
Institut für Programmstrukturen
und Datenorganisation (IPD)

Lehrstuhl Prof. Dr.-Ing. Snelting

Identifying and Extracting
Recurring Program

Structures

Bachelorarbeit von

Petar Heyken

an der Fakultät für Informatik

Erstgutachter: Prof. Dr.-Ing. Gregor Snelting
Zweitgutachter: Prof. Dr. rer. nat. Bernhard Beckert
Betreuender Mitarbeiter: M.Sc. Andreas Fried

Bearbeitungszeit: 21. November 2017 – 14. März 2018

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu





Zusammenfassung
Abstract

Die Outline-Optimierung sucht nach ähnlichen Codesegmenten und wandelt diese in
eine eigene Funktion um. Der hier vorgestellte Ansatz führt die Outline-Optimierung
auf Compilerebene durch und sucht dabei nach isomorphen Subgraphen in einem
graphgestützten Zwischencode und extrahiert die gefundenen Subgraphen in neue
Funktionen. Danach werden die Vorkommen mit einem Aufruf der neuen Funktion
ersetzt.
In dieser Arbeit wird ein einfacher, aber langsamer Algorithmus zum Finden

von isomorphen Subgraphen, die Bedingungen, die für ein outlining-geeignetes
Muster gelten müssen, sowie die Umstrukturierung des Graphen, um eine Funktion
aufzurufen, vorgestellt.
Mithilfe der libFirm C Test Suite und des SPEC2000 Benchmarks wird gezeigt,

warum dass Outlining kaum die Laufzeit verbessert oder die Binarygröße verringert,
aber die Compilezeit drastisch erhöht.

The outline optimization searches for similar code segments and transforms these
into separate functions. Our approach performs the outline optimization on compiler
level by searching isomorphic subgraphs in an graph-based intermediate representation
and extracting the found subgraphs into new functions. Then, it replaces the
occurrences with calls to the new function.
In this thesis, we describe a simple but slow algorithm for finding isomorphic

subgraphs, the conditions that have to be met for a pattern to be eligible for outlining,
as well as the rearrangements of the graphs for calling an outlined function.
Using the libFirm C test suite and the SPEC2000 benchmark, we show that

outlining hardly improves run time or decrease the binary size while increasing the
compile time drastically.
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1. Introduction
Even though it is in theory possible for a developer to write machine code, it is
hardly practiced nowadays. High level languages are easier to read for a human.
These high level source files have to be translated into machine code though; this is
where a compiler takes over.

Although it is considered bad practice, source files tend to have duplicated code,
as outlined in [1]. It is possible to either find duplicates at source code level or
at compiler level, using the compiler’s internal representation. We want to find
duplicates at compiler level and take it a step further extracting the identified
duplicates into their separate function and replacing the occurrences with a call to
the function.
Our optimization is called outlining, in contrast to inlining. Inlining [2] is an

optimization which takes a function whose size is under a certain threshold and
replaces the call to the function with the content of the function. This improves the
performance of the compiled binary since the overhead associated with a function
call is eliminated and enables further optimizations. The increase in binary size is
accepted since it is usually not of concern.
With outlining, we want to implement an optimization which creates a smaller

binary for use cases where the binary size is a concern. We use the internal graph
representation of libFirm to find similar structures in the graph which have the same
functionality.
This work is structured as follows: In Chapter 2, we give an overview of the

compiler we want to extend as well as some other basics needed. The design and
implementation is presented in Chapter 3. In Chapter 4, we give an overview of the
testing conducted and the results. Finally, we draw a conclusion in Chapter 5.

7





2. Basics and Related Work
A compiler is used to translate high-level, human-readable programing languages into
low-level machine code, which the computer can then execute. Usually, a compiler
includes certain optimization routines to achieve faster execution times, or, like the
outline optimization presented in this work, to achieve smaller binaries. In order
to implement the optimizations only once and not separately for every programing
language, an intermediate representation (IR) is used. A compiler using an IR is
usually divided into three parts:

• Front end: takes the program’s source, parses it, checks it for semantic errors,
and then translates it into the IR

• Middle end: applies optimizations to the IR

• Back end: translates the IR to machine code

2.1. SSA form
Nowadays, IRs use static single assignment (SSA) form [3] to represent values. Every
time a value is assigned to a variable, the variable is renamed and all following
references to that variable are also renamed accordingly. Renaming the variables
makes it visible on which values an operation depends, thus making it easy to convert
code in SSA form into a data dependency graph, where every node represents a
value. However, a variable can have different values depending on which control flow
branch is taken. In order to be able to have branching control flow, IRs in SSA form
use a φ-function which chooses the value according to the control flow.
Figure 2.1 shows an example of code that is not in SSA form and the code

transformed into SSA form.

x = 3
x += 2
i f a > x :

x = 5
e l se :

x = 6
a = x

a Code before transformation into SSA

x1 = 3
x2 = x1 + 2
i f a1 > x2 :

x3 = 5
e l se :

x4 = 6
a2 = φ(x3 , x4)

b Code after transformation into SSA

Figure 2.1.: SSA example
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2.2. CFG

2.2. CFG
A control flow graph (CFG) consists of basic blocks containing instructions. If control
flow enters a basic block, all instructions in the block are executed in order and it
is ensured that no jump to another part of the program happens during execution.
Figure 2.2 shows the code introduced in Figure 2.1 separated into basic blocks and
thus forming a CFG.

x = 5

x = 3
x += 2
if a > x:

x = 6

a = x

Figure 2.2.: CFG example

2.3. libFirm and cparser
libFirm is a compiler library written in C that uses a graph-based IR [4, 5]. cparser
[6] is a front end for compiling C programs which uses libFirm. libFirm implements
common optimizations used in compilers such as constant folding, if conversion, and
inlining.

