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Abstract. It has become common practice to formally verify the cor-
rectness of information-flow analyses wrt. noninterference-like properties.
An orthogonal problem is to ensure the correctness of implementations
of such analyses. In this article, we propose the benchmark suite IFSpec,
which provides sample programs for checking that an information-flow
analyzer correctly classifies them as secure or insecure. Our focus is on
the Java and Android platforms, and IFSpec supports Java source code,
Java bytecode, and Dalvik bytecode. IFSpec is structured into cate-
gories that address multiple types of information leakage. We employ
IFSpec to validate and compare four information-flow analyzers: Cas-
sandra, Joana, JoDroid, and KeY. IFSpec is based on RIFL, the RS3

Information-Flow Specification Language, and is open to extensions.

1 Introduction

Research on information-flow security aims at end-to-end security guarantees
regarding confidentiality and integrity. Information-flow guarantees can be for-
malized based on the idea of noninterference, using the original property [20]
or variants of it [30]. These guarantees go beyond the ones provided by ac-
cess control: regarding confidentiality, for instance, attackers are not only pre-
vented from accessing secrets directly, but also from deducing sensitive infor-
mation from the observations they make during program runs. The field of
information-flow security originated already in the late seventies and early eight-
ies [14, 17, 18, 20, 31, 36]. To date, information-flow analysis tools range from
scientific prototypes [4,6, 21,27,32], to being part of commercial products [1,2].

Albeit it is clear that benchmark suites are catalyzers for technical progress
in tool development [38], little effort has gone into the development of bench-
mark suites for information-flow analysis tools. In many other areas of Computer
Science, the use of benchmark suites has become common practice, e.g., in hard-
ware/software performance research [23, 24], compiler research [16], SAT/SMT
solving [25], theorem proving [42], and model checking [26,35]. Such benchmark
suites enable the comparison of developed tools and techniques, and provide a
basis for fostering exchange between research groups and projects.



In this article, we present the novel benchmark suite IFSpec1 for bench-
marking information-flow analysis tools targeting source code and bytecode for
the Java and Android platforms. Each sample program in IFSpec is provided
in Java source code, Java bytecode, and Dalvik bytecode. IFSpec is designed to
cover a broad range of different types of information leakage commonly found
in real-world programs. By providing all samples for three different language
levels in a uniform fashion, IFSpec facilitates the evaluation and comparison of
information-flow analysis tools developed for these language levels on a common
set of samples, fostering the transfer of innovation across language levels.

We are aware of only two benchmark suites that have already been used
to evaluate information-flow analysis tools: SecuriBench Micro [41] and Droid-
Bench [6, 19]. The samples of SecuriBench Micro were originally developed to
benchmark web application security analyses, but they can also be interpreted
from an information-flow security perspective and have been used to evaluate
information-flow analyzers targeting Java source code (e.g. [6, 45]). DroidBench
was developed to compare the effectiveness of taint-analysis tools targeting
Dalvik bytecode. With IFSpec, we aim to provide a benchmark suite for the
evaluation of information-flow analysis tools for multiple language layers of the
Java and Android platforms on a uniform set of samples.

Using IFSpec, we evaluate four information-flow analyzers. One of them tar-
gets Java source code, two Java bytecode, and one Dalvik bytecode. We present
insights on the soundness and precision for each of the evaluated tools. As a side
effect, our evaluation shows that IFSpec is indeed suitable for evaluating and
comparing information-flow analyzers for both source code and bytecode.

In detail, our two main contributions are the following:
– Our first contribution is IFSpec, a machine-readable benchmark suite for

information-flow analysis tools that target the Java virtual machine or the
Android platform. For each sample, a corresponding security policy is spec-
ified in a uniform fashion using RIFL, the RS 3 Information-Flow Specifica-
tion Language [8]. IFSpec is open for extensions, and we present three such
extensions in this article (subsuming the benchmarks from SecuriBench Mi-
cro and DroidBench and making them more accessible). IFSpec enables the
evaluation of information-flow analyzers in a fully automated fashion.

– Our second contribution is an evaluation of four information-flow analysis
tools for multiple language levels of the Java and Android platforms using the
IFSpec benchmark suite: Cassandra [27], Joana [21], JoDroid [32], and
KeY [4]. Each of these four tools is built on solid theoretical foundations and
is designed to enforce specific, formally defined noninterference-like security
properties. We demonstrate how IFSpec can be used to assess the soundness
of such tool implementations. In addition to presenting our results, we discuss
how the trade-off between correctness and precision has been addressed in
the implementations of the evaluated tools.

