
Institut für Programmstrukturen
und Datenorganisation (IPD)

Lehrstuhl Prof. Dr.-Ing. Snelting

Juturna: Lightweight,
Pluggable and Selective
Taint Tracking for Java

Masterarbeit von

Florian Dominik Loch

an der Fakultät für Informatik / in Kooperation mit der SAP SE

Erstgutachter: Prof. Dr.-Ing. Gregor Snelting
Zweitgutachter: Prof. Dr. Bernhard Beckert
Betreuer KIT: Dipl.-Inform. Martin Mohr
Betreuer SAP SE: Dr. Martin Johns

Bearbeitungszeit: 12. Juli 2017 – 19. Februar 2018

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

Erklärung

Hiermit erkläre ich, Florian Dominik Loch, dass ich die vorliegende Masterarbeit
selbstständig verfasst habe und keine anderen als die angegebenen Quellen und Hilfs-
mittel benutzt habe, die wörtlich oder inhaltlich übernommenen Stellen als solche
kenntlich gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher
Praxis beachtet habe.

Ort, Datum Unterschrift

III

Abstract
Injection-Angriffe, wie bspw. SQL-Injection oder Cross-site Scripting, sind vielfäl-
tig und stellen eine große Bedrohung für (Web-)Applikationen und ihre Nutzer
dar – für Privatpersonen gleichermaßen wie für Unternehmen. Bisherige Arbeiten
haben klar gezeigt, dass die Idee des Taint-Trackings – Werte zu markieren und
ihren Fluss durch die Applikation zur Laufzeit zu überwachen – effektiv sind bzgl.
der Erkennung einer Vielzahl solcher Verwundbarkeiten sowie der Verhinderung
einer Ausnutzung.

Allerdings sind aktuelle Taint-Tracking-Systeme für Java SE/Java EE noch
nicht wirklich für den produktiven Einsatz geeignet. Die vorliegende Arbeit setzt
sich mit den Anforderungen eines solchen Umfeldes auseinander und stellt, in Form
von Juturna, einen neuen Ansatz vor. Dieser versucht, jenen Anforderungen unter
Verwendung etablierter Techniken und neuer Ideen gerecht zu werden.

Eines der großen, aktuellen Probleme von Taint-Tracking ist dabei der immanen-
te Overhead bzgl. Berechnungsaufwand und Speicherverbrauch. Daher besteht Ju-
turna nicht nur aus einem funktionsreichen, aber dennoch effizienten, dynamischen
Taint-Tracking-System, welches versucht möglichst “minimal-invasiv” gegenüber
einer zu beschützenden Applikation und dem JRE zu sein, sondern enthält auch op-
tionale Techniken aus dem Bereich der statischen Informationsflusskontrolle (IFC).
Dieser Ansatz soll Bereiche innerhalb einer Applikation finden, welche garantiert
frei von maliziösen Flüssen sind. Dadurch wird ein selektives Taint-Tracking mit
reduziertem Overhead realisiert. Juturna wird somit, sofern gewünscht, zu einem
hybriden System, welches sowohl dynamische als auch statische Analyseverfahren
verwendet.

Injection attacks, like SQL Injection and Cross-site Scripting, are a massive threat
to the (web) applications and its users – individuals, institutions and companies.
They are manifold and might occur at many places in modern (web) applications.
Previous works have proven taint tracking, tagging value and monitoring their flow
at runtime, to be an effective measure to detect a whole bunch of such vulnerabil-
ities and prevent their exploitation.

But systems available for Java SE/Java EE today are not yet ready for being
used in production contexts. In the thesis at hand, this usage scenario and the
according requirements will be analyzed. Then, Juturna, a new take on taint
tracking for Java combining established concepts with novel ideas, will be drafted,
implemented and evaluated in depth with real-world requirements in mind.

One of the major problems of taint tracking is its intrinsic computational over-
head and the increased memory footprint. Therefore, Juturna does not only con-
sist of a sophisticated, yet efficient taint tracking system trying to be lightweight
and pluggable by neither invasively modifying applications or the JRE, but addi-
tionally includes optional techniques known from static Information Flow Control
(IFC). Juturna uses these to determine execution paths guaranteed to be free from
malicious flows on which tracking can be selectively avoided, reducing the caused
overhead.

This makes it, if desired, a hybrid approach combining both dynamic and static
analysis techniques.

Vorwort & Danksagung
Die vorliegende Arbeit umfasst sowohl die Konzeption als auch Implementierung
und Evaluierung eines taint tracking-Systems in Java mit dem Zusatz, dass durch
Einbindung von Verfahren zur statischen Analyse ein zu erwartender Overhead
reduziert werden soll. Der Prototyp stellt, zusammen mit der vorliegenden Ausarbei-
tung, das Ergebnis meiner Masterarbeit am Lehrstuhl für Programmierparadigmen
- IPD Snelting dar.

Ich möchte mich daher an dieser Stelle ganz herzlich bei allen Mitarbeitern des
Lehrstuhls, Kollegen, Verwandten und Freunden bedanken, die zu einem – hoffentlich
erfolgreichen – Abschluss dieser Masterarbeit beigetragen haben.

Mein Dank gilt Martin Mohr (IPD), Dr. Martin Johns (SAP SE) und Martin
Hecker (IPD) für Ihre Beiträge zur Themenfindung. Ersteren möchte ich inbesondere
für die Betreuung während der Bearbeitung, die vielen guten und konstruktiven
Konversationen, hilfreichen Antworten und Anregungen danken.

Ebenfalls danke ich Herrn Prof. Dr.-Ing. Snelting für die Betreuung der Arbeit,
die Unterstützung während des Anmeldeprozesses und die Bereitstellung des
JOANA-Frameworks zur Implementierung und Evaluierung eines neuartigen,
selektiven Ansatzes.

Die Arbeit erfolgte in Kooperation mit einer für die Erforschung von Sicherheits-
konzepten zuständigen Abteilung der SAP SE – mit der klar bekundeten Hoffnung,
die zu erwartenden Ergebnisse im Rahmen der eigenen Produktentwicklung zumin-
dest grundlegend weiterverwenden zu können.

Unter Berücksichtigung dessen wurden nicht nur den motivierenden, konzep-
tionellen und evaluierenden Abschnitten der schriftlichen Ausarbeitung große
Aufmerksamkeit gewidmet, sondern auch der prototypischen Implementierung,
den dabei aufgetretenen Problemen, getroffenen Entscheidungen und anderen
praktischen Aspekten.

Florian D. Loch,
Karlsruhe, den 19. Februar 2018

VII

Contents
1. Introduction 1

1.1. Motivation . 1
1.2. Problem statement & research question 2
1.3. Structure of the thesis . 3
1.4. Terms & conventions . 4

2. Background 5
2.1. Java EE . 5
2.2. Injection attacks . 6

2.2.1. The fundamental principle 6
2.2.2. Cross-Site-Scripting (XSS) 7

2.3. Information flow control (IFC) . 11
2.3.1. PDG-based IFC . 12
2.3.2. JOANA . 12
2.3.3. Taint tracking . 13

2.4. Detecting injection attacks with taint tracking 15
2.5. Related Work . 16

2.5.1. Purely dynamic approaches 17
2.5.2. Hybrid approaches combining static and dynamic analysis . 19

3. Concept 21
3.1. Setting the scenario . 21

3.1.1. Use case . 21
3.1.2. Attacker model . 22

3.2. Why to choose taint tracking instead of static IFC? 23
3.3. What to track? Designing a taint tracking system 25

3.3.1. Benefits and drawbacks of string-only tracking 25
3.3.2. Granularity matters: string-level vs. character-level 26
3.3.3. What information to be attached? 28

3.4. Choosing an implementation strategy 28
3.4.1. Augmentation on source level 29
3.4.2. Bytecode instrumentation 31

3.5. Defining the taint policy . 32
3.5.1. Introducing taint information in a system 32
3.5.2. Taint propagation & semantics of strings in Java 33
3.5.3. Taint checking, untainting & sanitization 38

IX

Contents

3.6. Ideas towards more efficient taint tracking 39
3.6.1. “Taint ranges” for more efficient storing of taint information 39
3.6.2. Using static IFC to make taint tracking more efficient 40

4. Implementation 45
4.1. Overview of components . 46
4.2. Mapping metadata to strings: TaintRange and friends 48

4.2.1. Structure of a taint range 48
4.2.2. TaintInformation: a container for taint ranges 50
4.2.3. Considerations regarding runtime and space requirements . 50

4.3. Augmenting the standard library 53
4.3.1. General considerations . 54
4.3.2. String (java.lang.String) 55
4.3.3. StringBuilder & StringBuffer 56
4.3.4. Regular expressions . 59

4.4. Bytecode instrumentation . 60
4.4.1. Taint sources and sanitization functions 65
4.4.2. Taint sinks . 66
4.4.3. Handling the CharSequence interface 69

4.5. Selective tainting: integrating static analysis 70
4.5.1. Providing taint-aware and taint-unaware methods 72
4.5.2. JOANA-Adapter . 76
4.5.3. Switching between unaugmented and augmented code . . . 80

4.6. Testing . 80

5. Evaluation 83
5.1. Detecting existing vulnerabilities 83
5.2. Performance benchmarks . 86

5.2.1. Setup & methodology . 87
5.2.2. Results . 90

5.3. Combining dynamic and static analysis 95
5.3.1. Setup & methodology . 95
5.3.2. Results . 98

5.4. Open problems and possible solutions 100
5.4.1. Limitations of string-level taint tracking (and how static

checks can help) . 100
5.4.2. Better performance through more efficient taint ranges . . . 101
5.4.3. Limitations regarding Java EE 102

X

Contents

6. Conclusion 105
6.1. Summary . 105
6.2. Discussion . 107
6.3. Outlook . 108

A. Appendix 111

List of figures 115

List of listings 117

List of tables 119

List of abbreviations 121

Literature & References 123

XI

1. Introduction

1.1. Motivation
“The impact of using unvalidated input should not be underestimated. A
huge number of attacks would become difficult or impossible if developers
would simply validate input before using it. Unless a web application
has a strong, centralized mechanism for validating all input from HTTP
requests (and any other sources), vulnerabilities based on malicious input
are very likely to exist.” The Open Web Application Security Project [1]

Injection vulnerabilities are widespread in software development: They often oc-
cur in the frontends of modern web applications, then labelled as Cross-site Script-
ing (XSS), or in backend applications and database systems – e.g., when running
poorly constructed, attacker controlled, SQL statements (SQL Injection). They are
a massive threat, especially in the web context.

Accordingly, the Open Web Application Security Project (OWASP) ranks injection
attacks again on first place in the current release of their report OWASP Top 10 –
The Ten Most Critical Web Application Security Risks [2]. Additionally, they rank
the subspecies of Cross-site Scripting seventh.

Modern web applications enabling the rapid realization of complex workflows in
a user-friendly, cross-platform manner caught a lot of attention in the last years
and they still do today. More and more traditional applications are turning from
traditional desktop applications to web apps, written with the technologies of the
web: JavaScript, HTML and CSS. And some of those are especially prone regarding
such injection attacks.

The potential damage caused by them is enormous. They might be abused to
impersonate as someone else and to subsequently operate in his authentication con-
text, or as a starting point for taking over whole systems. As those incidents almost
always – either directly or indirectly – result in a financial loss for the software
vendor or operator, motivation to resolve these issues can be expected.

The good news is that most of these flaws can be easily fixed after being detected
or disclosed. But the bad news is that they are very easy to introduce. A lot of
developers, especially those with no background in web development or interpreted
scripting languages in general, tend to be not (fully) aware of this menace and
therefore may not pay enough attention in order to prevent them in the first place.

1

1.2. PROBLEM STATEMENT & RESEARCH QUESTION

Furthermore, even experienced and skilled developers are not beyond missing a
vulnerability when it comes to more complex situations.

Therefore, it is important to provide developers with the right training and
learning materials on the one hand, but also with mature libraries, frameworks and
tools for detecting possible weaknesses on the other. For some manifestations of
injection attacks, there is a “silver bullet”: e.g., prepared statements are a great
mechanism to prevent SQL injections. But for others, e.g., the various kinds of
XSS, there is no such general “magic cure”.

Taint tracking has been proven, under laboratory conditions and in real-world
field studies, to be an effective mechanism to detect and possibly also prevent,
or at least mitigate, a wide range of injection attacks including popular ones
like forms of XSS [3, 4, 5]. But nowadays taint tracking approaches (for Java)
have some downsides as explained in the next section. The goal of this thesis will
be trying to resolve these and to propose a system designed for production use-cases.

Returning to the opening quote, the results of this work cannot make develop-
ers validate input cautiously – but it might be of some help finding some flaws
inadvertently introduced and might prevent their exploitation.

1.2. Problem statement & research question
Although there has already been done a lot of research regarding taint tracking on
different levels – ranging from special hardware, over modified runtime environments
to automated instrumentation of an applications compilation – most of today’s im-
plementations still have some serious drawbacks, possibly preventing their usage in
a production use-case:

• Overhead: Tracking of the taint information has to be done as part of the
applications execution at runtime. Therefore, adding a computational over-
head by additional instructions performing the propagation and an increased
memory footprint for actual storing of the information.

• Deployment: Another major downside is that many approaches adding a
taint tracking mechanism to an existing runtime environment like Java are
very invasive by changing the runtime in a fundamental, not “pluggable” way.
By this, they harm portability and especially maintainability due to closely
coupling the taint tracking mechanism with the original runtime, which makes
applying official updates and patches tedious and error prone.

The overhead is something intrinsic to any dynamic taint tracking system – and
the more information flows are tracked, the more overhead is caused. Most of the
implementations available today, see section 2.5, keep track of each and every data

2

1.3. STRUCTURE OF THE THESIS

flow inside an application in order to make them sound, safe and desirable from a
security point of view1.

Therefore, this thesis’ objective is, beside primarily prototyping a solid tracking
system, to extend it in a way that only the information flows possibly leading to
injection attacks are tracked. The associated research question is how such a taint
tracking system, fulfilling requirements of real-world use-cases defined in the further
course, can be implemented and whether its overhead is acceptable in the given
context. The second major question is, whether this overhead might be reduced
by combining the dynamic Information Flow Control technique of taint tracking
with static Information Flow Control forming a hybrid system while, unlike former
research, putting the focus on the taint tracking system2.

Differing from all former research done in the area of taint tracking with Java, this
work will consider ease of deployment, being lightweight, compatibility and “plug-
gability” with decent Java Runtime Environments (JREs) and Java EE application
servers while being efficient and precise as important characteristics of Juturna. This
shall enable the realization of a prototypical tool that actually can be given to de-
velopers and administrators as a tool to fight injection vulnerabilities and that can
be deployed in real-world scenarios.

Taint tracking might be used to fight various kind of injection attacks, not only its
sub-category of XSS attacks. Still, this work will focus on them and especially the
context they appear in – but the basic system itself shall still be able to be applied
to other manifestations with little or even no additions to its codebase.

1.3. Structure of the thesis
This document consists of six parts: introduction, background, concept, implemen-
tation, evaluation and conclusion. The order tries to reflect the chronology of the
single phases during elaboration.

The background chapter will introduce the terms and (theoretical) concepts
needed in order to follow the ideas and solutions described in the later chapters.
It also covers a comprehensive summary of the so far research in the area of taint
tracking and points out where this thesis distinguishes itself.

“Concept” can be considered the core part of the thesis. It will cover the attacker
model, usage scenario and will, based on these, stepwise develop the design and
architecture of Juturna before transitioning to sections explaining the concepts and
additional ideas included.

After laying the foundations, the “Implementation” chapter will dive a little more

1As we will see later, this does not necessarily mean that they track all kind of data (types)
available in a Java application.

2The reasons for focussing on taint tracking are some known limitations of static approaches
regarding patterns and functionality used in modern web applications and frameworks. We
will come back to this several times, but the basic decision will be discussed in section 3.2

3

1.4. TERMS & CONVENTIONS

into details of the source code written for this thesis. Some topics needing discussion
on both the conceptional and and implementation level are therefore mentioned in
both. Concepts and ideas that had to be very abstract before in order to forestall,
now get defined more precisely.

Once the prototype’s mechanisms are explained and essential implementation de-
tails have been shown, Juturna will be evaluated regarding its actual capabilities
on detecting real-world vulnerabilities in some small examples in “Evaluation”. Fur-
thermore, the performance will be benchmarked in order to answer the questions
formulated before: Does the approach offer an acceptable overhead while fulfilling
the other requirements? Can the taint tracking be extended with static mecha-
nisms and does this reduce the overhead? Following the evaluation, open issues and
possible solutions will be discussed.

Finally, the work presented will be summarized and critically discussed before
ending with some ideas on future enhancements and an estimate regarding the future
of detecting injection vulnerabilities in “Conclusion”.

1.4. Terms & conventions
Throughout this document the terms “string” and “string-like type” will be used
in their broader sense of describing a sequence of characters or a a data structure
capable of maintaining one. In the context of Java it therefore is not a short form
of java.lang.String, it rather describes the group of java.lang.String, java.-
lang.StringBuilder and java.lang.StringBuffer. In case of non-obvious or
ambiguous usage of references, the Fully Qualified Name (FQN) will be used.

When referring to methods, parameters are omitted unless they are needed for
distinguishability or understandability.

Some more terms like “tainted”, “taint-aware”, augmentation, etc., and their
meaning in the context of this thesis will be introduced in later sections as they
need some previous explanations. The term “taint tracking” will always refer to the
dynamic analysis. “Static analysis” will be used to refer to the static information
flow analysis performed by JOANA introduced later.

When talking about “web applications” in the following, this solely describes
server-side applications running in a Java EE context.

The system’s name, “Juturna”, is based on the same-named Roman goddess “of
fountains, wells and springs” [6]. Coupled with the perception that the name of
a proper Java software has to start with “J”, it seemed to fit – at least to the author.

4

2. Background

2.1. Java EE
Beside being a programming language, Java is also a programming platform exist-
ing in different flavors in order to suit different areas of application. All of these
platforms contain a set of APIs offering (basic) functionality and a Java Virtual
Machine (JVM) capable of executing Java bytecode.

Java EE (Java Platform, Enterprise Edition) is build on top of Java SE (Java
Platform, Standard Edition), containing the same JVM but offering significantly
more APIs [7]. These offer advanced functionality to ease developing “distributed,
transactional, and portable applications that leverage the speed, security, and reli-
ability of server-side technology” as Oracle puts it [8].

Java EE is maintained by Oracle, but the project is controlled by the Java Com-
munity Process in order to reflect the industry’s needs. In 2017, the decision was
made to hand the whole project over to the Eclipse Foundation [9].

The APIs coming along with an implementation of the Java EE standard provide
functionality like handling of HTTP(S) request, WebSocket communication, JSON
processing, data persistence and much more. In the context of this work, the Java
Servlet Specification in version 4 [10] is of special interest as it defines the (low-level)
interface for handling HTTP(S) communication.

Different than with Java SE, many of the APIs added by Java EE are just speci-
fications defining an interface but not providing an implementation. This has to be
provided by the respective implementation of the Java EE standard. There are sev-
eral products being compliant to all of the specifications. Examples are Glassfish,
Oracle’s open source reference implementation and JBoss Enterprise Application
Platform from Red Hat.

In addition to the “full” Java EE compliancy, there is the Java EE Web Profile,
a subset of the first in terms of APIs provided/required. These implementations
are usually called servlet containers, although web container seems to be the official
term [11].

Their task is to provide an environment for applications developed using the given
set of APIs and to handle their execution. One of those is Apache Tomcat, which
will be used for evaluating the presented taint tracking system in a web scenario.

5

2.2. INJECTION ATTACKS

2.2. Injection attacks
2.2.1. The fundamental principle
Injection attacks are a class of extremely popular and widespread attacks towards
an applications by influencing its execution in a malicious way, not envisaged by the
developer.

Their relevance is highlighted by various experts and organizations, e.g., the
OWASP ranks them first in their OWASP Top 10 2017 report.

The Common Weakness Enumeration (CWE) lists them as ”CWE-74: Improper
Neutralization of Special Elements in Output Used by a Downstream Component
(’Injection’)” [12].

They are not restricted to any specific programming language, framework or
technology – every system causing a downstream component to execute commands
influenceable by untrusted, i.e. given by a user, input might be vulnerable. Such
a downstream component could be an integrated interpreter such as JavaScript’s
eval(), which interprets a string at runtime and executes it in the script’s context1.
Further examples are external databases processing SQL queries or simply a client’s
browser parsing a HTML page dynamically built by a server-side application
containing some user input.

Whenever an attacker is able to harm the structural integrity of a command,
query, etc., by “injecting” content into a later on evaluated command, he can control
the applications behavior and therefore cause enormous damage: depending on the
attack’s context, this might go as far as arbitrary code execution. In the web context,
it usually lays the foundation for further attacks building upon this position (e.g.,
Cross-Site-Request-Forgery (CSRF)2).

The fundamental root cause for this weakness is “improper input validation”,
as already described by the title of the according CWE entry (CWE-20) [13]. In-
put from untrusted, potentially attacker controlled sources has to be validated and
masked carefully in order to make sure that it does not influence the system’s further
execution in an unexpected way.

In general, the basic problem is a missing separation between the “control alpha-
bet” and the “data alphabet”. This problem can often be resolved by escaping the
complete input, or, in cases where this is to restrictive, by using an intermediate
language that gets transformed into a safe subset of the target language like with the
simplified markup language Markdown3 often getting converted into HTML – but
this is not always feasible. The concept of Prepared Statements is another approach
following the abstract idea of separating structure and data avoiding misinterpreta-

1This specific form got its own CWE, CWE-95 (“Improper Neutralization of Directives in Dy-
namically Evaluated Code (’Eval Injection’)”).

2CSRF is used to forge requests in the users authentification context regarding a specific origin.
The forging might happen, e.g., via a faked image address.

3https://daringfireball.net/projects/markdown/

6

https://daringfireball.net/projects/markdown/

2.2. INJECTION ATTACKS

tions at the interpreter.
But often proper validation is complex and developers tend to oversee edge cases

and underestimate the creativity, motivation and stamina of an attacker. For some
of the various manifestations of injection attacks there is a (conceptional) “silver
bullet” – like the generally accepted Prepared Statements for SQL. But for most
of them, there are none. As mentioned already in the introduction of this work,
taint tracking has been shown to be an effective measure for detecting manifold
manifestations of Injection Attacks by several authors ([3, 4, 14]). How to achieve
this will be discussed in section 2.4.

There are various concrete species of injection attacks, basically it is the same
idea applied to different contexts: Command Injection (CWE-77), SQL Injection
(CWE-89), Resource Injection (CWE-99), etc..

2.2.2. Cross-Site-Scripting (XSS)
XSS, recorded as CWE-79: Improper Neutralization of Input During Web Page
Generation (’Cross-site Scripting’) at the CWE database [15], is a subclass of injec-
tion attacks, in which the to-be-influenced, interpreting downstream-component is a
browser, respectively its HTML and JavaScript parsers/interpreters. Less abstractly
spoken, an attacker tries to make an users browser execute his own commands by
injecting malicious code into an otherwise benign page, abusing the users (and the
browsers) trust into this page [16].

Browsers restrict access to (sensitive) information stored on the client as well as
network requests according to the Same-Origin Policy (SOP). The SOP is a sophis-
ticated mechanism defining how documents and scripts can interact with resources
linked to other origins than the one they were retrieved from [17]. This basically
means that only documents and scripts retrieved from one and the same origin are
allowed to access resources linked to this origin.

As the injected code runs in the context of a given origin, an attacker could, e.g.,
steel a session token stored in a cookie and impersonate as a legit user or he could
send further requests and directly operate in the users authentication context. He
could also modify the appearance of the site in order to, e.g., make it look like the
portal of the user’s online bank and make him enter his credentials and than sent
them home afterwards.

In 2000, one of the first XSS vulnerabilities was publicly reported [16]4. Since
then, this way of attacking has drawn security researchers’ attention and today we
distinguish between three different flavors of XSS, depending on how the injection
is done.

4One of the first according to [3].

7

2.2. INJECTION ATTACKS

Reflected XSS

Reflected XSS, sometimes also Non-persistent XSS [18, 19], is the most basic varia-
tion. The idea is, to make a server-side application include malicious code into the
delivered document. This often is possible, because responding systems include URL
parameters, cookie values or other content controlled by the user into the returned
page.

In order to initially exploit this vulnerability, an attacker needs to influence the
victim’s HTTP request accordingly. In the basic case of a vulnerable URL parameter,
he could simply spread a prepared link (via email, as part of a post in a bulletin
board, etc.).

An example is shown in figure 2.1. This very simple example does not work in
recent versions of Apple Safari, Google Chrome or Mircosoft Edge as their XSS filter
mechanisms are capable of detecting it – it only works in Mozilla Firefox5. Still,
there are many examples and articles available on how to bypass these filtering
systems. Also, they are just capable of detecting (simple) reflected XSS attacks,
not the persistent variation described hereinafter. Furthermore, this mechanisms
primarily try to protect clients, they do no help finding such vulnerabilities on the
server side.

5Tested with the most recent version available of each of these browsers on the 10th of November
2017.

8

2.2. INJECTION ATTACKS

String param =
request.getParameter("param");

PrintWriter out = response.getWriter();
out.println("<html>" + param + ”</html>");

Server-side Java Servlet

Client (Browser) <html>
<script>

alert("Reflected XSS")
</script>

</html>

GET /?param=<script>alert(“Reflected XSS”)</script>

1

3

2

GET /?param=<script>alert(“Reflected XSS”)</script>

Figure 2.1.: An example of a reflected XSS attack.
Top: schematic sequence, the numbers indicate the order of the events.
Down: Exploiting this vulnerability in Mozilla Firefox.

9

2.2. INJECTION ATTACKS

Persistent XSS

At first sight, persistent XSS is the same as its reflected counterpart, but with a
possibly delayed “reflection”. This means, malicious content to be injected does not
need to be placed in the request corresponding to a response – it might be retrieved
from a database or some other persistence.

At second sight, this makes the attack much more versatile, as an attacker does
not any longer need to control the victim’s HTTP request as he might be able to
place the exploit payload himself. A popular example for such an attack is the worm
“Samy”, which distributed itself through the early social network MySpace back in
2005 [20].

This decoupling of request and response, of cause and effect makes it impossible
for the aforementioned filtering systems to reliably detect such attacks.

DOM-based XSS

In case of the two variations described above, the malicious payload inevitably has
to be received and forwarded by the server-side application. With DOM-based XSS
this is different, as this way of playing does not require a page-generating server to
inject the exploit. As Klein [19], who coined the term back in 2005, points out, this
subspecies differs because the malicious payload is never part of the raw HTML – it
only exists in the browser’s runtime representation for the document: the Document
Object Model (DOM).

A slightly modified version of the example contained in Klein’s paper (listing 2.1)
demonstrates the idea and additionally shows, bearing in mind that a browser does
not send the fragment portion6 of an URL when performing a request that the server
is not even receiving the injected content.

Listing 2.1.: An example for a DOM-based XSS attack, adjusted version of an
example shown in [19].

As these attacks happen completely on the client side, their detection and miti-
gation is obviously not in the scope of the taint tracking system described in this

6Starting at the first hash/pound (“#”).

10

2.3. INFORMATION FLOW CONTROL (IFC)

work. Still, the concept of taint tracking can and has been applied on the client-side
too, as shown, e.g., by Johns et al. [3].

2.3. Information flow control (IFC)
Information flow control describes the class of mechanisms able to track how infor-
mation flows through an application. Research on this topic goes back to the 70’s
and proposed systems have evolved since than [21].

Their purpose is to analyze a given application in order to answer the question
whether it handles information securely according to a given information flow policy.
The two traditional policies are confidentiality and the dual property integrity. The
first one assures that an application is not leaking sensitive information, the second
that internal operations must not be influenceable from the outside [22, 21].

Checking, whether potentially attacker controlled input flows into an evaluation
routine, as of interest in this work, is a check regarding integrity.

There are two fundamentally different variants of IFC: static/language-based and
dynamic. Still, they all follow the same basic idea of annotating data with (secu-
rity) labels and determining their propagation through the application. The static
approaches can be subdivided again, most noteworthy exponents are systems based
on dependence graphs and traditional security-type systems.

Systems using dependence graphs are based on the idea of modeling an application
as a set of nodes connected via edges representing data dependences and control
dependences. To these nodes labels can be attached, indicating a security level in
order to subsequently compute the propagation of these labels in the graph. For
this they utilize program analysis techniques [22].

Dynamic systems attach metadata to values and monitor them at runtime while
security-type systems use extended type systems ensuring the given policy at compile
time.

Subsequently, an advanced version of the dependence based approaches will be
introduced, together with the dynamic approach of taint tracking. Security-type
systems are not further discussed as they are not feasible in the given context. But
before, the more general aspect of implicit and explicit flows will be explained as it
is common to both.

The dependences in a program can lead to implicit and explicit flows, i.e., prop-
agation of security labels. When information from a is copied to b (1) or a is used
to determine which value to assign to b (2) there is an information flow between a
and b. In the first case it is explicit, like caused by an assignment statement. In the
second one it is implicit, like caused by a conditional having two branches assigning
either c1 or c2 to b depending on the value contained in a [23].

11

2.3. INFORMATION FLOW CONTROL (IFC)

2.3.1. PDG-based IFC
PDG-based IFC systems are an advanced variant of the dependence based approach-
es. As their name implies, they operate on Program Dependence Graphs (PDGs)
using modern static program analysis mechanisms, e.g., known from data-flow anal-
ysis techniques, in order to check whether a given application fulfills a given security
policy.

A PDG models an application using nodes for representing the program’s state-
ments or expressions, and edges for both data and control dependences [22]. PDGs
have been introduced by Ferrante et al. [24]. This representation might be created
from an application’s source code, its compilation or, alternatively, as an intermedi-
ate program representation during compilation.

Determining how data and attached security labels are propagating through the
application, respectively its PDG representation, is done using advanced slicing
techniques.

According to Hammer and Snelting [22], total precision, i.e., no false-positives
found, cannot be achieved while maintaining correctness, i.e, no true-positives
missed, due to conservative approximation resulting from decidability problems.

