.2006; Das et al.[2002) instruments programs to keep track of
typestate changes which must satisfy the specification automaton. An interprocedu-
ral data flow analyses tries to prove correctness w.r.t. the automaton using property
and path simulation (Hampapuram et al.|[2005). They also have heuristics for when
to enlarge the set of predicates of which to keep track. Like BLAST, they must be
provided a specification w.r.t. which the program is verified.

Our approach generates such specifications, thus we believe that temporal path
conditions can serve as specification input to path-sensitive static analysers when
model checking is too time-consuming. A general specification automaton for non-
interference would require many refinement iterations whereas our approach would
already provide all predicates of interest in a suitable specification form.

7 Conclusion and future work

We have seen that temporal path conditions provide “precise” time-dependent infor-
mation about the specific circumstances of an information flow in a program. By
transforming the program into a compact model that preserves the state sequence
semantics, using e.g. slicing and program abstraction (Corbett et al.|2000; [Dwyer
et al.|2001)), we can use model checkers such as SPIN (Holzmann|2003) or NuSMV
(Cimatti et al.[1999) to compute a specific input or state sequence for information flow
if one exists. Otherwise, we know that no information flow is possible, which will
turn out to be useful for software safety and security analysis. In fact, the approach
has been developed for a while language with arrays (Lochbihler2006), which have
been left out in the present article because arrays introduce much additional technical
complexity.

The current paper describes only the theoretical foundations for temporal path
conditions. While a temporal path condition for a single path in the PDG can be ef-
ficiently computed, dependence between two arbitrary statements s and ¢ reduces to
single PDG paths only for very small and simple programs. The presented approach
— up to optimizations for prefixes and suffixed — enumerates all cycle-free paths in
the chop for s and 7, of which exponentially many can exists. In theory, boolean path
conditions suffer from the same problem, however, by analysing and decomposing
the chop, the exponential blow-up can be avoided (Snelting et al.[2006). Similar tech-
niques must be developped in an efficient implementation for temporal path condi-
tions, which we are still working on. Equally, other program constructs like references
or procedures and methods must be added to temporal path conditions.

27

We have focused on IFC as one particular application of temporal path conditions,
but we are confident that they can equally be beneficial to other areas in program anal-
ysis that deal with dependences in programs: There are already similar approaches to
automated test data generation (Hong et al.|2003), that generate sufficient (but not
necessary) conditions for dependence paths. Further, almost every slicing algorithm
might benefit from path conditions to eliminate spurious transitive dependences, in
particular if non-scalar variables are involved. For example, if a (transitive) depen-
dence requires a minimum number of iterations of some loop for being manifest,
then temporal path conditions are able to express this. If the loop is guaranteed to
be executed less times, the temporal path condition is never satisfied and the transi-
tive dependence no longer needs to be considered. This may even lead to some kind
of bootstrapping: In precise points-to analyses, temporal path conditions, for which
points-to information must already have been computed, may be used to remove some
unnecessary elements from points-to sets such that the PDG and consequently path
conditions become more precise, giving rise to an iterative refinement algorithm. Note
that these potential applications only use temporal path conditions on single depen-
dence paths, i.e. the overheads for computing a path condition for a chop do not apply
here.

Temporal path conditions can similarily be used to shrink slices: If the path con-
dition from entry to some PDG node in an imprecise slice is unsatisfiable, then this
node (and all others that are part of the slice due to this node being in the slice) can
be safely removed from the slice. For example, conditioned slicing (Canfora et al.
1998)) computes a slice for a given set of program executions given by constraints
on the input values. Such constraints, given as a boolean formula, only have to be
conjunctively added to temporal path condition to determine whether some statement
can be removed from the imprecise slice. Note that loop-carried dependences make
this much harder for boolean path conditions.

Acknowledgements The authors would like to thank Christian Hammer and the anonymous reviewers
for their helpful comments.

References

Ammons, G., Bodik, R., Larus, J. R.: Mining Specifications. Symposium on Principles of Programming
Languages, 4-16 (2002)

Ball, T., Rajamani, S. K.: Bebop: A Path-sensitive Interprocedural Dataflow Engine. Workshop on Program
Analysis for Software Tools and Engineering, 97-103. (2001)

Ball, T., Rajamani, S. K.: The SLAM Project: Debugging System Software via Static Analysis. Symposium
on Principles of Programming Languages, 1-3 (2002)

Canfora, G., Cimitile A., De Lucia, A.: Conditioned program slicing. Inf. and Softw. Technol. 30, 595-607
(1998)

Cimatti, A., Clarke, E. M., Giunchiglia, F., Roveri, M.: NuSMV: A New Symbolic Model Verifier. In:
International Conference on Computer Aided Verification, Lect. Notes Comp. Sci. 1633, 495-499
(1999)