1 The benchmark suite, including all samples, evaluation results, the benchmarked
tools, information how to run information-flow analyzers on IFSpec, and how to
contribute to IFSpec is available under www.spp-rs3.de/IFSpec.
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2 RIFL in a Nutshell

The RS3 Information-Flow Specification Language (RIFL) is a language for spec-
ifying information-flow policies [8]. The machine-readable syntax of RIFL is for-
mally defined in an XML format. It enables the definition of information-flow
policies by specifying restrictions on the permitted information flow between
given security domains. The association of these security domains with concrete
sources and sinks of information is realized by function mappings.

Fig. 1. RIFL language modules [8].

A RIFL specification capturing
information-flow policies for a partic-
ular program consists of four aspects:
the interface of the program (in terms
of sources and sinks of information),
the collection of security domains, the
association of each source or sink of in-
formation with a security domain, and
the specification of how information may flow between security domains.

Each of these aspects is specified in one of the individual language modules
of RIFL (represented by boxes in Fig. 1). RIFL comprises language-specific and
language-independent modules. Currently, RIFL supports the specification of
information-flow policies for Java source code, Java bytecode, and Dalvik byte-
code, which is sufficient for the purposes of this article. Note, however, that
RIFL can be extended to support additional target languages like, e.g., C/C++
or the LLVM IR. In Fig. 1, white boxes represent language modules that are
language-independent, while gray boxes represent modules that are language-
specific. The clear separation of the language-independent and the language-
specific parts in RIFL has two benefits: Firstly, information-flow policies can be
expressed and understood at a high level, independently from the details of a
specific programming language. Secondly, a RIFL policy can be adapted to mul-
tiple target languages by adapting the language-specific parts. This separation
of language-specific and language-independent aspects was, indeed, beneficial in
our construction of IFSpec. For each sample, large parts of the policy specifica-
tion could be shared for Java source code, Java bytecode and Dalvik bytecode.

RIFL aims at compatibility with information-flow analysis tools that are
based on distinct security semantics. Hence, RIFL cannot have a predefined
formal security semantics. Naturally, one can interpret given RIFL specifications
under a chosen formally defined security semantics. In this article, we interpret
information-flow policies with respect to the security semantics that are enforced
by the four individual tools that we evaluated. Since most existing approaches for
the specification of information flow policies are highly tool and target-language
dependent, we choose RIFL for the specification of the IFSpec benchmarks.

3 IFSpec Benchmark Suite

IFSpec consists of samples that showcase information-flow vulnerabilities in
programs for the Java and Android platforms. Such vulnerabilities can be of

3



Fig. 2. IFSpec Architecture

different kinds, e.g., involving direct information leaks, or implicit information
leaks that are, e.g., dependent on exceptional program behavior. The samples in
IFSpec cover a broad range of different kinds of information-flow vulnerabilities.

Fig. 2 shows the architecture of IFSpec. Users of the benchmark suite inter-
act with a benchmark harness provided by IFSpec. This harness, provided a tool
configuration for the benchmarked tool, enables an automated benchmarking on
the IFSpec samples. Each sample in IFSpec is provided in a machine-readable
format for Java source code, Java bytecode and Dalvik bytecode.

3.1 Syntax and Security Semantics

Sample Format. As illustrated in Fig. 2, all samples in IFSpec share a uni-
form format with two mandatory parts (the sample kernel and the sample meta-
information) and one optional part (the sample interpretation). The sample ker-
nel provides all information that is used when benchmarking an information-flow
analysis tool in a machine-readable format and, thus, enables to automate the
benchmarking of the tool. It consists of four parts: The first part is the program
to be analyzed in the target language. The second part is the information-flow
policy for the program given as a RIFL specification for the target language. The
third part is a specification of the analysis scope that declares which methods
are part of the program’s environment, and which methods can be called by the
program’s environment. The fourth part is the sample’s ground truth, i.e. the
expected classification of the sample as secure or insecure.

The sample meta-information provides the tags associated with each sample
that describe categories of information-flow, the minimal RIFL version a bench-
marked tool must support to parse the RIFL specification, and the security
semantics considered when classifying a sample as secure or insecure.

