
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

GrGen.NET

The Expressive, Convenient and Fast Graph Rewrite System

Edgar Jakumeit • Sebastian Buchwald • Moritz Kroll

Institut für Programmstrukturen und Datenorganisation
Universität Karlsruhe
www.grgen.net

The date of receipt and acceptance will be inserted by the editor

Abstract. GrGen.NET is a generative programming
system for graph rewriting, transforming intuitive and
expressive rewrite rule specifications into highly efficient
.NET code. The user is supported by a convenient en-
vironment consisting of a graph viewer, an interactive
shell with integrated debugging support, and an elegant
domain specific language for the combination of rewrite
rules. After rapid prototyping with these tools, the re-
sulting graph transformation programs can be easily in-
tegrated into arbitrary .NET applications to serve as
the algorithmic kernel. Expressiveness, convenience, and
speed are exemplified by GrGen-solutions to the case
studies AntWorld, Refactoring, and ConferenceSchedul-
ing – besides others.

Key words: General purpose graph transformation •
Graph rewriting • Domain specific language • Genera-
tive programming tool • Search plan driven graph pat-
tern matching

1 Introduction

In this chapter we will give an introduction into Gr-
Gen.NET [BG08,KG07,GBG+06] and its specification
languages which will serve as a basis to the following
chapters in which we will present our solutions to the
GraBaTs 08 [RVG08] challenges Conference Scheduling,
AntWorld, and Program Graphs. Afterwards, we will
discuss our experience with GraBaTs, firstly regarding
new features learned, secondly casting a recurring dis-
cussion into paper form, before we finally conclude.

The application domain neutral graph rewrite system
GrGen.NET licensed under LGPL3 [LGP07] is combined
from two groups of components, the first being the graph
rewrite generator GrGen itself together with the execu-
tion environment libGr offering the basic functionality

of the system, and the second being the interactive com-
mand line GrShell plus the graph viewer yComp, offering
a rapid prototyping environment.

The Base System

The graph rewrite generator reads in files containing
specifications of the graph model and of the graph rewrite
rules to be used and emits highly efficient C#-programs
/ .NET-assemblies implementing these specifications, as-
sisted by the runtime library, which in addition offers a
control language for rule application.

The Graph Model Language

The graph model language allows the specification of
typed and attributed multigraphs with multiple inheri-
tance on node and edge types, offering directed as well
as undirected edges. Types bring safety and performance
with them, while multiple inheritance with the root types
Node and Edge allows for concise matching patterns.
Graph elements are attributed depending on their type
with values of the basic attribute types boolean, int,
float, double, string, object, or user-defined enums,
plus set<T> and map<S,T> with S and T being basic at-
tribute types (the latter have been added to better sup-
port users from the area of computer linguistics needing
string dictionaries). In addition, the graph may be vali-
dated against connection assertions constraining the de-
grees and types of edges between nodes of certain types.

The Pattern Language

The graph rewrite language offers tests consisting only
of a pattern to be matched, and rules consisting of a
pattern part to be matched and a rewrite part to be
applied.

The pattern part is built from node and edge decla-
rations or references with an intuitive and easy to learn

www.grgen.net

2 Edgar Jakumeit • Sebastian Buchwald • Moritz Kroll: GrGen.NET

syntax: Nodes are declared by n:t, where n is an op-
tional node identifier, and t its type, a dot . is used for
introducing an anonymous node of type Node. An edge
e with source x and target y is declared by x -e:t->

y, whereas --> introduces an anonymous edge of type
Edge. Nodes and edges are referenced outside their dec-
laration by n and -e->, respectively. Undirected edges
are declared by x -e:t- y or -- and are referenced by
-e-. Furthermore, there are

– Negative Application Conditions (NACs [EHK+97]),
which are pattern graphs which must not be present
in the host graph for the rule to be applicable; they
are specified in negative blocks and may be arbi-
trarily nested.

– Type and attribute conditions, given within an if-
clause, constraining the allowed types and attribute
values of matched elements by numerous type and
value expressions consisting of boolean, arithmetic,
string, set, and map operations.

– Homomorphic matching in addition to the default
isomorphic matching, allowing distinct pattern ele-
ments given within the hom()-statement to be bound
to the same host graph element.

– Parameters allowing pattern elements to be preset
from outside the pattern before the rest of the pat-
tern is searched.

– Several more to be introduced later on.

The Rewrite Language

The relationship between the pattern and the rewrite
part is given by a preservation morphism according to
the theoretically well-founded SPO [EHK+97] approach,
while the DPO [CMR+97] approach is supported as well
(by prepending dpo before rule in the specification).
Syntactically, it is specified by a modify- or replace-
block nested within the pattern. With replace-mode,
graph elements which are referenced within the replace-
block are kept, graph elements declared in the replace-
block are created, and graph elements declared in the
pattern, not referenced in the replace-part are deleted.
With modify-mode, all graph elements are kept, un-
less they are specified to be deleted within a delete()-
statement. Additionally allowed rewrite constructs are

– Attribute recalculations: results of expressions can be
assigned to the attributes of matched or new elements
within an eval-statement.