PDG-based IFC is able to detect explicit and implicit flows in an application and
can therefore be used to analyze a given program regarding the policy of noninter-
ference in the context of confidentiality or integrity. It is given when there is no
path between, e.g., nodes labeled as “sensitive” and ones labeled “non-sensitive”. In
other words, information classified sensitive does neither explicitly, nor implicitly
influence variables classified non-sensitive.

As further stated by Hammer and Snelting, PDG-based systems seem to offer
better precision than the security type systems by possibly being flow-sensitive,
context-sensitive and object-sensitive resulting in a less conservative approximation.

Modern PDG-based systems often actually operate on an enhanced variant, the
SDG. It gets introduced in the next subsection.

2.3.2. JOANA
JOANA “Java Object-sensitive ANAlysis” is a tool for IFC checking on applications
implemented in full Java. JOANA is being developed at the chair of Prof. Dr.-Ing.
Snelting for several years now and it has become a comprehensive framework for
IFC-related, PDG-based static analysis. It uses the WALA Analysis Framework
initially developed by IBM as a frontend for processing Java bytecode [25].

JOANA might be used in two different ways: as Eclipse-plugin, providing a GUI,
combined with annotated source code in order to interactively perform an IFC anal-
ysis with an arbitrary security lattice, or as library providing advanced functionality
and sophisticated algorithms for implementing custom analysis mechanisms. In this
work only the latter is of interest.

JOANA is capable of processing full Java with unlimited threads within code-
bases up to 100kLOC, guaranteeing to find all explicit, implicit, possibilistic and

12

2.3. INFORMATION FLOW CONTROL (IFC)

probabilistic flows violating the security policy. Such a flow might either violate
confidentiality or, the dual property, integrity. JOANA can be used to detect both
and comes with a machine-checked soundness proof [25].

As JOANA operates on Java, a fully-blown and object-oriented programming
language, it needs to handle the problems arising through those: object- and field-
sensitivy, exceptions, dynamic dispatch and objects as parameters, all leading to
statically undecidable problems resulting in conservative approximation. In order
to reduce the decrease in precision caused by such approximations, JOANA uses,
among others, advanced points-to analysis algorithms in order to compute the set
of possible objects a reference might actually point to [26].

JOANA works on a graph like data structure called the System Dependence Graph
(SDG). This SDG is similar to a PDG, but beside containing the main program it
additionally contains PDGs of all further procedures7. It therefor consists of a
collection of PDGs modeling single procedures in order to allow inter-procedural
analysis to be performed – usually offering massively improved results compared
with earlier approaches [26].

SDGs are not a new concept, they have been brought up by Horwitz et al. [28] in
1990 already, in order to be able to compute inter-procedural slices – a major building
block for most static analysis. A SDG is, as the PDG, a directed graph containing
nodes and edges. The former represent a program’s statements and predicates, the
latter the various kinds of dependencies between them [26, 28].

When describing the selective taint tracking approach based on JOANA, some
implementations details will be introduced. More information on the theoretical
foundations and algorithms implemented in JOANA can be found in the publications
referenced above.

2.3.3. Taint tracking
Dynamic taint tracking, sometimes also taint checking or taint analysis8, is a purely
dynamic program analysis technique used to determine the flow of tagged informa-
tion through an application.

The tracking functionality is usually either embedded into the runtime environ-
ment, in case of interpreted languages, or the application itself. As it will be shown
later, the tracking mechanisms capabilities vary depending on the level it is embed-
ded into.

The entry points of a system regarding untrusted, i.e., possibly attacker controlled,
input are called sources. Data emitted by them is tainted. The data is tagged9 with
taint information, representing its taint state. But as the abstract idea behind taint
tracking is to attach metadata to data and propagate it along during execution,
arbitrary information could, theoretically, be attached.

727, Section 14.3.1.5.
8In papers written by other researchers even more terms for this same concept are used, e.g.,
“dynamic data flow analysis” [29] or “dynamic information flow tracking” [30].

9Differing from static IFC, “labeled” seems to be a less common term here.

13

2.3. INFORMATION FLOW CONTROL (IFC)

By default, a taint tracking system usually assumes data to be untainted unless
otherwise stated. But there are also systems, like the one presented by Halfond et
al. [14], using a “positive” tainting policy, i.e., tainting trustworthy content instead
of untrustworthy. This will be discussed in section 3.5.1.

As the goal of taint tracking normally is to analyze whether an application’s
execution can be influenced by untrusted input in a malicious way, the sensitive
areas of the program need to be marked. These are language, environment and
application specific, but in general include functionality like runtime evaluation of
strings. Just think of JavaScript’s eval() and database drivers receiving plain SQL
commands. Such security-sensitive areas are called sinks. In case data, originating
from a source, reaches a sink, than this is called a (taint) flow violating the given
policy.

As the taint tracking system, as a dynamic technique, has no information regard-
ing conditionals or other branching points, it cannot perceive the aforementioned
implicit flows resulting, among others, from control dependencies. Though, it can
be realized by adding static code analysis like done by Bell and Kaiser [31].

Still, taint tracking cannot, in practical terms, be used to determine noninter-
ference regarding confidentiality or integrity as it only has information about the
currently executed path and proving noninterference would require looking at all
execution paths. Therefore, it can only classify a system as not complying to non-
interference by detecting, at least, one taint flow.

All assurances given by taint tracking systems are only valid for the run config-
uration, i.e., the actual executed path. Therefore, they are not holistic regarding
an application – in contrast to the ones provided by static IFC mechanisms. Taint
tracking only analyzes executed code and therefore cannot find vulnerabilities off
the executed path. This results in true-positives not being found (correctness).

But as taint tracking “knows” the path actually being executed, it does not need
to do a conservative approximation for, e.g., all possible values a0, . . . , an that could
flow into a variable b due to multiple data dependences. A (basic) static mechanism
needs to do so as it does not know which path out of a set of possible paths will
get executed during runtime. Therefore, taint tracking achieves a higher precision
than static IFC. At least in theory, taint tracking does not lead to false-positives
and therefore even achieves total precision10 [32].

Tracking only explicit flows resulting from data dependencies is considered to
be sufficient for checking an application – to be more precise, the actually executed
path – regarding its integrity, but subpar when checking for confidentiality as leaking
“hints” about the value via implicit flows might be much more severe in this case.

As taint tracking happens at runtime, it causes a computational overhead. Addi-
tionally, storing the taint information results in additional memory being allocated.

There are different ways how to implement taint tracking systems. They will be

10Due to another reason also taint tracking mechanisms might need to do a conservative approx-
imation too: when a system does not track at the highest possible granularity. This will be
elaborated in section 3.5.

14

2.4. DETECTING INJECTION ATTACKS WITH TAINT TRACKING

introduced, discussed and compared in depth in the following.

For a more theoretical introduction to taint tracking, please be referred to the
comprehensive overview written by Schwartz et al. [32].

2.4. Detecting injection attacks with taint tracking
After the mechanics of injection attacks and taint tracking have been introduced in
the previous sections, we can now step ahead and shortly examine how the former
can be detected using the latter.

The basic idea is really simple and matches IFC’s idea of ensuring integrity (for the
actual executed path only): possibly attacker controlled input is tagged as tainted
and therefore marked as untrusted. It is then tracked by the system while flowing
through the application, having it propagate the taint information. In case the
tainted value reaches a sensitive area/sink (like eval()), the taint tracking system
can act accordingly. To indicate that an attacker controlled value has been validated
and adjudged benign, the attached taint might be removed.

In the context of this work, whose purpose is to sketch and prototype a widely
applicable solution for Java while using the problem of injection attacks in web appli-
cations as a motivation, entry points defined in, among others, the Java Servlet Speci-
fication [10], need to be considered (taint) sources. As client and server speak HTTP,
the entry points are, among others, contained in javax.servlet.http.HttpServle-
tRequest. An example for a method needing to be declared as source is getQueryS-
tring().

Exemplarily targeting reflected XSS vulnerabilities, sinks inside the server-side
application itself are excluded. The sinks of interest are the places where in-
formation is returned to the client. Exit points, at which tainted information
might leave the web application on the way back to the client, are located in
javax.servlet.http.HttpServletResponse11.

With this, the following basic policy can be configured and should be enforceable
by Juturna: information given in the request of a client should not be contained in
the response unless validated/sanitized. We will come back to this in more detail
during the evaluation of a web application in section 5.1.

Finally, to point out the usage scenario of taint tracking regarding injection weak-
nesses once more: Taint tracking does not make the actual codebase immune against
injection attacks, like a sound sanitizing mechanism – if possible in a given context
– would do. Neither does it detect these vulnerabilities in a given codebase, like a
static analysis might be capable of. Instead, it provides a hardened runtime envi-
ronment, which is able to recognize, stop and report malicious data flows in code
actually being executed. There is no need for (manual) modifications to existing ap-
plications, so this is especially useful in case of already existing legacy applications or
scenarios, where a simple “escape-everything-sanitizing” strategy is too restrictive.
11That is only half the story, but for keeping the example scenario concise, it has been simplified

15

2.5. RELATED WORK

String param =
request.getParameter("param");

PrintWriter out = response.getWriter();
out.println("<html>" + param + ”</html>");

Server-side Java Servlet

Source

Sink

Figure 2.2.: Example of source and sink in a simplified servlet using APIs provided
by the Java Servlet Specification.

2.5. Related Work
Subsequently, related research in the domain of detecting injection attacks with taint
tracking and static IFC will be presented. The emphasis is put on Java SE/Java EE
related solutions, other platforms and languages are out of scope. As there has been
quite some research, only the more important works and the ones having similarities
with Juturna are mentioned.

Summarizing the state of the art regarding research on static IFC would also go
beyond the scope of this work. The same applies to listing alternative techniques for
detecting injection vulnerabilities. Most of them tend to be very specific, e.g., stati-
cally building a model of valid SQL queries and checking actual queries against it at
runtime as done by Halfond and Orso [5], or very abstract and therefore often im-
precise, like Sekar’s language independent approach intercepting (web) applications
on network or library level in order to find suspicious data flows [33].

Beside the research projects mentioned in the following, there are also commer-
cial products available often marketed under the term of Runtime Application
Self-Protection (RASP) – e.g. the runtime protection offered by Veracode12 –
promoting high detection rates. But as they do not state technical details on how
this is achieved, they are hard to classify. Another product, IBM AppScan Source13,
internally uses the later mentioned tool Andromeda.

Since the programming language Perl, respectively its interpreter, received a fea-
ture for dynamically tracking taint information along with actual values back in
1989 [34], quite some research and implementation effort has been done to provide
this functionality also for applications written in other languages and running on

12https://www.veracode.com/products/runtime-protection-rasp
13https://www.ibm.com/de-en/marketplace/ibm-appscan-source

16

https://www.veracode.com/products/runtime-protection-rasp
https://www.ibm.com/de-en/marketplace/ibm-appscan-source

2.5. RELATED WORK

different platforms. Beside language specific approaches, there are also more holistic
research projects using instrumentation on compiled binaries (e.g., [35]).

Several works brought the idea of taint tracking to the Java-world and especially
to the closely linked ecosystem of Android (e.g., Enck et al. [36] and Weichselbaum
et al. [37]) – usually focussing on the detection of sensible information leaked by
apps checking for its confidentiality property in terms of IFC.

2.5.1. Purely dynamic approaches
With Java, there are two possible ways on how to implement taint tracking mecha-
nisms, which all related projects are based on:

• Bytecode instrumentation: The compiled application and system classes’
bytecode is modified by adding additional instructions in order to introduce,
propagate and check taint information. This is a powerful and universal ap-
proach needing classfiles14 to be editable15. It might be performed during an
additional preprocessing step or while loading a classfile into the JVM. This
mechanism is also popular with profilers or other low-level JVM monitoring
tools and can be considered to be more difficult to implement.

• Augmentation of the standard library: Instead of modifying the compiled
bytecode, the standard library classes get modified on the source level. This
results in a more lightweight, less invasive and context-sensitive adjustment
without needing a preceding step. Therefore, it is also less powerful: it is not
possible to add tracking of taint information for primitive data types.

Beside these two and their possible combinations, there are also special research
JVMs (like [38, 39]) not suitable for an in-production usage scenario. We will come
back to specific advantages and disadvantages of instrumentation and augmentation
later throughout the work.

Four research projects are similar to the approach presented herein with regard
to the taint tracking mechanism. They have also served as sources of inspiration for
Juturna. Nevertheless, comparing the respective results in more detail it becomes
obvious that they are very different.

Haldar et. al. introduced taint tracking to Java in their work Dynamic Taint
Propagation for Java [4]. They only perform string-level based tainting – which
is much to imprecise for detection of injection vulnerabilities without causing too
much false-positives due to conservative approximation. Therefore, as elaborated in
section 3.3.2, string granularity is not considered suitable. Furthermore, they just
14A classfile is the artifact generated by a Java compiler. It produces one classfile for every class,

interface, etc., containing the JVM bytecode and related data. Multiple classfiles usually get
bundled in a Jar together with some descriptors.

15This might be more of a legal problem than a technical one.

17

2.5. RELATED WORK

use a boolean as flag for representing the taint state of the string, not enabling any
differentiation and therefore no context-sensitive sanitization and mitigation.

The way their “untainting”-operation has been implemented is akin to Perl’s
approach: they assume every call to regular expression matching functionality and
methods like indexOf() to be part of a sanitization mechanism and therefore reset
the taint flag of this string. This seems to be a very questionable heuristic, as the
assumption that every call of such a method is meaningful and intends to escape
a string surely does not hold true for the majority of applications. As a robust
alternative, a more sophisticated, flexible and configurable strategy with the goal to
avoid such false-negatives will be described in this work.

Haldar et. al. equip the JRE with their mechanism by a one-time instrumentation
of the system classes’ bytecode. Furthermore, they do an on-the-fly instrumentation
of the application’s bytecode when the classfile gets loaded into the JVM providing
methods marked as source or sink with additional code.

Chin and Wagner [40] present the first character-level implementation, repre-
senting the taint state of every character in a string with a binary flag in an array.
Therefore, this approach is not capable of differentiating between multiple sources
of taint either. Similar to Haldar et. al., they also replace some Java bytecode
files, which are part of the standard library of the JRE. According to them this
invasive approach did not work for all of the major JRE implementations at that
time, including the one of Sun (today Oracle).

Another approach on making Java taint-aware comes from Bell et. al. [31] with
their system Phosphor. Beside string-only taint tracking on a character-level, Phos-
phor provides taint tracking for all primitive data types and is therefore much more
holistic than earlier approaches. It is also able to track implicit flows. This is made
possible by a massive, low-level bytecode instrumentation causing a severe overhead
– the authors state an overhead of 52 % on average for the faster configuration
running the DaCapo 9.12-bach16 benchmark.

In section 3.3.1, it will be discussed whether these tracking capabilities are
actually necessary in order to find injection vulnerabilities, or whether a reasonable
trade-off between detection rate and overhead caused can be made. They also
modify the JRE installation. This can be considered the most advanced and
promising approach regarding taint tracking in Java that has been published so far.

Finally, another implementation has been done by Dallermassl [41]. It differs
from the others as it does not directly use bytecode instrumentation but rather uses
AspectJ, a Java framework for Aspect Oriented Programming (AOP), in combination
with a set of defined aspects augmenting the string related classes in the standard
library.

This work is very similar to Juturna with regard to the way it makes the JVM

16http://www.dacapobench.org/

18

http://www.dacapobench.org/

2.5. RELATED WORK

use the adjusted standard library classes. Both make use of the “-Xbootclasspath”-
switch and the Java agent technique introduced later. Still, their concept is strictly
limited to string-level, coarse-grained tainting making it differ quite a lot from
Juturna’s taint tracking engine. Fine-grained, character-level tainting for system
classes, as done by Juturna, cannot be realized using an AspectJ-based AOP-driven
implementation strategy.

2.5.2. Hybrid approaches combining static and dynamic analysis
Beside the purely dynamic approaches listed above, there are also purely static
ones like the aforementioned, mature Andromeda project by Tripp et al. [42].
It has been developed especially with industry scale web applications in mind.
Basically, it lazily computes a call-graph representation of an application and
enhances. Following a demand-driven approach – performing more costly static
analysis operations (like a points-to analysis) only when needed (in this case, a
vulnerable information flowing into the heap) – it enriches the model of the to be
analyzed application selectively and therefore, according to its authors, provides
great scalability. It currently supports Java, JavaScript and .NET applications.

There are many more static approaches, but as Juturna’s focus is clearly on
dynamic taint tracking, scrutinizing them would go beyond the scope. As mentioned
before, static and dynamic analysis techniques both have their weaknesses – which
can partially be compensated by the other, therefore combining them seems natural.
Dynamic analysis suffers from the need of having paths of an application to be
actually executed in order to be checked and from the linked runtime overhead.
Static checks often struggle with imprecision and false-positives caused due to the
need of conservative (over-)approximations. Additionally, full language/platform
support (e.g., multi-threading, Java Reflections, etc.) and scalability are issues –
but therefore no runtime overhead is added and they offer complete coverage of an
application.

For Java, very little research has been done regarding hybrid analysis approaches
– at least compared to other languages like PHP or C17.

The common way to form such a hybrid approach is to perform a static (depen-
dence) analysis on the applications (byte)code and to determine security-sensitive
parts. These are, put simply, the instructions handling data that emerges from a
source and then flows into a sink – this will be defined more precisely when introduc-
ing the selective taint tracking solution included in Juturna in section 3.6.2. Then,
it is possible to perform taint tracking only on these parts. It is directed by the
static analysis.

Both of the hybrid approaches done for Java so far – by Mongiovì et al. [45]

17For example applied in order to find explicit buffer overflows (Aggarwal et al. [43]) or ones
caused by printf() (Chang et al. [44]).

19

2.5. RELATED WORK

(JADAL, 2015) and Zhao et al. [46] (2016) – follow this idea18.
Both systems are based on the idea that only the parts of an application being

security-sensitive actually needs taint tracking to be performed on.
Zhao et al. determine these parts based on the idea of program slicing as described

by Weiser [47]. They do not give much information on how exactly the static analysis
is performed, making it impossible to judge about its precision and scalability. They
use AOP for the instrumentation of the sensitive parts, resulting in a rudimentary
taint tracking system.

JADAL, in a nutshell, assigns the bytecode instructions to nodes in a Data De-
pendence Graph (DDG), representing possible paths from sources to sinks, so ones
being security-sensitive. For these paths it applies dynamic taint tracking. The
taint tracking component monitors taint information on a variable level and is quite
uncommon: The instructions on these paths get a call to a checking function put
in front. This function gets called with the current executing context (stackframe)
and the respective node as parameters. It notes the invocation in the current con-
text down in a central data structure, but only in case the preceding node on this
path has also been invoked in the same context before or is a source. By this, the
system stepwise tracks the execution path and is able to check at a sink whether a
security-sensitive path (possibly via multiple edges) in the DDG has been used to
get there.

As Mongiovì et al. do not provide performance benchmarks, scalability of
JADAL’s taint tracking mechanism is questionable. Also they target on detecting
data leaks, the dual problem to checking for integrity.

Both works introduced focus on static analysis, assigning taint tracking just a
supportive, second-tier role. Juturna does it the other way round. It focusses on a
more sophisticated taint tracking mechanism, offering functionality to disable taint
tracking selectively for parts of an application not considered security-sensitive by
a preceding, also PDG-based, static analysis.

As it will be discussed extensively in section 5.4, after the evaluation of the
presented prototype, especially static analysis techniques suffer by Java features
like Reflection and custom classloader19 hierarchies extensively used in modern web
frameworks – although there are works like the static, type-based one of W. Huang
et al. [48] claiming to resolve them (at least partially).

18Which has been implemented for C already 10 years earlier by Aggarwal et al. [43].
19A classloader is used by the JVM to load a classfile. It is responsible for providing the bytecode

of the classfile identified by a given name. By providing a custom classloader, an application
can influence which bytecode gets loaded into the JVM at runtime.

20

3. Concept

3.1. Setting the scenario
3.1.1. Use case
The system implemented as part of this thesis, Juturna, was drafted with a specific
usage scenario in mind: mitigating injection attacks in Java EE servlets, potentially
running in a production scenario. As described, the work shall focus on reflected
XSS for demonstration purposes. However, covering other manifestations of injection
attacks like command or resource injections should not need a considerable amount
of additional implementation effort to be done, modifying Juturna configuration
should be enough for basic detection.

This implies further requirements to the system: configurability and extend-
ability. These abilities are also needed in order to adjust the system to a specific
implementation of a Java EE servlet container like Apache Tomcat or Jetty.

Covering persistent XSS or other injection attacks requiring taint information to
be persisted are out of scope, but a suggestion regarding an extension to handle
them will be made very briefly in the outlook of this work section 6.3.

As described in section 2.2.2, reflected XSS exists due to unvalidated input –
usually received via HTTP requests – that gets relayed by a server-side application
including this input into its response. Regarding different injection attacks like
command injection, we also assume HTTP requests to be the primary entry point
– but as mentioned already, it shall be possible to configure the system in order to
make it capable of using different entry points too.

Another requirement to the system is that it needs to operate on Java bytecode
as it cannot be expected to have the actual Java source code at hand. This, for
example, would be the case when including closed-source third party libraries or
when hosting a customer’s application.

Furthermore, as few as possible assumptions regarding the to be monitored
application should be made. This especially involves the usage of Java Reflection
for meta programming, which is very common in modern frameworks like the
popular Spring Framework1.

1https://projects.spring.io/spring-framework/

21

https://projects.spring.io/spring-framework/

3.1. SETTING THE SCENARIO

The purpose of Juturna shall be to help developers and administrators
to find injection weaknesses caused by inadvertence, lack of knowledge or
high complexity hiding them. It shall augment and harden the runtime
environment, but it is not supposed to find vulnerabilities deliberately
introduced by developers (“backdoors”), which would be a much harder
– but also completely different – task.

Security flaws reported by the system need to be checked by a developer. There-
fore, it is necessary to keep the amount of false-positives as low as possible – other-
wise the system would probably be of no use.

As mentioned before, taint tracking is a popular mechanism for the detection and
mitigation of injection attacks. There might be already similar tools – at least there
are papers describing them – fulfilling some of the requirements stated so far – but
as this thesis is written in corporation with an industry partner, the SAP SE, “some”
is not enough and this work tries to provide a solution suiting their needs by coming
up with new ideas and/or combining existing techniques.

Furthermore SAP wants to gather knowledge in the field of taint tracking for Java
in order to implement their own, custom-tailored solutions while being independent
from third-party tools.

3.1.2. Attacker model
In order to describe a protection mechanism and to show what it has to be capable
of, it is essential to properly define the threat to be detected/mitigated and the
according attacker performing it. After the attack itself has been described in
depth in section 2.2, an attacker model will be defined now.

Differing from the well-known saboteur described by Dolev and Yao [49], often
referred to as Dolev-Yao-attacker, this opponent is considered to be less powerful.
Dolev and Yao concede their saboteur to have the following, active and passive,
capabilities:

• He can obtain all messages sent through the network

• He is a legitimate user and can initiate conversations

• He is in the position to be a receiver to any other user in the network

As their model was drafted in order to analyze security of public key protocols
communicating in an insecure environment on a network layer, it does not suite
this scenario too well, still it is a good reference and starting point in order to
emphasize the capabilities of an attacker.

22

3.2. WHY TO CHOOSE TAINT TRACKING INSTEAD OF STATIC IFC?

For this work solely HTTP(S) or similar protocols like HTTP/2 are of interest.
We assume no man-in-the-middle attacks (like they could be performed by proxies
injecting malicious code into webpages). This implies that all communication is
already secured against eavesdropping, intercepting or packet injection by a mecha-
nism on layer 5 of the OSI model, e.g., TLS, and our attacker, M , can only operate
on the application layer.

As M is capable of sending arbitrary (HTTP) requests, he is able to verify and
exploit weaknesses directly, depending on the kind of injection attack; by this he
can also “store” malicious payloads in case of persistent attacks. Regarding the
scenario of XSS, M is capable of proposing/offering a starting point for a request
to a potential victim A (might be one out of many as such attacks are easy to be
widely spread). A is expected to use a decent browser. Such a starting point could
be a direct link sent via email, possibly resulting in a HTTP request executed in the
security context of A’s browser. Or it could lead A onto a website under the control
of M , then used to trigger the actual “attack request” – whereby this intermediate
step could be used in order to be able to perform not only GET but also POST
requests, gaining control over the payload/body of a HTTP request.

Implied by this, one has to assume that M , in general, is able to control every
part of a HTTP request as specified in RFC 7231 [50]) – also this might not be
the case for (reflected) XSS scenarios, in which the set of controllable parts of
a request is significantly limited. Still, this requires carefully studying the Java
Servlet Specification regarding entrypoints.

Applying the principle of Kerckhoff2 to this scenario, security of an application
should not be depending on its source code not being public. Therefore, M is
acknowledged to know about the input, side effects and output of a system to
be attacked as well as about its internal logic. This enables him to actually find
weaknesses in an application.

3.2. Why to choose taint tracking instead of static
IFC?

Subsequently, the floating question of “why taint tracking and not static IFC?” will
be answered by briefly pointing out some important advantages of the former, re-
garding the given scenario, and linked implications. This merely draws conclusions
from both approaches’ characteristics described before.

With taint tracking, one does not know about vulnerabilities until execution of

2Kerckhoff’s principle states that the security of a (crypto)system should only be based on the
secrets used for encryption and that all further information, e.g., the algorithm used, might be
publicly known. [51]

23

3.2. WHY TO CHOOSE TAINT TRACKING INSTEAD OF STATIC IFC?

path leading to them as detection happens dynamically, at runtime. In other words,
not executed program paths have not been verified regarding their innocuousness.

But it also implies that the taint tracking system – as it needs to embed code into
the actual application, or the runtime environment, in order to keep track of flows,
tainting at sources and checking at sinks – is able to prevent the exploitation of a
spotted vulnerability almost out-of-the-box. This possibly enables an administrator
or an automated service (e.g., the very popular Platform as a Service (PaaS)
environments) to run an application containing such weaknesses in a safe manner –
in a given scenario this might be helpful. Static IFC takes all paths into account.
In order to add code for mitigation of spotted weaknesses, it needs additional
functionality for modifying the application.

Considering every situation in which a tainted string reaches a sink to be an
actual incident (true-positive), a proper taint tracking system using character-level
precision does not yield false-positives as it does not need to do a conservative
approximation at any time. This results from the fact that it only has to look at
one concrete execution path. It simply does not matter for the taint tracking system
by how many paths a given execution point might be reached as it (only) knows
about the one actually being taken, not having a holistic view on the application.

Because of this, dynamic taint tracking systems are independent from the size
of an application. Precision and caused overhead do not depend on it. Static
approaches using a graph-like, in-memory representation of the to-be-checked
application are however limited in terms of an application’s size.

But static IFC has to offer much stronger security guarantees: beside explicit
flows it is also capable of detecting implicit flows and can therefore make a
statement regarding non-interference between input and output. But as implicit
flows are not essential for the detection of injection attacks one can get over this
disadvantage of dynamic approaches3.

The actually determining factor deciding in favor of a dynamic approach is the
general support for meta programming techniques, dependency injection, complex
classloader hierarchies and further mechanisms becoming more and more popular in
(large) web applications, which are often transparent for taint tracking but major
show stoppers for static IFC. Still, static IFC approaches are evolving and they
provide great characteristics. Therefore, an extension making Juturna a hybrid
approach will be suggested in section 3.6.2.

To point it out once more: static IFC and dynamic taint tracking are two fun-
damentally different approaches sharing some objectives. In theory, static IFC is

3Bell and Kaiser [31] showed that, adding a preprocessing step performing static code analysis
and adjusting the instrumentation accordingly, dynamic taint tracking can also track implicit
flows.

24

3.3. WHAT TO TRACK? DESIGNING A TAINT TRACKING SYSTEM

superior, in practical terms taint tracking may be in the lead. This makes it very
hard to compare them and impossible to declare a superior technique as both have
unique strengths and capabilities. Therefore, as we will see in section 3.6.2, combin-
ing both approaches – static IFC and dynamic taint tracking – might be the best
idea towards more efficient taint tracking. Due to the practical benefits of taint
tracking considering the given scenario, it will the primary mechanism of Juturna.

3.3. What to track? Designing a taint tracking
system

3.3.1. Benefits and drawbacks of string-only tracking
Following from the fact that, as described in the use case above, input as well as
output are both of a string-like type, the system is restricted to only track taint
information for those: java.lang.String, java.lang.StringBuilder and java.-
lang.StringBuffer. This does include array types based on them.

Refraining from monitoring other data types, like the primitive ones (int, char,
etc.) and their object and array types, one might lose soundness and universality.
But therefore one can create a system operating with less overhead while still being
suitable for the specific problem given – the detection of injection attacks in Java
(web) applications.

From a security point of view this approach might sound odd, but taking into
account the performance and scalability aspects required for production usage, a
decreased recall can be considered acceptable. It is on dice that this will, in general,
massively reduce the overhead of the taint tracking mechanism – whether this
decrease is enough and the remaining overhead therefore acceptable in the end, will
be discussed in the evaluation (see chapter 5).

Listing 3.1.: A Java snippet loosing taint information in a string-only taint track-
ing scenario. taint(v) is a fictive function marking the (complete)
content referenced by v as tainted.

25

3.3. WHAT TO TRACK? DESIGNING A TAINT TRACKING SYSTEM

Listing 3.1 makes the problem of not tracking primitives more vivid: one can see
that taint information gets lost during execution by copying a java.lang.String in
a primitive, char-wise way. As, according to the proposal formulated above, only the
string-like types carry along taint information, it is lost as soon as a single, primitive
char get accessed.

But as mentioned before, the systems shall help developers and administrators to
find vulnerabilities negligently introduced into an application. It expects developers
to stick to best practices, and code like this would possibly violate them and should
not exist in a properly engineered application. This might sound rough and of
course, there are legit scenarios in which such code might exist, e.g., in libraries
offering advanced, high performance string manipulation. But in such cases, this
should happen at a central position and the code could be adjusted in order to lose
the taint information. How this works can be read in the “Implementation” chapter.
Also it has been stated before, that as few as possible assumptions should be made
regarding an application to protect, this one needs to be made. In the present
scenario it is assumed to have mostly high-level business logics and “low-level”
functionality is expected to be provided by libraries which can be adjusted in an
one-time effort.