2.3.1. libFirm’s design
libFirm combines the SSA form and a CFG in one graph, referred to as ir_graph.
The ir_graph consists of nodes and edges. Nodes that are the result of the SSA
form transformation are placed in blocks, where the blocks are nodes themselves.
The edges represent dependencies among nodes. Furthermore, the paths through the
ir_graph do not go from start to end, but from end to start since libFirm implements
a dependency graph. Every node has certain dependencies which are represented by
the edges to the nodes.

Memory state The current state of the memory is represented by a node in libFirm.
Nodes whose operation requires memory access, such as load and store operations,
need a memory state as an input, and they output a new memory state for the
successors. The memory state depends on the control flow as well, therefore the
φ-function is necessary for memory values as well.
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2.3. LIBFIRM AND CPARSER

Edges libFirm has three types of edges: control flow, data flow, and memory
dependency. The type is implicit, libFirm reasons the edge type using the edge
index and the source and target node. A special case is the edge with index = −1, it
points to the block the node belongs to.

Modes Modes are primitive data types that can usually be matched directly to
a target machine. libFirm has modes for different integers and floats, boolean,
and pointer. Special modes for internal use include a memory mode to represent a
memory state, control flow mode, internal boolean mode for conditional jumps, and
tuple mode to represent that a node has more than one value.

Types libFirm types are created from the source language’s data types. Primitive
data types like integers, floats, and pointers can be directly transformed into modes.
More complex data types like compound types (structs and classes) and arrays can
be represented with libFirm’s types.

2.3.2. Nodes in libFirm
Every node has an opcode which defines the node’s operation. Every edge going
out of a node represents a dependency on another node’s value. In libFirm’s
implementation, the struct representing a node is called ir_node.

Block A block is a node which contains a set of nodes. Blocks have control flow
edges pointing to the nodes that transfer the control flow to the block.

Start and End node In each ir_graph, there is exactly one Start and one End
node. They represent the entry and exit of the ir_graph. The Start node has the
initial memory, pointer to the frame base, and the function’s arguments as its output.
The End node has a set of keep-alive edges which point to and therefore hold on to
parts of the graph that would otherwise not be connected, e.g. an endless loop which
would otherwise not have a path to the end node.

Proj node In libFirm, a node represents exactly one value. Since nodes can have
more than one value resulting from their operation, nodes with multiple values output
a tuple with all values. Proj nodes are used to extract one value from the tuple for
further use as input for other nodes.

Memory nodes Memory nodes is a term we use in this work. It includes all nodes
in an ir_graph that have mode M and therefore only output a memory state. They
handle the current memory state according to the operation of the node. Most
common is the Proj M node, which extracts the memory state from the result of a
memory operation. Memory operation nodes (like Store and Load) are not included
in the memory nodes since they output the memory state in a tuple.
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2.4. FREQUENT SUBGRAPH MINING

Phi node Phi nodes are the implementation of the SSA form’s φ-function. The
Phi node outputs the value corresponding to the control flow taken. It has to have
the same number of arguments as control flow predecessors of the block it belongs to.
The Phi node is also used to choose a memory state depending on the control flow.

Call node The Call node transfers control flow to another function. It has a
memory state and a pointer to the function as its input, as well as the arguments
for the called function. The arguments have to match the function’s type. The Call
node outputs the inputs of the Return node inside the called function, i.e. the last
memory state and the return values.

Figure 2.3 shows a C source code file (Figure 2.3a) which is transfered into a
libFirm ir_graph (Figure 2.3b), and the resulting assembler output (Figure 2.3c).

2.4. Frequent subgraph mining
Jiang, Coenen, and Zito [7] give an overview of different frequent subgraph mining
(FSM) algorithms, which are used to find isomorphic subgraphs. First, we need to
introduce a few definitions though:

• graph: A graph can be represented as G(V,E) with V being a set of vertices
and E ⊆ V × V a set of edges.

• labeled graph: In addition, the graph has a set of labels for vertices LV and
edges LE as well as a label function ϕ that defines the mappings V → LV and
E → LE.