– Retyping: matched elements can be retyped not nec-
essarily respecting the type hierarchy – keeping com-
mon attributes of initial and final type. This comes
in handy if incident edges are to be kept.

– Creation with dynamic types: new graph elements
may be created using the actual type of some matched
element (more exact than the specified static super-
type).

– Element returns: non-deleted elements can be returned
to users outside the rule.

The Rule Application Control Language

Graph rewrite sequences are a domain specific language
used to combine single rule/test applications into graph
rewriting (sub-)programs. They resemble a union of log-
ical and regular expressions.

– A rule application (y1, . . . yk) = r(x1, . . . , xm) at-
tempts to extend the matches of its parameters x1,
. . . , xm to an arbitrary match of its pattern so that
the rule can be applied. If this is possible, the appli-
cation succeeds, and defines the variables y1, . . . yk;
otherwise it fails. A test is handled the same way,
but does not modify the graph.

– For rewrite sequences S1, S2, the logical operations
conjunction S1 &&S2 and disjunction S1 ||S2 are eval-
uated lazily from left to right: S2 is not evaluated if
the success or failure of S1 does already determine
the result of the operation. Their strict counterparts
& and | always evaluating the second operand exist
as well, supplemented by the negation ! .

– Iteration is supported by the construct S[n : m] with
the rewrite sequence S and the non-negative integers
n and m, which executes S until it fails, but at most
m-times. S[n : m] fails, if S was not executed at least
n-times. Typical iterations can be abbreviated with
S∗ (n = 0, m =∞) and S+ (n = 1, m =∞).

– Furthermore, variables may be declared, in order to
store results of rule applications and pass them as
arguments to following rule applications.

Graph models, graph rewrite rules and graph rewrite
sequences are accessible from any .NET-language via an
API (offered by libGr). An application built on top of
this API is the GrShell shipped with GrGen.NET.

The Rapid Prototyping Environment

On top of the graph rewrite functionality, the GrGen.NET
system offers tools for rapid development and graphical
debugging. These are the GrShell, offering interactive
or file-based execution of a graph rewrite script, includ-
ing step-by-step execution of graph rewrite sequences,
aided by the yFiles[WEK02]-based graph viewer yComp,
which can visualise the current graph and each rule ap-
plication, thus finally the entire rewrite process.

Now that we know the basics of the GrGen.NET sys-
tem, we will have a deeper look at the GrGen solutions
to the online and offline challenges posed at the GraBaTs
2008 tool contest.

2 Conference Scheduling

The purpose of the Conference Scheduling case study
[?] – mapping paper presentations to time slots – was
to evaluate the tools of the participating groups under

Edgar Jakumeit • Sebastian Buchwald • Moritz Kroll: GrGen.NET 3

time pressure in form of a live contest. So, rapid proto-
typing was the key to win the contest. With GrGen.NET
we not only managed to be the first to solve the basic
assignment, but were also the only ones with a correct
solution.

The important features of GrGen.NET which en-
abled us to solve the problem so quickly are: intuitive,
well-designed languages, the capability to find all matches
for a pattern, and the ability to execute a graph rewrite
sequence for each found match. So in a first step we
could look for a rough mapping of papers to consecu-
tive time-slots (13,824 possibilities), while the additional
constraints were checked in a second step leading to the
3,008 valid solutions, which were written to a file. Just
mapping the papers to any time-slots (as done by some
other groups) would have resulted in 10,077,696 possi-
bilities to be thoroughly checked, so the rough mapping
already saves much time.

The additional constraints of the basic assignment
were easy to express:

test checkConstr

{

// No simultaneous presentations by same person

negative {

ps:Person -:presents-> :Paper -:assocTimepos-> t:Slot;

ps -:presents-> :Paper -:assocTimepos-> t;

}

// No presenter is chairing another session simultaneously

negative {

ps:Person -:presents-> p1:Paper -:assocTimepos-> t:Slot;

p1 -:presentedIn-> session:Session;

ps -:chair-> othersession:Session <-:presentedIn-

p2:Paper -:assocTimepos-> t;

}

}

The above listing declares checkConstr as a test, which
consists of two negative application conditions (NACs)
for the constraints. The test fails if one of the NACs
matches. The first NAC matches, if one person ps presents
two different papers during the same time-slot t; the sec-
ond NAC matches, if one person ps presents a paper in
one session during a time-slot t and chairs another ses-
sion at the same time.