This decision also has implications regarding the implementation of the taint
tracking mechanism as it allows strategies to be used, which, including the one that
has been chosen for Juturna, are not capable of tracking information for primitive
types.

To conclude: Even if the system occasionally misses an actual weakness, due to
this deliberate restriction, seems acceptable as part of the trade-off made. Using a
system not detecting all vulnerabilities still can be considered a much better situa-
tion then using no detection mechanism at all. And a more sound approach causing
massive overheads, as measured by Bell and Kaiser [31] (see section 2.5), or con-
taining restrictions regarding used technologies, e.g., Java Reflection, might not be
bearable in a production setup at all.

3.3.2. Granularity matters: string-level vs. character-level
String-only taint tracking is split in two factions regarding how precise the tainting
can be done: on string-level4 or on character-level5. In case of the former, the
smallest entity in the taint tracking policy is a string – it is either completely
tainted or not at all. This might lead to a system consuming less memory, but at
the expense of the mechanism’s precision.

4Haldar et al. [4], Dallermassl [41]
5Chin and Wagner [40], Bell and Kaiser [31]

26

3.3. WHAT TO TRACK? DESIGNING A TAINT TRACKING SYSTEM

Listing 3.2.: An example leading to a false-positive, introduced due to string-level
tainting granularity.

Listing 3.2 contains a small example, that makes clear why tracking taint informa-
tion on a character-level is crucial in order to create a precise system, easily avoiding
a class of false-positives. In the listing a substring is created from the concatenation
of two other strings, out of which one is tainted.

In this example the (binary) taint flag of a concatenated entity s = concat(a,
b) is set by taint(s, isTainted(a) ∨ isTainted(b)) in case of string-level
granularity, performing a conservative approximation. With character-level
tracking an array might be used in order to store the taint information for every
char contained in the string. Therefore, when concatenating two strings, the taint
information array would simply be concatenated too. The substring() method
returns a tainted string in case the string called on is tainted, respectively uses
a slice of the array containing the taint flags when operating on character-level.
isTainted() now returns true if at least one character of the string is tainted and
false otherwise.

We now “execute” the example assuming the two different precision levels.
With string-level granularity the c becomes tainted through the concatenation –
marking characters tainted which could actually be considered safe (“overtainting”).
Schwartz et al. use the term “taint spreading” to describe this problem [32].
Creating the substring d results in another tainted string – although it does not
contain a single character of the, potentially attacker controlled, input. If this
substring, d, flows into a sink, the system would yield an (unnecessary) alert. With
character-level granularity, this does not happen as only the second half of c is
tainted, all characters extracted into d therefore are “clean”. Overtainting does not
occur, avoiding possibly plenty false-positives.

Because of this, Juturna uses a character-level tainting policy.

27

3.4. CHOOSING AN IMPLEMENTATION STRATEGY

3.3.3. What information to be attached?
The term of “taint information” has been used so far, without actually explaining
what kind of information actually gets attached. This may forestall some ideas
introduced later, but influenced subsequent decisions and therefore should be briefly
mentioned.

Taint tracking systems suggested for Java so far, except the work of Bell and
Kaiser [31], are only capable of flagging data, i.e., they attach a binary taint state.
This is a good foundation, but does not enable differentiation between different
sources introducing taint into a system. But distinguishing between them lays the
foundation for specific handler routines making the system not only capable of de-
tecting injection attacks but also of mitigating them.

As we will see later, the implementation of Juturna is even capable of attaching
additional, optional debug information or possibly arbitrary data in an efficient
manner.

3.4. Choosing an implementation strategy
Before we are going to discuss different implementation strategies and finally present
the one used by Juturna, we are going to recapitulate the requirements towards the
to-be-drafted system which have been verbalized so far.

• Support for existing servlet containers (like Apache Tomcat or Jetty) imple-
menting the Java EE Web profile (a subset of the Java EE specification) shall
be provided at least on a conceptional level. The implementation shall not
target them explicitly – support shall rather be provided by offering a decent
grade of configurability and extendability.

• Char-level granularity on string-like types shall be enabled.

• Shall be portable and pluggable. Shall not need (invasive) changes to the JRE
installation. Shall use, preferably, standardized mechanisms in order to be
“JVM-agnostic” and compatible with “of-the-shelf” JVMs.

• No preprocessing of applications should be needed. As few as possible as-
sumptions shall be made regarding the to-be-executed applications, therefore
especially Java Reflection shall be supported as it is very popular with modern
(web) frameworks.

• Good performance and reduced memory footprint are important as the system
shall be used in production contexts.

• Source code of applications should be considered not available. Java bytecode
has to be sufficient for the system.

28

3.4. CHOOSING AN IMPLEMENTATION STRATEGY

• The implementation should be easy to maintain by sticking to common best
practices of software engineering.

• It should be possible to store not only a binary taint flag as taint information,
but data originating from different kind of taint sources should be marked
differently.

Beside some fancy strategies, like encoding the taint state in the Unicode code-
point6 [52] and the usage of special research JVMs not suitable here, there are two
ways of bringing taint tracking to the Java world suggested so far: bytecode in-
strumentation and modifications/augmentations to the Java Runtime Environment,
more precisely the standard library/classes shipped with it. They have been intro-
duced in section 2.5.

In accordance with the requirements listed above, it was chosen to go with a
combination of both approaches. How they have been combined in Juturna will
be explained in the following while also pointing out some differences to similar
approaches by other researchers which are generally discussed and introduced in the
section on related work (section 2.5). To the authors best knowledge, Juturna is the
first system combining both in this fashion.

3.4.1. Augmentation on source level
In order to make the string-like types (java.lang.String, java.lang.String-
Builder and java.lang.StringBuffer) “taint-aware”, i.e., making them capable
of carrying and handling taint information, the most straight-forward solution is
to add another field to these classes in which the taint information is hold – re-
gardless whether one wants to store just a single bit per character, e.g., by using a
boolean[]7, or a more complex structure extending java.lang.Object.

Juturna belongs to the latter category by using a concept named “taint ranges”.
For the moment it is enough to understand, that those are used to store the taint
information – we will look at them in depth in section 3.6.1.

The term “augmentation” shall express, that existing Java source code gets en-
riched (“augmented”) by hand with additions custom-tailored for a specific context.
It is used in the work at hand in order to differentiate between this manual step and
the automated, much more generic, process of bytecode “instrumentation”.

Besides adding a field for storing the taint information, these system classes need
to be augmented in order to also propagate this metadata. In other words, the

6Zekan et al. encode the binary information whether a character is tainted or not by shifting
the Unicode codepoints of those characters. As they get shifted into an area designated for
private use, the system can easily detect whether a character is tainted and shift it back in order
to retrieve the actual codepoint. Because the information is encoded in the character, it can
easily be persisted in databases, or exchanged with other applications. Though, the amount
of information that can be represented in this way is very limited (1 bit). They implemented
prototypes for Java and PHP.

7The usage of a boolean[] is not recommended. This will be explained in section 3.6.1.

29

3.4. CHOOSING AN IMPLEMENTATION STRATEGY

methods defined on the string classes need to be adjusted so that they keep this
metadata synced when modifying their content respectively their internal char[].

But not only the string classes need augmentation in order to lose as few taint
information during execution as possible: e.g., java.lang.String#charAt(int po-
sition) might be used to retrieve a single char which is not able to carry taint by
itself. As described before, usage of these methods is expected to mostly happen in
performance critical parts of the codebase, especially in libraries. The implementa-
tion of regular expressions contained in the JRE (java.util.regex) is one of those
using this kind of low-level functionality internally. In order to avoid loosing taint
when using Regular Expressions the according classes also needed to be augmented.

Because primary types are – differing from java.lang.Object and its inheritors
– not defined in Java code themselves, this approach does not work for them.

The augmentation performed can be considered to add taint tracking on “library-
level”, positioned between bytecode-level and application-level. As we will see in
the further course of this work, this offers many benefits by being able to provide
special handling for at some points requiring it, while still staying on a low enough
level to be transparent to most of the application code.

Making the JVM use these augmented classes

After adjusting the standard library, a proper way has to be found to make the JVM
actually use these modified classes. Chin and Wagner [40] simply tried to replace
the compiled classfiles inside the JRE installation – but according to them, they
just found one JVM accepting this; other JVMs, including the most common ones,
detected these files as modified and refused to use them.

But there is an alternative, much better way of doing this: the java command
running an application in a newly spawned JVM offers a commandline flag –
-Xbootclasspath – for overriding or extending the path where this single JVM
instance will search for the classfiles it needs for bootstrapping. The usage of this
parameter is shown in figure 3.1. This flag seems to exist since the days of Java
1.3 [53, p. 341] and is supported by at least the JVMs of Oracle, IBM and the
OpenJDK project – although it is prefixed with “X”, meaning it is not officially
standardized.

One simply needs to compile and package the augmented classes and run a given
application using this commandline option, in order to provide a basic taint-aware
environment. This makes the whole approach portable, as the JRE (especially its
standard classes located in rt.jar) do not need to be touched.

As the the additional taint tracking code is introduced on the lowest level that is
possible without touching the JVM itself, one gets support for Java Reflections and
other problematic features mentioned so far “for free”. An example of how such an
invocation of java does look like is shown in the next subsection in figure 3.2.

30

3.4. CHOOSING AN IMPLEMENTATION STRATEGY

Figure 3.1.: Call to the java command printing information on the usage of the
-Xbootclasspath parameter.

3.4.2. Bytecode instrumentation
Right now, the described system is just partially taint-aware: it is able to hold taints
and propagate them along, but it has no actual sources and sinks – so basically no
taint information exists that needs propagation so far.

These parts get added via bytecode instrumentation. The basic idea is quite
simple: the bytecode of methods declared as sources and sinks gets processed and
additional bytecode for setting a certain taint information, respectively checking for
one in the case of a sink, gets inserted.

This approach got many advantages over simply adding tainting and checking
functionality on the source-level (augmentation) as, e.g., done by Chin and Wagner
[40]: it works with arbitrary, already existing and compiled bytecode, it can be per-
formed on-the-fly and needs no permanent modifications to third-party codebases
and it is simply much easier to support new sources and sinks. How the instrumen-
tation is done in detail will be covered by section 4.4.

Beside performing this as a preprocessing step, as done by Haldar et al. [4] as well
as by Bell and Kaiser [31], this can be done on-the-fly using another command line
option of modern JVMs. The standardized -javaagent parameter can be used to
hook multiple, so called, Java agents into the class loading process of the JVM. In
a nutshell, they are provided with functionality to register “transformers”8, which
are able to view and modify the bytecode of every classfile loaded after the JVM
finished bootstrapping.

By this, the system is able to transiently instrument any classfile loaded into
the JVM – without worrying about the classpath or custom classloaders of a given
application. The approach is also covering special cases as encrypted classfiles9 or
ones retrieved by a network classloader (e.g., via java.net.URLClassLoader).

In combination, source code augmentation and bytecode instrumentation can be

8A transformer is an implementation of the ClassFileTransformer interface; https://docs.
oracle.com/javase/7/docs/api/java/lang/instrument/Instrumentation.html

9This idea of encrypting classfiles and then decrypting it during classloading is quite popular in
the community, although it is basically useless as any transformer hooked into the classloading
process behind the decrypting one would be able to dump the unencrypted bytecode.

31

https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/Instrumentation.html
https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/Instrumentation.html

3.5. DEFINING THE TAINT POLICY

Figure 3.2.: This example shows, how the -javaagent and -Xbootclasspath
parameters are used to run a Java application in the taint-aware envi-
ronment provided by Juturna.

used to craft a system fulfilling the requirements stated initially. An example of how
a JVM needs to be started in order to setup Juturna’s taint-aware environment is
shown in figure 3.2.

3.5. Defining the taint policy
Schwartz et al. [32] split the concept of a “dynamic taint policy” into three major
parts: taint introduction, taint propagation and taint checking. The work at hand
is going to follow their example.

3.5.1. Introducing taint information in a system
In order to have a taint flow, there always has to be a taint source. In Juturna
there are, on a conceptional level, two classes of taint sources: implicit and explicit
ones. Explicit sources are the ones defined by a developer/security expert, as part
of the taint configuration when preparing Juturna for a given application, by listing
their FQNs. They are completely under the configurators control. Currently, only
methods returning a string-like type are able to be declared as source in Juturna.

On the other hand, there are implicit sources directly integrated into Juturna,
respectively the standard library. An example for these is AbstractStringBuilder-
#setCharAt(int index, char c), updating the character contained in a String
instance at a a given index with another one. Due to the fact that this character
“has no history”, it might be, expecting the worst, considered suspicious. Another
examples is a constructor in the String class receiving a char[].

It needs further evaluation whether these implicit source are actually useful for
the spotting of suspicious behavior trying to circumvent the tracking system, or
whether they just create to much noise as they could lead to false-positives.

To give users a more powerful tool in general and to avoid the false-positives
otherwise introduced via those implicit sources, there is another capability that
distinguishes Juturna from other implementations. Juturna provides the ability to
distinguish between different, user defined categories of sources. Every source in

32

3.5. DEFINING THE TAINT POLICY

an application is assigned to such a category. Additionally, Juturna allows these
categories to be assigned to one of three levels. This will become clearer when
having a look at the implementation in section 4.2.1 later.

• ACTUAL_SOURCE: For explicit taint sources

• POTENTIAL_LAUNDRY: For implicit sources, debugging and analyzing

• SANITIZATION_FUNCTION: Values sanitized by a sanitization function are ex-
plicitly marked with taint instead of just removing the taint information. As
covered in section 4.4.1, handling of taint sources and sanitization functions
can be realized as one on the implementation level. This additional taint level
exists in order to still be able to distinguish between a value originating from
an actual taint source or from a sanitization function. The reason for this is
pointed out subsequently.

Positive tainting

In 2006, Halfond et al. [14] introduced the, according to them, novel idea of “pos-
itive tainting” as an alternative to the traditional “negative tainting”. The idea is
simple: instead of marking untrusted content, trusted content is marked. By this,
the scenario of loosing taint does not lead to a false-negative (a successful, but not
detected attack). It rather becomes a false-positive, because it would have lost its
mark telling that it is trusted content.

Halfond et al. claim that it is easier to annotate trusted sources than untrusted
ones – this is for sure valid in their scenario, the detection of SQL injection attacks,
but probably not in general.

Still, Juturna is able to also support this strategy by simply marking trusted
origins as sources, validation methods as sanitization functions and string literals as
trusted by default as they are always considered to safe – the same as with negative
tainting.

3.5.2. Taint propagation & semantics of strings in Java
The fundamental semantics, the propagation of taint information inside methods pro-
vided on java.lang.String, java.lang.StringBuilder and java.lang.String-
Builder should follow, are pretty straight-forward – at least on a conceptional level.

We will subsequently have a look at how the two primitives – which basically
all modifying string operations can be reduced to – propagate taint information in
Juturna. A merge of two different taint information is not possible, as we track
taint with the highest possible resolution (character-level) – which prevents any
loss of precision.

33

3.5. DEFINING THE TAINT POLICY

In the following the formal parameters a and b are strings, s and e are integers
representing a start and an exclusive end index. c shall be understood as the result-
ing string. We assume that the taint information is represented by an array that can
be accessed via a field named taint. The actual implementation is a different one
and will be introduced in section 3.6.1, but for better understandability we forget
about this for the moment. The following, very simple formulas show how the taint
information is copied on an semantic level. It happens analogous to the copying of
the character data.

• c := append(a, b):

c.taint[i] := a.taint[i];∀i ∈ {0, 1, ..., length(a)− 1}
c.taint[j + length(a)] := b.taint[j];∀j ∈ {0, 1, ..., length(b)− 1}

• c := substring(a, s, e):

c.taint[l] := a.taint[l];∀l ∈ {s, s + 1, ..., e− 1}

Beside this basic taint propagation policy, there are some Java specific string
characteristics that influence the propagation policy. One should be aware
of them, as they are important for the implementation of taint tracking in
Java. Some more snares will be mentioned in the implementation chapter. In
the following, the outline will stick closely to the one used by Chin and Wagner
[40] while introducing some background information for enhanced comprehensibility.

Equality of strings & hashCode())

In Java, two instances – a and b – of any object, including all string-like types,
are equal if a.equals(b) yields true. In case of the string-like types, this check is
performed by comparing the internal character arrays.

Closely related to equality is the hashCode() method, which is also defined in
java.lang.Object. It calculates an integer used for fast comparisons of objects
and is usually overridden to fit the respective class. If two objects are equal, their
hash values have to be identical – but identical hash values does not necessarily
mean the objects are equal. To be equal, two objects do not have to be the same
(“==”, two references pointing to the same object).

But what happens if two actual equal strings, but with different taint information
attached, are compared? Including the taint information into the comparison would
break existing logic, therefore taint state must not influence those methods.

String literals & Java’s string pool

The usage of constant pools is a technique implemented in the JVM and Java compil-
ers to reduce the amount of memory needed for storing constants in a classfile and at

34

3.5. DEFINING THE TAINT POLICY

runtime. They work like symbol tables, e.g., known from compiler construction, and
ensure that identical string literals are represented by just one java.lang.String
instance. The compiler puts literals and strings computed by constant expressions
into the constant pool of the classfile. When loaded by the JVM, they get trans-
ferred into its runtime string pool. As stated in the Java Language Specification
[54, section 3.10.5], the process of storing string literals in the string pool is called
interning. This interning can also be triggered at runtime by calling intern() on
a given string. The method returns a reference to an equal, see above, instance of
java.lang.String stored in the pool, or to the instance the method was called on
in case there is no equal string in the pool yet. A common pattern to make a string
“unique” therefore is a = a.intern().

The problem arising from this clever mechanism is illustrated in the following code
listing. Assuming, we have two identical instances of java.lang.String, a and b,
in terms of the character sequence contained. The former is tainted, the latter is
not. There is no equal string in the pool right now.

Listing 3.3.: A Java snippet illustrating the problems caused by String#intern().

As shown in listing 3.3, interning can now lead to the loss of taint information,
leading to a false-negative, by replacing a tainted string with an untainted one –
or vice versa resulting in a false-positive then. This behavior possibly decreases
precision and recall, but cannot be prevented while not touching the semantics of
Java’s strings.

35

3.5. DEFINING THE TAINT POLICY

Including a check in intern() preventing it to return another instance in case
of differing taint information would not harm backward compatibility – but is tech-
nically impossible as the method is natively implemented (and dynamically linked)
and therefore just declared, but not defined, in String.java. As intern() inter-
nally might call equals(), a horrible workaround could be to modify this in order to
perform the additional check, but only when – according to the stack trace – called
from intern().

The probability of this problem to occur in real-world examples is, admittedly,
very low as intern() is rarely explicitly used and, in order to remove taint
information from a string, an identical one without taint attached would have to
be in the pool already. Chin and Wagner [40] share the estimation that this is
not a feasible attack vector. Still, during implementation and testing this led to
confusing errors.

As java.lang.StringBuilder and java.lang.StringBuffer are not “pooled”,
this issue does not arise in these cases.

Immutability

java.lang.String instances are immutable, i.e., every modification to a string
causes a new instance to be created. Correspondingly, methods modifying a string
cause the respective taint information to be attached to the newly created string.
The taint information of the original string does not get altered.

Serialization

Java Object Serialization is a mechanism for persisting and restoring an applications
state. It offers automatic, or explicitly implemented, handling of accordingly marked
classes in order to generate a representing byte stream of primitives. All of the three
string-like types implement the java.io.Serializable interface and therefore are
serializable. This interface has no fields or methods, it is simply used as a signaling
interface so the runtime knows that is is legit to serialize a given class.

As serializing the taint information as part of, e.g., a java.lang.String instance’s
internal state would lead to a dump not deserializable/restorable in a runtime not
using Juturna’s augmented standard library – breaking compatibility with those
environments.

On the other side, not serializing taint information results in another possibility to
bypass the system: serializing and subsequent deserializing string-like types would
vanish the taint. But this can be considered malice.

Still, it seems more important to prevent loosing taint than ensuring interoper-
ability between taint-aware and non-taint-aware Java runtimes – but changing the
way Java serializes instances of java.lang.String is not possible via the standard
mechanism (overwriting writeObject() and readObject()) as the “class String is

36

3.5. DEFINING THE TAINT POLICY

special cased within the Serialization Stream Protocol”10.
java.lang.StringBuffer and java.lang.StringBuilder are handled via the

default mechanism, but changing them without java.lang.String would result in
breaking compatibility without actually fixing the issue of taint loss.

Ultimately, Juturna does not serialize the metadata it tracks and considers code
using serialization to be checked by a developer/security expert.

Encodings & locales

Java uses the character set described by the Unicode standard. Unicode pursues the
goal of containing all characters used in the world and assigns each of them a code
point, ranging from 0x0 to 0x10FFFF.

Unicode itself is not an encoding, this is provided by, e.g., UTF-8 and UTF-
16. Java uses UTF-16 which is optimized for encoding most characters used in the
western world with one 1 code unit. Ones with a higher code point need 2 code
units and are called supplementary characters. Code units are represented by the
primitive char type in Java, a 16 bit value. Therefore, all western characters can
be encoded with one char, but Asian ones might need two – so the “character” in
character-level granularity actually relates to char values in the implementation,
not to actual glyphs and letters.

Due to this “content-agnostic” representation, it is possible to have a glyph repre-
sented by two code units/chars, one of them being tainted, the other one not. Chin
and Wagner consider a supplementary character to be tainted in case one of its code
units is tainted. As Java itself does not do special handling of such supplementary
characters (e.g., there are no checks that substring() or replace() always cover
all code units of such a glyph), Juturna does neither.

Nevertheless, awareness of the internal representation of glyphs is important as
there are special cases for some locales. For example, calling String#toUpper-
case() on a string containing “ß” results in “SS”11. By this, another character has
been added to the returned string – requiring to be given the same taint. Addi-
tionally, the taint information of all subsequent characters in this string has to be
shifted. Another example, and handling of this, will be described in the regarding
implementation section (section 4.3.2).

A simply bytecode instrumentation would not be able to handle these situations,
as there is no explicit relation between the lowercase and uppercase glyph. But with
the (manual) augmentation approach, such implicit relations can handled. One
could argument, that the uppercase characters are to be trusted and not tainting
them would be consequent. On the other side, from the semantic point of view, it
seems obvious that they should be tainted.

As there seem to be no such special cases shrinking a glyph represented by 2 code
units down to a single one, merging of taint information cannot occur.
10Comment taken from java.lang.String
11This obviously does not take into account that, just recently, a capital version has been intro-

duced into the German language.

37

3.5. DEFINING THE TAINT POLICY

Primitive characters (char)

As explained before, the taint tracking mechanism implemented by Juturna is not
capable of tracking primitive char values when they are standing on their one and
not contained in a string-like type.

This leads to conceptional problems with methods like AbstractStringBuilder-
#setCharAt(int i, char c) and ...#replace(char oldChar, char newChar)
as they replace a possibly tainted character with one “without history”. Juturna
faces this by using implicit sources as described above in section 3.5.1. By this the
inserted char is always tainted. This behavior differs from the one of Chin and
Wagner’s system which simply does nothing, therefore keeping the taint state of
the replaced character.

3.5.3. Taint checking, untainting & sanitization
Checking for taint information is done at sinks, which have to be methods receiving
string-like types as parameters. It is defined by its FQN and the index of the
respective parameter. Additionally, a list of forbidden kinds of taint sources and a
mitigation strategy can be given12.

We consider a vulnerability to be found in case the defined parameter contains
at least one character originating from a source contained in the list of forbidden
sources.

A detected taint flow, from the semantic point of view, does not necessarily mean
that a real attack has been detected as the string flowing into the sink could be
benign in this context. Just think of a valid name, not containing illegal characters,
embedded into a SQL query template and then passed to a database driver. But
deciding whether the strings content is harmful in a certain situation can be con-
sidered to be impossible to determine in general. Therefore, in the context of this
work, the problem of detecting an (injection) attack will be reduced to the detection
of a tainted string flowing into a sink.

In such a case the defined mitigation strategy gets executed. If all tainted
characters are linked to the SANITIZATION_FUNCTION severity level, then the taint
check is positive.

Untainting is necessary in order to remove taint from a system, preventing the
number of tainted information to be monotonously increasing. Systems as the one
proposed by Chin and Wagner [40], using just a binary flag, obviously need to
realize the operation of untainting by completely removing the taint information.
As Juturna is capable of tracking 216 different sources, an alternative strategy has
been chosen: sanitization functions are basically the same as taint sinks, but the
taint attached by them is of level SANITIZATION_FUNCTION. Juturna never removes
taint information by itself – taint information can only be overridden, possible
causing taint loss to strike more attention. By this, Juturna actually integrates the
12For details, please see section 4.4.2.

38

3.6. IDEAS TOWARDS MORE EFFICIENT TAINT TRACKING

aforementioned idea of positive tainting as introduced by Halfond et al. [14].

Unlike other approaches Juturna does not implicitly untaint data, as a strate-
gy/heuristic for determining such situations seems to be very hard to define. The
heuristic used by Haldar et al. is a good example for this, as it is very simple
and very prone to result in false-negatives: they simply assume “that methods of
java.lang.String that perform checking and matching operations are used to untaint
strings” [4] as they expect those to be part of sanitization operations.

3.6. Ideas towards more efficient taint tracking
3.6.1. “Taint ranges” for more efficient storing of taint

information
So far, an array-like data structure, added to the string-like types in form of a field,
has been assumed for storing attached taint information. All string-like types13

internally use an array of type char to store the UTF-16 code units of the sequence
of glyphs they are representing. Usage of another array for the taint information
therefore seems natural – and is indeed very popular: Chin and Wagner [40] use
a boolean array, Bell and Kaiser [31] one containing integer values or strings –
depending on the mode their system Phosphor is configured to run in.

This results in linear space complexity as there is a 1-to-1 relation between the
elements in the char-array and in the “shadow array” containing the taint informa-
tion. For java.lang.String instances the computational overhead is also linearly
linked to the amount of code units spanned as those objects are immutable and
a copy needs to be created – even for the smallest modifications. In case of the
two remaining string-like types, which are not immutable, problems arise when the
character sequence gets longer as arrays are of fixed size in Java. Sticking to arrays
therefore results in the need to replace the array with a new one and to transfer
the information. In case of not changing the strings size, computational effort solely
depends on the modification performed.

Due to these downside, this work proposes the usage of an enhanced data structure
called “taint ranges” – a novel approach in the world of taint tracking for Java.

Juturna does not use such shadow arrays, instead every string-like type basically
has an additional list of quadruplets. Each of them contains start and end of a
range plus a value indicating the kind of taint source and an extra field for debug-
information. The cooperating SAP department already implemented this idea for
taint tracking systems supporting other platforms, e.g., the JavaScript engine of
Mozilla Firefox [55]. It is loosely based on the idea of a Run-length Encoding (RLE).

As we will see in section 4.2, these taint ranges are implemented as immutable
objects. Therefore a derived string can simply reuse ranges of the original string by
adding them to its own list (as references, no copy needed).
13java.lang.String, java.lang.StringBuilder and java.lang.StringBuffer

39

3.6. IDEAS TOWARDS MORE EFFICIENT TAINT TRACKING

We assume the average string flowing through an applications not to contain
characters originating from more than a few different kind of taint sources – probably
just a one in most cases. The length of the average, user-controlled strings are
considered to be quite short – but may grow massively when getting combined with
(HTML) templates and the like. For long character sequences, the concept of taint
ranges pays off well, as Juturna does not need an array of length n to store taint
information for a string of length n. Containing only characters from one source, it
exemplarily needs just one range with constant memory consumption. This constant
size is low enough to not noticeably increase the memory consumption for short
strings. We will discuss this in more depth in the implementation section – after
going through internals like datatypes used, which need to be set before comparing
to the “naive”, shadow array approach.

The computational overhead might be a little higher compared to the naive vari-
ant, as the operations necessary on taint ranges (e.g., insertion of a new range leading
to the split-up of an existing one) are more complex.

3.6.2. Using static IFC to make taint tracking more efficient
Dynamic taint tracking adds overhead due to additional operations performed at
runtime in order to keep track of explicit flows. These additional operations might
be performed more efficiently – but the overhead in general cannot be avoided as
this is an immanent characteristic of such a dynamic analysis.

The only way to avoid the overhead is to avoid the analysis – the question to be
answered must therefore be, whether it is actually necessary to perform the analysis
at all times.

Looking at the concept right now, additional operations are always performed
– no matter whether a string containing attacker-controlled input, i.e., originating
from a source, actually reaches a sink or not.

For strings not originating from a source, there currently is (almost) no additional,
computational overhead and no memory consumption14.

But consider a string originating from a source and not flowing into a sink in
the end. Because the string is indeed tainted, propagation needs to be performed –
therefore, causing computational overhead and allocation of memory without being
checked at a sink in the end. In this case, tracking taint information and keeping it
in sync is actually superfluous as this string’s taint state never gets evaluated due
to not flowing into a sink.

However, the prediction whether a tainted string might, in the end, flow into
sensitive areas of an application or not cannot be made in advance and therefore
propagation of taint information can just be proven unnecessary after reaching a
variable’s lifetime. In many cases, e.g., with (static) fields/members, this will be

14To be more precise, there is a simple runtime check whether a string is carrying taint information
or whether propagation can be skipped.

40

3.6. IDEAS TOWARDS MORE EFFICIENT TAINT TRACKING

pretty much equal to the end of an application’s execution – at least with dynamic
approaches.

But static analysis techniques are able to compute these irrelevant flows in advance.
Therefore, this thesis tries to combine mechanisms from static Information Flow
Control (IFC) with dynamic taint tracking, selectively avoiding propagation of taint
information – and also avoiding its intrinsic overhead – for information flows that can
be guaranteed to not be security-sensitive, i.e., not flowing into a sink nor influencing
another value doing so.

This idea of “selective taint tracking” is realized by some more source-level addi-
tions to the standard classes, by adding another on-the-fly bytecode manipulation
and by the application of PDG-based IFC mechanisms in a preprocessing step in or-
der to find the parts of an application not necessarily needing to be taint-aware. As
aforesaid, the three string-like classes have been modified in a way that all methods
manipulating the contained character sequence also analogously modify the attached
taint information.