The optional sample interpretation in IFSpec’s sample format provides a
detailed description of the program and its functionality, a description of the
intuitive security requirement for the program, and a faithfulness argument.
The faithfulness argument substantiates why the RIFL specification captures the
intuitive security requirement for the program. With this information the sample
interpretation supports users in understanding the implications of successfully
analyzing a sample or failing to do so.
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Security Semantics. For the classification of the samples in IFSpec, we con-
sider four formal security properties: Termination-Insensitive Noninterference
for the Abstract Dalvik Language (TIN-ADL) [27], Sequential Noninterference
(SN) [10], Probabilistic Noninterference (PN) [10], and the flow∗-predicate [9].

We limit ourselves to these four properties because they were sufficient to
benchmark the information-flow analysis tools considered in Section 4. That is,
these security properties are enforced by at least one of the benchmarked tools.
The security property TIN-ADL is enforced by Cassandra [27], SN (resp. PN)
is enforced by Joana as well as JoDroid for sequential (resp. concurrent) pro-
grams [10], and the flow∗-predicate is enforced by KeY [9].

3.2 Core Samples of IFSpec

IFSpec provides 80 samples that contain test cases for information-flow analysis
tools. These samples have been contributed over a period of two years by over
20 researchers from the area of information-flow security. The vast majority of
these contributors are not developing information-flow analysis tools themselves.
Hence, they had no interest in tailoring the samples to the current technical
state of their tools, but were rather interested in identifying current limitations
of information-flow analysis tools. This adds to our confidence that our samples
avoid the pitfall of overfitting IFSpec to existing tools.

Categorization. Each sample in IFSpec is categorized with respect to prede-
fined types of information flow. The categories cover a wide range of information
leakage from simple flows, e.g., using direct assignment, to more sophisticated
flows caused by advanced language features, e.g., involving Java reflection. In
detail, the samples in IFSpec are categorized using the tags shown in the table
in Fig. 3. IFSpec contains samples for explicit information flow and for implicit
information flow via the control flow of sample programs.

Simple explicit information flows (e.g., via direct assignments or method
calls) are covered by the simple tag. Information flows that are caused by branch-
ing over a secret-dependent conditional are covered by the high-conditional tag.
The other six tags in Fig. 3 cover more sophisticated types of information flows.
For five categories, we provide samples covering both, explicit and implicit in-
formation flows. The other three categories contain samples that are specific to
either explicit or implicit flows. Overall, IFSpec contains 46 samples for explicit
and 34 samples for implicit information flow. The categories present in IFSpec
contain samples that are relevant for evaluating information-flow analyzers.

Note that samples in IFSpec can be categorized into multiple tags at the
same time. This enables the expression of samples that combine multiple types
of information leakage covered by our tags, like, e.g., samples that contain an
implicit flow via exceptional control flow that is dependent on array contents.

3.3 Benchmark Harness

As part of IFSpec, we provide a benchmark harness for automatically bench-
marking tools on IFSpec’s samples. This benchmark harness is a configurable
Python script that generates a report on the benchmark results. Additionally,
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tag #samples types of information flow covered explict
flows

implicit
flows

simple 18 simple information flow not covered by tags below ×
high-conditional 11 information flow via secret-dependent conditionals ×
arrays 12 information flow involving array length and content × ×
class-initializers 7 information flow involving class initializers × ×
exceptions 11 information flow via exception handling ×
library 7 information flow involving library calls × ×
aliasing 11 information flow involving object aliasing × ×
reflection 7 information flow involving reflection × ×

total 46 34

Fig. 3. Sample tags and their distribution in IFSpec

the benchmark harness offers configuration options that enable, for instance, a
selective benchmarking specified by a list of tags, or concrete sample names.

For the tool-specific configuration, users of IFSpec instantiate the bench-
mark harness for their information-flow analysis tool by setting four JSON op-
tions: the command that runs an analysis on the current sample, the outputs
by a tool when the benchmarked tool classifies a sample as secure or insecure,
respectively, and the target language of benchmarked the tool. Providing such a
tool-specific configuration for an information-flow analysis tool that implements
a RIFL frontend suffices to automatically benchmark this tool using IFSpec.