3 AntWorld

The AntWorld case study [?] is designed to compare
the performance of various graph transformation tools.
It consists of simple rules, which simulate the life of
an ant colony. To achieve good performance many so-
lutions submitted to GraBaTs’08 use a more complex
approach than described by the case study itself. As a
result, more than half of the submitted solutions con-
tained bugs. This shows, that the real challenge of the
AntWorld case study is to develop a fast and correct so-
lution, i.e. to find a good balance between performance
and simplicity.

Fig. 1. An AntWorld before grid extension after 61 rounds

GrGen.NET faces this challenge by providing a clean
and expressive rule specification language, as well as
fully automatic optimization of transformation rules. It
allows to write the required transformation rules straight
from the specification, e.g. the excerpt “If the ant is in
search mode and no outer neighbour has sufficient phero-
mones, the ant moves to any of its neighbour fields based
on a fair random choice. (However, an ant without food
shall not enter the ant hill.)” leads to the following trans-
formation rule for such an ant:

rule SearchAimless(curAnt:Ant)

{

// get position of current ant

curAnt -oldPos:AntPosition-> old:GridNode;

// get neighbour field

old <-:GridEdge-> new:GridNode\AntHill;

modify {

// move ant to neighbour field

delete(oldPos);

curAnt -:AntPosition-> new;

}

}

The tricky part of the rule is to find all possible neigh-
bours, regardless of whether the neighbour is connected
by an incoming or outgoing edge. For this purpose Gr-
Gen.NET offers arbitrary directed edges “<-->” match-
ing a directed edge either way, which is one of many
features that keep GrGen.NET rules simple and intu-
itive. As already mentioned above, this simplicity allows
a faster and less error-prone development of solutions.

In spite the burden of offering a convenient language,
the AntWorld case study reaffirms that GrGen.NET is
among the fastest graph transformation tools (cf. [GK07,
TBB+08]). This is due to the generative approach used
by GrGen.NET (something we have in common with

4 Edgar Jakumeit • Sebastian Buchwald • Moritz Kroll: GrGen.NET

e.g. the tools PROGRES [SWZ99], FUJABA [NNZ00],
GReAT [KASS03] or recently VMTS [LLMC05], con-
trasted by interpreted or constraint-solving based tools
like VIATRA2 [VB07] or AGG [Tae04]), and the rule-
specific search plans [Bat06,VVF06], which determine
the order of matching graph elements, allowing a fast
pruning of the search space taking dynamic host graph
statistics into account. GrGen.NET computes the search
plans fully automatically (and the computed search plans
perform well, cf. [BKG08]), in contrast to e.g. the semi-
automatic visual programming tool FUJABA [NNZ00],
which for example requires the user to choose the start-
ing point of the search, where a point not chosen wisely
may cause a performance penalty of a complexity class;
this may happen easily for users not knowing the im-
plementation, as witnessed with the Varró-Benchmark
[GK07,VSV05].

Using GrShell and yComp, it was very easy to play
around with the rules and see what they actually do (how
and when they get applied, what they match and what
they modify), or, at the abstraction level of the chal-
lenge, see the ants crawling (figure 1 shows an example
state reached while simulating the AntWorld).

4 Program Graphs

The program graphs challenge [?] is designed to com-
pare graph rewrite systems regarding their expressive-
ness, and in addition their ability to interact with the
user. It requires the capability to import and export
GXL [WKR02,HSESW05]. The task is to implement
the refactorings encapsulate field and move method on
a given graph representation of programs (especially a
given host graph). In the following we will introduce sev-
eral features of GrGen with relevance to this case.

Graph Relabeling

GrGen.NET is not only a graph rewriting system, it is
also a graph relabeling system [LMS99]. With the syn-
tax y:t<x> you may specify a graph element y to be
a retyped (to the new type t) version of an original
graph element x of a different - not necessarily - su-
per type. This allows to keep the incident edges of a
node untouched, while retyping it to its new type. This
is a feature which was included in GrGen because of
its usefulness in optimizations on graph-based compiler
intermediate representations of programs in SSA form,
which was the original task of the GrGen graph rewrite
system. It is used in the encapsulate field refactoring of
the program graphs challenge to retype the Access or
Update nodes into call nodes, keeping all the users of
the original node, thus saving us from iterating through
this unknown set in order to replicate the incident edges
which would be required, if we had to delete the original
node and create a new call node.