In order to avoid this additional code to be executed, the source code of the ini-
tially included, unmodified methods get added to these classes again. Then, during
classloading, all method calls guaranteed to only be invoked on instances of string-
like types being considered “safe” are replaced by calls to the taint-unaware original
methods.

A method call describes a single invocation of a method, e.g., a.foo() would be
an invocation of the method foo on all instances the variable a might point to.

In the context of an instance/object, “safe” means that it does either
not origin from a taint source, is not influenced by another doing so
or simply does not flow into a taint sink. A method call/invocation is
considered to be safe only when all instances/objects possibly assigned
to the variable/identifier/designator in operates on15 are guaranteed to
be safe. This corresponds to IFC’s concept of integrity, declaring an
information trusted when not influenced by an untrusted one.

This might be trivial to decide in case of a locally defined variable pointing
to a newly created String – but as soon as this variable is declared as a formal
parameter of a function, possibly called from various parts of the application
assigning many different instances, deciding (correctly) is far from trivial.

But this is not a new problem in computer science and modern static IFC
mechanisms are capable of solving this problem, guaranteeing correctness (and
therefore “safety”).

Before discussing how the safe method calls can be determined, figure 3.3 tries to
visualize the idea of tracking taint only selectively.

15Static methods are not of interest in this approach, as they should not be able to operate
directly on internals of a given instance (due to encapsulation and the concepts of visibility)
and therefore do not need to perform taint propagation.

41

3.6. IDEAS TOWARDS MORE EFFICIENT TAINT TRACKING

Incoming HTTP-Request

Outgoing HTTP-Response

String logTime = new Date().toGMTString();

File

String response = "<html><body>" +
request.getHeader("user-agent") + "</body></html>";

This call to StringBuilder/
StringBuffer#append()
needs to be taint-aware!

logTime = logTime.substring(5);

This call to String#substring()
does not need to be taint-aware!

Replace with call to
String#__substring()

Sink

Source

Figure 3.3.: An example showing the idea of “selective taint tracking”. On the left,
a string not tainted and not flowing into a sink makes taint tracking
superfluous. On the right, a tainted string returned from a source
(...#getHeader()) gets concatenated with a literal. The Java com-
piler compiles this code to use a StringBuilder for concatenation.
As the resulting string ends up in a sink, StringBuilder#append()
needs to be taint-aware.

42

3.6. IDEAS TOWARDS MORE EFFICIENT TAINT TRACKING

This is where JOANA-Adapter comes into play. It is a small tool, whose design
and implementation are essential parts of this work, scanning a given applications
bytecode for safe method calls as a preprocessing step. As the name implies, it uses
the aforementioned JOANA library internally, providing PDG-based IFC analysis
functionality.

Operating on a System Dependence Graph (SDG), the tool computes, starting
from the methods defined as sources, forward slices containing the parts of an ap-
plication that might be influenced by/depending on a tainted value. These parts,
represented as nodes in the SDG, are merged into Sforward. Additionally, backward
slices are computed starting at the defined sinks containing all nodes influencing
them/they are depending on (Sbackward).

The intersection Sintersection of these two sets Sforward and Sbackward represents
the parts/nodes of an analyzed application potentially being “unsafe” according the
definition given above. Method calls operating possibly on at least one instances
contained in Sintersection need to be taint-aware and are not safe. The remaining
invocations, not being contained in Sintersection, are considered safe and will therefore
be enqueued for being replaced with a taint-unaware variant.

This described operation is very similar to the more precise concept of chopping,
which has been introduced by Jackson and Rollins [56]16. For simplicity, the ap-
proach of computing the intersection is used in the explanation and the upcoming
example – although the actual implementation performed later on uses chopping.

Listing 3.4 illustrates the idea by using pseudocode.

16An enhanced, more precise algorithm for inter-procedural chopping has been presented later on
by Reps and Rosay [57].

43

3.6. IDEAS TOWARDS MORE EFFICIENT TAINT TRACKING

Data: Gapplication, abstract graph containing abstract nodes and edges
representing a given application; Ssources, set indicating which
abstract nodes in Gapplication are sources; Ssinks, set indicating which
abstract nodes in Gapplication are sinks

Sforward ←
∪

source∈Ssource

forwardSlice(Gapplication, source)

Sbackward ←
∪

sink∈Ssink

backwardSlice(Gapplication, sink)

Snot_safe ← Sbackward ∩ Sforward

Ssafe ← Gapplication \ Snot_safe

Listing 3.4.: Pseudocode showing the basic idea behind the presented “selective
taint tracking” approach. Parts of an application considered “safe”
are determined.

With this information at hand, a bytecode instrumentation, as used for introduc-
ing taint sources and sinks into a given application, is able to exchange safe method
calls with ones to unaugmented/taint-unaware versions.

Switching to the unaugmented methods – and not vice versa – has one big advan-
tage: it is ensured that unprocessed applications only call taint-aware functionality
and usage of Java Reflection for invoking methods by name at runtime does not cir-
cumvent the protection as the augmentation is not performed on caller-site. In case
the bytecode rewriting fails, or is not sound, this results in unnecessarily executed
tracking code instead of loosing track due to calling a taint-unaware method. Thus,
the system follows the common “secure by default” pattern.

As discussed in the section on related works (section 2.5), the basic idea of
combining static and dynamic analysis is not a new approach. But the way they
are combined in this work is – as far as the author is aware of after meticulous
search – unique (in the Java world).

Section 4.5 dives deeper into the actual realization of the various components
involved and their current limitations.

44

4. Implementation
After extensively discussing the underlying ideas and concepts of Juturna, and
taint tracking in general, in the last chapter, this one will dive into the details of
the implementation part of the thesis. As discussing every single aspect of the im-
plementation would be unrewarding and go beyond the scope of this document, the
focus will be put on the more interesting and more complicated parts implementing
the conceptional main points.

The implementation has been primarily done in Kotlin1, a statically-typed lan-
guage based on the concepts of Java, but with a more lightweight syntax and handy
features like companion objects enabling inheritance for static methods and fields,
optional parameters with default values and an enhanced type-system helping to
avoid NullPointerExceptions. It further encourages developers to use patterns
known from the world of functional programming more often.

The language has been developed by JetBrains and can be compiled into Java and
Dalvik bytecode, JavaScript and even native machine code for the major platforms.
Interoperability between Java and Kotlin works great as the latter borrows the main
part of its standard library from the former. Therefore, it is easy to mix Java and
Kotlin code in a single application.

Modifications to the standard library have been done in Java in order to keep
their impact as low as possible. All additions to existing classes have been explic-
itly marked (//taint> and //<taint) in order for them to be easily recognizable.
Additionally, they are tracked by Git as the Version Control System (VCS) of choice.

In the next sections, several UML diagrams will be presented. While creating
them, a lot of attention has been paid towards keeping the focus on important
aspects and avoiding details which are not necessary in order to reach a certain level
of understanding. Therefore, private fields and methods are not shown. The same is
true for “non-constructive” public ones, e.g., redefinitions of equals(), hashCode()
or toString().

During the implementation phase attention has been paid to follow common best-
practices in software engineering as, e.g., postulated by Robert C. Martin in Clean
Code [58]. Whenever it made sense, common patterns have been applied. As the
system shall strive for a reasonable performance, optimized data structures like
linked and/or hashed lists, maps and sets have been used together with algorithms
exhibiting good runtime and space requirements.

Implementation and testing has been done using Oracle’s JDK 8. The single

1https://kotlinlang.org/

45

https://kotlinlang.org/

4.1. OVERVIEW OF COMPONENTS

modules use Apache Maven as build system, some examples are handled by Apache
Ant, make or shell scripts. As far as possible, tasks have been tried to be automated.

Huge effort has been put into implementing Juturna thoroughly and into the
following sections describing its functionality – in the hope that it might be reused.

4.1. Overview of components
The implementation consists of many different (logical) components. They can
be grouped into the core components, laying the foundation for the taint tracking
system, and additional ones, enhancing the system (JOANA-Adapter) or being used
for the purpose of evaluating the system (Juturna-Benchmark and the example
applications).

On the source code level the core components make up one big Maven module,
juturna-core, beside juturna-benchmark and JOANA-Adapter.

The idea of splitting up a project in smaller, more maintainable components
should be considered a best-practice in the field of software engineering. Although,
not all components are clearly separated regarding the codebase, it still seems ap-
propriate to talk of components in order to give the following sections, describing
the core components shown in figure 4.1, a better structure.

There is a dedicated section for the JOANA-Adapter (see section 4.5). Juturna-
Benchmark and the example applications will be discussed in the evaluation chapter.

In order to get a rough overview on what the core components’ objectives are,
they are briefly described:

• Taint-Storage: Provides functionality for storing the taint information. Con-
tains classes for representing and managing taint ranges in an efficient manner.

• Augmented standard library classes: Contains the classes taken from the
standard library that have been augmented in order to be capable of storing
and propagating taint information during execution. At runtime, these mod-
ified classes are used instead of the ones contained in the JRE and therefore
provide a taint-aware foundation.

• Java-Agent: This component is responsible for instrumenting the classfiles
loaded into the JVM. It uses standard mechanisms to hook into the class-
loading process and applies multiple transformers on the loaded bytecode in
order to mark methods as sinks and sources. This component also contains
the instrumentation necessary for providing selective taint tracking.

• Taint-Check: Among others, the Java-Agent adds code for the operation
of taint checking to methods marked as sinks, actually simply calling the
sophisticated checking functionality implemented in this component.

• THelper: The class THelper is used to access taint information attached to a
taint-aware type at runtime. Trying to access these information from inside an

46

4.1. OVERVIEW OF COMPONENTS

JOANA-Adapter

“Project Juturna”

Juturna-Benchmark

Augmented standard library classes

Configuration
management

Java-Agent THelper

Taint-Check

Example
applications

Core

Comprehensive suite of unit-tests

Taint-Storage

Figure 4.1.: The various components of Juturna

application might be tricky, as the Java compiler will insist, that the according
fields and methods do not exist on String and the others as it usually is not
aware of the augmented standard library classes. By using Reflection inside
THelper, these problems can be circumvented. It is massively used in the
test-suite.

• Configuration management: The Java-Agent can be configured to mark
arbitrary methods as sources and sinks. Additionally, the different kinds of
taint sources need to be introduced and selective taint tracking can be set up.
This component performs loading of configuration files and, as configurations
are able to extend each other, possibly merges them.

47

4.2. MAPPING METADATA TO STRINGS: TAINTRANGE AND FRIENDS

4.2. Mapping metadata to strings: TaintRange and
friends

The com.sap.juturna.taintStorage package (see figure 4.2) contains all classes
needed in order to describe and manage taint information attached to one of the
three string-like types.

Figure 4.2.: Classes contained in package sap.com.juturna.taintStorage;
they provide the foundation for storing taint information within the
string-like types.

4.2.1. Structure of a taint range
An instance of TaintRange basically just combines three numbers: an ints for start
and end each, plus a short representing the taint source type, i.e., which kind of
taint source, the range originates from. The string-like types in Java internally hold
an array of chars, representing the UTF-16 code units. As addressing items in an
array is done using integers, a string cannot be longer than Integer.MAX_VALUE2 –
int therefore is the suitable primitive. The type short offers only half the amount
of bytes, enabling the encoding of 216 unique kinds of taint sources (or 216 unique
source, as every source could be of a different category).
start and end are both absolute values. The decision not to use relative values, or

an absolute start and a field indicating the length, will be explained in section 4.2.2
when going into the methods operating on taint ranges.

Instances of TaintRange are immutable, meaning they cannot be modified any-
more after having been created. Immutability is a popular concept in order to avoid
problems arising by the usage of multiple threads operating on shared objects as

2Actually, this is just an upperbound as it depends on the JVM in use and the real limits seems to
be below this value usually. In java.lang.AbstractStringBuilder, one can find a comment
stating that Integer.MAX_VALUE−8 is the maximum size for an array as “some VMs reserve
some header words in an array”.

48

4.2. MAPPING METADATA TO STRINGS: TAINTRANGE AND FRIENDS

harming sequential integrity is not possible without write-operations. Furthermore,
it allows an object to be safely referenced by different parts of an application, with-
out creating dependencies between them and the risk of accidentally having one part
changing the data used by the other.
TaintRange instances are not directly attached to string-like objects, instead they

are managed by instances of TaintInformation. Because of their immutability,
taint ranges can be shared by multiple of these containers – fulfilling the flyweight
pattern by minimizing memory usage through sharing. This especially comes into
play when, e.g., appending one string to another as the ranges of the first one can
simply be reused. If start and end where relative and not absolute indices, the
ranges of the second string could also be reused3. Still, the implementation uses
absolute values as relative indices have other disadvantages.

The implementations of TaintInformation and the augmented methods try to
reuse ranges whenever reasonable, but this is no must. There is no global “uniqueing”
of taint ranges, so there might be multiple taint ranges for which equal() would
yield true.

Beside TaintRange, there is also a class DebugTaintRange which inherits from
the first. Its purpose is to additionally store the current stack trace when setting
the taint information in order to help with debugging and finding the origin of
tainted information. The decision, which of these two to instantiate, is resolved
based on a central configuration and is transparent for a developer using taint
ranges when adjusting further system classes or libraries. We will come back to
this when looking at TaintInformation and DebugTaintInformation.

TaintSource keeps track of the categories of sources internally and therefore
provides a static function, similar to the well-known creator pattern. They name
might be a little misleading, as it does not refer to a source, i.e., a method returning
strings considered tainted, but to the category this source might be assigned to.
Therefore, a TaintSource, e.g., named “HttpEntrypoint”, can refer to a whole set
of sources.

The first category of sources is assigned the id −32768. In order to use the full
range of short, while still being able to provide a fast, array-based lookup by an id,
it is treated as an integer internally and an offset is added to make the id −32768
point to the array element at index 0. Fast lookup by name is realized using a
HashMap.

Beside an id and a name, a TaintSource instance has a constant from the
TaintSourceSeverityLevel enum assigned. This is necessary to distinguish be-
tween different levels of functions emitting taint, as described in section 3.5.1 before.
There are three levels defined in TaintSourceSeverityLevel: ACTUAL_SOURCE, PO-
TENTIAL_LAUNDRY and SANITIZATION_FUNCTION.

3Except the first one as it might need to be adjusted.

49

4.2. MAPPING METADATA TO STRINGS: TAINTRANGE AND FRIENDS

4.2.2. TaintInformation: a container for taint ranges
Instances of TaintInformation provide a container for taint ranges and functional-
ity for handling them: fast lookup, insertion, appending, adjusting, etc..

Same as with the taint ranges, there is a “debug-pendant”: DebugTaintInfor-
mation. When an instance of one of them is needed, a static factory method gets
called, returning the appropriate one according to the system’s configuration. A
returned TaintInformation internally just creates instances of TaintRange, a De-
bugTaintInformation just ones of DebugTaintRange. As taint ranges must not be
created using there constructor, there is no risk of getting them intermixed.

The ranges are stored in an explicitly ordered List, although an implicitly ordered
structure, like a TreeSet, might seem more suitable on the first sight. But as
it is not possible to guarantee that a given taint range fits into a list of existing
ones, e.g., in case of partial overlaps, this cannot be implemented (easily) with the
Comparator mechanism used by Java. Instead, a standard list is used in conjunction
with methods keeping the list sorted when inserting and exploiting the total order
during lookups.

This is centralized in one method using binary search to determine the array index
at which an item needs to be inserted/can be found in. This can be performed
in, at maximum, log2 n steps. Using binary search is only possible because taint
ranges have absolute indices. Most of the methods in TaintInformation are able to
perform faster using absolute indices – even so using relative indices would increase
the reusability of the immutable taint ranges (as there would be less need to modify
them) and therefore avoid copying in many cases.

Inserting a range into an area already covered by other ranges requires more
sophisticated handling as there are, in general, several ways in which ranges can (par-
tially) overlap. In case they do, the older one needs to be adjusted, or to be deleted
when it is contained in the other. Adjacent ranges get merged into a big one in
case the sources having emitted them are assigned to the same taint source category.

TaintInformation is not immutable and therefore needs explicit, internal syn-
chronization in order to ensure that accessing one instance from different threads
does not harm sequential integrity in case getting attached to further types in the
future. These problems only arise when directly accessing the taint information
attached to an object, as java.lang.String is immutable and modifications cause
the creation of a new instance (with a new TaintInformation instance). java.-
lang.StringBuffer itself is synchronized already and java.lang.StringBuilder
is explicitly declared not to be thread-safe.

4.2.3. Considerations regarding runtime and space requirements
To emphasize that space and runtime requirements were important aspects during
the concept and implementation phases, this subsection will present some consid-
erations regarding the asymptotic space requirements of taint ranges compared to

50

4.2. MAPPING METADATA TO STRINGS: TAINTRANGE AND FRIENDS

the former approach using shadow arrays. Regarding performance, the usage of op-
timized data structures and more sophisticated handling routines has already been
mentioned – although this surely could be improved, but not in the timeframe of
this thesis. A promising approach on further enhanced taint ranges will be presented
in section 5.4.2, based on the insights gained during the evaluation.

The comparison baseline for these considerations will be the “naive approach” of
storing taint information bound to a code unit as a number in an array, as done by
Chin and Wagner [40]. Its space requirement rnaive solely depends on the size snaive
of the data type used to represent the taint source (category)4 and the length n of
a string: rnaive = snaive ∗ n.

It does not make a difference whether the string is actually tainted or not. In case
the string is completely untainted, allocating the array can be avoided, as done by
Chin and Wagner.

As we are looking at asymptotic approximations, we do not take the memory
needed to store the reference to the array, etc., into account. We assume the smallest
datatype, byte, to be used. So let snaive be 1 byte5.

Using taint ranges, the memory overhead, by contrast, solely depends on the
number of ranges k assigned to a string, not necessarily related to the amount
of characters. The length of these “blocks” is not of interest. Merging of ranges
effectively limits k: k ∈ Z ∩ [0, ⌈n

2 ⌉].
A taint range is composed of 2 integer variables, each taking up 4 byte, and s 1

byte value indicating the source6 – adding up to 9 byte. The space requirement can
simply be approximated by rtr = 9 ∗ k.

As we see in figure 4.3, the space requirements of taint ranges are independent
from the length of the string and k can be assumed to be quite low in real-world
scenarios. Considering that k might correlate with n, taint ranges are more memory
efficient as long as n

k
> 9 holds true. Reusing taint ranges might additionally save

memory.
The memory consumption of the string itself can be approximated with rstring =

n ∗ 2 byte as the char type has a size of 2 byte.

4Taint state in case of simple binary flagging.
5boolean might seem to need even less space, but that is a fallacy as popular JVMs internally
represent boolean as a byte. Chin and Wagner use a boolean[] allowing them just binary
flagging – but they probably could use byte instead and gain 28 distinguishable sources with
the same memory footprint.

6Actually short is used, we assume byte for a fairer comparison. Nevertheless, usage of byte
might be sufficient for most scenarios anyways and adaption can be done easily.

51

4.2. MAPPING METADATA TO STRINGS: TAINTRANGE AND FRIENDS

n=5; k=1 n=5; k=3 n=20; k=1 n=20; k=3
r_naive 5 5 20 20
r_tr 9 27 9 27
r_string 10 10 40 40

0

5

10

15

20

25

30

35

40

45

Ap
pr

ox
. m

em
or

y
co

ns
um

pt
io

n
(b

yt
e)

n=1000; k=1 n=1000; k=100 n=2E4; k=1 n=2E4; k=100
r_naive 1000 1000 20000 20000
r_tr 9 900 9 900
r_string 2000 2000 40000 40000

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Ap
pr

ox
. m

em
or

y
co

ns
um

pt
io

n
(b

yt
e)

Figure 4.3.: The diagram shows an approximation of the memory required with a
naive approach for storing taint information and for using taint ranges.

52

4.3. AUGMENTING THE STANDARD LIBRARY

4.3. Augmenting the standard library
Augmenting the string-related classes contained in Java’s standard library7 was a
major part of the implementation work done for this prototype. This was not only
about adding code able to properly propagate taint information inside the various
methods, it was also about understanding how these internals work and where ad-
justments would be needed.

Table 4.1 lists which classes have been adjusted and how many methods needed
modifications. Together, these classes contain ≈ 7000 of code and documentation.

Class Methods augmented Methods in total*
java.lang.String 9 ≈ 90
java.lang.AbstractStringBuilder 17 ≈ 60

java.lang.StringBuilder 1 /
java.lang.StringBuffer 1 /

java.util.regex.Matcher 2 ≈ 40

* Many of these are simple overloads setting default values or are, more-or-less,
just delegating internally; takes constructors into account.

Table 4.1.: Classes of the standard library that have been augmented in order to
be able to propagate taint information.

The process of augmentation started with scanning the three classes java.-
lang.String, java.lang.StringBuilder and java.lang.StringBuffer in order
to find methods and further classes needing adjustment. Some methods are simple
shortcuts, e.g., String#subSequence(beginIndex, endIndex) just delegates
to String#substring(beginIndex, endIndex)), redirecting to other methods
without containing any further logic. Others do not receive a string, or return
none while also not modifying internal fields (like String.charAt(index)) – the
remaining ones were good candidates for closer investigations.

The initial classes for augmentation have been taken from the OpenJDK project
in the most recent version of OpenJDK 88.

The OpenJDK itself is licensed under the GNU General Public License (GPL)
in Version 2, the standard library classes are additionally subject to the so called
“Classpath” exception. The GPLv2 would consider a project including these classes,
or derived versions, to be a combined work which would need to be licensed under
GPLv2 too. The “Classpath” exception weakens this requirement by dispensing

7There is actually no common, coined term or proper name for the classes delivered with the JRE
like they exist in C/C++ world. Most refer to it as “standard library”, others may use “Java
class library”.

8Link pointing to the exact revision in their versioning system: http://hg.openjdk.java.net/
jdk8u/jdk8u60/jdk/file/935758609767/src/share/classes/java/

53

http://hg.openjdk.java.net/jdk8u/jdk8u60/jdk/file/935758609767/src/share/classes/java/
http://hg.openjdk.java.net/jdk8u/jdk8u60/jdk/file/935758609767/src/share/classes/java/

4.3. AUGMENTING THE STANDARD LIBRARY

other parts of this combined work to be licensed under GPLv2. Solely the standard
classes need to stick to this license, although the “Classpath” exception might be
stripped. This probably is in the interest of SAP in order to prevent others from
reusing this code without basically open-sourcing their whole system9. (cf. [59])

Still, the augmented standard classes are subject to the GPLv2 – but in case of just
using Juturna internally or for hosted customer applications there is no obligation
to provide the source code of these classes as the GPLv2 only requires source code to
be shipped along with compiled code; in other words the idea behind GPL falls short
with on-demand cloud services as there no piece of work is published or distributed.
(cf. [60])

4.3.1. General considerations
There are some general aspects which apply to most of the touched classes similarly,
such as how to attach the taint information to the three string-like types. The first
step after understanding the internal structure of the string-like types was to add
a field named taint of type TaintInformation. This has been done with java.-
lang.String and java.lang.AbstractStringBuilder which is the super class of
java.lang.StringBuilder and java.lang.StringBuffer).

When creating a new instance of any of the string-like types, the taint field is
initially assigned null. This has two advantages: In case a string never actually
becomes tainted and therefore no TaintInformation instance is needed, instantiat-
ing can be avoided10. It is also a flag showing the overall taint state, i.e., whether
the string is tainted or not, and is used in order to shortcut and skip propagation
routines in case of the latter. The second advantage is much less obvious. Java
uses pools containing constant values of which the aforementioned string pool is
surely the most prominent one. When compiling Java source code, the compiler
puts string literals found in the code into a specific section of the classfile, they then
get transferred to the string pool when executing the file in a JVM. Therefore, these
character sequences become instances of java.lang.String without actually being
instantiated (!). This behavior was observed during tests with an additional field
added to String assigned a non-null value – but containing just null when access-
ing it. The assignment, which has been moved to the special <init> method by the
compiler, was never executed for these literals. Simply going without initialization
of the taint field frees from needing to work around this.

In order to mark the string types as taint-aware, they now additionally implement
the interface java.lang.TaintAware. Beside providing a common parent for the
taint-aware types, this enforces them to have a method isTainted(). The taint
field itself could not be introduced by the interface as Java as a language does not
support this.

9The legal wording in the source code files has not been changed during the work on this project.
10Chin and Wagner [40] use this idea to avoid allocating arrays for the taint information if not

really necessary – but with them, this is of much bigger impact as their boolean[] is not just
an empty container.

54

4.3. AUGMENTING THE STANDARD LIBRARY

For every touched method attention has been paid to not accidentally change
their behavior – neither directly, nor indirectly by side effects caused by the added
code. As the objective was to keep performance on a reasonable level, augmentation
has been done with the context and purpose of the respective method in mind in
order to handle the propagation of taint in a more efficient way, instead of trying to
apply more or less the same pattern to all methods.
equals() and the serialization mechanism have not been touched, as discussed

in section 3.5.2).
The way the standard library has been adjusted can be seen as a template for

augmenting further classes and libraries.

4.3.2. String (java.lang.String)
Strings in Java are immutable and internally represent a character sequence using
a char[] containing UTF-16 code units.

Method (in class java.lang.String)
public String(String original)
public String(StringBuffer buffer)
public String(StringBuilder builder)
public String substring(int beginIndex, int endIndex)
public String substring(int beginIndex)
public String concat(String str)
public String replace(char oldChar, char newChar)
public String toLowerCase(Locale locale)
public String toUpperCase(Locale locale)

Table 4.2.: Augmented methods in java.lang.String

Table 4.2 lists the methods that have been equipped with code for propagating
taint information. This seems like a short enumeration compared to the amount of
methods defined in String, but most of the touched ones are primitives frequently
called inside the others.
replaceFirst(), replaceAll(), replace(String, String), split() and re-

place(CharSequence, CharSequence) operate on regular expressions and there-
fore on the functionally contained in java.util.regex.Matcher. With format()
it is similar, it borrows from java.util.Format.

As described in section 3.5.1, replace(char, char) is an implicit taint source as-
signing inserted characters the predefined source TaintSource.TS_CHAR_UNKNOWN_-
ORIGIN).

Two interesting methods are toLowerCase() and toUpperCase(). These methods
are far from trivial, because there are several locale-related special cases, as brought
up in section 3.5.2 already. A corresponding example is the uppercasing from “ß” to

55

4.3. AUGMENTING THE STANDARD LIBRARY

“SS”. Another example is the Lithuanian glyph “Ì” represented by (\u00CC), which
is tripling its size when getting lowercased to \u0069\u0307\u0300) (cf. [61]). In
this example one code unit became three, resulting in a string with a different size.
The transformation algorithm has been augmented in order to make sure additional
chars inserted are part of the same taint range as the initial one was. Furthermore,
the subsequent ranges are adjusted. Otherwise, a potential attacker could insert, e.g.,
such a Lithuanian glyph which would extend and lead to a misalignment between
taint ranges and chars of the string.

4.3.3. StringBuilder & StringBuffer

Method
java.lang.AbstractStringBuilder

public void setLength(int newLength)
public void setCharAt(int index, char ch)
public ASB append(String str)
public ASB append(StringBuffer sb)
public ASB append(ASB sb)
public ASB append(CharSequence s, int start, int end)
public ASB delete(int start, int end)
public ASB deleteCharAt(int index)
public ASB replace(int start, int end, String str)
public ASB substring(int start, int end)
public ASB insert(int index, char[] str, int offset, int len)
public ASB insert(int offset, String str)
public ASB insert(int dstOffset, CharSequence s, int s, int e)
public ASB insert(int offset, char c)
public ASB reverse(String str)
private ASB reverseAllValidSurrogatePairs(String str)

java.lang.StringBuilder
public String toString()

java.lang.StringBuffer
public String toString()

AbstractStringBuilder has been shortened to ASB for better readability.

Table 4.3.: Augmented methods in java.lang.AbstractStringBuilder and re-
lated classes

Augmented methods in java.lang.AbstractStringBuilder and its child classes.

java.lang.StringBuilder and java.lang.StringBuffer both extend java.-
lang.AbstractStringBuilder. As the latter has package-private visibility, it is
guaranteed that there is no other class inheriting from it.

56

4.3. AUGMENTING THE STANDARD LIBRARY

The actual functionality of StringBuffer and StringBuilder is contained
in their abstract parent class. They override all calls inherited which return an
AbstractStringBuilder instance in order to set a more specific – in this case
the exact – type (covariance). Additionally, methods are added for receiving
more specific types (contravariance, in Java this is realized via overloading).
StringBuilder directly delegates to its super class’s definitions, StringBuffer
additionally adds a synchronized modifier to achieve its thread safety – which
is basically the only difference between these two. The only changes in these two
source files had to be performed in toString() as this is not centrally handled in
AbstractStringBuilder.

An example for the afore mentioned usage of context information used in order
to write “situation-optimized” augmentation code is reverse(). An automatic
instrumentation on a bytecode level would probably track every single char by
adding corresponding tracking instructions wherever this char gets modified/copied.
In case of the very basic operation of reversing a string, swapping a character would
lead to swapping its taint information. Naive augmentation would do the same –
take the last char, put it in front and create an according taint range. But as the
augmentation is done by hand, one can use the knowledge on what reverse() does
and therefore simple reverse the list of taint ranges – which is much more efficient.
Admittedly, it still needs all ranges to be adjusted.

57

4.3. AUGMENTING THE STANDARD LIBRARY

Listing 4.1.: A simple example for augmentation in java.lang.AbstractString-
Builder. The code added is framed by //taint> and //<taint.

Listing 4.1 is a typical example for the modifications done to the standard library
classes. It adds a check whether any further handling is actually necessary (lines 7
and 16). In the second block added, a check is done whether the to be appended
String is actually tainted. If so, line 17 fetches the TaintInformation instance,
or initializes it in case the AbstractStringBuilder instance was not tainted so far.
Line 21 right-shifts all ranges bound to str by the current length of the instance.
The newly created taint ranges are then appended to the instance’s taint information
container. This is a trivial example, but the principle shown in here is, more or less,
the same as with all augmentations.
AbstractStringBuilder contains some implicit sources (like replace(char

old, char new), but not all methods qualifying as implicit source (by adding char-
acters from unknown origin) are augmented to act as such – as a result of (naive)
weighing the probability to find suspicious behavior against the caused noise. Setting
append(char[] str), for example, as an implicit source leads to a lot of noise as
many JRE internals make use of such functionality. Therefore, an in-depth analysis
should be done in order to decide how to handle these cases reasonably.