The report on the benchmark results consists of two parts. The first part is
a detailed overview of the samples where the tool output matched the expected
outcome (secure or insecure) and the samples where the actual result of the tool
did not match the expected outcome. The second part provides the overall recall
and precision for all samples and the recall and precision for each tag separately.
Using the benchmark harness reduces the effort for benchmarking information-
flow analysis tools by minimizing the necessary setup. In addition, it provides
the benchmark results in suitable format for further investigations.

3.4 Extensions of the IFSpec Benchmark Suite

In addition to the core samples of IFSpec, we provide three extensions to the
benchmark suite: an extension covering samples from the domain of web vulnera-
bility testing, an Android-specific extension covering peculiarities of the Android
platform, and a declassification extension specific to Java source code.

Web Vulnerability Extension. IFSpec subsumes SecuriBench Micro [41],
a benchmark suite for web application security analyses. Concretely, IFSpec
provides 152 samples that have been derived from the original 122 samples of
SecuriBench Micro. The samples contained in SecuriBench Micro are small web
applications that contain potential vulnerabilities caused by unchecked user in-
put. These vulnerabilities can be interpreted as a potential information leak,
i.e., each application contains a source where secrets from the environment enter
the application and a sink where the secret might be leaked. In fact, Security-
Bench Micro has been used to evaluate information-flow analysis tools [6]. For
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SecuriBench Micro samples that contain occurrences of both, leaking and non-
leaking calls of methods that can potentially leak secret information, we derive
two samples in IFSpec: the unchanged insecure sample, and a secure sample
obtained by deleting all method calls that are actually leaking secret informa-
tion. Our integration of SecuriBench Micro into IFSpec makes all SecuriBench
Micro samples available for Java source code, Java bytecode and Dalvik byte-
code. Moreover, the samples now contain machine-readable specifications of the
security property.

Note that in our integration we identified seven samples where the classifica-
tion into secure or insecure in SecuriBench Micro did not match our interpreta-
tion from an information-flow perspective. For the integration of these samples
into IFSpec, we adjusted the classification of these samples as (in)secure accord-
ingly. An overview of these samples is provided as part of the IFSpec artifact.

Android Vulnerability Extension for Dalvik Bytecode. IFSpec sub-
sumes all 119 samples from DroidBench ([6, 19]), a benchmark suite for taint-
analysis tools targeting the Android platform. The samples of DroidBench are
small Android applications, both secure and insecure. These samples do not con-
tain a formal, machine-readable specification of the information-flow policy, but
provide a human readable specification. This specification consists of a sample
description, a declaration of sources and sinks, and the number of leaks present in
the sample. By providing ground truths and a specification of the information-
flow policies, our extension makes all samples of DroidBench accessible in a
machine-readable format using the benchmark harness of IFSpec.

Declassification Extension for Java Source Code. We provide seven sam-
ples utilizing the support of escape hatches [37] in RIFL 1.1 for Java source code,
as language-specific extension for Java source code. In the samples, specific in-
formation may be declassified at explicit program points. Declassification is one
of the research problems extensively studied in the research area of information-
flow security (e.g., [28, 29, 33, 37]). Our extension shall be a first step towards
catalyzing technical progress in tool support for declassification. For details how
to utilize escape hatches in RIFL, we refer the interested reader to [8].

4 Benchmarking with IFSpec

We use IFSpec to compare four information-flow analysis tools developed for the
three target languages of IFSpec: Cassandra [27] (Dalvik bytecode), Joana [21]
(Java bytecode), JoDroid [32] (Dalvik bytecode), and KeY [4] (Java source
code). We evaluate each of these tools on the core samples of IFSpec, as well as
on the web vulnerability extension that subsumes SecuriBench Micro. IFSpec
enables us to evaluate these tools on a common set of samples. In addition, we
selectively evaluate tools on the other two extensions of IFSpec (cf. Section 3.4).
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4.1 Benchmarked Tools

Cassandra [27] is an Android app store that integrates an information-flow anal-
ysis. It allows end users of mobile devices to specify their security requirements
and to check whether applications comply with their requirements before these
applications are installed. To this end, Cassandra implements a security type
system for Dalvik bytecode that is proven sound with respect to a formal notion
of noninterference. Within methods, the type system is flow-sensitive.