Fig. 2. Overview of the initial program graph

Fig. 3. Some details of the “Node” class

Nested Graph Layout

Graphs allow fast visual understanding – but only as
long as the amount of nodes and edges is kept low; the
given sample graph (depicted in figures 2 and 3) with
its more than 500 graph elements is beyond comprehen-
sion if presented in a flat layout. Luckily, a lot of graphs
are hierarchically structured, with the program graphs
or compiler intermediate graphs falling into this cate-
gory. For them our graph viewer offers the layout Hier-
archic, extending nodes to large areas containing entire
subgraphs, and the layout Compilergraph, developed out

Edgar Jakumeit • Sebastian Buchwald • Moritz Kroll: GrGen.NET 5

of the needs of day-to-day work with a compiler interme-
diate representation as an extension to Hierarchic, cut-
ting certain edges, marking the start and endpoint of the
cut with fat dots, allowing to jump to the other point by
clicking on either one. Together with color coding (grey
for packages, yellow for classes, magenta for methods,
cyan for variables and green for expressions), this allows
for an understandable, well-structured visualisation of
the host graph, in contrast to the unusable haystack of
a flat layout.

The layout as well as the colors are configured by
commands in the graph rewrite script of our solution;
further layouts are available, the same known from yFiles
which yComp uses.

Emit and Exec

GXL file import is achieved by a specialized program
gxl2grs, transforming the given (invalid) .gxl into an
equivalent .grs. Exporting is done by normal GrGen rules,
as given in the file JavaProgramGraphsGxlDumper.gri

(within the examples/JavaProgramGraphs-directory of
the GrGen.NET package).

Features used in the export process are:

– the emit statement, which allows to emit a sequence
of string expressions to stdout or into an arbitrary
file as specified by the user,

– the exec statement, which allows to execute a graph
rewrite sequence directly after the basic rule was ap-
plied, with the graph elements of the pattern and
rewrite part being available as arguments to the tests
and rules in the rewrite sequence,

– the visited flags, which allow to mark elements, in
order to highlight them for further processing or to
prevent them from being processed twice during a
graph walk; they could be introduced manually in
the graph model, but this specialized treatment is
more convenient to the user and allows for a more
efficient implementation (as they are saved in some
excess bits of the graph elements).

One of the rules used iteratively for exporting the graph
is shown below, matching a package node not yet vis-
ited, marking it as visited and emitting the node with
its internal name plus the name attribute.

rule dumpNodePackage

{

n:Package;

i f { !visited(n); }

modify {

eval { visited(n) = true; }

emit("<node id=\"", nameof(n), "\">",

"<type xlink:href=\"Package\"/>",

"<attr name=\"name\"> <string>",

n.name, "</string> </attr>",

"</node>");

}

}

The same mechanism is used in the MOF-Suite for
GrGen.NET, extending GrGen for model transforma-
tion [GDG08], capable of importing and exporting UML
models conforming to MOF 2.0 given in XMI.

Recursive Patterns

The java program graphs defined in the challenge are
to a good degree tree like, resembling an abstract syn-
tax tree with additional intermediate edges from uses to
definitions. Tree-like or other structures of recursive na-
ture can get matched or even rewritten neatly by one
application of a single rule. This is allowed by the con-
cept of subpatterns resp. subrules (which in our case are
subpatterns with nested modify/replace-parts), com-
bined with alternative parts, as introduced in [HJG08]
(based on Hyperedge Graph Replacement [DKH97] on
the meta level to assemble rules to be applied on the ob-
ject level). Similar approaches – limited to recursive sub-
patterns – can be found in the tools VIATRA2 [VHV08]
and TEFKAT [LS05]. In [HJG08] subrules were used
to model the transcription of a DNA strand into an
RNA strand, here subpatterns are used to model an iter-
ated path condition in the implementation of the “Move
Method Refactoring”, checking whether the name of the
operation already exists in the scope of the target class.
This check is accomplished by the following subpattern
methodNameExistsSuper, which succeeds if in the given
class cls there is an operation op, which either bears the
name we are searching for (alternative case “here”), or
there is a superclass super, in which the check succeeds
(alternative case “super”).

pattern methodNameExistsSuper(opForName:Operation, cls:Class)

{

cls <-:belongsTo- op:Operation;

alternative {

here {

i f { op.name==opForName.name; }

}

super {

cls -:extends_-> super:Class;

:methodNameExistsSuper(opForName, super);

}

}

}

(Furthermore, the subpatterns are used for dumping the
graph to a text file for debugging, obeying the nesting
structure; there the emitpre and emitpost statements are
used, which allow to emit text before and after emitting
the text for the nested subpatterns.)

5 Features learned

The GraBaTs – Graph-Based Tools Contest – is designed
to stimulate learning own limitations and learning from

6 Edgar Jakumeit • Sebastian Buchwald • Moritz Kroll: GrGen.NET

other tools, as well as serving as a discussion platform
for tool creators and potential users. After a short expla-
nation of the development goals of GrGen.NET we will
see how feedback from the tool contest helped improv-
ing the GrGen tool regarding each one of them. In the
following section Discussion 6 we want to cast a recur-
ring discussion of GraBaTs about textual and graphical
representations into paper form.