58

4.3. AUGMENTING THE STANDARD LIBRARY

4.3.4. Regular expressions
Regular expressions are used to find occurrences of text matching a given pattern.
They are an integral part of Java’s standard library as, e.g., String uses them.
As their implementation needs to provide high performance, they were assumed
to operate directly on chars, e.g., by using String#charAt() – which would make
augmentation necessary in order to keep taint for matched substrings. But it turned,
usage of such functionality was very rare.

Beside the explicit flow aspect of extracting tainted characters as part of a sub-
string, there is also an implicit one: a tainted string used as pattern influences what
is matched in the end. But as Juturna does not cover implicit flows in general this
is not of further interest.

The regular expression functionality contained in the Java JRE is located in pack-
age java.lang.util.regex and is accessed via instances of Pattern. They are
created by a static builder function for a given regular expression – which gets
parsed, normalized and compiled into an automaton.

A Pattern instance is then used to create a Matcher which is bound to the
compiled pattern and a CharSequence11. The matcher provides functionality to
actually find matching regions in a given CharSequence instance and to extract
them.

In a nutshell, all methods in Matcher used for replacing or matching work by
the same principle: The method find() gets called and sets the start and end
indices of the next match found. Then, these indices are used to extract a substring
or to replace the region spanned up by them – depending on the operation to be
performed. Extracting a substring is done by using subSequence() on the set
CharSequence. In case of the three string-like types discussed12, this method simply
delegates to substring() and therefore is taint-aware already, not requiring any
further additions.

When it comes to replacing, Matcher offers extended functionality to use regions
of the original input matched by capture groups as part of the replacement. There-
fore, the replacement string is processed character-wise using charAt(). At this
point, augmentation had to be performed. This critical functionality is located in
appendReplacement(), which the various replacement operations internally rely on.

After understanding these processes, the actual augmentation was straight-
forward.
Pattern provides two more (static) methods of interest regarding taint tracking:

split() and quoteReplacement(). The first is just a convenience function split-
ting up a given CharSequence around matches of the respective pattern using a
Matcher and other already taint-aware functionality inside. Therefore, it needs no
adjustments.

The latter is used to escape meta characters in a String in order to get a literal

11All of the three string-like types implement this interface, we will have a in-detail look at it in
section 4.4.3

12For other implementations, this is slightly different (see section 4.4.3).

59

4.4. BYTECODE INSTRUMENTATION

pattern. This is done by char-wise iterating over the input, copying all chars but
escape characters. Augmentation had to be added therefor.

It might be possible, that taint information attached to a string used as pattern
is not synchronized during normalization. But as the normalized pattern cannot be
retrieved from outside the respective instance of Pattern, only as part of an error
messages, this has been ignored. Therefore, there is no functionality in Pattern
needing augmentation, only Matcher has been adjusted.

Chin and Wagner [40], the only other source-level augmentation approach the
author is aware of, did not augment these classes, although, they mention that it
should be done.

4.4. Bytecode instrumentation
Java bytecode is the set of instructions understood by a Java Virtual Machine (JVM),
which may directly interpret it or compile it into machine code. Bytecode is con-
tained in classfiles, a platform independent, binary format bundling code, constant
pools, debug information, information on inheritance and further artifacts of a class,
etc. [54, chapter 4].

Java bytecode is not strictly bound to Java as a programming language, although
they obviously share concepts like object-orientation13: Beside javac for Java there
are many other compilers for other languages translating code written in these into
bytecode for them JVM, e.g., Kotlin code gets compile to Java bytecode.

Parsing and processing classfiles and bytecode is a quite common task in the
Java world as there are many frameworks, testing and debugging tools utilizing
the associated possibilities. Because of this, various bytecode processing libraries
exist, absolving the developer from the task of having to make modifications to
the bytecode directly. Instead, they offer him to work on a more abstract level,
at least partially freeing him from thinking about opcodes, the operand stack or
constant pools. They mostly differ regarding performance and ease of use. The
most popular ones seem to be ASM14, BCEL15, Byte Buddy16 and Javassist17.
Explaining in detail why the last one was chosen would be unrewarding. In short,
its functionality, popularity, maturity and affiliation with the renown company
Red Hat were decisive – although ASM, which works on a lower level, seemed to
offer a better performance in benchmarks. In retrospect, Byte Buddy seems like
it would have been a better choice as it delivers more functionality out of the box
that needed to be implemented with Javassist. Furthermore, there are some snares
and bugs in Javassist that showed up during development and circumventing them

13But, for example, the JVM is capable of overloading return types – something the semantics of
the Java language do not support.

14http://asm.ow2.org/
15https://commons.apache.org/proper/commons-bcel/
16http://bytebuddy.net/
17http://jboss-javassist.github.io/javassist/, used in version 3.21.0-GA.

60

http://asm.ow2.org/
https://commons.apache.org/proper/commons-bcel/
http://bytebuddy.net/
http://jboss-javassist.github.io/javassist/

4.4. BYTECODE INSTRUMENTATION

was bothersome and time-consuming.

As presented in the concept chapter, Juturna needs to do bytecode instrumen-
tation in order to mark methods as sources/sanitization functions or sinks in an
arbitrary, given application. Including a component for modifying the bytecode is
the way to go as access to source code cannot be assumed and manual augmentation
of it would be pointless.

This instrumentation step can basically happen at two different points in time: as
a preprocessing step done once, or as on-the-fly instrumentation performed during
the process of “classloading” performed by the JVM. Juturna shall be portable
and pluggable, therefore the latter strategy has been chosen – also providing
support for bytecode not read from disk, e.g., retrieved by a network classloader
like java.net.URLClassLoader.

As already touched before, see section 3.4.2, the best way to implement on-the-fly
instrumentation is by using functionality offered by decent JVMs known as the
Java agent interface, contained in package java.lang.instrument. Therefore,
an application needs to be started with the additional -javaagent:<agent-jar>
parameter. The JVM then calls the premain() method on the class defined in
the manifest of the stated jar file, analogous to the well known main() method.
This premain() method is given an implementation of the Instrumentation
interface provided by the JRE. At this instance custom implementations of
ClassFileTransformer can be registered. By doing so, these get hooked into the
classloading mechanism. During the further execution of the JVM, every classfile
is given to these transformers as a buffer of bytes, allowing them to modify the
bytecode before getting processed by the JVM in the more narrow sense.

61

4.4. BYTECODE INSTRUMENTATION

Figure 4.4.: Diagram showing the classes contained in the com.sap.juturna.agent
package. Inheritance and implementation relations are shown, associ-
ations and aggregations are not displayed.

All code related to the bytecode instrumentation performed by Juturna is con-
tained in com.sap.juturna.agent.*. The premain() method is placed in the class
Agent and is responsible for registering an instance of BytecodeInstrumtationMan-
ager as transformer.

Additionally, it takes care of classes having already been loaded during bootstrap-
ping of the JVM and therefore before the initialization of the agent. Instrumenta-
tion offers functionality to retrieve all loaded classes and to retransform them by
reloading the classfiles and having them processed by the registered transformers.
According to the documentation, not every JVM needs to support retransformation
of classes at runtime – still, this is a widely used feature and a standard Oracle Java
8 JVM provides this functionality.

The path of the configuration file defining, among others, which methods to
instrument as sinks and sources is given as a parameter to the Java agent (see
figure 3.2). Therefore it is received by the premain() method, processing it
and providing it to the various transformers. It is expected to point to a file in
the JavaScript Object Notation (JSON) format, which gets converted into Java
objects using the popular Gson library from Google. Juturna supports inheritance
between configurations in order to simply derive a custom configuration from a
base configuration which might, e.g., declare sinks and sources for the Java Servlet
API. Examples of such configurations are shown in the evaluation chapter.

62

4.4. BYTECODE INSTRUMENTATION

As the name implies, the BytecodeInstrumtationManager does not instrument
itself. It is a container providing commons checks, preprocessing, logging, helper
functions and dumping of modified classes for debugging purposes to the respective
transformer. These transformer, implementations of CtClassTransformer18, will
be addressed subsequently.

To avoid cluttering the actual “instrumenters” with code for deciding which
method to adjust, this functionality has been extracted into MethodFilter.
The instrumenters use it internally by providing it with the list of methods to
adjust, e.g., the instrumenter responsible for marking as sinks sets the list of
declared sources, and a callback to trigger in case a suitable method has been
found. Deciding, whether a method shall be instrumented or not (in reasonable
time) is not as easy as one might think as we will see in the following. For
the identification of methods and their declaration in the configuration, Juturna
sticks to the naming scheme used by Javassist and Java Reflection (example:
java.lang.String.substring(int)) instead of the JVM internal notation19

(example: java/lang/String/substring(I);Ljava/lang/String;) as it is easier
to read and write. In the following, this identifier is called the FQN of a method.

Using the FQN, one can extract the name of the classes containing sources,
etc., in a preceding step and avoid parsing the bytecode of other classes by a
simple lookup. Starting to list methods emitting potentially attacker controlled
strings specified in the Java Servlet, one gets to the limits of this approach quite
fast. getQueryString() declared in javax.servlet.http.HttpServletRequest
is such a method, that should be marked as source. But as HttpServletRequest
is just an interface and not an actual definition, one actually wants to instrument
all implementations of it instead. Solely using a FQN is not sufficient as it contains
the class where the method is defined, not where it has been initially declared
– and this one would be needed in order to find other (re)definitions. Also, it
would not be clear whether overriding methods should be instrumented or just
the one actually stated. Therefore, in Juturna a user can simply state a FQN in
the configuration for exactly one implementation, or prefix it with “I:” in order to
have Juturna instrument all implementations and overriding redefinitions. To be
able to check whether a class-to-load implements or inherits from a supertype, the
bytecode of this class needs to be processed by Javassist. This basically means that
all loaded classes need to be parsed. Depending on the amount of classes loaded,
this can cause the startup time to be increased by a few seconds which should be
considered acceptable. By adding an upstream step preparing lookup structures
like HashMap and HashSet, which are then used for decision making, it is tried to
keep the time consumed as low as possible.

18Javassist uses the name “CtClass” for “compiletime class” in order to point out the difference
to the type Class provided by Java Reflection and representing runtime classes.

19[54, chapter 4.2]

63

4.4. BYTECODE INSTRUMENTATION

Differing from the JVM internal identifier, the FQN does not contain the return
type. In Java, the return type is not needed to uniquely identify a method, but on
bytecode-level it is – in the first case it is not part of the method’s signature, in the
second one it is. With Java 1.5, among others, covariant return types (subtypes can
declare a more precise type) and generics have been introduced. In order to keep the
generated bytecode compatible with code compiled earlier, so called synthetic bridge
methods are inserted, which simply delegate to the actual method20. As a result of
adding these synthetic methods, there are multiple methods with the same FQN –
simply instrumenting the bridges too would be unnecessary and therefore should be
avoided. After realizing where these supposed duplicates are coming from, filtering
them was quite easy as they carry a special flag.

After pointing out the framework and some snares that occurred during imple-
mentation in this section, we will look at the actual instrumentations done in the
following subsections.

20Explaining the underlying problem would lead to far away, please refer to appropriate literature
like [62, chapter 10.6.4]

64

4.4. BYTECODE INSTRUMENTATION

4.4.1. Taint sources and sanitization functions
The class responsible for instrumenting sources and sanitization functions is Sour-
ceInstrumenter. It is embedded into the framework described above and gets
registered at the BytecodeInstrumtationManager instance.

As its source code is quite concise, it is shown in listing 4.2 in order to illustrate
the process of instrumentation.

Listing 4.2.: This shows the code of SourceInstrumenter. It is a concise example
for how instrumentation is realized in Juturna and how comfortable
and readable this becomes by using Javassist’s functionality. It has
been shortened and comments have been removed.

This instrumentation can only be applied to methods returning a type imple-
menting the newly introduced TaintAware interface, otherwise a runtime exception

65

4.4. BYTECODE INSTRUMENTATION

would be thrown when trying to access the return value’s taint field. This gets
checked at line 5.

Another pitfall, taken care of in lines 9-15, is caused by the aforementioned pooling
of String literals. In the rare case of a method returning a pooled String instance,
tainting this one would in fact taint the global literal. In order to resolve this
edge case – that especially occurred during writing tests – a new String instance
with a new and independent instance of TaintInformation is created. The chars
contained are not copied by this operation as String is immutable and the new
instance simply references the char[] of the original one.

As there is no way of checking whether a String is in the pool or not, we simply
have to pessimistically assume it to be contained and therefore add this guard clause.

Starting from line 17, a simple call gets inserted, using THelper to get the
TaintInformation instance of the taint-aware type and to add a range spanning
the complete string setting the taint source category configured as origin. Finally
the value gets returned.

Javassist made implementing this fairly easy, as insertAfter() takes care of
compiling the given Java code to bytecode and inserting it on all possible return
paths.

Although being distinguished on the semantic level, sources and sanitization func-
tions are the same on configuration and implementation level. The different level
of the assigned taint source category is used to decide whether a taint range is
positively or negatively tainted.

4.4.2. Taint sinks
In order to add code to a sink method, the index of the parameter to be checked
needs to be given21. Before inserting corresponding code, this time in front of the
existing instructions, a check is done whether the type of the parameter is taint-
aware and therefore actually capable of being tainted.

The added code simply delegates the task of taint checking to the com.sap.ju-
turna.taintCheck component by calling TaintCheck.checkSink() and providing
it with the options set for this sink in the configuration. According code is added
for every parameter that needs to be checked.

Juturna’s taint checking capabilities are quite extensive and will be outlined sub-
sequently. An example for a corresponding configuration is given in listing 4.3.

21Currently Juturna does not support simply checking all parameters of a method regarding their
taint state. Especially with variadic parameters this is a limitation. But as this problem can
be resolved using THelper, it can be considered acceptable – especially for a prototype.

66

4.4. BYTECODE INSTRUMENTATION

Figure 4.5.: The diagram shows the classes contained in the com.sap.juturna.-
taintCheck package.

Listing 4.3.: The listings presents an example of a configuration using advanced op-
tions for sink instrumentation. replaceAll() gets instructed to raise
a taint error in case the second parameter, containing the replacement,
is (at least partially) originating from any source but “A_SOURCE_-
THAT_IS_OK”. The chosen mitigation strategy is to delegate han-
dling to a provided implementation of CustomTaintChecker. The
first parameter is not considered.

For every parameter of a method, one can define a list of forbidden taint source
categories and a mitigation strategy. The function deciding whether a “taint error”,
as Haldar et al. [4] called it, needs to be raised is given the set of taint source
categories bound to the string to be checked and the list of forbidden ones. The
list of not-allowed origins can contain the wildcard “*” forbidding all taint source

67

4.4. BYTECODE INSTRUMENTATION

categories, or, in case more control is needed, names of defined taint sources. Taint
sources having the level SANITIZATION_FUNCTION are not included in the wildcard
– if desired, they need to be listed explicitly. Additionally, exclusions from the
wildcard can be made by prefixing the name of a taint source with “!”.

In case a taint error gets detected, the configured mitigation strategy gets applied.
There are four strategies defined in MitigationOperations enum:

• LOG: Simply logs the incident. This does not prevent the tainted value to
flow into the sink and is considered to be helpful for developers searching
vulnerabilities in their own code base.

• THROW: Causes a TaintCheckException to be thrown preventing the, poten-
tially malicious, string from actually entering the sink method. Throwing an
exception is the appropriate way of preventing the vulnerability to be exploited
as it does not alter the semantics nor harm the integrity of the instrumented
method in a way, e.g., an early return would do. Still, it should not be thought-
lessly as it interrupts the application and might lead to unexpected, unwanted
behavior.

• PASS: This “strategy” actually does nothing, neither writing a log entry nor
preventing the string from flowing into the sink.

• CUSTOM: The most powerful mitigation strategy. It can be used to invoke
provided code taking care of the situation22.
As shown in listing 4.3, the FQN of the class needs to be stated and an
according class inheriting from the abstract CustomTaintChecker class has
to be available in Java’s classpath. It is then loaded and invoked at runtime
using Java Reflection.
The checker is given the tainted value, the list of forbidden sources and the
result of the internal check already performed. It returns an instance of
TaintCheckResult, indicating whether a taint error shall be raised and a
log entry needs to be created. Additionally, the custom taint checker can
override the parameter in question23.
Using this mechanism, handlers could be added performing a taint source
specific, automatic escaping etc..

22Accordingly, one should exercise caution when using this feature. Further measures
should be taken in order to avoid abuse of this functionality, e.g., by using an adjusted
java.lang.SecurityManager to restrict the possibilities of the custom implementation.

23This is experimental as the parameter might be declared final in Java and this information is
not preserved when compiling into bytecode. Therefore this could result in a “lost update” as
the subsequent instructions not necessarily need to use the same reference. This needs further
investigations.

68

4.4. BYTECODE INSTRUMENTATION

4.4.3. Handling the CharSequence interface
java.lang.CharSequence is an interface describing implementations behaving like
a readonly source of characters. Among others, it is implemented by String and
AbstractStringBuilder. It belongs to the core classes of the JRE, putting it in
the focus.

But augmentation can only be done for its manifestations, not for the interface
itself – therefore, to fully cover them, project specific implementations of CharSe-
quence may need to be augmented manually. Beside the ones mentioned above, the
author is not aware of popular CharSequence implementations being used as – or
at least on the same level as – strings.

The idea of implicit sources, i.e., marking characters without history when be-
coming part of a string, has been mentioned multiple times by now. String#re-
place(char old, char new) has been used as example for them. A CharSequence
instance is, as the name implies, just a provider of n chars and therefore should
be treated in a similar way by methods like String#replace(CharSequence old,
CharSequence new).

Instead of adding the same additional code to all methods operating on String,
StringBuilder and StringBuffer, this has been realized using another bytecode
instrumenter (CharSequenceInstrumenter). Avoiding some extra changes to the
standard classes probably would not be worth the effort, but, as we will see fur-
ther down, the instrumentation is able to cover an additional case in which taint
information could be lost.
CharSequence declares two methods of interest: an override of toString() and

subSequence() which returns a CharSequence. In all methods in the three string-
like types which handle CharSequence instances, their toString() methods get
called – therefore, it needs instrumentation.

The instrumentation is only performed for classes implementing CharSequence
but not TaintAware: subtypes of the latter already supply the returned String
with taint information when available and this should not be overwritten.

The code added to the end of toString() then simply creates a new String
instance24, initializes its TaintInformation instances and adds a range covering
the whole string setting the predefined TaintSource.TS_CS_UNKNOWN_ORIGIN as
source category.

With subSequence() it is basically the same: a not-taint-aware implementation
could return a potentially taint-aware type but without information attached. If
this is the case, the appended code marks the origin.

Problems occur in case toString() and/or subSequence() are inherited (from
a class that does not implement CharSequence itself). Then, no definitions exist
in the according classfile. Modifying the supertype would be dangerous, therefore
redefinitions of the methods missing are inserted in an upstream step before the
code described above gets appended to them25.
24This is done because of string pooling, see section 4.4.1
25In case of classes already loaded into the JVM which are inserted into the “instrumentation

69

4.5. SELECTIVE TAINTING: INTEGRATING STATIC ANALYSIS

4.5. Selective tainting: integrating static analysis
In section 3.6.2, the idea of tracking taint selectively, switching between
unaugmented/taint-unaware and augmented/taint-aware code, was introduced
and outlined. The advantages of the approach presented in this work have been
highlighted. In this section we will have a look at the prototypical implementation,
before we finally see it in action and discuss the results of performed benchmarks
in section 5.3.

The implementation consists of the JOANA-Adapter, another bytecode instru-
menter contained in the Java-Agent component and further modifications to the
standard classes.

Before we will dive into the details, the sequence of actions performed will be pre-
sented from a user’s blackbox perspective. This shall help getting a better overview.

The JOANA-Adapter receives, besides the classfile containing the entry point,
e.g., the main() method of an application, a simple file denoting the names of
methods declared as sources and sinks. It then computes which call instructions in
the bytecode are only operating on instances of string-like types that are guaranteed
to not originate from a source, nor being influenced by one doing so, or which are
simply not flowing into a sink. The comprehensive definition of a method call
considered safe has been given in section 3.6.2 already. Those instructions can be
considered “not security-sensitive parts”. The terms “safe calls” and “not security-
sensitive instances”/“safe instances” will be used in the following in order to refer
to them.

This list of safe call instructions then gets exported as JSON, ready to be put
into the main configuration of Juturna. Running an application in an accordingly
configured JVM triggers the SelectiveTaintingInstrumenter to make the listed
call instructions invoke methods containing taint-unaware code instead of the
augmented, taint-aware ones. As a result, propagation of taint information is not
going to be performed at these points when executing the application. This is not
directly apparent to the user – but he might, in the best case, notice the improved
performance caused by not performing unnecessary taint tracking operations.
Figure 4.6 illustrates this setup.

Right now, only java.lang.String has been adjusted in order to be ready for
selective taint tracking. This is because the time was limited and adding support for
java.lang.StringBuilder, etc., works the same and is not needed for an (initial)
evaluation of the concept. Adjusting these – or automatizing the process as sketched
in the next subsection – could be part of followup projects taking the approach
further.

pipeline” by the aforementioned retransformation are, according to the documentation, not
allowed to get new methods added. Because it is known whether a class is getting retransformed
or initially loaded the according step can be skipped and a warning can be presented instead.

70

4.5. SELECTIVE TAINTING: INTEGRATING STATIC ANALYSIS

Taint-aw
are JVM

Sources

Sinks
JO

AN
A-Adapter

Juturna

C
onfigu-
ration

Java-Agent

U
ses Juturna’s

augm
ented

standard library and bytecode
instrum

entation (JVM

augm
ented by Juturna).

Application gets executed in this
environm

ent.
Java

Applica-
tion

Contains the bytecode instrum
enters, uses

SelectiveTaintingInst
rume

nter
to replace the target of calls listed in the
configuration w

ith ones containing the
original, unaugm

ented code

Augm
ented standard library

classes

...

Adds
inform

ation
on calls

considered
safe

to
the

configuration

G
etprovided

by
the

user

2

3

1

Figure 4.6.: The figure gives a schematic overview on how the components realizing
selective tainting are linked together. The numbers indicate the order
of the processing steps, dashed lines show dependencies.
The user icon has been taken from openclipart.org.

71

4.5. SELECTIVE TAINTING: INTEGRATING STATIC ANALYSIS

4.5.1. Providing taint-aware and taint-unaware methods
Although this was not the first task tackled, it makes sense to describe it first as
switching between augmented and unaugmented code obviously requires both to be
available. As a first step, the code of the original methods has been reinserted into
java.lang.String.

Then, the names of the added methods have been prefixed with “___” (three
underscores) to distinguish them from the augmented ones. As these methods quite
often delegate tasks among themselves, calls to other reinserted methods needed to
be adjusted in order to have reinserted methods only call unaugmented methods. A
concise example for such a reinserted and renamed method is shown in listing 4.4.

Because of these internal linkings, not only prefixed versions of augmented meth-
ods needed to be inserted, but also methods internally using them. In case of
String this only concerns the method trim(), internally calling substring(). Sim-
ply changing the call in the already existing definition is obviously not an option
as this would affect all invocations on all instances – not only on the ones certified
safe.

Listing 4.4.: Example of a method being reinserted, renamed and adjusted in order
to work as an unaugmented replacement in the selective taint tracking
mechanism.

After having seen which adjustments have been done to the standard library,
some key aspects can be pointed out more clearly in order to make sure the idea is
understood: The selective approach decides in a first step whether to call the taint-
aware or the taint-unaware method. In case of the latter, the call target of the call
instruction gets replaced in the second step in order to address the unaugmented
method instead.

Different string instances might be assigned to a variable a call is invoked on,
depending on the execution path taken. Only if it can be assured that all possible
assignments are not security-sensitive such a modification of the call target is valid.
If there is one exception or uncertainty, it must not be performed as conservative
approximation has to be applied here in order to preserve correctness.

Methods like the unaugmented trim(), internally calling a “replaceable” method,
can only be modified if all possible String instances it could be called on are not
security-sensitive. This cannot be expected for library functions as there might be
may calls towards it and one call on an unsafe instance would be enough for denying
the replacement. Therefore, the prefixed copy gets added – moving the chance to
replace the call up the “tree”, like shown in figure 4.7.

72

4.5. SELECTIVE TAINTING: INTEGRATING STATIC ANALYSIS

String a = " Knuth";
a.trim();
someSink(a);

String b = "Dijkstra ";
taint(a);
b.trim();
someSink(b);

String c = “A. Turing";
c.substring(3);
someSink(c);

public
String trim() {

...
this.substring(x, y);
...

}

public
String ___trim() {

...
this.___substring(x, y);
...

}

public
String substring(int

start) {
...

}

public
String ___substring(int

start) {
...

}

012

A
ppl. code

(S
ystem

) library
code

Initial call targets
C

all targets after processing
R

einserted, adjusted but unaugm
ented m

ethods

Figure 4.7.: This example tries to demonstrate the importance of avoiding calls
being “funneled” to early in the “call tree” leading to non-applicability
of the selective taint tracking approach.

73

4.5. SELECTIVE TAINTING: INTEGRATING STATIC ANALYSIS

We assume that figure 4.7 shows all calls that can possibly happen during an
execution and that someSink() indicates that the given instance is flowing into
a sink. The instance assigned to b has to be considered security-sensitive, the
identifiers a and c are referencing not security-sensitive strings.
this inside of trim() can point to the String objects assigned to a and b re-

spectively. As b is security-sensitive, trim() might operate on a tainted instance
– replacing the call to substring() inside trim() with a call to ___substring()
is therefore not allowed. But as the system is able to switch the call on level 0,
where there is only one instance possibly assigned to the respective identifier on
which each call can be invoked, performing taint tracking on a’s object can still be
avoided: after processing ___trim() will be called on the instance assigned to a.

The approach can only be useful when switching can be done in the application
code (level 0) and calls from different parts of the application with a different
security sensitivity do not converge/are not summed up at the public entry points
of (standard) library classes. In other words, a choice between augmented and
additional, unaugmented methods must be possible at the boundary between
application code and (system) library code. Just imagine, ___trim() would not
be provided in the example – the instance assigned to a would be handled by
substring() because trim() does not only get called on instances not being
security-sensitive.

In order to record which methods might be considered for replacement, i.e., aug-
mented methods for which an unaugmented pendant exists, the Java annotation
@MightBeReplacedWithOriginalCode has been added to them. As the annotation
is retained at runtime, the SelectiveTaintingInstrumenter initially builds a list
of those and warns whenever configuration tells it to replace something else.

Method (in class java.lang.String)
public String substring(int beginIndex, int endIndex)
public String substring(int beginIndex)
public String concat(String str)
public String replace(char oldChar, char newChar)
public String toLowerCase(Locale locale)
public String toUpperCase(Locale locale)
public String trim()

Table 4.4.: Methods in java.lang.String for which an unaugmented companion
exists. Therefore they are ready for being replaced by the selective taint
tracking approach.

Table 4.4 lists the methods that might be replaced by SelectiveTaintingIn-
strumenter. When comparing this table with table 4.2, one can notice that the
latter additionally contains some constructors but misses trim(). Constructors are,

74

4.5. SELECTIVE TAINTING: INTEGRATING STATIC ANALYSIS

at the moment, not covered by the selective approach as constructors follow a fixed
name scheme and therefore cannot be renamed. Further investigations need to be
done in order to find a way to resolve this issue. But, as the costs of the additional
functionality added to them is very low in execution, this does not matter too much
anyway.

The described process of adjusting library classes could – in followup projects
– be automated and, e.g., done by another bytecode instrumenter or a onetime
preprocessing step. This one would take the original classfile and copy the bytecode
of the original methods into the augmented classfile. Which method to copy can be
determined by looking for the mentioned annotation in the augmented classfile.

75

4.5. SELECTIVE TAINTING: INTEGRATING STATIC ANALYSIS

4.5.2. JOANA-Adapter
In the last subsection the preparations needed for step two, switching between unaug-
mented and augmented code, have been explained. Additionally, the fundamental
question when to replace a call has been answered in detail. With this knowledge,
we will have a look at how the JOANA-Adapter detects matching call instructions.

As the name implies, the purpose of the JOANA-Adapter is to use the power of
static IFC analysis mechanisms implemented in JOANA in order to provide Juturna
with the information required. The JOANA-Adapter itself is not conceptionally lim-
ited to String which currently is the lowest common denominator in the prototyp-
ical selective taint tracking extension. The adapter is able to search for call nodes
invoked on not security-sensitive instances of any type.

Subsequently, the implementation of the JOANA-Adapter will be described. As
this should not require to have worked with JOANA and dived into its graph repre-
sentation before reading this section, it will be explained on a more abstract level.
Readers who are interested in details not provided in here are referred to the source
code itself, contained in package com.sap.juturna.joanaAdapter.

As explained in section 2.3.2, JOANA works on a graph data structure called Sys-
tem Dependence Graph. A SDG represents an application by nodes, e.g., statements,
predicates, etc., and edges showing their relations/dependencies. The different kinds
of nodes relevant for the adapter will be briefly described when explaining the algo-
rithm.

During initialization, the adapter configures the JOANA library according to its
needs. Most noteworthy it disables computation of implicit dependencies, reads in
sources and sinks from a given configuration, sets the specified classpath used for
looking up classfiles, defines the main entry point of the application and finally lets
JOANA construct the SDG.

The actual analysis is then performed in analyze(). Listing 4.5 shows the code,
trying to hide parts whose details are not essential behind helper functions. Below
the listing, the code will be explained stepwise.

The algorithm assumes the following, generic taint propagation policy: A value,
in the following that might be a primitive value or an object, returned by a func-
tion marked as source is tainted and every object having at least one field/member
referencing a tainted value becomes tainted itself. A source is a function returning
tainted values, a sink is a function not allowed to receive tainted values via its pa-
rameters. In case of the string-like types an instance of considered tainted if it or its
internal char[] is (partially) originating from a source or was explicitly influenced
by a tainted value.

76

4.5. SELECTIVE TAINTING: INTEGRATING STATIC ANALYSIS

Listing 4.5.: Compressed code of JOANA-Adapter’s analyze() function contained
in com.sap.juturna.joanaAdapter.JOANAAdapter.