Cassandra does not analyze methods from third-party libraries or the An-
droid standard library. Instead, it uses manually provided method signatures to
specify the information flows in library methods. If Cassandra encounters a call
to a library method for which no method signature is defined, it has no knowl-
edge of the effects of the call. In such cases, Cassandra cannot ascertain whether
the application is secure or insecure.

Joana [21, 22] is an information-flow analysis tool for full Java bytecode. It
leverages program dependence graphs (PDGs), a language-independent and flow-
sensitive representation of a program’s dependencies, and then uses slicing – a
form of graph reachability – on the PDG to determine whether a given source
may influence a given sink. This kind of check guarantees noninterference for
sequential programs [44] and for concurrent programs, there is an extension
which guarantees a form of probabilistic noninterference [10,12].

Joana incorporates library code in its analysis, so in principle all library
code that may potentially be used is required. For this purpose, Joana contains
method stubs of the Java Standard Libraries. Most importantly, these method
stubs provide implementations for some heavily used native methods. Joana
provides method stubs for different releases of the Java Standard Libraries, in
particular for Java 1.4 and Java 1.5.

JoDroid [32] is a variant of Joana which provides a front-end for the analysis of
Dalvik bytecode and in particular Android applications. Like Joana, JoDroid
generates a PDG from a given Android application but can additionally deal
with Android specifics like Android’s message passing mechanism or the fact
that an Android application consists of multiple entry points invoked by the
Android framework in certain patterns (the Android Activity Lifecycle [5]).

For JoDroid, Android SDK Platform packages [3] are used as method stubs.
These packages are used to compile an Android App for a specific API version.
They contain stub implementations of the respective API methods which throw
an exception if they are called. Hence, using an Android SDK Platform package
potentially causes unsound assumptions as it does not contain sound information
about the relation between method inputs and outputs. Note however that it is
possible to run JoDroid with more proper implementations of the Android API.

KeY [4] is a software verification tool based on deductive theorem proving for
Java programs annotated with an extension of the JML specification language.
KeY supports the specification and verification of the noninterference property.
For the evaluation we interpret the case in which a proof was not found as KeY
reporting the program to be insecure.
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True Positive (TP) False Positive (FP)
sample contains leak, tool reports leak sample contains no leak, tool reports leak

True Negative (TN) False Negative (FN)
sample contains no leak, tool reports no leak sample contains leak, tool reports no leak

Fig. 4. Classifications of Possible Benchmarking Results for a Sample

For handling library methods, KeY uses method contracts or the source code.
Method contracts are formally proven dependencies between the method inputs
and outputs. If method contracts are not available, the source code of the method
is included in the analysis. KeY’s handling of library calls cannot lead to unsound
results because all assumptions about the library methods are formally justified.
However, providing formally proven method contracts is difficult.

Sound Overapproximation of Benchmarking Results. When applying
one of the benchmarked tools to a sample from the benchmark suite, it might
happen that the output of the tool does not allow for a clear statement about
the (in)security of the sample to be made. The sound option of interpreting
such outputs is that the tool reports the sample as insecure, since the security
of the sample cannot be established. We chose this option for interpreting the
benchmarking results of the four tools. For Cassandra, a clear statement cannot
be made when a signature for a library method is missing, when a method is
called in a context in which control flow may depend on secret information,
or when the analyzed program throws an exception. For Joana (and also its
variant JoDroid), a clear statement about the (in)security of a sample cannot
be made when the tool crashes on the sample. KeY cannot make statements
about sample programs that contain library calls for which neither a stub with
corresponding method contract nor the source code is provided.

4.2 Terminology and Metrics for Benchmarking
For the evaluation of the four tools, we record the true positives, true negatives,
false positives, and false negatives. Furthermore, for each tool, we compute the
recall and precision on the samples used for benchmarking.

A true positive (TP) means that a tool correctly reports an information leak
in an insecure sample. A true negative (TN) means that a tool correctly reports
the absence of information leaks in a secure sample. A false positive (FP) means
that a tool incorrectly reports an information leak in a secure sample. False
positives indicate imprecision of a tool. A false negative (FN) means that a
tool does not report any information leak in an insecure sample. False negatives
indicate unsoundness of a tool. We summarize these terms in Fig. 4.