Development goals

Based on our own experience of day-to-day work with
rewriting of a graph based compiler intermediate lan-
guage – a real world task tackled with graph rewriting –
we focused on

– expressive language constructs allowing for a concise
and descriptive solution

– high execution speed at modest memory consump-
tion, so that you can really use the result of your
work

– convenient development, realized by step wise and
graphical debugging, together with a well designed
API and an extensive user manual.

The tool contest gave valuable input on each of these
fields, based on it we are currently designing and im-
plementing the following extensions to the GrGen.NET
system. Most of them will be available in the next major
release.

Convenience: GXL

The current solution with the gxl2grs converter and the
user-specified export is working, but lacks convenience.
Instead we will add an importer and an exporter for GXL
1.0 directly to the libGr, available from the API and the
GrShell. This will ease tool comparisons and migration.

Execution speed: Storages

Storages – sets of nodes– gave the tool VMTS the thrust
to win the performance case AntWorld (cf. [?]).
In GrGen.NET they will be represented as variables of
type set<Node>, accessible for graph rewrite sequences
like s.add(el), adding an element to a set, s.rem(el)
for removing an element from a set, and the iteration
for{x in s; r(x)} executing the nested sequence for
all elements in the set, with a new element bound to
the iteration variable in each step. Looking up elements
in the storages instead of searching for marked elements
in the graph will allow for faster solutions. (But sets of
nodes will not be made available as attribute types in
the graph model because we regard this usage to be too
error prone).

Expressiveness: Pattern Cardinality and PAC

The refactoring case indeed proved to be a stress test
regarding expressiveness. While the recursive patterns /
rules were a major leap ahead, they weren’t as useful in
solving this challenge as expected. While they do well in
matching structures of arbitrary depth, as e.g. iterated
paths, or of arbitrary breadth, e.g. a multinode, they
have their weaknesses in matching recursive structures of
arbitrary depth and arbitrary breadth, like an abstract
syntax tree. To overcome this limitation they will be
supplemented by an iterated-construct, matching its
nested pattern as often as possible. With this feature, it
will be possible to match a spanning tree as simple as
this:

pattern SpanningTree(root:Node)

{

iterated {

root -- next:Node;

:SpanningTree(next);

}

}

A further problem we experienced in this case was the
incapability to check an iterated path condition target-
ing an unknown but already matched node (matched in
a subpattern containing the current pattern). The check
always fails because the node is locked due to the isomor-
phy constraint. This problem will be solved by Positive
Application Condition patterns – syntactically specified
by an independent-block, requiring the nested pattern
to get matched, but not constraining the contained ele-
ments to get matched isomorphically to the elements of
the nesting pattern. So in the following test, there will be
always a match of the iterated path heading to a node of
type A in case the test pattern was found – the elements
of the test pattern once again.

test someTest

{

na:A <-- . <-- n:Node;

independent {

:IteratedPathToA(n);

}

}

6 Discussion

As elaborated at the beginning of the previous section,
our major development goals were:

– language expressiveness
– execution speed
– development convenience

We did not invest into the development of graphical lan-
guages and graphical editors. Regarding several other
tools offering graphical languages and graphical editors
(FUJABA [FNTZ00], VMTS [LLMC05], AGG [Tae04])

Edgar Jakumeit • Sebastian Buchwald • Moritz Kroll: GrGen.NET 7

and the discussions on the “graphical vs. textual” issue
during the tool contests, we think this is a good place
to cast our arguments (largely in favour of textual lan-
guages) into paper form.

Benefits

The superiority of graphical representations and editors
or textual representations and editors depends on the
domain and is to a certain degree a matter of taste. For
rule application control and attribute computations we
doubt graphical representations and editors to be supe-
rior at all, a claim we think is backed by the unsuccess-
fulness of graphical programming languages compared to
textual ones. For graph pattern matching and rewriting
on the other hand a graphical representation would be a
more intuitive and direct user interface – at least as long
as the graphs stay small, they quickly loose the property
of fast visual understandability with an increase in the
number of elements. But the less direct textual represen-
tations offer some other benefits, and most important in
our case, are less expensive.

Costs

Given limited resources, you must choose into which ar-
eas to invest. While graphical representations are the
more intuitive ones for the user in the case of graph pat-
terns, they come at a higher cost. As they are not offering
a higher expressiveness, only a more convenient user in-
terface, we decided to follow a first things first policy
and focused on the aforementioned development goals.
In our opinion, a textual language which offers the user
the expressiveness and performance he needs to tackle a
given problem is more important than a graphical lan-
guage of less expressiveness backed by a slower engine
developed given the same resources.