“Entry nodes” represent the entry point of a method. As mentioned before, a
SDG is a collection of program dependence graphs. Therefore, the entry node of a
method is the root of such an embedded PDG and all further nodes of this method

77

4.5. SELECTIVE TAINTING: INTEGRATING STATIC ANALYSIS

are necessarily linked to it, either directly or indirectly. They are retrieved in line 5.
The helper functions called in line 7 and 8 then select the ones representing methods
declared as source or sink.

The returned value of a method is represented as a dependence towards its “exit
node(s)”. In case of a method declared as source, these are tainted and one wants
to find their dependents later on. Therefore, as a first step, the function called in
line 10 fetches all related exit nodes.

A (forbidden) taint flow occurs as soon as a formal parameter (“formal-in node”)
of a method which is declared as sink points to a tainted value26. Because of this,
the formal-in nodes affiliated with sink methods are fetched from the graph in line
11.

The last initialization step is to get a list of all nodes representing an invocation
(“call nodes”) and to preprocess them in lines 13 and 15. preprocessCallNodes()
doest quite a lot under the hood. First, it takes the list and sifts out calls to
static methods, constructors and all other calls not operating on one of the taint-
aware types. Second, it creates a list of CallNodeInfo objects (line 3) in order
to store additional information along with the call node: the thisParameter node
representing the set of possible objects the call might be invoked on27 and a set of
nodes representing fields/members belonging to the thisParameter.

These “parameter member” nodes are linked to the thisParameter via “param-
eter structure” edges indicating that these are accessible via a field of the node at
the other end of the edge.

Now we are getting to the core: they are of interest because such a node repre-
senting a tainted value – when being linked to an instance of a taint-aware type –
signals that this instance’s internals are linked to tainted values and therefore the
instance itself needs to be considered tainted too according to the propagation policy
stated above. In other words, if nodes connected to a node representing a string via
parameter structure edges are tainted, a tainted value is contained in the string.

In line 17, a forward slicer gets initialized28 which is used to compute all nodes
depending on, at least, one node out of a given set of start nodes.

Then, the set of nodes possibly being tainted by possibly having a (transitive)
data-dependency towards a source’s exit node gets iteratively computed during a
fixed-point iteration – starting from line 19.

In line 23, the forward slicing operation is performed, followed by looping over
the processedCallNodes list: If any of the parameter member nodes is contained
in the slice, the object having fields pointing to these values becomes tainted too.
Therefore, it needs to be added to the set of possible sources in order to find out
which further parts of the application might be influenced by, e.g., receiving this

26In rare cases this might approximate a little to conservative as the parameter does not necessarily
reference the tainted value at the time the method in question gets invoked.

27The static analysis does not necessarily needs to be sure on which instance a method might be
invoked as this might be determined at runtime. By having edges to multiple other nodes, it
is possible for a single node to “represent a whole set”.

28Kotlin abandoned the new keyword in front of constructor calls.

78

4.5. SELECTIVE TAINTING: INTEGRATING STATIC ANALYSIS

object as a parameter. This step of adding “auxiliary sources” is necessary because
the slicing performed by JOANA does not consider the dependency represented by
those parameter structure edges as they are merely an auxiliary construct and not
part of the actual PDG.

In order to compute the complete slice, containing all nodes transitively dependent
from any of the declared sources, this is repeated until a fixed-point is reached, i.e.,
sourceNodes does not grow any more.

Reaching this point, sourceNodes contains nodes representing the declared
sources and the added auxiliary sources. nodesInForwardSlice additionally
contains all nodes that depend on by a data dependency – but not all of them are
security-sensitive, as the nodes representing the sinks might not depend on them.
Just think of a string emitted by a source but not flowing into a sink once more,
the calls invoked on this string are not security-sensitive.

The next step is to compute the “intersection”29 of the forward slice, starting
from the nodes in sourceNode, with the backward slice, starting from the ones in
sinkNodes. JOANA provides a “chopper” for this task.

In the final step, all call nodes whose “this parameter” is not contained in this
chop are added to the resulting list of call nodes considered not to be security-
sensitive, i.e., they are safe to be replaced.

In order to have the bytecode instrumenter contained in the Java-Agent compo-
nent replace those calls, a way of addressing a single call operation, i.e., a specific
occurrence of an invoke* opcode in the JVM bytecode, had to be found. Using the
FQN of the method containing the invocation opcode combined with the bytecode
index30 of the instruction turned out to be the best scheme as it is unambiguous
and works smooth with JOANA on the one and Javassist on the other side.

As a post-processing for the not security-sensitive call nodes determined, they
are matched against a list of methods declared as replaceable in order to keep the
generated output more concise. Additionally, their bytecode index gets extracted
and they get grouped by the method they are contained in. As the bytecode instru-
menter uses Javassist’s naming scheme for methods, further functionality has been
implemented into the JOANA-Adapter to convert the FQNs from the JVM internal
notation used by JOANA to the one used by Javassist.

The information provided by the JOANA-Adapter then needs to be placed in the
main configuration of Juturna. This split-up into a configuration for the adapter,
running as a preprocessing step, and one for Juturna’s core components was mainly
done to be more flexible when experimenting in different evaluation scenarios.

Additionally, the adapter, and also JOANA itself, has some restrictions as it
will be pointed out in section 5.4. These prevent its usage in some scenarios and
29As mentioned before, see section 3.6.2, the performed operation is not actually the computation

of an intersection. Instead, a chop is computed.
30The bytecode index is the offset of the first byte of an instruction containing its opcode. The

opcode is always one byte long and is followed by the fixed amount of fixed size operands. [54,
Section 2.11]

79

4.6. TESTING

therefore tight coupling did not seem advisable. Currently, the taint tracking system
of Juturna can be used completely on its own, the selective taint tracking approach
is just an extension.

An example showing a small test application and the according output of the
JOANA-Adapter will be presented in section 5.3.

4.5.3. Switching between unaugmented and augmented code
The final piece of the puzzle is the SelectiveTaintingInstrumenter. It is part of
the Java-Agent component and therefore of Juturna’s core. Via the configuration it
retrieves a list of methods, represented by FQNs, containing at least one invocation
instruction addressed via its bytecode index. These have been determined to be not
security-sensitive by the JOANA-Adapter and therefore might be replaced.

The task of this instrumenter is pretty simple as it basically just checks whether
the current target of the call is in the list of switchable methods and, if that is the
case, changes the target by adding the ___ prefix to the called method’s name. Some
additional checks are performed in order to inform the user whether all replacements
could be applied.

The implementation is a little more complicated due to the fact that modifying a
method’s bytecode with Javassist causes the library to directly apply the modifica-
tions and regenerate the bytecode of the whole method. As it turned out, the regen-
erated bytecode is not necessarily equal to the original one regarding the amount
of instructions. This results in shifting further invocation instructions within the
same method and therefore changes their bytecode indices – raising problems when
trying to modify more than one call instruction per method. A workaround could
be found to resolve this problem.

In case a call cannot be replaced due to an issue in the SelectiveTaintingIn-
strumenter or in any other part of the instrumentation pipeline, the concept of
selectively removing taint tracking for not security-sensitive areas (“secure by de-
fault”) instead of adding it to sensitive parts shows its advantages: an unnecessary
overhead not being removed is for sure better than a necessary security check not
being added.

4.6. Testing
Software testing is essential, especially when code becomes more complex. Testing
is considered a standard for properly crafted software nowadays. Additionally, these
tests serve as another kind of documentation, beside the comments in the classes
themselves.

Juturna’s core components consist of ≈ 30 Kotlin files – plus the augmented
standard library classes – which are covered by ≈ 20 test classes based on the
popular testing framework JUnit31. The tests are mostly unit tests, but also some
31https://junit.org/

80

https://junit.org/

4.6. TESTING

small integration tests are included. In total they contain ≈ 370 assertions.
In order to assure that the augmentations done to the standard library classes do

not change their expected and observable behavior every modified method has been
tested regarding their predefined behavior and additionally regarding its handling of
taint information. In order for this to work, the tests are executed in a taint-aware
JVM augmented by Juturna.

Testing the bytecode instrumenters has been done by applying them to specially
adjusted classes, followed by checking their runtime behavior. This seemed to be a
better way then verifying the modifications on bytecode level.

Although Dijkstra said that “program testing can be a very effective way to show
the presence of bugs, but is hopelessly inadequate for showing their absence” [63],
it surely reduces the probability of their existence. Because these tests helped to
track down bugs in an early state, only a few painful debugging sessions were needed
making the whole implementation process more efficient.

81

5. Evaluation
After having extensively presented and discussed the prototypical implementation,
it is time to evaluate it regarding its capabilities to detect actual vulnerabilities and
regarding its performance.

First, some servlets containing actual weaknesses will be run in a taint-aware Java
EE environment, demonstrating that the prototype of Juturna is already capable
of protecting simple web applications by detecting the contained flaws. Then, the
performance of Juturna will be measured and discussed before evaluating the ap-
proach of selective taint tracking. The chapter will conclude with an exhaustive
discussion of currently open problems and possible solutions as well as limitations
of the concepts and technologies employed.

All benchmarks and tests have been performed using Oracle’s JRE in version
1.8.0_111, running on a MacBook Pro1.

5.1. Detecting existing vulnerabilities
The prototypical implementation of the presented taint tracking system is not yet
capable of handling full-blown Java EE web applications incorporating complex
frameworks properly. Therefore, an evaluation using the popular and deliberately
vulnerable OWASP WebGoat2 based on the Spring framework would not have been
feasible while keeping the preparation and configuration comprehensible – we will
come back to the issues that arose at the end of the evaluation chapter, see sec-
tion 5.4.

Instead, the evaluation has been done on a selection of examples contained in the
Standford SecuriBench Micro3 benchmark suite. Version 1.08 has been used. The
project’s objective is to provide a set of basic to complex Java EE example servlets
for the evaluation of static security analyzers – nevertheless, it is also valuable
for the verification of dynamic security tools. It consists of almost 100 test cases
implemented as isolated servlets, most of them containing weaknesses promoting
reflected XSS attacks.

Due to its popularity, Apache Tomcat 9.0.0.M26 has been chosen as the underlying
Java EE implementation providing support for the web profile – but basically every
compliant servlet container could have been used instead. The SecuriBench Micro
benchmark has simply been deployed as web application.

1Mid 2015, macOS 10.13.2, 2.2 GHz Intel Core i7
2https://github.com/WebGoat/WebGoat
3https://suif.stanford.edu/~livshits/work/securibench-micro/index.html

83

https://github.com/WebGoat/WebGoat
https://suif.stanford.edu/~livshits/work/securibench-micro/index.html

5.1. DETECTING EXISTING VULNERABILITIES

Listing 5.1.: Code of first test case.
Listing 5.2.: Code of second test case.

The only adjustment needed to be done to Tomcat was to create seten-
v.sh in Tomcat’s configuration directory. It is, per convention, called when
Tomcat starts and it embodies the recommended way to set additional argu-
ments for Tomcat and the JVM. It contains a single line of bash code: export
CATALINA_OPTS="-Xbootclasspath/p:<JUTURNA_JAR> -javaagent:<JUTURNA_-
JAR>=<TOMCAT_BASE>/juturna-config.json". No further preprocessing, etc., is
needed in order to have Tomcat run in a taint-aware environment.

Listing 5.1 and listing 5.2 show the two examples taken from SecuriBench Micro,
“Aliasing5.java” and “Inter10.java”. They have been chosen because they perform
some operations on the entered, tainted string, respectively transfer its value into a
StringBuilder instance.

The sources and sinks are derived from the Java Servlet Specification. As the
test cases contained in SecuriBench Micro only retrieve user input via ServletRe-
quest.getParameter(), the configuration (see listing 5.3) provided to Juturna is
really basic. The list bound to “additionalClasspaths” may contain additions that
need to be added to the internal classpath of Javassist, which needs to resolve
imported type declarations. As Tomcat does not add its libraries to the global
classpath, instead using custom classloaders, the path containing these needs to be
announced to Javassist on this way.

84

5.1. DETECTING EXISTING VULNERABILITIES

Listing 5.3.: Configuration of Juturna used to detect the vulnerabilities contained
in the two given test cases.

The obvious sink regarding the two test cases is PrintWriter.print(String).
An according instance of java.io.PrintWriter gets provided by calling Servle-
tResponse.getWriter(). Without deeper knowledge about Tomcat’s internals,
one does not know whether this call will return an instance of PrintWriter itself or
of a subtype (polymorphism). Therefore, the sink needs to be declared as a possibly
redefined sink (“inheriting sink”)4, causing the system to treat all redefinition-
s/overriding methods as sinks. But doing so might lead to unwanted side-effects:
Printing user controllable input, like the requested path, to the logs may lead to
unnecessary taint incidents getting reported as this printing might happen via (a
subclass of) PrintWriter. How this could be avoided in future versions of Juturna,
will be discussed in section 5.4. For this test scenario the actual implementation
provided by Tomcat, org.apache.catalina.connector.CoyoteWriter.print(),
has been configured as sink.

4This is indicated by the “I:” in front of the FQN. See section 4.4.2.

85

5.2. PERFORMANCE BENCHMARKS

Listing 5.4.: Emitted log messages for
first test case. Listing 5.5.: Emitted log messages for

second test case.

Requesting both servlets with “Hoare” as value for the name parameter, both
vulnerabilities have been detected. Listing 5.4 and listing 5.5 show the corresponding
log messages produced by Juturna. This proves that Juturna is capable of detecting
vulnerabilities and, by configuring another mitigation strategy, also preventing their
exploitation. Although the test cases presented in here are straightforward, they
are not trivial. It furthermore shows that Juturna can be combined with a servlet
container and yet be configured to protect (basic) Java EE web applications.

5.2. Performance benchmarks
All of the taint tracking systems for Java considered as related work have under-
gone some performance benchmarks. Unfortunately, the corresponding papers do
not contain enough information to reproduce their setups used in order to directly
compare against them.

Bell and Kaiser [31] used the publicly available DaCapo Benchmark5 project, but
they do not specify which information has been marked as tainted for the benchmark.
Also, comparing to them is neither meaningful nor fair as their system is capable
of tracking taint information for primitive data types causing increased overhead.
According to them, as mentioned before, they achieved an overhead of 52%.

The system of Chin and Wagner [40] has very similar characteristics to Juturna,
but the benchmark they present consists of running the Java-based discussion board
JForum in a taint-aware JVM and sending HTTP requests from different machines,
measuring the requests handled per second. As they do not state details on the
setup, e.g., which URLs they requested, the setup cannot be reproduced. They
state an overhead of 0−15% (for the whole system, not only the string operations!),
depending on the payload of the request and the configuration of their system. The

5http://www.dacapobench.org/

86

http://www.dacapobench.org/

5.2. PERFORMANCE BENCHMARKS

meaningfulness is questionable as no information is given on what kind of (string)
operations are actually performed, making the result not transferable.

Haldar et al. had their system, performing only string-level tracking, undergo a
micro-benchmark, focussing on string operations. It “showed no noticeable difference
in execution time of the benchmark between using the original and instrumented
String class” [4]. They neither specify the operations performed, nor do they give
any numbers enabling a comparison.

The works combining taint tracking with static analysis mechanisms (Mongiovi
et al. [45], Zhao et al. [46]) do not present any evaluations regarding the runtime
overhead added by their systems.

Therefore, the performance benchmarks discussed in the following will simply be
run in a taint-aware JVM augmented by Juturna and an untouched JVM serving
as baseline. Comparing with other systems would be hard anyway due to the vary-
ing capabilities of the systems and Juturna’s concept of taint ranges, accepting an
increased computational overhead in order to allocate (massively) less memory in
case of huge strings flowing through an application.

5.2.1. Setup & methodology
Trying to minimize the impact of external influences and to focus on the overhead
added by the presented taint tracking approach, the benchmark is set-up as mi-
cro benchmark. In order to avoid common pitfalls when running benchmarks in
the JVM, e.g., just-in-time compilation, dead code elimination, etc., and to get
handling of iterations and timing for free, the popular Java Microbenchmarking
Harness (JMH)6 tool, being part of the OpenJDK project, has been used. In the
configuration used it follows the summarized recommendation by Georges et al. [64]
on how to rigorously benchmark Java applications by sequentially running multiple
JVMs, each executing multiple benchmark iterations.

The benchmarks described subsequently measure the impact the augmentation
of the standard library and the closely associated management of the taint ranges
cause.

The time complexity of the additional code in general depends only on the amount
of taint ranges attached to a given string, the ranges’ length is irrelevant. For the
method used in the benchmark, the time complexity of the actual string handling
code depends only on the strings’ length. Therefore, these two rule the computa-
tional overhead caused by taint tracking. In order to illustrate their influence, string
length (n) and amount of taint ranges (k) have been varied:

n ∈ {250, 10000}
k ∈ {0, 1, 3, 10, 100}

6http://openjdk.java.net/projects/code-tools/jmh/

87

http://openjdk.java.net/projects/code-tools/jmh/

5.2. PERFORMANCE BENCHMARKS

String lengths of 250 and 10000 are assumed realistic, e.g., representing an URL
containing some parameters or a HTML template containing placeholders as respon-
se. The amount of taint ranges per string is expected to be very low: usually 0 or
17, maybe 3. But in case of the the aforementioned templates more ranges, e.g., 10
or 100, might possibly be attached.

To tell the whole truth, runtime additionally depends on which parts of a string
are covered by taint ranges and their relations to the area getting modified during
an operation: Replacing text on a StringBuffer instance by an untainted string
behind the last taint range causes (nearly) no additional overhead. But replacing
in front or inside the first range requires updating the first range and, in case the
replacement has not the same size as the area it replaces, all further taint ranges
need to be adjusted too.

Listing 5.6 shows the essential parts of the benchmark performed together with the
configuration of JMH. A complete version can be found in the appendix, listing A.1.

The process of initially attaching the taint information to the different String
and StringBuilder instances is done by adding k taint ranges, one for each of the
last k characters. This positioning of taint ranges leads to worst case scenarios
for the implementation of the taint storage engine – leading to more honest, not
whitewashed results. As the taint ranges are added at runtime via THelper, an
explicit configuration of Juturna is not necessary.

7E.g., the URL associated with a request would have a single range attached.

88

5.2. PERFORMANCE BENCHMARKS

Listing 5.6.: This listing contains the essential parts of the performance benchmark,
whose results will be discussed subsequently. A full version is placed
in the appendix.

Four (representative) tasks/benchmarks, a to d, have been chosen:

• a: Getting both halves of a String and concatenating them again afterwards.
The second half contains k taint ranges which need to be adjusted when ex-
tracting the substring, i.e., their indices need to be shifted to the left. When
combining the strings, the indices need to be adjusted again.

• b: Inserting the untainted string “foobar” at the middle of the string hold by
a StringBuilder. Then removing it again. As the taint ranges are bound to
the last characters, inserting at the middle need them to be adjusted. The

89

5.2. PERFORMANCE BENCHMARKS

same hold true, obviously, for the inverse operation of removing the inserted
characters again.

• c: Replaces the six characters starting from the middle of the string repre-
sented by the StringBuilder with the ones of “foobar”. This is an interesting
scenario as the amount of replaced characters is equal to the length of the
replacement. We will come back to this later.

• d: Reverses the content of a StringBuilder instance twice in a row. This
also causes the taint information to be reversed.

Besides reverse(), these can be considered primitives, building blocks for more
sophisticated string manipulations. Therefore, they seemed to be a good choice.

Micro benchmarks are usually run multiple times until the variance of the mea-
surement undercuts a threshold. A single run should not influence the ones following.
Therefore, these tasks either do not affect the length of a string and the taint in-
formation attached, or additionally contain the inverse operation restoring the old
state.

Every task is run in a taint-aware JVM for every combination of the parameters
regarding string length n and amount of taint ranges k. For the baseline measure-
ments on a taint-unaware JVM k is obviously not varied.

Based on the benchmark class shown in listing 5.6, JMH generates the actual
benchmark application using Java’s annotation processor feature and bundles it
with the framework’s foundations and dependencies.

5.2.2. Results
JMH tries to minimize the influence non-deterministic optimizations, unpredictable
garbage collector runs, etc., have towards the measurements. It therefore has been
configured to run every configuration of the benchmarked tasks in five separately
invoked JVM instances performing five warmup iterations to ensure the JVM has
had enough time to apply its optimizations and just-in-time compilation, followed
by five measured iterations.

The results shown in the figures below are stated in operations per seconds (ops/s).
The bars indicate the average amount of achieved ops/s and the error bars represent
the standard deviation computed. All measured values have been taken into account.
The measured values can also be found in table A.1 and table A.2, located in the
appendix.

The first bar always displays the value measured running inside an untouched
JVM, the other five are run in a taint-aware JVM whereas k indicates the amount of
taint ranges attached to the String/StringBuffer instance the task is performed
on. They contain either 250 (greenish) or 10000 (blueish) characters.

90

5.2. PERFORMANCE BENCHMARKS

0

100

200

300

400

500

600

700

w/o
 Ju

turna: k
=0

k=
0

k=
1

k=
3

k=
10

k=
100

Av
g.

 th
ro

ug
hp

ut
 (o

ps
/s

)

x
10

00
0

task a; n = 250

0
2
4
6

8
10
12
14
16
18
20

w/o
 Ju

turna: k
=0

k=
0

k=
1

k=
3

k=
10

k=
100

Av
g.

 th
ro

ug
hp

ut
 (o

ps
/s

)

x
10

00
0

task a; n = 10000

Figure 5.1.: Results for task a; n = 250 on the left, n = 104 on the right.

0

50

100

150

200

250

300

w/o
 Ju

turna: k
=0

k=
0

k=
1

k=
3

k=
10

k=
100

Av
g.

 th
ro

ug
hp

ut
 (o

ps
/s

)

x
10

00
0

task b; n = 10000

0

500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

w/o
 Ju

turna: k
=0

k=
0

k=
1

k=
3

k=
10

k=
100

Av
g.

 th
ro

ug
hp

ut
 (o

ps
/s

)

x
10

00
0

task b; n = 250

Figure 5.2.: Results for task a; n = 250 on the left, n = 104 on the right.

91

5.2. PERFORMANCE BENCHMARKS

0

1.000

2.000

3.000

4.000

5.000

6.000

7.000

w/o
 Ju

turna: k
=0

k=
0

k=
1

k=
3

k=
10

k=
100

Av
g.

 th
ro

ug
hp

ut
 (o

ps
/s

)

x
10

00
0

task c; n = 250

0

100

200

300

400

500

600

w/o
 Ju

turna: k
=0

k=
0

k=
1

k=
3

k=
10

k=
100

Av
g.

 th
ro

ug
hp

ut
 (o

ps
/s

)

x
10

00
0

task c; n = 10000

Figure 5.3.: Results for task a; n = 250 on the left, n = 104 on the right.

0

2

4

6

8

10

12

14

16

18

w/o
 Ju

turna: k
=0

k=
0

k=
1

k=
3

k=
10

k=
100

Av
g.

 th
ro

ug
hp

ut
 (o

ps
/s

)

x
10

00
0

task d; n = 10000

0

50

100

150

200

250

300

350

400

450

w/o
 Ju

turna: k
=0

k=
0

k=
1

k=
3

k=
10

k=
100

Av
g.

 th
ro

ug
hp

ut
 (o

ps
/s

)

x
10

00
0

task d; n = 250

Figure 5.4.: Results for task a; n = 250 on the left, n = 104 on the right.

92

5.2. PERFORMANCE BENCHMARKS

Overall, the results are no big surprise, indeed, they slightly exceed the expecta-
tions.

At first sight, the diagrams shown below might look disillusioning as the over-
heads added by the taint tracking system for a given configuration are constituted
by the difference between its bar and the baseline bar. But one has to consider
some important aspects when interpreting them: Taint tracking at runtime never
comes for free, it always causes a computational overhead and an enlarged memory
footprint. As a simple approximation in order to classify the results better: Even
the naive approach of storing taint information in an array of type byte/char can
be expected to approximately double the computation time of primitive operations
like appending, extracting a substring, inserting and deleting for strings of a suffi-
cient length. This can be assumed as the operations, mostly copying and allocating
memory, performed on the internal char[] need to be performed more or less anal-
ogously on the array containing the taint information8. Implementations like the
one of Chin and Wagner [40] are assumed to be approximated by this, achieving
halve of the ops/s of the baseline configuration. This is represented by the reddish,
dotted line in the diagrams.

In case of k ∈ {1, 3, 10} and n = 104, performance is at least similar to the naive
approximation for all tasks. Admittedly, the naive approach would be capable of
handling a different taint source per character – but this is not to be expected in
real use cases.

The concept of taint ranges is much more sophisticated than a simple “shadow
array”, e.g., it requires checks whether ranges inserted collide with existing ones,
making it more costly. On the other hand, taint ranges consume much less memory
than the naive approach does, as it has been shown before in section 4.2.3. This
represents a trade-off regarding time and space complexity.

In most of the tasks benchmarked, the logic for manipulating the internal char[]
is very simple and can be performed blazingly fast9. The computation time of the
given tasks is the sum of the time needed for the actual string manipulation and
the time it takes to update the taint ranges – making the actually not too slow
management of the taint ranges look bad regarding its huge relative share of the
total computation time needed. This relation becomes clearly visible when looking
at the values measured for n = 104. The costs adjusting the taint information
stays the same – with the naive approach it would increase linearly – while the
time consumed by the actual string manipulation increases, therefore decreasing the
overhead’s relative share of the total.

Furthermore, this overhead becomes, relatively seen, much smaller when consider-

8For k = 0, the naive approach can make use the idea of Chin and Wagner to not initialize the
taint array. This would eliminate the overhead for this edge case.

9Additionaly, due to the way the initial StringBuilder instances get created, their capacity is
already higher than the length of the string represented. Therefore, operations enlarging the
string do not cause the chars stored internally to be migrated to a bigger char[], avoiding
some copy operations that certainly would occur in a real world situation.

93

5.2. PERFORMANCE BENCHMARKS

ing these tasks as secondary parts of an actual application which might perform some
time consuming calculations, accessing files from a hard disk, querying a database
or requesting some information from a web service. Coming back to the aforemen-
tioned 0− 15% overhead stated by Chin and Wagner [40], similar results should be
achievable by this implementation for real world examples while keeping the memory
usage low(er).

Nevertheless, suggestions to reduce the overhead measured will be presented in
the open problems section, see section 5.4.2.

After putting the measurements into perspective and explaining why there is a
significant overhead, some general observations will be described now.

As the pairs of measurements for k = 0 (with Juturna and without; for all
tasks) show, the additional operations inside the standard classes’ methods, check-
ing whether taint information need to be adjusted or not, cause no overhead. Most
of these checks are not actually necessary, but have been added to prevent overhead
wherever possible. Starting from k = 1, as soon as at least one taint range exists
and the aforementioned checks do not skip adjusting of taint information anymore,
the overhead becomes noticeable.

Obviously, the relation between n and k is of great importance regarding the
overhead caused – but this is not surprising and has already been mentioned when
comparing the memory footprint of taint ranges with the naive’s approach one.

The takeaway is to keep the amount of (different) taint source categories attached
low in order to benefit from merging and to avoid intensive string manipulation on
such strings when possible.

In all scenarios not coming below a certain ratio between n and k, taint ranges are
superior to the naive approach regarding memory usage. This has been elaborated in
section 4.2.3 and the gap between both approaches regarding memory usage is illus-
trated in figure 4.3. Measuring the memory overhead actually occurring during the
benchmarks was not possible. For a configuration like n = 104; k = 100 one would
assume, according to the approximations postulated in section 4.2.3, an additional
memory footprint of roughly 4000 byte (≈ 1000 byte per string operated on times 4)
would be expected after letting Java’s garbage collector remove objects not needed
anymore. Therefore, the amount of memory occupied by the JVMs heap and stack
have been measured using some JVM management functionality once immediately
before (t0) and after (t1) running the benchmarks. Some tricks have been applied
to ensure that the triggered, asynchronously run garbage collector had finished be-
fore retrieving the values. The differences measured between t0 and t1 fluctuated
massively between ±10 mebibyte, making the detection of 4000 byte impossible.

The naive approach (section 4.2.3) would be expected to occupy 4 ∗ 104 byte for
this scenario – admittedly not an amount to worry about. But with applications
holding a lot of huge strings, and there are plenty of them out there, the linear
correlation between n and the amount of memory needed is clearly unfavorable.

94

5.3. COMBINING DYNAMIC AND STATIC ANALYSIS

In order to eliminate all the assumptions regarding plausible values for k and n
made above and to get rid of the aberrations introduced by the benchmark itself,
the next step would be to measure the performance overhead caused by applying
Juturna to real Java EE applications, containing all of the much more time consum-
ing tasks mentioned above. But currently, this is not yet feasible as pointed out in
the foregoing section already.

5.3. Combining dynamic and static analysis
After having shown some benchmarks regarding the prototypical implementation’s
performance and having discussed the results in the last section, the focus of the
last evaluation is to provide a simple example demonstrating how JOANA-Adapter
works and how it can be used to reduce the overhead taint tracking causes by a
selective augmentation approach.

5.3.1. Setup & methodology
The aforementioned performance benchmark is based on JMH – which adds quite
some complexity to the build process, as it generates a lot of code for the benchmark
to be ready. Still, JOANA-Adapter should be able to handle it. But as the current
evaluation is not about measuring performance with maximum precision, it seemed
advisable to present a more concise and understandable example not spanning over
multiple files of source code.

Therefore, a minimal Java SE application, shown in listing 5.7, will be run in a
taint-unaware JVM (a) and in an aware environment. On the taint-aware JVM
it will be run with (c) and without (b) the selective tainting mechanism enabled.
For these three configurations the time needed for computation will be measured.
By this, we will be able to see the effect of the selective taint tracking approach
proposed in this thesis.

95

5.3. COMBINING DYNAMIC AND STATIC ANALYSIS

Listing 5.7.: A minimal Java SE example application used for evaluating the selec-
tive taint tracking approach.

For a no further preparations had to be made. b needs Juturna to be configured
appropriately in order to mark the method getFoobar() as source. The according
(base) configuration is shown in listing 5.9. c requires additional preprocessing in the
form of analyzing the applications bytecode, in this case a single classfile, performed
by the JOANA-Adapter in order to find safe method calls ready to be replaced.

