
Checking Applications using Security APIs with JOANA
Jürgen Graf, Martin Hecker, Martin Mohr, and Gregor Snelting

Karlsruhe Institute of Technology
[graf,hecker,martin.mohr,gregor.snelting]@kit.edu

Abstract

JOANA is a tool for software security analysis, checking up to 100kLOC of full multi-
threaded Java. JOANA is based on sophisticated program analysis techniques and very pre-
cise. JOANA includes a new algorithm guaranteeing probabilistic noninterference, named
RLSOD. JOANA needs few annotations, is open source, and was applied in several case
studies.

The current extended abstract discusses the analysis of security APIs using JOANA.
In particular, we practically demonstrate a method which guarantees that code using a
cryptographic API does not contain confidentiality leaks. The method is backed by a
theorem from Küsters [6].

1 JOANA

Figure 1: JOANA screenshot demonstrating
classification, declassification, and illegal flow.

Information flow control (IFC) is a fine-grained
analysis of software source or machine code,
which uncovers all security leaks within a pro-
gram, or provides a true guarantee about in-
tegrity resp. confidentiality. IFC is typically
based on some notion of noninterference, which
demands that public behaviour is not influ-
enced by secret data and thus guarantees con-
fidentiality.

The IFC tool JOANA (joana.ipd.kit.edu)
can handle full Java bytecode with arbitrary
threads, scales to ca. 100kLOC, and empirically
demonstrated high precision [3, 2]. JOANA
is based on a stack of sophisticated program
analysis algorithms (pointer analysis, excep-
tion analysis, program dependence graphs).
JOANA minimizes false alarms through flow-
, context-, object-, field-, time-, and lock-
sensitive analysis techniques. JOANA allows
declassification along sequential information flows. In concurrent programs, all possibilistic and
probabilistic leaks are discovered by a new algorithm for probabilistic noninterference, called
RLSOD [1]. Soundness of JOANA’s sequential IFC was machine-checked in Isabelle [7].

1.1 Application of JOANA
Figure 1 shows the JOANA plugin for Eclipse. In the source code window, the full source for
example (1) from Figure 2 can be seen. Security level annotations for input and output are
added, as well as a declassification of x in the IF condition. Once the analysis is activated,
illegal flows are highlighted in the source code. In the example, the illegal flow from the

1

Checking Applications using Security APIs with JOANA Graf, Hecker, Mohr and Snelting

(1)
1 void main () :
2 x = inputPIN () ;
3 // inputPIN i s
4 // sec r e t
5 i f (x < 1234)
6 pr in t (0) ;
7 y = x ;
8 pr in t (y) ;
9 // pub l i c output

(2)
1 void main () :
2 fo rk thread_1 () ;
3 fo rk thread_2 () ;
4 void thread_1 () :
5 x = input () ;
6 p r in t (x) ;
7 void thread_2 () :
8 y = inputPIN () ;
9 x = y ;

(3)
1 void main () :
2 f o rk thread_1 () ;
3 fo rk thread_2 () ;
4 void thread_1 () :
5 x = 0 ;
6 pr in t (x) ;
7 void thread_2 () :
8 y = inputPIN () ;
9 while (y != 0)

10 y−−;
11 x = 1 ;
12 pr in t (2) ;

(4)
1 void main () :
2 h = inputPIN () ;
3 l = 2 ;
4 // l i s pub l i c
5 x = f (h) ;
6 y = f (l) ;
7 p r in t (y) ;
8
9 int f (int x)

10 {return x+42;}

(5)
1 void main () :
2 fo rk thread_1 () ;
3 fo rk thread_2 () ;
4 void thread_1 () :
5 l = 42 ;
6 h = inputPIN () ;
7 void thread_2 () :
8 p r in t (l) ;
9 l = h ;

Figure 2: Small but typical leaks and IFC precision problems. Programs 1 – 3 leak secret data
to public output. (1) Explicit and implicit leaks, (2) possibilistic leak, (3) probabilistic leak.
Programs 4 and 5 are secure, but only a precise analysis will see this. (4) context-insensitive
analysis will generate a false alarm because calls to f are merged, (5) flow-insensitive analysis
will generate false alarm because statement order in thread_2 is ignored.

secret inputPIN via x via y to the public print(y) can be seen; due to the declassification,
the flow to print(0) has been suppressed. Full details on an illegal flow are available on
demand. JOANA offers various options for analysis precision (e.g. object-sensitive points-to
analysis, time-sensitive backward slicing). JOANA analyses Java bytecode and uses IBM’s
WALA analysis frontend; recently, a frontend for Android bytecode was added.

JOANA was able to provide security guarantees for difficult examples from the literature,
and could analyse e.g. the complete source of the HSQLDB database. More interesting is
perhaps the successful analysis of an experimental e-voting system developed by Küsters et al
[6, 5].

1.2 Probabilistic Noninterference

In this short contribution, we will not explain technical details of our IFC analysis (for details,
see [3, 1]). But we will at least present a few examples, illustrating the power and precision of
JOANA’s machinery.