Tool support

The lower costs are to a certain degree based on tool sup-
port, with compiler construction tools like parser gener-
ators – which gave us for instance the ability to add
the $-operator for indeterministic choice needed for the
AntWorld-case within the shortest amount of time – be-
ing more mature than graphical representation toolkits.
But while this gap will narrow in the future, we doubt it
will vanish, since graphical representations are the more
complex technology compared with textual representa-
tions.

Robustness

Technological complexity has another recurrence: human
optimized textual representations allow the user to read,
edit, and write the entities of design with the simplest of
editors, in contrast to graphical representations which

require the original viewer/editor to be available and
running without major bugs. We think that the more
complex technology should be built on top of the sim-
ple one: a graphical rule editor reading and writing the
textual representation can be implemented later on as
an add-on, even without contact to the original develop-
ers, so the development process itself gets more robust.
(Software developers willing to implement a graphical
rule editor on top of GrGen.NET are welcome.)

Harnessing generative power

Finally, domain specific languages mapping to the graph
rewrite language or simple helper programs generating
rules programmatically (exploiting similarities) can be
implemented and debugged easier. Generation is just a
matter of filling some schemes with variables and invok-
ing a text emit. Further on, a compiler operating on a
human-optimized format, itself meant to be used by hu-
mans, normally gives useful error messages, which, to-
gether with the fact that all information is immediately
available in the file processed, allows locating the error
quickly. (And our experience of implementing the Gr-
Gen.NET code generator as well as an optimizer gener-
ator for a compiler intermediate language emitting Gr-
Gen rules taught us that this is a point not to be ne-
glected.) A graphical representation on the other hand
must be accessed via the API of the editor or via the
machine optimized import/export format, which will be
cumbersome or impossible to read directly; and the tool
normally will give you only the information that import
failed, as it is only meant to be used for reading/writing
its own rules, with errors handled by the developers in
their debugger.

7 Conclusion

GrGen.NET is a special purpose software development
system and a general purpose graph rewrite system. It is
designed for software developers and meant to be used
for the generation of the algorithmic core of applica-
tions processing graph structured data. Its user inter-
face and implementation were chosen to perform rea-
sonably well on any graph rewriting task – and we think
it does so, looking at uses in e.g. compiler construction
[SG07], model transformation [GDG08], computer lin-
guistics [BG09] or computational biology [SGS09].

Regarding the GraBaTs challenges, GrGen.NET has
shown its usability and superiority for rapid prototyp-
ing in the live contest Conference Scheduling case (as
well as in the GraBaTs 09 live contest Conveyor Belt
case [VGLR09]). Normally fast speed of development
leads to low execution speed of the resulting code, which
is not the case with GrGen.NET, as witnessed in the
AntWorld challenge or proven by the Varró benchmark
[VSV05]. This is due to the generative approach and

8 Edgar Jakumeit • Sebastian Buchwald • Moritz Kroll: GrGen.NET

the host graph sensitive search plan based graph pattern
matching, which allows the user to write down directly
what he thinks, still getting a high-performance solu-
tion. With the iterated language construct introduced
due to feedback from the Refactoring case GrGen.NET
has taken a leading position in rewrite rule expressive-
ness, now being capable of handling recursive structures
of arbitrary depth and breadth, which allows for further
shifting of work from the imperative control programs
to the declarative rewrite rules.

GrGen.NET (available at www.grgen.net) offers a
convenient development environment consisting of a so-
phisticated graph viewer and an interactive shell sup-
porting graphical and step-wise debugging; it provides
intuitive and very expressive specification languages and
a highly optimized code generator, yielding the highest
combined speed of development and execution.

We thank our three reviewers, the two anonymous
ones as well as our third one, Rubino Geiß.

References

Bat06. Batz, Gernot V.: An Optimization Tech-
nique for Subgraph Matching Strategies. In-
ternal Report, 2006. – ”http://www.info.
uni-karlsruhe.de/papers/TR_2006_7.pdf”

BG08. Blomer, Jakob ; Geiß, Rubino: The
GrGen.NET User Manual. Internal Re-
port. http://www.info.uni-karlsruhe.

de/software/grgen/GrGenNET-Manual.pdf.
Version: 2008

BG09. Bédaride, Paul ; Gardent, Claire: Seman-
tic Normalisation: a Framework and an Exper-
iment. In: Eighth International Conference on
Computational Semantics, 2009

BKG08. Batz, Gernot V. ; Kroll, Moritz ; Geiß,
Rubino: A First Experimental Evaluation of
Search Plan Driven Graph Pattern Matching.
Applications of Graph Transformation with In-
dustrial Relevance (AGTIVE ’07) Proceedings,
2008. – ”http://www.info.uni-karlsruhe.de/
papers/agtive_2007_search_plan.pdf”