The recall of a tool is computed from the number of true positives and
false negatives in the benchmarking results as (#TP )/(#TP + #FN). Recall
indicates the percentage of samples correctly classified as insecure by the tool
with respect to all samples containing an information leak. For instance, a recall
of 1 indicates that the tool soundly classifies all samples with an information
leak as insecure.
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The precision of a tool is computed from the number of true positives and
false positives in the benchmarking results as #TP/(#TP + #FP ). Precision
indicates the percentage of samples correctly classified as insecure by the tool
with respect to all samples classified as insecure by the tool. For example, a
precision of 1 indicates that the tool classifies only samples as insecure that
contain an information leak, i.e. it never classifies secure samples as insecure.
For both recall and precision a higher number indicates better tool performance
on the samples used for benchmarking.

4.3 Benchmarking Results

We evaluate each of the four tools on the core samples of IFSpec, as well as on
the web vulnerability extension. We present the overall results of benchmarking
the four tools in Fig. 5. In this table, the column “#samples” contains the num-
ber of samples analyzed and the column “#soap samples” contains the number
of samples for which the result of a tool was soundly overapproximated (cf. Sec-
tion 4.2). Furthermore, the table lists the number of true positives (column “TP”)
and true negatives (column “TN”) as well as the number of false positives (col-
umn “FP”) and false negatives (column “FP”) for each benchmarked tool. The
numbers of true positives and false positives are split into the number of sam-
ples that are successfully analyzed and the ones soundly overapproximated. The
two numbers are separated by a “+”. In addition, Fig. 5 shows the recall and
precision of the tools on the samples used for benchmarking. For all four tools,
we present a detailed overview on the recall and precision for each tag in Fig. 6.

Benchmarking Results for Cassandra. The most noteworthy result of the
evaluation is that Cassandra produces no false negatives and thus achieves a
recall of 100%. This means that Cassandra reports all leaks in the shared sam-
ples of IFSpec. The absence of false negatives is the result of two aspects: (1)
The soundness proof of the security type system implemented in Cassandra for
almost the full instruction set of Dalvik bytecode. (2) The approach of only
adding method signatures that are guaranteed to correctly describe the flow of
information caused by library methods.

On the other hand, sound overapproximation of the result of Cassandra takes
place in the analysis of 109 samples, a comparatively large number. The sound
overapproximation is largely due to missing signatures for library methods, which
is the case when a signature has not been manually provided yet or cannot be
provided due to the limited expressiveness of the format of method signatures.
The missing signatures cause Cassandra to report that it cannot ascertain the se-
curity of the sample program. Sound overapproximation causes a relatively high
number of false positives, which has an adverse effect on Cassandra’s precision.

Further inspecting the results of Cassandra grouped by the tags of samples
reveals options for improving its precision. In Fig. 6, it becomes apparent that
precision is lower than average for two classes of samples in particular: Those
involving branches on secret information (high-conditional) and those involving
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tool
target

language #samples #soap
samples TP TN FP FN recall precision

Cassandra DBC 232 109 68+79 15 40+30 0 100% 67.7%
Joana JBC 232 0 139+0 35 50+0 8 94.6% 73.5%
JoDroid DBC 232 3 136+2 32 52+1 9 93.9% 72.3%
KeY JSC 232 208 7+138 12 5+70 0 100% 65.9%

Legend: JSC=Java source code, JBC=Java bytecode, DBC=Dalvik bytecode

Fig. 5. Overview of benchmark results

aliasing (aliasing). For the tag high-conditional, the relatively low precision can
be explained by the fact that the security type system of Cassandra does not
allow methods to be invoked in the control dependence regions of high condi-
tionals in order to prevent implicit flows of information via dynamic dispatch.
The relatively low precision for the tag aliasing can be explained by the fact
that the information-flow analysis of Cassandra is not object-sensitive.

Benchmarking Results for Joana. The results of Joana match the ground
truths for 174 of the samples in IFSpec. The 50 false positives are mainly caused
by the fact that Joana overapproximates actual program behavior. For instance,
Joana does not reason about values and does not rule out control flow which
is actually impossible due to algebraic invariants. Other sources of imprecision
include array handling (Joana does not distinguish between different cells of
the same array) and exceptional control flow.

The eight false negatives are due to two reasons. Seven false negatives are
caused by the usage of reflection: Joana tries to handle reflective code but leaves
it unresolved if it fails in doing so. The resulting PDG is then incomplete.