IFC for sequential programs must discover explicit and implicit leaks, which arise if (parts
of) secret values are copied to public variables, resp. if secret values influence control flow
(see example (1) in Figure 2). IFC for multi-threaded programs must additionally prevent
leaks which arise from the interleaving of concurrent threads: possibilistic leaks may or may
not occur depending on a specific interleaving, while probabilistic leaks exploit the probability
distribution of interleaving orders. Example (2) in Figure 2 has a possibilistic leak, e.g., for
interleaving order 5, 8, 9, 6, which causes the secret PIN to be printed on public output. Example
(3) has no possibilistic, but a probabilistic leak, because the PIN’s value influences the running
time of the loop, which may influence the interleaving order of the two assignments to x. Thus
the probabilities of public outputs “0” resp. “1” depend on the secret PIN.

Most IFC approaches check some form of noninterference, and to this end classify program
variables, input and output as high (secret) or low (public). Noninterference in its simplest form
then demands that variations in secret input data do not cause variations in public output data.
For concurrent programs with threads, Probabilistic Noninterference (PN) is the established
security criterion. PN explicitly allows nondeterminism in programs and demands that the
probability of any observable behaviour is not influenced by secret values. It is difficult to
guarantee PN, as IFC must in principle check all possible interleavings and their impact on
execution probabilities.

2

Checking Applications using Security APIs with JOANA Graf, Hecker, Mohr and Snelting

In JOANA, a new “RLSOD” algorithm for PN is used, which avoids soundness problems or
unrealistic restrictions of previous approaches [1].

2 Checking Security APIs

program (MyApp)

encryption API
(CryptoLib)

ideal encryption
(IdealCrypto)

real encryption

environment (Env)
uses

uses uses

implements

implements
analyzed with JOANA

Figure 3: Setup for analyzing a program using
a crypto API with JOANA.

In the following, we will demonstrate how
JOANA can be used to guarantee integrity
and/or confidentiality for programs relying on
a security API. JOANA does not check func-
tional properties (e.g. cryptographic proper-
ties), nor does it verify API usage protocols.
But it can easily provide two important IFC
properties, namely that the security API plus
the code using it do not contain integrity or
confidentiality leaks.

We will illustrate our approach using a
specific example, namely a program using
public key encryption via a cryptographic li-
brary. This example is a stripped down variant of our previous work on verified secure client
server communication [6, 4]. Traditionally, handling of cryptography in IFC was awkward.
Declassification had to be used, because IFC does not know about crypto properties such as
IND-CCA, and thus complains about a leak along any crypted data flow. Declassifications
manually surpress such false alarms – an error-prone method, which completely relies on the
engineer’s competence and trustworthiness.

Küsters [6] was the first to demonstrate how cryptography and IFC can be soundly com-
bined without declassification. Roughly speaking, all encryption operations in the source code
are replaced by so-called ideal implementations that do not generate any flow. Then confi-
dentiality is checked using an IFC tool such as JOANA. If no additional leaks occur, Küster’s
theorem states that the original program using the non-ideal cryptographic libary is also secure
– provided the crypto implementation is “correct” (i.e. fulfills IND-CCA2, see [4] for details).

In the following, we will demonstrate this approach from a practical viewpoint. Figure 3
provides a general overview of our setup. We plan to verify a program (Figure 5) that uses an
API for public key encryption as shown in Figure 4a. Our goal is to verify that a program using
this API does not leak any sensitive information about the content of the unencrypted message
as well as the private key. Therefore we implement an ideal variant of the crypto API that
contains no information flow between the original and the encrypted messages (Figure 4c) and
an environment class (Figure 4b) —containing security annotations for JOANA— that acts as
source of secret (high) or random (low) input to the program.

In the ideal variant we use a randomly generated byte sequence to pose as the encrypted
message. That way the encrypted message contains no information of the content of the original
message. This allows our IFC analysis to detect the absence of illicit flows in the main program
as long as sensitive operations only depend on the content of the encrypted message. However
we still want to capture that once the encrypted message is decrypted, the result again contains
sensitive information. Therefore we use a dictionary that maps the encrypted message to the
original one. This way a call to decrypt can return the original message.

The environment class Env contains helper methods that emulate the input of secret and
random information. The method bodies are left out for brevity, the actual implementations
of secretBytes and randomBytes ensure that the content of their return values depends on

3

Checking Applications using Security APIs with JOANA Graf, Hecker, Mohr and Snelting

1 interface CryptoLib {
2 byte [] encrypt (byte [] in , byte [] publKey) ;
3 byte [] decrypt (byte [] in , byte [] privKey) ;
4 KeyPair generateKeyPair () ;
5 }
6
7 c lass KeyPair {
8 byte [] publ ;
9 byte [] p r iv ;

10 }

(a) Interface of the public key encryption API.

1 c lass Env {
2 @Source (label = Level .HIGH)
3 stat ic byte [] s e c r e tByte s (. . .) { . . . }
4 stat ic byte [] randomBytes (. . .) { . . . }
5 }
6
7 c lass Network {
8 @Sink (label = Level .LOW)
9 stat ic void send (byte [] data) { . . . }

10 }

(b) Part of the environment and networking class
with IFC annotations.