Therefore, the JOANA-Adapter needs to be given a list of sources and sinks
via an extra configuration file. This file is shown in listing 5.8. Based on this
configuration and the classfile compiled from the code shown in listing 5.7, the
JOANA-Adapter computes which method calls’ targets might be replaced. These
then get added to the configuration file used to run scenario c shown in listing 5.10.

Listing 5.8 declares an additional sink to illustrate the concept of selective taint
tracking once more. When enabling line 26 in the source of the benchmark appli-

96

5.3. COMBINING DYNAMIC AND STATIC ANALYSIS

Listing 5.8.: Sink and source given to the JOANA-Adapter.

Listing 5.9.: The base configuration
declaring the taint source.

Listing 5.10.: Extending the base con-
figuration (on the left)
by adding calls to be ad-
justed.

cation, the calls considered safe by the JOANA-Adapter before are not safe any
longer.

Based on the configuration shown in listing 5.10, Juturna’s bytecode instrumen-
tation will modify the bytecode of the run() method by replacing the two calls
pointing to String#concat() with ones to String#___concat() during the pro-
cess of classloading as illustrated in figure 5.5.

The results shown in the next subsection have been computed by running every
configuration of the benchmark in ten separate invocations of the JVM, always
performing one warmup and and one measurement iteration.

97

5.3. COMBINING DYNAMIC AND STATIC ANALYSIS

1 2

Bytecode index

Figure 5.5.: The SelectiveTaintingInstrumenter modifies the call instruc-
tions considered safe by the JOANA-Adapter in the bytecode as the
classfile gets loaded into them JVM.

5.3.2. Results
Figure 5.6 shows the results obtained from this benchmark. The values describe the
average time in milliseconds it took to execute the run() method. The error bars
represent the standard deviation. As reference, the reddish, dotted line represents an
approximation of the time the aforementioned naive approach would need assuming
a sufficient string length. See the last performance benchmark for a more detailed
explanation of this approximation.

98

5.3. COMBINING DYNAMIC AND STATIC ANALYSIS

0

0,5

1

1,5

2

2,5

a: w/o Juturna b: w/ Juturna c: w/ Juturna (selective)

Av
g.

 co
m

pu
ta

tio
n

tim
e

(m
s)

x
10

00
0

Figure 5.6.: Visualization of the average computation time measured for the three
described configurations: a, b and c. A table containing the actual
values can be found in the appendix, see table A.3.

Looking at the diagram, one clearly notices the overhead caused by Juturna (b).
This is caused, as exhaustively treated in the last section, by focussing on an rela-
tively cheap string manipulation operating on a small string in terms of characters
contained.

But of much greater importance is that configuration c took approximately the
same time to complete as a did, proving that the idea of selective tainting is – in
the best case – capable of completely removing the added overhead. With realistic
applications this will not be the case as only a portion of the overhead may be
removed because there certainly will be some security-sensitive data flows. But as
it will not increase it, there is no risk in applying it10.

We have seen that for strings whose length grows faster than the amount of
attached taint ranges, the overhead becomes less noticeable and so does the effect of
selective tainting – but for short ones in applications, or their components, massively
manipulating strings having a (clear) segregation between security-sensitive and
security-insensitive areas it might be massive.

10At least when the analyzed application does not use Java Reflection or similar as they might
create dependences not represented in JOANA’s SDG leading to an incorrect determination of
safe calls.

99

5.4. OPEN PROBLEMS AND POSSIBLE SOLUTIONS

5.4. Open problems and possible solutions
Beside limitations foreseeable at the very beginning of the work and therefore con-
sidered when drafting the concept, some limitations came to light just during the
implementation and evaluation phases. As these shall not be swept under the carpet,
they will be briefly mentioned (again) subsequently and, as far as possible, strategies
to make them less grave will be sketched. Because these suggestions might go beyond
the scope of this thesis, they shall be understood as possible future improvements
to the ideas and concepts presented in here – which also distinguishes this section
from the “outlook” chapter presenting additional features that might be added, not
improvements to already existing ones.

The current limitations and weak spots can be split into two major groups: ones
related to the (conceptual) capabilities of the taint tracking system itself and ones
belonging to the additions making it “selective”.

5.4.1. Limitations of string-level taint tracking (and how static
checks can help)

As extensively discussed in the concept chapter, taint tracking on a string-level has
certain assets and one major drawback: as soon as an implementation decides to
operate on the char-level, tracking taint information is not possible any longer. The
system is blind to these flows. This limitation is inherent to the concept, but there
are ways to mitigate, or at least estimate, the application-specific severity of this
“blindness” by using the capabilities of the already included static analysis.

To ensure, such loss of taint information does not occur in the standard library
classes themselves, all contained functionality operating on the character-level needs
to be augmented. Beside the foundations adjusted so far, there are some more (easy
to find) packages/classes requiring to be checked. These include java.net.UrlEn-
code, java.text.*, java.util.Formatter.

Functionality could be included into the JOANA-Adapter checking whether an ap-
plication invokes problematic functions like String#charAt() or AbstractString-
Builder#setCharAt() in code not being provided by the runtime environment and
therefore not being augmented already. With precise and clear logs a security en-
gineer might then be able to check these calls, assess them (manually) and act
accordingly: e.g., by augmenting them manually or by refraining from operating on
such a low level in case performance is not crucial at this spot.

Usage of char and char[] in application specific code could also be detected
easily. This way, the amount of code still needing to be scanned by a developer, in
order to assure no injections will happen, can be reduced. Admittedly, it might not
go down to zero.

This static check spotting code not playing well with the presented taint tracking
system might be extended further to be able to detect the (probably rare) usage of

100

5.4. OPEN PROBLEMS AND POSSIBLE SOLUTIONS

Java specifics like String#intern() (see section 3.5.2). This could either be imple-
mented on top of JOANA in the JOANA-Adapter or as custom configuration/plugin
for software like the popular FindBugs11 tool. As the author is aware, this would
be another new way of using static analyses in order to create better taint tracking
systems.

Another proposal targeting these “dangerous” calls are the already implemented
implicit sources, but they are less holistic and may cause noise – and therefore are,
admittedly, not usable at all the places where characters “without a history” become
part of a string.

5.4.2. Better performance through more efficient taint ranges
As we have seen when discussing the results of the performance benchmark, the
decrease in terms of speed when operating on strings with a unfavorable ratio be-
tween taint ranges and length is significant. This is because several checks have to
be performed when adding another taint range to a TaintInformation container
holding a sorted list already populated. Depending on the operation performed to
the string a lot of ranges might need adjusting: e.g., appending string b to a requires
all ranges attached to b to be shifted in order to be appended to the TaintInforma-
tion container bound to a. All this is expensive – especially in comparison to simple
and cheap manipulations on short strings basically just copying characters from one
char[] to another – although, the algorithms have been thoughtfully implemented.

Therefore, in order to address these performance issues additional effort needs to
be spent optimizing the concept and implementation of the taint ranges. One idea
is to combine taint ranges with the naive array approach, switching to the latter
as soon as the amount of taint ranges reaches a certain threshold12. Another very
promising approach is the not yet implemented idea of lazy evaluating taint ranges.

Right now, as aforementioned, adding another taint range causes checks and ad-
justments to be done. But usually taint ranges get added, shifted or overridden way
more often than they get evaluated, which basically only happens at sinks. And in
case a string does not reach a sink – this actually might be the common case – the
taint state is not even retrieved once. Therefore, it seems a good idea to skip some
of these checks and adjustments – consciously offending the currently enforced in-
variants regarding sorting and overlapping – at the time of adding and instead lazily
compute the taint state at evaluation time. At retrieval, these “temporary” and “mis-
behaving” taint ranges can get adjusted in order to fulfill the invariants mentioned,
providing a valid taint state. This should help reducing the performance overhead
massively. The problem of too many temporary taint ranges attached might be
handled by enforcing the taint ranges to be aligned after every k additions.

11http://findbugs.sourceforge.net/
12This would make the system “hybrid” in another sense.

101

http://findbugs.sourceforge.net/

5.4. OPEN PROBLEMS AND POSSIBLE SOLUTIONS

5.4.3. Limitations regarding Java EE
The limitations regarding selective tainting are mostly contained in the JOANA-
Adapter – simply because the second step, adjusting the bytecode to call an unaug-
mented method, is a much simpler task than deciding which calls can be guaranteed
to not be invoked on security-sensitive instances of taint-aware types.

Especially when moving from Java SE applications to Java EE web applications,
problems arise. JOANA, respectively the underlying WALA project, operates on
classfiles, which – at least in the domain of Java SE applications – can be expected
to be available before runtime. But with Java EE web applications a lot of logic
might be implemented in JavaServer Pages (JSP). These are basically HTML pages
with Java code embedded in special tags getting compiled to servlets (in the form
of JVM bytecode) by the Java EE servlet container directly before being loaded
into the JVM. Although it is possible to compile them using tools contained in the
Java Development Kit (JDK), this makes the process much more difficult as there
are further configurations that need to be considered during this step, like libraries
introducing additional tags that might be used in the JSP files.

Additionally, Java EE servlet containers tend to introduce additional complexity
to the process of classloading in order to provide functionality like automatically
reloading servlets as soon as modifications have been detected (“hot swap”).

The principle of dependency injection adds further problems: the runtime envi-
ronment/framework provides the application with an implementation of its choice
fulfilling a declared interface, making the application more portable. This is a com-
mon pattern used in Java EE applications. In order to make sure JOANA/WALA
loads a web application in the same way it would be loaded by the servlet container,
resolving references to further classfiles has to happen in the same way – this ba-
sically means, that the behavior of the servlet container’s classloaders needs to be
imitated. The same holds true for the dependency management mechanism. This
is possible, but will take some serious amount of effort.

These are mainly problems for static approaches, as taint tracking operates
on a lower level not needing to be aware of this – still, Javassist, the library
used for adding sources and sinks during classloading by instrumenting the
bytecode, also suffers from this. When modifying the bytecode of a classfile
it tries to resolve imports in order to know about types declared in other files
but used in the current one. This is basically the same problem as described
above, but as it occurs at runtime during classloading there should be ways to
(simply) reuse the classloaders of the surrounding servlet container. As an alterna-
tive, one could replace Javassist with a bytecode manipulation library not needing
to look up other classes (e.g., by operating on a lower level without semantic checks).

Another problem is that JOANA does not support Java Reflection and therefore
its SDG does not represent any (data) dependencies, new objects, additional imple-
mentations of a type, etc., introduced by this technology. Reflection is a massive
problem for any static analysis library as it results in runtime behavior not explicitly

102

5.4. OPEN PROBLEMS AND POSSIBLE SOLUTIONS

represented by opcodes in the bytecode – but there are tools stating to be capable
of this, like the static taint analysis tool presented by Huang et al. [48]. In the
case of the JOANA-Adapter, this can lead to call nodes being considered safe erro-
neously – making the whole approach unsound and incorrect. As an example, think
of a StringBuilder instance to which a tainted string gets appended by calling
append() via Reflection – the instance is tainted but JOANA would not be able to
see this.

As mentioned before, the usage of Reflection is popular in modern frameworks
for web applications making this a problem that needs to be resolved by either
adding support for handling Reflection to the underlying static analysis toolchain
or by having a security engineer manually check that Reflection does not influence
the calls determined to be safe.

The bigger an application gets, the bigger the SDG created by JOANA becomes.
The complexity of the computations performed by JOANA and the growth of the
SDG in combination with limited memory prevents its usage on applications of ar-
bitrary size. The project page states that full Java is supported up to 100kLOC [65].

One last problem to mention is, that JOANA needs to be given an entry point
of the application to analyze. As JOANA computes which objects get created and
in which order this might happen, no instances should have been created before
entering this entry point. With a standard Java SE application this entry point
is, per convention, the main() method of a stated class. But with Java EE web
applications running inside a servlet container, this entry point may be in the
container itself as it receives the actual requests and then delegates them to the
various servlets of the web application. To be brief – with Java EE and some
frameworks one can create almost arbitrarily complex set-ups.

These problems and the coupled difficulties are not the fault of JOANA, it is
simply the complexity caused by patterns common in the domain of Java EE
making it not the ideal area of application for static analysis mechanisms. They
have not been designed for such scenarios and work great for smaller, standalone
components. Dependency injection, Reflection, etc. are not transparent for static
analysis and need plenty of adjustments13 – but they are transparent for the taint
tracking mechanism of Juturna, causing only minor problems.

But also the taint tracking prototype implemented so far suffers from the enor-
mous complexity introduced by modern web frameworks like Spring. Nowadays,
actual code written gets abstracted from the Java Servlet Specification, e.g., by us-
ing annotations in order to declare HTTP endpoints, making it much more difficult
to annotate sources of taint. Simply sticking to the ones derived from the specifi-

13Huang et al. describe Reflection and (web) frameworks as “the bane of static taint analysis”
[48].

103

5.4. OPEN PROBLEMS AND POSSIBLE SOLUTIONS

cation, which are hidden inside the framework, does not work well in all cases as
the framework might apply some character-level operations to the values retrieved
from them: automatically parsing and converting a received JSON payload to a
Java object, parsing URL parameters, etc..

When evaluating whether weaknesses in web applications can be found using Ju-
turna in section 5.1, the problem of precisely addressing a sink arose. In that case,
the Java Servlet Specification stated that HTTP responses need to send by calling
write() on an instance of PrintWriter, which is a popular class extended by many
classes used in completely different contexts, received by calling ServletRespon-
se.getWriter(). Using abstract types and interfaces for the specification of APIs
is considered a good practice in software development – but in this context it causes
problems. Declaring a method on a popular supertype as “inheriting sink” with-
out unintentionally instrumenting the method on subtypes, but without being to
specific and possibly missing other implementations due to polymorphism requires
some knowledge about the used framework/servlet container. Both problems apply
to sources as well as sinks.

A possible solution is, as already mentioned when introducing source level aug-
mentation, to analyze the behavior of a framework/servlet container and to augment
its code, adding source code marking strings as tainted at the appropriate places.
This basically follows the principle of augmentation applied to the standard library.

Another suggestion therefore is to rethink the concept of (declaring) sources and
sinks and making it more flexible. A very powerful enhancement would be to support
sources not returning an instance of a taint-aware type, e.g., an object encapsulating
a string or, referring to the problem above, a PrintWriter instance, in a way to
wrap the returned object by a proxy created via Reflection. This proxy would than
pass through all calls and field accesses – therefore able to take care of tainting
returned values and taint checking values given as parameters without knowing
which concrete (sub)type actually has been wrapped.

This problem of precisely marking sinks and sources in complex systems has, to
the knowledge of the author, not been handled by any of the publications describing
similar systems so far.

104

6. Conclusion

6.1. Summary
In this thesis, a pluggable, lightweight and selective taint tracking system for Java
has been drafted, implemented and evaluated. Motivated by the imminent danger
coming from injection attacks and the harm they might cause – to companies and
individuals – and former research pointing out the applicability of taint tracking
regarding the detection of attacks belonging to this class, the taint tracking system
Juturna has been designed and prototyped. It tries to provide Runtime Application
Self-Protection for real Java (EE) (web) applications in the long term with injection
attacks and business requirements in mind.

Juturna employs the well-known dynamic analysis of taint tracking, following
concepts presented by other researchers while often enhancing them, beside also
introducing many new ideas. Taint tracking immanently causes a runtime overhead
– regarding computational and memory requirements. Juturna tries to reduce them
by applying the concept of “taint ranges” – novel to the domain of Java taint
tracking – instead of the common “shadow arrays” for a reduced memory usage
when attaching taint information to strings. It also adds more flexibility regarding
the kind and amount of metadata that can possibly be attached. Additionally, a
new take on the integration of static, PDG-based IFC analysis mechanisms makes
Juturna a hybrid system using static and dynamic IFC techniques – but with a
strong focus on dynamic taint tracking.

Analyzing the usage scenario and the way injection attacks work, tracking
only string-like data seemed to best fit the requirements: potentially capable of
capturing the vast majority of injection attacks while keeping the to be expected
overhead within reasonable bounds. The issues resulting from this choice have
been discussed and countermeasures have been suggested. We saw the unfavorable
imprecisions/false-positives tainting with a string-granularity might result in,
therefore deciding to implement an approach with character-granularity.

From several possible implementation strategies for the core of the taint tracking
system, augmenting the source code of the Java standard library has been cho-
sen. The string-like classes, java.lang.String, java.lang.StringBuilder and
java.lang.StringBuffer have been given a new field representing their respective
taint state. Additionally, the methods of these classes, among others, have been

105

6.1. SUMMARY

enhanced/augmented in order to correctly propagate the taint information along
during the application’s execution. This approach enables the usage of taint ranges,
is easy to maintain and very portable due to the fact that the JVM used for running
applications does not need to be modified. This is done by “injecting” a modified
version of the standard library.

Beside the advantages of this technique, we also discussed its downsides – most
noteworthy the missing ability to track taint for primitive chars or arrays containing
them and risk of losing taint information this way.

Additionally, a bytecode instrumentation component is included in Juturna in
order to adjust declared sources and sinks in an application’s bytecode on-the-fly
without the need to modify its source code. Juturna therefore fulfills the formulated
requirements regarding portability and being pluggable. The secondary goals of
being configurable, extendable and easy to maintain have been present during the
whole process of sketching and implementing and have been met.

Motivating the idea of selective taint tracking, it has been worked out that many
information flows in an application are actually not security-sensible by either not
being influenced by a source or by not flowing into a sink – and therefore do not
need to be tracked. By including a preprocessing step utilizing static analysis
mechanisms, these are determined and tracking instructions can be removed by
another on-the-fly bytecode manipulation. Although there has been research done
before regarding hybrid approaches, Juturna shows a new way of including static
analysis helping the dynamic taint tracking analysis to be more efficient.

In three evaluation scenarios the prototype of Juturna has been evaluated regard-
ing its ability to find weaknesses promoting reflected XSS attacks in small Java EE
servlets, the performance of the core taint tracking system and the basic operability
of the selective taint tracking extension. The prototype was able to detect the flaws
and to interoperate with an Apache Tomcat as Java EE servlet container and it
showed a reasonable performance compared to an approximated baseline implemen-
tation using the naive concept of arrays for storing taint information. In addition,
we saw the potential of the hybrid tainting approach – even though the prototype’s
capabilities are yet limited.

Although many issues and ideas for improvements came up during this phase,
the evaluation’s results are quite promising altogether. Even some first, positive
feedback has been received from a team at SAP working on the Cloud Platform
solution1, interested in integrating the results of this work into their product with
the goal of developing it further in order to provide enhanced security features to
their customers. This shows, the project is headed in the right direction.

1SAP Cloud Platform is a PaaS providing, among others, an environment compliant with the
Java EE web profile.

106

6.2. DISCUSSION

6.2. Discussion
During drafting and implementation, many decisions had to be taken determining
the further course of the project. After finishing the work on a first prototype, and
with some evaluations performed, it is time to look at those in hindsight.

The main characteristics of a taint tracking system are how it tracks which in-
formation on what granularity level. Deciding between a bytecode instrumentation
approach or the, ultimately chosen, augmentation on source level was not easy as
both have their respective advantages and disadvantages.

In retrospect, using bytecode instrumentation not only for explicit sources, sinks
and sanitization functions, but for the whole taint tracking system would eliminate
the need to manually adjust all methods of the standard library2 operating on prim-
itive chars. But as this is basically a onetime task3 it should be achievable by a
team of developers in short time, depending on the complexity and amount of li-
braries/frameworks linked to an application. The ground work has already been
done.

On the other hand, a bytecode instrumentation would be a much more generic,
“steamroller tactic” not tacking available context information into account. Addi-
tionally, the concept of taint ranges could hardly be applied then.

In the given scenario, tracking taint information only for strings, one therefore
can consider augmentation to be the better technique – also in hindsight. Especially,
once it will be equipped with a static code check mechanism raising a developer’s
attention in case of problematic code, e.g. charAt(), spotted (see section 5.4.1).
Although it is justified to assume, only usage in real-world scenarios can show
whether string-level granularity is sufficient and whether the trade-off between the
limitation on tracked data types and the reduced overhead caused will pay off.

As extensively discussed in section 5.4.3, static IFC – and therefore also the
selective approach presented – massively struggles with the complexity and flexibil-
ity introduced by modern web frameworks. Taint tracking is less affected by this,
as most of the mechanism problematic for its static companion are transparent
to it (e.g., Java Reflection, dependency injection). But beside all the problems
introduced by modern web frameworks regarding the detection of injection attacks,
one should not forget that they already fix a lot of vulnerabilities by adding
validation, escaping and enforcing the observance of some common patterns for
more readable and maintainable code.

In the preceding evaluation, benchmarking Juturna’s taint tracking mechanism,
a significant overhead could clearly be measured – but in a kind of worst-case sce-

2In a bussiness scenario, some project dependencies, e.g., libraries and frameworks, probably also
need to be taken care of.

3Updates to the standard library classes of Java are expected to, if at all, only add functionality.
Updates to libraries might require some more adjustments.

107

6.3. OUTLOOK

nario for the system because all the benchmark did was manipulating strings. As
explained, the overhead can be expected to be much less striking in real-world ap-
plications performing not only string manipulations.

This leads to the question whether the effort needed to enhance the successfully
tested selective extension in order to get over all the (unexpected) problems arose
in the context of Java EE, is worth the decreased, but presumably already very low,
overhead in real-world settings. For string-only tracking the answer to this question
might possibly be “no”. Taking the idea itself and combining it with another taint
tracking system, not only looking at strings and therefore causing a much bigger
overhead, the answer might be “yes”. But in order to properly answer this, the
assumptions regarding Juturna’s real-world overhead needs to be verified first.

But, and this can be seen as an advantage over the hybrid approaches of
Mongiovì et al. [45] and Zhao et al. [46], the selective extension does not have to
be applicable to a (complex) application in order for the dynamic taint tracking to
work, as they have been, on purpose, very loosely coupled. In case an application
massively uses techniques like Reflection, the preceding analysis might simply be
skipped. Additionally, it should be possible to only use the selective mechanism for
isolated, performance-critical components in such a web project.

Nevertheless, for “general-purpose” taint tracking systems not focussing on strings
only, one can firmly assume that hybrid approaches, combining the best of both
worlds, are the way to go in order to get the best results both taking detection rates
and performance into account.

6.3. Outlook
A lot of suggestions on how to improve the current prototype of Juturna have been
made already when discussing open issues and possible solutions in section 5.4. Es-
pecially assistance on spotting code operating on primitive chars and the described
improvements towards the concept of taint ranges seem very promising and should
be tackled in followup projects.

Additionally, in order to improve the applicability of Juturna in the context of
complex web applications, the mechanism for declaring sources and sinks should be
enhanced and a comprehensive base configuration declaring the sources and sinks
relevant for Java EE servlets should be provided.

Beside these improvements, enhancing already existing functionality, further
extensions could be made.

Such extensions could possibly be to make taint information persistent by, e.g.,
not only storing values but also taint information in a database. A simple approach
towards this would be to adjust the database driver in Java in order to have it
rewrite queries before submitting them. By this, taint information could then be
stored in “shadow columns” or “shadow tables”, at least partially transparent to not

108

6.3. OUTLOOK

taint-aware other applications.
This would be a step towards inter-system, inter-platform taint tracking as differ-

ent systems would be able to exchange not only data, but also the attached taint
information. Taking this idea further, also HTTP could be leveraged to not only
transport data between a browser and a web server, or between micro services, but
also taint information.

Such an “end-to-end” approach could make detection of reflected XSS more pre-
cise – as sinks inside a browser could be used for checking instead of marking the
HTTP response as sink – avoiding “false-positives”4. The browser could then decide
whether this is harmful or not. Being able to persist taint information, this can also
be extended to the detection of persistent XSS.

It would combine different applications and platforms into one big, abstract sys-
tem covered by a virtual, highly dynamic taint tracking system consisting of multiple
ones interoperating under the hood. This would not be feasible using purely static
IFC based approaches – but they might be integrated as part of a hybrid approach.

First preliminary investigations regarding persistent and end-to-end taint track-
ing in the context of adjusted, taint-aware versions of Node.js, Mozilla Firefox and
SQL-databases have been done by the cooperating department at SAP under the
lead of Dr. Martin Johns.

It could also be evaluated for which other fields of application the taint tracking
system developed might be used, respectively whether its capabilities would be
sufficient for use cases like the assertion of access permissions or the enforcement of
privacy policies restricting the usage of an individual’s personal information, e.g.,
within a system for Customer Relationship Management (CRM), in the context of
data privacy.

Irrespective of followup extensions and improvements to Juturna, my conclusion
regarding the usage of IFC mechanisms for the detection of injection vulnerabilities
and my estimate regarding its future development are as follows: IFC seems to
be the perfect solution for this type of problem. There is no other approach for
the detection of this broad class of partly complex weaknesses being as qualified
as IFC – even so both dynamic and static approaches have drawbacks, especially
when dealing with modern web applications. But these can be, at least partially,
compensated by combined, hybrid approaches. There is still a lot of work to do, but
I am sure that hybrid approaches building up on the insights presented in this work
are the future.

4Following the definition of a malicous flow given earlier, those would not be false-positives as
there is an actual flow from a source to a sink. But, with further context-specific knowledge
and more specific sinks and sources, more precise real-world detection results can be achieved.

109

A. Appendix
The image on the title page is public domain and has been taken from https:
//www.pexels.com/photo/aroma-aromatic-bean-beans-261463/.

Benchmark (task) Configuration Avg. ops/s Std. deviation SF
a w/o Juturna: k=0 5 901 283.12 189 891.34 1.000

k=0 6 095 377.79 159 453.71 0.968
k=1 2 904 112.00 47 739.55 2.032
k=3 2 549 839.14 37 814.54 2.314
k=10 1 793 320.11 23 219.89 3.291
k=100 304 848.51 6 281.16 19.358

b w/o Juturna: k=0 35 246 220.96 491 093.15 1.000
k=0 33 608 075.49 1 605 776.05 1.049
k=1 3 382 186.49 163 048.06 10.421
k=3 3 010 376.46 38 737.98 11.708
k=10 2 004 764.66 55 672.52 17.581
k=100 317 842.93 5 258.20 110.892

c w/o Juturna: k=0 57 477 632.43 1 918 390.73 1.000
k=0 54 631 253.91 893 137.95 1.052
k=1 6 321 667.11 85 144.57 9.092
k=3 5 663 686.09 136 420.19 10.148
k=10 4 627 192.62 74 310.66 12.422
k=100 944 783.87 10 789.87 60.837

d w/o Juturna: k=0 3 562 222.76 70 092.24 1.000
k=0 3 776 332.18 61 439.52 0.943
k=1 2 743 547.55 42 430.86 1.298
k=3 2 556 040.12 33 835.66 1.394
k=10 2 054 137.24 27 331.60 1.734
k=100 365 662.08 12 236.93 9.742

Table A.1.: Average throughput in operations per second with n = 250. SF de-
scribes the slowdown factor of a given configuration compared to the
baseline (w/o Juturna: k = 0).

111

https://www.pexels.com/photo/aroma-aromatic-bean-beans-261463/
https://www.pexels.com/photo/aroma-aromatic-bean-beans-261463/

Benchmark (task) Configuration Avg. ops/s Std. deviation SF
a w/o Juturna: k=0 186 854.63 2 020.05 1.000

k=0 187 033.04 1 994.16 0.999
k=1 178 404.95 1 420.43 1.047
k=3 177 778.85 2 874.39 1.051
k=10 169 396.85 2 154.92 1.103
k=100 118 026.72 1 109.23 1.583

b w/o Juturna: k=0 2 394 708.04 26 689.62 1.000
k=0 2 455 809.99 34 757.04 0.975
k=1 1 497 452.75 71 775.52 1.599
k=3 1 398 813.64 29 801.17 1.712
k=10 1 150 497.05 40 313.69 2.081
k=100 293 841.86 3 920.34 8.150

c w/o Juturna: k=0 4 659 760.11 67 221.49 1.000
k=0 4 894 947.01 37 337.28 0.952
k=1 2 807 368.73 28 983.78 1.660
k=3 2 678 625.75 36 349.81 1.740
k=10 2 426 939.25 33 335.55 1.920
k=100 809 156.24 9 706.05 5.759

d w/o Juturna: k=0 151 423.83 1 911.47 1.000
k=0 150 578.89 1 598.92 1.006
k=1 144 188.66 4 886.38 1.050
k=3 147 471.60 6 324.63 1.027
k=10 142 843.56 6 091.06 1.060
k=100 111 390.12 1 374.05 1.359

Table A.2.: Average throughput in operations per second with n = 104. SF de-
scribes the slowdown factor of a given configuration compared to the
baseline (w/o Juturna: k = 0).

Avg. computation time (ms) Std. deviation SF
W/o Juturna 6 552.900 58.966 1.000
W/ Juturna 22 587.960 427.898 3.447
W/ Juturna (selective) 6 519.500 50.871 0.995

Table A.3.: Computation times in milliseconds measured and averaged over 10 runs
for three different configurations: Java without Juturna, Java with Ju-
turna and Java with selective taint tracking. SF describes the slowdown
factor of a given configuration compared to the baseline (w/o Juturna).