Clarke, Jr, E. M., Grumberg, O., Peled, D. A.: Model Checking. The MIT Press (2000)

Corbett, J. C., Dwyer, M. B., Hatcliff, J., Laubach, S., Pdsareanu, C. S., Robby, Zheng, H.: Bandera:
Extracting finite-state models from Java source code. In: International Conference on Software Engi-
neering, 439-448 (2000)

28

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., Zadeck, F. K.: Efficiently Computing Static Single
Assignment Form and the Control Dependence Graph. ACM Trans. Program. Lang. Syst. 13(4), 451—
490 (1991)

Darvas, A., Hihnle, R., Sands, D.: A Theorem Proving Approach to Analysis of Secure Information Flow.
In: International Conference on Security in Pervasive Computing, Lect. Notes Comp. Sci. 3450, 193—
209 (2005)

Das, M., Lerner, S., Seigle, M.: ESP: Path-Sensitive Program Verification in Polynomial Time. Prog. Lang.
Des. Implement., pp. 57-68. (2002)

Dhurjati, D., Das, M., Yang, Y.: Path-Sensitive Dataflow Analysis with Iterative Refinement. In: Static
Analysis Symposium, Lect. Notes Comp. Sci. 4134, 425-442 (2006)

Dwyer, M. B., Hatcliff, J., Joehanes, R., Laubach, S., Pdsdreanu, C. S., Robby, Visser, W., Zheng, H.:
Tool-Supported Program Abstraction for Finite-State Verification. In: International Conference on
Software Engineering, 177-187 (2001)

Fischer, J., Jhala, R., Majumdar, R.: Joining Dataflow with Predicates Found. Softw. Eng., 227-236 (2005)

Hammer, C., Krinke, J., Snelting, G.: Information Flow Control for Java Based on Path Conditions in
Dependence Graphs. In: International Symposium on Secure Software Engineering, 87-96 (2006)

Hampapuram, H., Yang, Y., Das, M.: Symbolic Path Simulation in Path-Sensitive Dataflow Analysis. In:
Workshop on Program Analysis for Software Tools and Engineering, 52-58 (2005)

Holzmann, G. J.: The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley (2003)

Hong, H. S., Cha, S. D., Lee, 1., Sokolsky, O., Ural, H.: Data Flow Testing as Model Checking. In:
International Conference on Software Engineering, 232-242 (2003)

Krinke, J.: Advanced Slicing of Sequential and Concurrent Programs. PhD thesis, Universitit Passau
(2003)

Lochbihler, A.: Temporal Path Conditions in Dependence Graphs. Master’s thesis, Universitit Passau
(2006)

Lochbihler, A., Snelting, G.: On Temporal Path Conditions in Dependence Graphs. In: International
Working Conference on Source Code Analysis and Manipulation, 49-58 (2007)

McMillan, K. L.: Symbolic Model Checking. PhD thesis, Carnegie Mellon University (1992)

Ranganath, V. P,, Amtoft, T., Banerjee, A., Hatcliff, J., Dwyer, M. B.: A New Foundation for Control
Dependence and Slicing for Modern Program Structures. ACM Trans. Program. Lang. Syst. 29(5),
Atrticle 27 (2007)

Robschink, T.: Pfadbedingungen in Abhdingigkeitsgraphen und ihre Anwendung in der Softwaresicherheit-
stechnik. PhD thesis, Universitit Passau (2005)

Robschink, T., Snelting, G.: Efficient Path Conditions in Dependence Graphs. In: International Conference
on Software Engineering, 478—488 (2002)

Sabelfeld, A. Myers, A. C.: Language-Based Information-Flow Security. IEEE J. Sel. Areas Commun.
21(1), 5-19 (2003)

Snelting, G.: Combining Slicing and Constraint Solving for Validation of Measurement Software. In: Static
Analysis Symposium Lect. Notes Comp. Sci. 1145, 332-348 (1996)

Snelting, G., Robschink, T., Krinke, J.: Efficient Path Conditions in Dependence Graphs for Software
Safety Analysis. ACM Trans. Softw. Eng. Methodol. 15(4), 410-457 (2006)

Tip, F.: A Survey of Program Slicing Techniques. J. Program. Lang. 3(3), 121-189 (1995)

Xie, Y., Chou, A.: Path Sensitive Program Analysis Using Boolean Satisfiability. Technical report, Stanford
University (2002)

	Introduction
	Path Conditions in Dependence Graphs
	Temporal Path Conditions
	Case Study
	Path Conditions and Model Checking
	Related Work
	Conclusion and future work