1 c lass IdealCrypto implements CryptoLib {
2 private Map d i c t ; // maps random by te s to message
3
4 byte [] encrypt (byte [] in , byte [] publKey) {
5 byte [] random = Env . randomBytes (in . len , publKey) ;
6 d i c t . addEntry (random , in) ;
7 return random ;
8 }
9

10 byte [] decrypt (byte [] in , byte [] privKey) {
11 i f (d i c t . conta ins (in)) {
12 return d i c t . f i nd (in) ;
13 }
14 return Env . randomBytes (in . len , privKey) ;
15 }
16
17 KeyPair genKeyPair () {
18 KeyPair keys = new KeyPair () ;
19 keys . publ = Env . randomBytes () ;
20 keys . pr iv = Env . s e c r e tByte s (publ) ;
21 return keys ;
22 }
23 }

(c) Ideal variant of the public key encryption API
of Figure 4a.

Figure 4: Setup with ideal implementation ready for analysis with JOANA.

1 c lass MyApp {
2 public void main () {
3 // i n i t i a l setup
4 CryptoLib crypto = new IdealCrypto () ;
5 byte [] message = Env . s e c r e tByte s () ;
6 // s t a r t o f normal program to check for i l l e g a l f low
7 KeyPair keys = crypto . genKeyPair () ;
8 byte [] encrypted = crypto . encrypt (message , keys . publ) ;
9 Network . send (message) ; // e x p l i c i t l eak

10 Network . send (encrypted) ; // no l eak
11 i f (message [0] > 23) {
12 Network . send (encrypted) ; // imp l i c i t l eak
13 }
14 byte [] decrypted = crypto . decrypt (encrypted , keys . pr iv) ;
15 Network . send (decrypted) ; // e x p l i c i t l eak
16 }
17 }

Figure 5: Program using an ideal variant of the crypto API with the setup provided by Figure 4.

the data passed to them as parameters. The annotation at secretBytes tells JOANA that the
return value is considered high information. A similar annotation is made in the networking
class to mark any data sent over the network as low observable.

With this setup in place we can use JOANA to check if no high information is leaked in our
application shown in Figure 5. JOANA automatically detects several leaks in the example: 2
explicit and 1 implicit leak. It also detects that line 10 is not critical as it sends the encrypted
message. After removing lines 9, 12 and 15, the application uses the crypto API correctly as
JOANA is able to verify the absence of unwanted information leaks.

3 Conclusion

Today, JOANA is one of the very few IFC tools worldwide which can handle full Java with
unlimited threads, and – thanks to the underlying stack of sophisticated program analysis –
offers good precision and scalability. As we have seen, JOANA can also be used to analyse
security APIs. In particular, usage of cryptographic APIs can be checked for integrity or
confidentiality leaks.

4

Checking Applications using Security APIs with JOANA Graf, Hecker, Mohr and Snelting

Acknowledgments. This work was funded by the DFG under the project in the priority
program RS3 (SPP 1496) and by the BMBF under the KASTEL competence center for applied
IT security technology.

References
[1] Dennis Giffhorn and Gregor Snelting. A new algorithm for low-deterministic security. In-

ternational Journal of Information Security, April 2014. To appear. Electronic preprint at
http://link.springer.com/article/ 10.1007%2Fs10207-014-0257-6.

[2] Christian Hammer. Experiences with PDG-based IFC. In F. Massacci, D. Wallach, and N. Zannone,
editors, Proc. ESSoS’10, volume 5965 of LNCS, pages 44–60. Springer-Verlag, February 2010.

[3] Christian Hammer and Gregor Snelting. Flow-sensitive, context-sensitive, and object-sensitive
information flow control based on program dependence graphs. International Journal of Information
Security, 8(6):399–422, December 2009.

[4] Ralf Küsters, Enrico Scapin, Tomasz Truderung, and Jürgen Graf. Extending and applying a
framework for the cryptographic verification of java programs. In Proc. POST 2014, LNCS 8424,
pages 220–239. Springer, 2014.

[5] Ralf Küsters, Tomasz Truderung, Bernhard Beckert, Daniel Bruns, Michael Kirsten, and Martin
Mohr. A Hybrid Approach for Proving Noninterference of Java Programs. In Computer Security
Foundations Symposium (CSF), 2015 IEEE 28th, 2015. to appear.

[6] Ralf Küsters, Tomasz Truderung, and Jürgen Graf. A framework for the cryptographic verification
of Java-like programs. In Computer Security Foundations Symposium (CSF), 2012 IEEE 25th.
IEEE Computer Society, June 2012.

[7] Daniel Wasserrab, Denis Lohner, and Gregor Snelting. On PDG-based noninterference and its
modular proof. In Proc. PLAS ’09. ACM, June 2009.

5

	JOANA
	Application of JOANA
	Probabilistic Noninterference

	Checking Security APIs
	Conclusion