CMR+97. Corradini ; Montanari ; Rossi ; Ehrig ;
Heckel ; Löwe: Algebraic Approaches to Graph
Transformation - Part I: Basis Concepts and
Double Pushout Approach. Handbook of Graph
Grammars and Computing by Graph Transfor-
mation, Volume 1, 1997

DKH97. Drewes ; Kreowski ; Habel: Hyperedge
Replacement Graph Grammars. Handbook of
Graph Grammars and Computing by Graph
Transformation, Volume 1, 1997

EHK+97. Ehrig ; Heckel ; Korff ; Löwe ; Ribeiro ;
Wagner: Algebraic Approaches to Graph Trans-
formation - Part II: Single Pushout Approach
and Comparison with Double Pushout Approach.
Handbook of Graph Grammars and Computing
by Graph Transformation, Volume 1, 1997

FNTZ00. Fischer, Thorsten ; Niere, Jörg ; Torunski,
Lars ; Zündorf, Albert: Story Diagrams: A New
Graph Grammar Language based on the Unified
Modelling Language and Java. In: Theory and
Application of Graph Transformations, 2000, S.
157–167

GBG+06. Geiß, Rubino ; Batz, Gernot V. ; Grund,
Daniel ; Hack, Sebastian ; Szalkowski,
Adam M.: GrGen: A Fast SPO-Based
Graph Rewriting Tool. Proceedings 3rd Int.
Conf. on Graph Transformation (ICGT ’06),
2006. – ”http://www.info.uni-karlsruhe.de/
papers/grgen_icgt2006.pdf”

GDG08. Gelhausen, Tom ; Derre, Bugra ; Geiß, Ru-
bino: Customizing GrGen.NET for Model Trans-
formation. In: GraMoT, 2008, S. 17–24

GK07. Geiß, Rubino ; Kroll, Moritz: On
Improvements of the Varró Benchmark for
Graph Transformation Tools. Internal Re-
port. http://www.info.uni-karlsruhe.de/

papers/TR_2007_7.pdf. Version: 2007

HJG08. Hoffmann, Berthold ; Jakumeit, Edgar ;
Geiß, Rubino: Graph Rewrite Rules with
Structural Recursion. 2nd Intl. Workshop on
Graph Computational Models (GCM 2008),
2008. – ”http://www.info.uni-karlsruhe.de/
papers/GCM2008.pdf”

HSESW05. Holt, Richard C. ; Schürr, Andy ; El-
liott Sim, Susan ; Winter, Andreas: GXL:
A graph-based standard exchange format for
reengineering. In: Science of Computer Program-
ming (2005)

KASS03. Karsai, Gabor ; Agrawal, Aditya ; Shi, Feng ;
Sprinkle, Jonathan: On the use of graph trans-
formation in the formal specification of model
interpreters. In: Journal of Universal Computer
Science 9 (2003), S. 1296–1321

KG07. Kroll, Moritz ; Geiß, Rubino: Developing
Graph Transformations with GrGen.NET. Inter-
nal Report. http://www.info.uni-karlsruhe.

de/papers/agtive_2007_grgennet.pdf.
Version: 2007

LGP07. GNU Lesser General Public License.
http://www.gnu.org/licenses/lgpl-3.0.txt.
Version: 2007

LLMC05. Levendovszky, Tihamér ; Lengyel, László ;
Mezei, Gergely ; Charaf, Hassan: A System-
atic Approach to Metamodeling Environments
and Model Transformation Systems in VMTS.
In: Electronic Notes in Theoretical Computer
Science, 2005, S. 65–75

LMS99. Litovsky ; Métivier ; Sopena: Graph Re-
labelling Systems and Distributed Algorithms.
Handbook of Graph Grammars and Computing
by Graph Transformation, Volume 3, 1999

LS05. Lawley, Michael ; Steel, Jim: Practical
Declarative Model Transformation with Tefkat.
In: MoDELS Satellite Events, 2005, S. 139–150

NNZ00. Nickel, Ulrich ; Niere, Jörg ; Zündorf, Al-
bert: The FUJABA environment. In: ICSE ’00
Proceedings of the 22nd international conference
on Software engineering, 2000, S. 742–745

www.grgen.net
http://www.info.uni-karlsruhe.de/papers/TR_2006_7.pdf
http://www.info.uni-karlsruhe.de/papers/TR_2006_7.pdf
http://www.info.uni-karlsruhe.de/software/grgen/GrGenNET-Manual.pdf
http://www.info.uni-karlsruhe.de/software/grgen/GrGenNET-Manual.pdf
http://www.info.uni-karlsruhe.de/papers/agtive_2007_search_plan.pdf
http://www.info.uni-karlsruhe.de/papers/agtive_2007_search_plan.pdf
http://www.info.uni-karlsruhe.de/papers/grgen_icgt2006.pdf
http://www.info.uni-karlsruhe.de/papers/grgen_icgt2006.pdf
http://www.info.uni-karlsruhe.de/papers/TR_2007_7.pdf
http://www.info.uni-karlsruhe.de/papers/TR_2007_7.pdf
http://www.info.uni-karlsruhe.de/papers/GCM2008.pdf
http://www.info.uni-karlsruhe.de/papers/GCM2008.pdf
http://www.info.uni-karlsruhe.de/papers/agtive_2007_grgennet.pdf
http://www.info.uni-karlsruhe.de/papers/agtive_2007_grgennet.pdf
http://www.gnu.org/licenses/lgpl-3.0.txt