The second reason is that Joana models static initializers improperly: In
one example, the leak is caused by the fact that in Java, class initializers are
executed lazily. Joana on the other hand assumes that all class initializers are
executed upfront and hence misses the leak because it assumes that the leaking
statement is executed at a time when no secret information is available yet.

Benchmarking Results for JoDroid. Surprisingly, the benchmarking results
for JoDroid showed differences in 11 samples. These appear to be caused by
JoDroid’s Dalvik frontend, which not only reads in the bytecode but also per-
forms simple intraprocedural analyses on it.

In three examples Joana could deliver a result while JoDroid crashed. In
five examples, Joana did not report a flow and JoDroid did. Possible reasons
for this may include differences in the handling of static initializers and the
analysis of exceptional control-flow. Three more differences appear to stem from
a bug in JoDroid’s modelling of multidimensional arrays.

Benchmarking Results for KeY. Even though KeY is not designed for au-
tomatic verification of information-flow security, it is able to successfully analyze
a small subset of the samples in IFSpec. Since KeY considers a sample secure
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Cassandra Joana JoDroid KeY

tag
#

samp. recall precision recall precision recall precision recall precision

explicit-flows 198 100% 69.2% 94.5% 75.2% 93% 73.9% 100% 66.7%
implicit-flows 34 100% 59.4% 94.7% 64.3% 100% 63.3% 100% 61.3%
simple 63 100% 64.8% 100% 76.1% 100% 76.1% 100% 60.3%
high-
conditional 11 100% 44.4% 100% 50.0% 100% 44.4% 100% 44.4%
arrays 32 100% 63.3% 100% 70.4% 89.5% 70.8% 100% 60.0%
class-initializers 10 100% 66.7% 66.7% 80.0% 66.7% 57.1% 100% 60.0%
exceptions 11 100% 63.6% 85.7% 75.0% 100% 77.8% 100% 77.8%
library 94 100% 77.4% 100% 78.3% 100% 78.3% 100% 75.5%
aliasing 12 100% 50.0% 100% 60.0% 100% 54.6% 100% 54.6%
reflection 11 100% 72.7% 12.5% 100% 25.0% 100% 100% 72.7%

Fig. 6. Overview of benchmark results by tag

if and only if a noninterference proof can be derived, KeY has no false negatives
and, thus, a recall of 100%. A potential cause for the reported false positives of
KeY is the configuration of the applied automatic proof strategy causing it to
fail to find a proof. By further tweaking of the relevant parameters and providing
stronger auxiliary specifications (e.g. loop invariants) the results of KeY might
be improved. In some cases, an interactive proof would be necessary.

As already mentioned in Section 4.1, the treatment of library methods re-
quires sound assumptions about library methods. Since such assumptions are
not provided, KeY cannot handle the library calls and, thus, a high number of
samples are soundly overapproximated.

4.4 Evaluation Results on the IFSpec Extensions

Aside from evaluating all four information-flow analysis tools on IFSpec’s core
samples and the web vulnerability extension, we used IFSpec’s extensions to
further evaluate selected tools. Concretely, we ran JoDroid on the Android
vulnerability extension, and KeY on the declassification extension.

Results on the Android Vulnerability Extension. We ran JoDroid on the
119 DroidBench samples that are integrated into IFSpec. JoDroid delivered
the correct results on 67 of them (54 true positives, 13 true negatives) and
incorrect results on 52 samples (seven false positives, 45 false negatives) – this
corresponds to a recall of 54.6% and a precision of 88.5%.

The false negatives shed light on JoDroid’s limits: It currently only has
rudimentary support for Android features like intents and dynamic broadcast
receivers and does not detect entry points corresponding to graphical interfaces.
Also, the results clearly show that the stubs we used for JoDroid are insufficient
as they do not reflect the dependencies of the actual library methods.

Results on the Declassification Extension. We used KeY to analyze three
selected samples from the seven samples in the IFSpec declassification exten-
sion: Declassification5, Declassification6, and Declassification7. For this, we
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manually translated the RIFL specifications of these samples to JML, as KeY’s
RIFL parser does not yet support RIFL 1.1. In interactive mode, we were able to
prove the security of Declassification5 and Declassification6. We were unable
to prove the security of Declassification7 because it is insecure. The remain-
ing declassification samples were not analyzed because they use floating-point
arithmetic, which is not supported by KeY, or because they contain library calls.