112

1 @Warmup(i t e r a t i o n s = 5)
2 @Fork (5)
3 @BenchmarkMode(Mode . Throughput)
4 @Measurement (i t e r a t i o n s = 5)
5 @State (Scope . Benchmark)
6 pub l i c c l a s s JuturnaBenchmark {
7 @Param({”250” , ”10000”})
8 s t a t i c i n t LEN;
9

10 @Param({”0” , ”1” , ”3” , ”10” , ”100”})
11 s t a t i c i n t TAINT_RANGES;
12
13 St r ing str_a ;
14 S t r i n g B u i l d e r sb_b ;
15 S t r i n g B u i l d e r sb_c ;
16 S t r i n g B u i l d e r sb_d ;
17
18 @Setup
19 pub l i c void setup () {
20 str_a = g e t I n i t i a l S t r i n g (TAINT_RANGES) . toSt r i ng () ;
21 sb_b = g e t I n i t i a l S t r i n g (TAINT_RANGES) ;
22 sb_c = g e t I n i t i a l S t r i n g (TAINT_RANGES) ;
23 sb_d = g e t I n i t i a l S t r i n g (TAINT_RANGES) ;
24 }
25
26 pr i va te s t a t i c S t r i n g B u i l d e r g e t I n i t i a l S t r i n g (i n t containedTaintRanges) {
27 S t r i n g B u i l d e r sb = new S t r i n g B u i l d e r () ;
28
29 f o r (i n t i = 0; i < LEN; i++) {
30 sb . append (”a”) ;
31 }
32
33 i f (THelper . isTaintAwareContext () && containedTaintRanges > 0) {
34 Taint In format ion t i = THelper . get (sb) ;
35 f o r (i n t i = 0; i < containedTaintRanges ; i++) {
36 i n t s t a r t = sb . l ength () − containedTaintRanges + i ;
37 t i . addRange (s ta r t , s t a r t + 1 , (short) i) ;
38 }
39 }
40
41 return sb ;
42 }
43
44 @Benchmark
45 pub l i c void a () {
46 str_a = str_a . s ub s t r i n g (0 , LEN / 2) . concat (str_a . s u b s t r i n g (LEN / 2)) ;
47 }
48
49 @Benchmark
50 pub l i c void b () {
51 sb_b . i n s e r t (LEN / 2 , ” foobar ”) ;
52 sb_b . d e l e t e (LEN / 2 , LEN / 2 + 6) ;
53 }
54
55 @Benchmark
56 pub l i c void c () {
57 sb_c . r ep l a ce (LEN / 2 , LEN / 2 + 6 , ” foobar ”) ;
58 }
59
60 @Benchmark
61 pub l i c void d () {
62 sb_d . r e v e r s e () . r e v e r s e () ;
63 }
64 }

Listing A.1.: The complete source of the benchmark discussed in section 5.2.2.
Still, supplementary code, like assertions in the “tear-down” phase
ensuring taint information has been propagated correctly during the
benchmark, has not been printed. 113

List of figures

2.1. Example of a reflected XSS attack 9
2.2. Example of source and sink in a “servlet” 16

3.1. The -Xbootclasspath parameter 31
3.2. Usage of the -javaagent parameter 32
3.3. The idea behind “selective taint tracking” 42

4.1. The various components of Juturna 47
4.2. Classes in sap.com.juturna.taintStorage 48
4.3. Space requirements of taint ranges compared with naive approach . 52
4.4. Classes contained in the com.sap.juturna.agent package 62
4.5. Classes contained in com.sap.juturna.taintCheck 67
4.6. Schematic overview of the components realizing selective tainting . 71
4.7. Example demonstrating the “funneling problem” of the selective ap-

proach . 73

5.1. Results of the performance benchmark, task a 91
5.2. Results of the performance benchmark, task b 91
5.3. Results of the performance benchmark, task c 92
5.4. Results of the performance benchmark, task d 92
5.5. Example of the bytecode manipulation done as part of the selective

tainting approach . 98
5.6. Computation time measured for the selective taint tracking evaluation 99

115

List of listings

2.1. Example for a DOM-based XSS attack 10

3.1. A Java snippet losing taint information 25
3.2. Example for a false-positive due to string-level granularity 27
3.3. Snippet illustrating problems caused by String#intern() 35
3.4. Pseudocode showing the idea behind selective taint tracking 44

4.1. Example for augmentation in java.lang.AbstractStringBuilder 58
4.2. Example of bytecode instrumentation functionality 65
4.3. Example of a configuration using advanced options for sink instru-

mentation . 67
4.4. Example of a einserted method as required for selective taint tracking 72
4.5. JOANA-Adapter’s analyze() function 77

5.1. First example from SecuriBench Micro benchmark suite 84
5.2. Second example from SecuriBench Micro benchmark suite 84
5.3. Configuration used to detect vulnerabilities contained in test cases . 85
5.4. Emitted log messages for first test case. 86
5.5. Emitted log messages for second test case. 86
5.6. Shortened code of the performance benchmark 89
5.7. Example application for the evaluation of the selective approach . . 96
5.8. List of sources and sinks for JOANA-Adapter for evaluation of the

selective approach . 97
5.9. Juturna’s base configuration for the selective taint tracking evaluation 97
5.10. Extension to the base configuration for the selective taint tracking

evaluation . 97

A.1. Complete code of performance benchmark 113

117

List of tables

4.1. Augmented standard classes . 53
4.2. Augmented methods in java.lang.String 55
4.3. Augmented methods in java.lang.AbstractStringBuilder and

related classes . 56
4.4. Methods in java.lang.String ready for being replaced by selective

approach . 74

A.1. Benchmark results measuring the performance of Juturna (n = 250) 111
A.2. Benchmark results measuring the performance of Juturna (n = 104) 112
A.3. Benchmark results for selective tainting 112

119

List of abbreviations
AOP Aspect Oriented Programming . 18
CWE Common Weakness Enumeration . 6
CWE Common Weakness Enumeration . 6
FQN Fully Qualified Name . 4
GPL GNU General Public License . 53
IFC Information Flow Control .41
JDK Java Development Kit . 102
JMH Java Microbenchmarking Harness . 87
JRE Java Runtime Environment . 3
JSON JavaScript Object Notation . 62
JSP JavaServer Pages . 102
JVM Java Virtual Machine . 5
OWASP Open Web Application Security Project . 1
PaaS Platform as a Service . 24
PDG Program Dependence Graph . 12
RASP Runtime Application Self-Protection . 16
SDG System Dependence Graph . 43
VCS Version Control System . 45
XSS Cross-site Scripting . 1

121

Literature & References
[1] The Open Web Application Security Project (OWASP). Unvalidated Input.

22 April 2010. url: https : / / www . owasp . org / index . php ? title =
Unvalidated_Input&oldid=82263 (visited on 12/12/2017).

[2] The Open Web Application Security Project (OWASP). OWASP Top 10 -
2017 RC2. October 2017. url: https://github.com/OWASP/Top10/raw/
master/2017/OWASP%20Top%2010%202017%20RC2%20Final.pdf.

[3] Sebastian Lekies, Ben Stock and Martin Johns. “25 million flows later: large-
scale detection of DOM-based XSS”. In: Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security. ACM. 2013, pp. 1193–
1204.

[4] Vivek Haldar, Deepak Chandra and Michael Franz. “Dynamic taint propaga-
tion for Java”. In: Proceedings - Annual Computer Security Applications Con-
ference, ACSAC. 2005, pp. 303–311. doi: 10.1109/CSAC.2005.21.

[5] William G. J. Halfond and Alessandro Orso. “AMNESIA: Analysis and Mon-
itoring for NEutralizing SQL-injection Attacks”. In: Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineering.
ASE ’05. Long Beach, CA, USA: ACM, 2005, pp. 174–183. doi: 10.1145/
1101908.1101935.

[6] Wikipedia. Juturna — Wikipedia, The Free Encyclopedia. url: https://en.
wikipedia.org/w/index.php?title=Juturna&oldid=778284943 (visited
on 18/11/2017).

[7] Oracle. Differences between Java EE and Java SE - Your First Cup: An In-
troduction to the Java EE Platform. 2012. url: https://docs.oracle.com/
javaee/6/firstcup/doc/gkhoy.html (visited on 23/01/2018).

[8] Oracle. Java Platform, Enterprise Edition: The Java EE Tutorial, Overview.
2014. url: https://docs.oracle.com/javaee/7/tutorial/overview.htm
(visited on 23/01/2018).

[9] David Delabassee. Opening Up Java EE - An Update. 12 September 2017. url:
https://blogs.oracle.com/theaquarium/opening-up-ee-update (visited
on 23/01/2018).

[10] Shing Wai Chan and Ed Burns. Java Servlet Specification, Version 4.0. July
2017. url: https : / / javaee . github . io / servlet - spec / downloads /
servlet-4.0/servlet-4_0_FINAL.pdf.

123

https://www.owasp.org/index.php?title=Unvalidated_Input&oldid=82263
https://www.owasp.org/index.php?title=Unvalidated_Input&oldid=82263
https://github.com/OWASP/Top10/raw/master/2017/OWASP%20Top%2010%202017%20RC2%20Final.pdf
https://github.com/OWASP/Top10/raw/master/2017/OWASP%20Top%2010%202017%20RC2%20Final.pdf
https://doi.org/10.1109/CSAC.2005.21
https://doi.org/10.1145/1101908.1101935
https://doi.org/10.1145/1101908.1101935
https://en.wikipedia.org/w/index.php?title=Juturna&oldid=778284943
https://en.wikipedia.org/w/index.php?title=Juturna&oldid=778284943
https://docs.oracle.com/javaee/6/firstcup/doc/gkhoy.html
https://docs.oracle.com/javaee/6/firstcup/doc/gkhoy.html
https://docs.oracle.com/javaee/7/tutorial/overview.htm
https://blogs.oracle.com/theaquarium/opening-up-ee-update
https://javaee.github.io/servlet-spec/downloads/servlet-4.0/servlet-4_0_FINAL.pdf
https://javaee.github.io/servlet-spec/downloads/servlet-4.0/servlet-4_0_FINAL.pdf

[11] Oracle. Your First Cup: An Introduction to the Java EE Platform. 2017. url:
https : / / javaee . github . io / firstcup / java - ee002 . html (visited on
24/01/2018).

[12] The Common-Weakness-Enumeration Project. CWE-74: Improper Neutral-
ization of Special Elements in Output Used by a Downstream Component
(’Injection’). 5 May 2017. url: https://cwe.mitre.org/data/definitions/
74.html.

[13] The Common-Weakness-Enumeration Project. CWE-20: Improper Input Val-
idation. 5 May 2017. url: https://cwe.mitre.org/data/definitions/20.
html.

[14] William G J Halfond, Alessandro Orso and Panagiotis Manolios. “Using posit-
ive tainting and syntax-aware evaluation to counter SQL injection attacks”. In:
Proceedings of the 14th ACM SIGSOFT international symposium on Found-
ations of software engineering - SIGSOFT ’06/FSE-14. 2006, p. 175. doi:
10.1145/1181775.1181797.

[15] The Common-Weakness-Enumeration Project. CWE-79: Improper Neutraliz-
ation of Input During Web Page Generation (’Cross-site Scripting’). 5 May
2017. url: http://cwe.mitre.org/data/definitions/79.html.

[16] The CERT Project at the Carnegie Mellon University. Malicious HTML Tags
Embedded in Client Web Requests. 3 February 2000. url: https : / / web .
archive.org/web/20171012075417/https://www.cert.org/historical/
advisories/CA-2000-02.cfm.

[17] The MDNWeb Docs Project. Same-origin policy. 28 August 2017. url: https:
//web.archive.org/web/20171113104038/https://developer.mozilla.
org/de/docs/Web/Security/Same-origin_policy.

[18] The Web Application Security Consortium. Cross Site Scripting. April 2017.
url: http://web.archive.org/web/20170831212314/http://projects.
webappsec.org/w/page/13246920/Cross%20Site%20Scripting.

[19] Amit Klein. DOM Based Cross Site Scripting or XSS of the Third Kind. Web
Application Security Consortium. 4 July 2005. url: http://web.archive.
org / web / 20171109095307 / http : / / www . webappsec . org / projects /
articles/071105.shtml.

[20] Eric Lai. Teen uses worm to boost ratings on MySpace.com. Computer-
world.com. 17 October 2005. url: https : / / web . archive . org / web /
20160402234525/http://www.computerworld.com/article/2558730/
malware- vulnerabilities/teen- uses- worm- to- boost- ratings- on-
myspace-com.html.

[21] Daniel Hedin and Andrei Sabelfeld. “A Perspective on Information-Flow Con-
trol”. In: Proceedings of the 2011 Marktoberdorf Summer School (2011). url:
http://www.cse.chalmers.se/%7B~%7Dandrei/mod11.pdf.

124

https://javaee.github.io/firstcup/java-ee002.html
https://cwe.mitre.org/data/definitions/74.html
https://cwe.mitre.org/data/definitions/74.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/20.html
https://doi.org/10.1145/1181775.1181797
http://cwe.mitre.org/data/definitions/79.html
https://web.archive.org/web/20171012075417/https://www.cert.org/historical/advisories/CA-2000-02.cfm
https://web.archive.org/web/20171012075417/https://www.cert.org/historical/advisories/CA-2000-02.cfm
https://web.archive.org/web/20171012075417/https://www.cert.org/historical/advisories/CA-2000-02.cfm
https://web.archive.org/web/20171113104038/https://developer.mozilla.org/de/docs/Web/Security/Same-origin_policy
https://web.archive.org/web/20171113104038/https://developer.mozilla.org/de/docs/Web/Security/Same-origin_policy
https://web.archive.org/web/20171113104038/https://developer.mozilla.org/de/docs/Web/Security/Same-origin_policy
http://web.archive.org/web/20170831212314/http://projects.webappsec.org/w/page/13246920/Cross%20Site%20Scripting
http://web.archive.org/web/20170831212314/http://projects.webappsec.org/w/page/13246920/Cross%20Site%20Scripting
http://web.archive.org/web/20171109095307/http://www.webappsec.org/projects/articles/071105.shtml
http://web.archive.org/web/20171109095307/http://www.webappsec.org/projects/articles/071105.shtml
http://web.archive.org/web/20171109095307/http://www.webappsec.org/projects/articles/071105.shtml
https://web.archive.org/web/20160402234525/http://www.computerworld.com/article/2558730/malware-vulnerabilities/teen-uses-worm-to-boost-ratings-on-myspace-com.html
https://web.archive.org/web/20160402234525/http://www.computerworld.com/article/2558730/malware-vulnerabilities/teen-uses-worm-to-boost-ratings-on-myspace-com.html
https://web.archive.org/web/20160402234525/http://www.computerworld.com/article/2558730/malware-vulnerabilities/teen-uses-worm-to-boost-ratings-on-myspace-com.html
https://web.archive.org/web/20160402234525/http://www.computerworld.com/article/2558730/malware-vulnerabilities/teen-uses-worm-to-boost-ratings-on-myspace-com.html
http://www.cse.chalmers.se/%7B~%7Dandrei/mod11.pdf

[22] Christian Hammer and Gregor Snelting. “Flow-sensitive, Context-sensitive,
and Object-sensitive Information Flow Control Based on Program Dependence
Graphs”. In: Int. J. Inf. Secur. 8.6 (October 2009), pp. 399–422. doi: 10.1007/
s10207-009-0086-1.

[23] Dorothy E. Denning and Peter J. Denning. “Certification of programs for
secure information flow”. In: Communications of the ACM 20 (1977), pp. 504–
513. doi: 10.1145/359636.359712.

[24] Jeanne Ferrante, Karl J. Ottenstein and Joe D. Warren. “The Program De-
pendence Graph and Its Use in Optimization”. In: ACM Trans. Program. Lang.
Syst. 9.3 (July 1987), pp. 319–349. doi: 10.1145/24039.24041.

[25] Jürgen Graf et al. “Tool Demonstration: JOANA”. In: Principles of Security
and Trust - 5th International Conference, POST 2016, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2016,
Eindhoven, The Netherlands, April 2-8, 2016, Proceedings. Ed. by Frank Pies-
sens and Luca Viganò. Vol. 9635. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2016, pp. 89–93. doi: 10.1007/978-3-662-49635-0_5.

[26] Jürgen Graf. “Speeding Up Context-, Object- and Field-Sensitive SDG Gener-
ation”. In: Proceedings of the 2010 10th IEEE Working Conference on Source
Code Analysis and Manipulation. SCAM ’10. Washington, DC, USA: IEEE
Computer Society, 2010, pp. 105–114. isbn: 978-0-7695-4178-5. doi: 10.1109/
SCAM.2010.9.

[27] Y. N. Srikant and P. Shankar. The compiler design handbook optimizations
and machine code generation. CRC Press, 2008. isbn: 9781420043839.

[28] Susan Horwitz, Thomas Reps and David Binkley. “Interprocedural Slicing Us-
ing Dependence Graphs”. In: ACM Trans. Program. Lang. Syst. 12.1 (January
1990), pp. 26–60. doi: 10.1145/77606.77608.

[29] Kangkook Jee, Georgios Portokalidis and Vp. Kemerlis. “A General Approach
for Efficiently Accelerating Software-based Dynamic Data Flow Tracking on
Commodity Hardware”. In: Proceedings of the 19th Internet Society (ISOC)
Symposium on Network and Distributed System Security (NDSS) (2012). url:
http://www.cs.columbia.edu/nsl/papers/2012/tfa.ndss12.pdf.

[30] JC Martinez Santos, Yunsi Fei and ZJ Shi. “Static secure page allocation for
light-weight dynamic information flow tracking”. In: Proceedings of the 2012
international … (2012), pp. 27–36. doi: 10.1145/2380403.2380415.

[31] Jonathan Bell and Gail Kaiser. “Dynamic Taint Tracking for Java with Phos-
phor (Demo)”. In: (2015), pp. 409–413. doi: 10.1145/2771783.2784768.

[32] Edward J Schwartz et al. “All You Ever Wanted to Know About Dynamic
Taint Analysis Forward Symbolic Execution (but might have been afraid
to ask)”. In: (2010), pp. 1–5. url: https://users.ece.cmu.edu/%7B~%
7Daavgerin/papers/Oakland10.pdf.

125

https://doi.org/10.1007/s10207-009-0086-1
https://doi.org/10.1007/s10207-009-0086-1
https://doi.org/10.1145/359636.359712
https://doi.org/10.1145/24039.24041
https://doi.org/10.1007/978-3-662-49635-0_5
https://doi.org/10.1109/SCAM.2010.9
https://doi.org/10.1109/SCAM.2010.9
https://doi.org/10.1145/77606.77608
http://www.cs.columbia.edu/nsl/papers/2012/tfa.ndss12.pdf
https://doi.org/10.1145/2380403.2380415
https://doi.org/10.1145/2771783.2784768
https://users.ece.cmu.edu/%7B~%7Daavgerin/papers/Oakland10.pdf
https://users.ece.cmu.edu/%7B~%7Daavgerin/papers/Oakland10.pdf

[33] R Sekar. An Efficient Black-box Technique for Defeating Web Application At-
tacks. January 2009. url: http://www.isoc.org/isoc/conferences/ndss/
09/pdf/02.pdf.

[34] Nathan Patwardhan, Ellen Siever and Stephen Spainhour. Perl in a Nutshell:
A Desktop Quick Reference (In a Nutshell (O’Reilly)). O’Reilly Media, 2002.
isbn: 0-596-00241-6.

[35] James Clause, Wanchun Li and Alessandro Orso. “Dytan: a generic dynamic
taint analysis framework”. In: Proceedings of the 2007 international symposium
on Software testing and analysis (2007), pp. 196–206. doi: 10.1145/1273463.
1273490.

[36] William Enck et al. “TaintDroid: An Information-Flow Tracking System for
Realtime Privacy Monitoring on Smartphones”. In: ACM Trans. Comput. Syst.
ACM Transactions on Computer Systems 5 (). doi: 10.1145/2619091.

[37] Lukas Weichselbaum et al. “Andrubis: Android malware under the magnifying
glass”. In: Vienna University of Technology, Tech. Rep. TR-ISECLAB-0414-
001 (2014).

[38] Deepak Chandra and Michael Franz. “Fine-Grained Information Flow Ana-
lysis and Enforcement in a Java Virtual Machine”. In: Twenty-Third Annual
Computer Security Applications Conference (ACSAC 2007). 2007, pp. 463–
475. doi: 10.1109/ACSAC.2007.37.

[39] Srijith K Nair et al. “A Virtual Machine Based Information Flow Control
System for Policy Enforcement”. In: Electronic Notes in Theoretical Computer
Science (2007). url: http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.76.3914%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf.

[40] Erika Chin and David Wagner. “Efficient character-level taint tracking for
Java”. In: Proceedings of the 2009 ACM workshop on Secure web services. ACM,
2009, pp. 3–12. url: http://dl.acm.org/citation.cfm?id=1655125.

[41] Christof Dallermassl. Dynamic Security Taint Propagation in Java via Java
Aspects. url: https://github.com/cdaller/security_taint_propagation
(visited on 16/05/2017).

[42] Omer Tripp et al. “ANDROMEDA: Accurate and Scalable Security Analysis
of Web Applications”. In: Proceedings of the 16th International Conference
on Fundamental Approaches to Software Engineering. FASE’13. Rome, Italy:
Springer-Verlag, 2013, pp. 210–225. doi: 10.1007/978-3-642-37057-1_15.

[43] Ashish Aggarwal and Pankaj Jalote. “Integrating Static and Dynamic Ana-
lysis for Detecting Vulnerabilities”. In: 30th Annual International Computer
Software and Applications Conference (COMPSAC’06) (2006), pp. 343–350.
doi: 10.1109/COMPSAC.2006.55.

126

http://www.isoc.org/isoc/conferences/ndss/09/pdf/02.pdf
http://www.isoc.org/isoc/conferences/ndss/09/pdf/02.pdf
https://doi.org/10.1145/1273463.1273490
https://doi.org/10.1145/1273463.1273490
https://doi.org/10.1145/2619091
https://doi.org/10.1109/ACSAC.2007.37
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.3914%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.3914%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://dl.acm.org/citation.cfm?id=1655125
https://github.com/cdaller/security_taint_propagation
https://doi.org/10.1007/978-3-642-37057-1_15
https://doi.org/10.1109/COMPSAC.2006.55

[44] Walter Chang, Brandon Streiff and Calvin Lin. “Efficient and extensible se-
curity enforcement using dynamic data flow analysis”. In: Proceedings of the
15th ACM conference on Computer and communications security - CCS ’08
(2008), p. 39. doi: 10.1145/1455770.1455778.

[45] M. Mongiovì et al. “Combining static and dynamic data flow analysis : a hybrid
approach for detecting data leaks in Java applications”. In: Proceedings of the
30th Annual ACM Symposium on Applied Computing. 2015, pp. 1573–1579.
doi: 10.1145/2695664.2695887.

[46] Jingling Zhao et al. “Dynamic taint tracking of web application based on
static code analysis”. In: Proceedings - 2016 10th International Conference on
Innovative Mobile and Internet Services in Ubiquitous Computing, IMIS 2016
(2016), pp. 96–101. doi: 10.1109/IMIS.2016.46.

[47] Mark Weiser. “Program Slicing”. In: Proceedings of the 5th International Con-
ference on Software Engineering. ICSE ’81. San Diego, California, USA: IEEE
Press, 1981, pp. 439–449. url: http://dl.acm.org/citation.cfm?id=
800078.802557.

[48] Wei Huang, Yao Dong and Ana Milanova. “Type-based taint analysis for Java
web applications”. In: International Conference on Fundamental Approaches
to Software Engineering. Springer. 2014, pp. 140–154.

[49] D. Dolev and A. Yao. “On the security of public key protocols”. In: IEEE
Transactions on Information Theory 29.2 (March 1983), pp. 198–208. doi:
10.1109/TIT.1983.1056650.

[50] R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Se-
mantics and Content. RFC 7231. June 2014. url: http://www.rfc-editor.
org/rfc/rfc7231.txt.

[51] Fabien A. P. Petitcolas. “Kerckhoffs’ Principle”. In: Encyclopedia of Cryp-
tography and Security. Ed. by Henk C. A. van Tilborg and Sushil Jajodia.
Boston, MA: Springer US, 2011, pp. 675–675. doi: 10.1007/978-1-4419-
5906-5_487.

[52] Boze Zekan, Mark Shtern and Vassilios Tzerpos. “Protecting Web Applica-
tions via Unicode Extension”. In: (2015). url: http://ieeexplore.ieee.
org/ielx7/7066219/7081802/07081852.pdf?tp=%7B%5C&%7Darnumber=
7081852%7B%5C&%7Disnumber=7081802.

[53] David Flanagan. Java In A Nutshell, 5th Edition. O’Reilly Media, 2005. isbn:
0596007736.

[54] James Gosling et al. The Java® Language Specification - Java SE 8 Edition.
13 February 2015. url: https://docs.oracle.com/javase/specs/jls/
se8/jls8.pdf (visited on 19/12/2017).

[55] Stephan Pfistner. “End-To-End Taint Tracking In The Web”. TU Darmstadt
and SAP SE. 14 October 2015. Unpublished master thesis.

127

https://doi.org/10.1145/1455770.1455778
https://doi.org/10.1145/2695664.2695887
https://doi.org/10.1109/IMIS.2016.46
http://dl.acm.org/citation.cfm?id=800078.802557
http://dl.acm.org/citation.cfm?id=800078.802557
https://doi.org/10.1109/TIT.1983.1056650
http://www.rfc-editor.org/rfc/rfc7231.txt
http://www.rfc-editor.org/rfc/rfc7231.txt
https://doi.org/10.1007/978-1-4419-5906-5_487
https://doi.org/10.1007/978-1-4419-5906-5_487
http://ieeexplore.ieee.org/ielx7/7066219/7081802/07081852.pdf?tp=%7B%5C&%7Darnumber=7081852%7B%5C&%7Disnumber=7081802
http://ieeexplore.ieee.org/ielx7/7066219/7081802/07081852.pdf?tp=%7B%5C&%7Darnumber=7081852%7B%5C&%7Disnumber=7081802
http://ieeexplore.ieee.org/ielx7/7066219/7081802/07081852.pdf?tp=%7B%5C&%7Darnumber=7081852%7B%5C&%7Disnumber=7081802
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf

[56] Daniel Jackson and Eugene J. Rollins. “A New Model of Program Depend-
ences for Reverse Engineering”. In: Proceedings of the 2Nd ACM SIGSOFT
Symposium on Foundations of Software Engineering. SIGSOFT ’94. New Or-
leans, Louisiana, USA: ACM, 1994, pp. 2–10. doi: 10.1145/193173.195281.

[57] Thomas Reps and Genevieve Rosay. “Precise Interprocedural Chopping”. In:
Proceedings of the 3rd ACM SIGSOFT Symposium on Foundations of Software
Engineering. SIGSOFT ’95. Washington, D.C., USA: ACM, 1995, pp. 41–52.
doi: 10.1145/222124.222138.

[58] Robert C. Martin. Clean Code – Deutsche Ausgabe. mitp-Verlag, 2009. isbn:
3826655486.

[59] The OpenJDK Project / Oracle. GNU General Public License, version 2, with
the Classpath Exception. url: http://openjdk.java.net/legal/gplv2+ce.
html (visited on 01/09/2017).

[60] mygnulinux.com. The only major threat to open source software license models
like the GPL is the spread of ‘cloud computing’ and Software as a Service
(SaaS) business models. url: http://www.mygnulinux.com/?page_id=866
(visited on 01/09/2018).

[61] Unicode. Unicode Character Database – special casing. 14 April 2017. url:
https://unicode.org/Public/UNIDATA/SpecialCasing.txt (visited on
12/01/2018).

[62] Christian Ullenboom. Java ist auch eine Insel Einführung, Ausbildung, Praxis.
Bonn: Rheinwerk, 2016. isbn: 978-3836241199.

[63] Edsger W. Dijkstra. “The Humble Programmer”. In: Commun. ACM 15.10
(October 1972), pp. 859–866. doi: 10.1145/355604.361591.

[64] Andy Georges, Dries Buytaert and Lieven Eeckhout. “Statistically Rigorous
Java Performance Evaluation”. In: Proceedings of the 22Nd Annual ACM SIG-
PLAN Conference on Object-oriented Programming Systems and Applications.
OOPSLA ’07. Montreal, Quebec, Canada: ACM, 2007, pp. 57–76. doi: 10.
1145/1297027.1297033.

[65] Lehrstuhl für Programmierparadigmen - IPD Snelting. JOANA (Java Object-
sensitive ANAlysis) - Information Flow Control Framework for Java. url:
https://pp.ipd.kit.edu/projects/joana/ (visited on 25/01/2018).

128

https://doi.org/10.1145/193173.195281
https://doi.org/10.1145/222124.222138
http://openjdk.java.net/legal/gplv2+ce.html
http://openjdk.java.net/legal/gplv2+ce.html
http://www.mygnulinux.com/?page_id=866
https://unicode.org/Public/UNIDATA/SpecialCasing.txt
https://doi.org/10.1145/355604.361591
https://doi.org/10.1145/1297027.1297033
https://doi.org/10.1145/1297027.1297033
https://pp.ipd.kit.edu/projects/joana/

	Introduction
	Motivation
	Problem statement & research question
	Structure of the thesis
	Terms & conventions

	Background
	Java EE
	Injection attacks
	The fundamental principle
	Cross-Site-Scripting (XSS)

	Information flow control (IFC)
	PDG-based IFC
	JOANA
	Taint tracking

	Detecting injection attacks with taint tracking
	Related Work
	Purely dynamic approaches
	Hybrid approaches combining static and dynamic analysis

	Concept
	Setting the scenario
	Use case
	Attacker model

	Why to choose taint tracking instead of static IFC?
	What to track? Designing a taint tracking system
	Benefits and drawbacks of string-only tracking
	Granularity matters: string-level vs. character-level
	What information to be attached?

	Choosing an implementation strategy
	Augmentation on source level
	Bytecode instrumentation

	Defining the taint policy
	Introducing taint information in a system
	Taint propagation & semantics of strings in Java
	Taint checking, untainting & sanitization

	Ideas towards more efficient taint tracking
	"Taint ranges" for more efficient storing of taint information
	Using static IFC to make taint tracking more efficient

	Implementation
	Overview of components
	Mapping metadata to strings: TaintRange and friends
	Structure of a taint range
	TaintInformation: a container for taint ranges
	Considerations regarding runtime and space requirements

	Augmenting the standard library
	General considerations
	String (java.lang.String)
	StringBuilder & StringBuffer
	Regular expressions

	Bytecode instrumentation
	Taint sources and sanitization functions
	Taint sinks
	Handling the CharSequence interface

	Selective tainting: integrating static analysis
	Providing taint-aware and taint-unaware methods
	JOANA-Adapter
	Switching between unaugmented and augmented code

	Testing

	Evaluation
	Detecting existing vulnerabilities
	Performance benchmarks
	Setup & methodology
	Results

	Combining dynamic and static analysis
	Setup & methodology
	Results

	Open problems and possible solutions
	Limitations of string-level taint tracking (and how static checks can help)
	Better performance through more efficient taint ranges
	Limitations regarding Java EE

	Conclusion
	Summary
	Discussion
	Outlook

	Appendix
	List of figures
	List of listings
	List of tables
	List of abbreviations
	Literature & References