Edgar Jakumeit • Sebastian Buchwald • Moritz Kroll: GrGen.NET 9

RVG08. Rensink, Arend ; Van Gorp, Pieter: Graph-
Based Tools: The Contest. Proceedings 4th Int.
Conf. on Graph Transformation (ICGT ’08),
2008

SG07. Schösser, Andreas ; Geiß, Rubino:
Graph Rewriting for Hardware Depen-
dent Program Optimizations. Applications
of Graph Transformation with Industrial
Relevance (AGTIVE ’07) Proceedings.
http://www.info.uni-karlsruhe.de/papers/

agtive_2007_firm.pdf. Version: 2007
SGS09. Schimmel, Jochen ; Gelhausen, Tom ; Schae-

fer, Christoph A.: Gene Expression with Gen-
eral Purpose Graph Rewriting Systems. In: Pro-
ceedings of the 8th GT-VMT Workshop, 2009

SWZ99. Schürr, A. ; Winter, A. J. ; Zündorf, A.:
The PROGRES approach: language and envi-
ronment. In: Handbook of Graph Grammars and
Computing by Graph Transformation, Volume 2,
1999, S. 487–550

Tae04. Taentzer, Gabriele: AGG: A Graph Trans-
formation Environment for Modeling and Val-
idation of Software. In: Applications of
Graph Transformations with Industrial Rele-
vance, 2004, S. 446–453

TBB+08. Taentzer, Gabriele ; Biermann, Enrico ; Bisz-
tray, Dénes ; Bohnet, Bernd ; Boneva, Iovka
; Boronat, Artur ; Geiger, Leif ; Geiß, Ru-
bino ; Horvath, Ákos ; Kniemeyer, Ole ; Mens,
Tom ; Ness, Benjamin ; Plump, Detlef ; Vajk,
Tamás: Generation of Sierpinski Triangles: A
Case Study for Graph Transformation Tools.
In: Proc. 3rd Intl. Workshop on Applications of
Graph Transformation with Industrial Relevance
(AGTIVE ’07), 2008, S. 514–539

VB07. Varró, Dániel ; Balogh, András: The Model
Transformation Language of the VIATRA2
Framework. In: Science of Computer Program-
ming 68 (2007), Nr. 3, S. 214–234

VGLR09. Van Gorp, Pieter ; Levendovszky, Tihamér
; Rensink, Arend: Live Challenge Problem.
http://is.tm.tue.nl/staff/pvgorp/events/

grabats2009/cases/live_problem.pdf.
Version: 2009

VHV08. Varró, Gergely ; Horváth, Ákos ; Varró,
Dániel: Recursive Graph Pattern Matching. In:
Applications of Graph Transformations with In-
dustrial Relevance. 2008, S. 456–470

VSV05. Varró, Gergely ; Schürr, Andy ; Varró,
Daniel: Benchmarking for Graph Transfor-
mation. In: VLHCC ’05: Proceedings of the
2005 IEEE Symposium on Visual Languages and
Human-Centric Computing, 2005, S. 79–88

VVF06. Varró, Gergely ; Varró, Dániel ; Friedl,
Katalin: Adaptive Graph Pattern Matching for
Model Transformations using Model-sensitive
Search Plans. In: GraMot 2005, International
Workshop on Graph and Model Transforma-
tions, 2006, S. 191–205

WEK02. Wiese ; Eiglsperger ; Kaufmann: yFiles:
Visualization and Automatic Layout of Graphs.
Graph Drawing, 9th International Symposium,
2002

WKR02. Winter ; Kullbach ; Riediger: An Overview
of the GXL Graph Exchange Language. Software
Visualization - International Seminar Dagstuhl
Castle, 2002

http://www.info.uni-karlsruhe.de/papers/agtive_2007_firm.pdf
http://www.info.uni-karlsruhe.de/papers/agtive_2007_firm.pdf
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/cases/live_problem.pdf
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/cases/live_problem.pdf

	Introduction
	Conference Scheduling
	AntWorld
	Program Graphs
	Features learned
	Discussion
	Conclusion