5 Related Work

SecuriBench (Micro) and DroidBench. SecuriBench [40] is a benchmark suite
for security analyses of web-applications, consisting of nine real-world web appli-
cations provided as Java source code that contain security vulnerabilities. Sim-
ilar to IFSpec and unlike SecuriBench, the samples in SecuriBench Micro [41]
explicitly are not real-world applications but small servlets which each focus
on particular web vulnerabilities. They are deployable on a Tomcat webserver,
which enables penetration testing and the benchmarking of runtime techniques.

The benchmark suite DroidBench [6, 19] focuses on Android and was origi-
nally designed to compare FlowDroid [6] with other taint-tracking tools. Hence,
its samples contain potential information-flow vulnerabilities.

As described in Section 3.4, both SecuriBench Micro and DroidBench are
integrated into IFSpec. Using IFSpec’s machine-readable format, the samples
from both benchmark suites are made available for IFSpec’s benchmark harness
and thus accessible as a point of comparison for information-flow analyzers.

SAT, SMT and ATP Benchmark Suites. The SAT and SMT community exten-
sively develops benchmark suites to compare their tools [25]. The comparison of
the performance and capabilities of SAT and SMT solvers is performed regularly
in annual competitions [7, 15]. The benchmarks used for these competions are
categorized into multiple tracks such that solvers that are specialized in a certain
type of problem can compete against each other in the corresponding track. This
can be compared to the tags used in IFSpec to flag similar samples, which allow
tool developers to focus on the kinds of flows and language features supported
by their tools when comparing their tools with each other.

The SAT and SMT benchmark samples all come with a fixed formal seman-
tics which simplifies the specification of benchmark problems. Information-flow
analysis tools on the other hand often come with distinct security semantics.
To accommodate these specific security semantics, the samples of IFSpec are
specified using RIFL which provides an informal semantics and a declaration for
the ground truth of each sample to which security semantics it is compatible.

In the area of automated theorem proving (ATP), the TPTP (Thousands
of Problems for Theorem Provers) benchmark suite [42] is widely accepted for
testing and evaluating ATP systems. One contribution of TPTP is a standardized
input and output format for ATP systems that enables sharing test problems
between researchers and ATP systems. This format is a key factor in TPTP’s
success [43]. Our use of RIFL also aims at standardizing input and output format,
albeit in the area of information-flow security.
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Java Performance Benchmark Suites. Several benchmark suites exist for Java
(e.g., [11, 13, 39]), mostly focusing on JVM runtime performance and memory
consumption. They differ mostly in their selection of samples. Like IFSpec, they
all contain a benchmark harness for running the individual samples and report-
ing performance data. The DaCapo benchmark suite [11] consists of multiple
real-world applications, while the JavaGrande benchmark suite [13] focuses on
computationally intensive and multi-threaded applications [39].

6 Conclusion

With IFSpec, we provide a benchmark suite for information-flow analysis tools
targeting Java source, Java bytecode, or Dalvik bytecode. The coverage of these
three language layers of the Java and Android platforms enabled us to evalu-
ate and compare Cassandra, Joana, JoDroid, and KeY on a uniform set of
samples, despite the differences between the respective target languages.

We provide all samples of IFSpec in a machine-readable format. In this for-
mat, RIFL [8] is employed for the specification of information-flow policies in
a uniform fashion. The only prerequisite for automatically benchmarking tools
with IFSpec, both static and dynamic ones, is the existence of a RIFL frontend.
Naturally, developing such a frontend is easier for tools that clearly separate the
target program from the policy specification. This is why we refrained from
extending our comparison to analysis tools that closely couple programs and
policies, like, e.g., Jif [34]. Nonetheless, support for such tools is possible, and
frontends for them might be added in the future. Because RIFL is based on the
well established XML standard, a multitude of third party parsers are available
and can be used when implementing a RIFL frontend. This allows tool devel-
opers to focus on the transformation of a policy specification from RIFL to the
specification language or annotation approach supported by their tool.

For the future, we encourage researchers in the community to use IFSpec
to evaluate further information-flow analysis tools and to extend IFSpec. Such
extensions could include the addition of samples to IFSpec, the creation of fur-
ther extensions with language-specific examples, or the classification of IFSpec’s
samples for additional, formally defined information-flow properties. Albeit the
current scope of IFSpec is not on testing scalability of analysis tools, we see the
addition of larger sample programs as one promising direction.
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