• subgraph: G1(V1, E1, LV1 , LE1 , ϕ1) is a subgraph of G2(V2, E2, LV2 , LE2 , ϕ2) if:
– V1 ⊆ V2

– ∀v ∈ V1 : ϕ1(v) = ϕ2(v)
– E1 ⊆ E2

– ∀(u, v) ∈ E1 : ϕ1((u, v)) = ϕ2((u, v))

• graph isomorphism: G1 is isomorphic to another graph G2 if a bijection
f : V1 → V2 exists such that:
– ∀u ∈ V1 : ϕ1(u) = ϕ2(f(u))
– ∀(u, v) ∈ E1 ⇐⇒ (f(u), f(v)) ∈ E2

– ∀(u, v) ∈ E1 : ϕ1((u, v)) = ϕ2((f(u), f(v)))

• subgraph isomorphism: G1 is subgraph isomorphic to G2 if ∃g ⊆ G2 : G1
isomorphic to g
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2.4. FREQUENT SUBGRAPH MINING

int a = 4 ;
int x = 0 ;

int main (void ) {
i f ( a > x)

x = 5 ;
return 0 ;

}

a C source code

_main :
L0 :

pushl %ebp
movl %esp , %ebp
sub l $8 , %esp
xo r l %eax , %eax
movl _x, %edx
cmpl _a , %edx
j l L1

L2 :
movl %ebp , %esp
popl %ebp
r e t

L1 :
movl $5 , _x
movl %ebp , %esp
popl %ebp
r e t

c Assembler

main

Start Block 60

Block 80

Block 79

Block 86

End Block 58

End 59

Jmp 87

Proj M M 73

Proj X true 77 Proj X false 78

Cond 76

Cmp b greater 75

Proj Is res 70Proj Is res 74

Load[Is] 72

Address &_x P 71 Proj M M 69

Load[Is] 68

Address &_a P 67Proj M M 66

Start 63

Return 90

Const 0x0 Is 88Phi[loop] 89

Proj M M 84

Store 83

Address &_x P 71 Const 0x5 Is 82 Jmp 85 0

0

1

0 1

0

0

0

0

0

0
0

0

01

0
0

01

0

0 1

0

0 1

0

1
2

b ir_graph before any optimization, Figure A.1 shows
a bigger version

Figure 2.3.: Example of a C source with its ir_graph and assembler output

It is not yet known whether graph isomorphism is solvable in polynomial time
nor whether it is NP-complete, whereas subgraph isomorphism is known to be NP-
complete. Notable algorithms which check for subgraph isomorphism are Ullmann [8],
which uses backtracking and a lookahead function, and VF [9], which uses a depth-
first-search strategy and feasibility rules.

There are two types of FSM algorithms, transaction-based and single graph-based.
Single graph-based FSM algorithms only work on one graph, transaction-based
ones can detect isomorphic subgraphs in independent graphs. Depending on the
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2.5. IDENTIFYING DUPLICATION IN SOURCE CODE

application of the FSM, a subgraph g is only considered frequent if either the
occurrence-based or the transaction-based count is greater than the defined threshold.
Occurrence-based counting counts every occurrence of the subgraph, transaction-
based counting counts every graph in which there is at least one isomorphic subgraph.
FSM algorithms are categorized by their approach as well. On the one hand, there
are Apriori-based approaches which are based on a breadth-first-search-like traversal
of the graph, e.g. gSpan [10]. On the other hand, pattern growth-based approaches
traverse the graph in a depth-first-search-like manner, e.g DPMine [11].
DPMine seems to suit our use case best, however, we decided to implement a

brute-force like method to begin with first in order to reduce the complexity of our
outlining algorithm.

2.5. Identifying duplication in source code
In [12], Komondoor and Horwitz outline a method of finding duplicates in source
code using forward and backward slicing, which seems to be the most promising
approach. They use program dependence graphs (PDGs), which combine data and
control dependencies into one graph, to find isomorphic PDG subgraphs. Nodes are
program statements and predicates, edges are data and control dependencies. Their
approach is divided into three steps: finding pairs of duplicates, removing subsumed
duplicates, and combining pairs of duplicates into larger groups. In the first step, they
partition all nodes into equivalence classes based on the nodes’ syntactic structures.
They call two nodes in the same class matching nodes. Backward slicing is used to
extend the isomorphic subgraphs, which have only one node each in the beginning.
Forward slicing is only used when the node is a predicate. With their slicing approach
and the use of PDGs, they are able to find non-contiguous, reordered, as well as
intertwined duplicates. Their testing showed, that their implementation found the
clones a human would find as well, though it found many variants of the ideal clone.
Their goal for the future is to find heuristics that reduce the number of variants, to
improve the run time, and to implement an extraction of the found duplicates into a
new procedure.
Our approach is similar to theirs since we search for isomorphic subgraphs in a

likewise manner. However, we are able to find patterns which are not present at
source code level. The compiler already applies some optimization before the outline
optimization is run which can lead to other patterns. Furthermore, we implement an
extraction of the found duplicates into a new procedure.

2.6. Terminology used
Before we present the design and implementation, we introduce the terminology used
in the next chapter:

• similar nodes: Two nodes with the same operation that have the same certain
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2.6. TERMINOLOGY USED

attributes depending on the nodes’ operation. The attributes usually include
the mode and the number of predecessors. For some nodes though, more
attributes have to be checked, e.g. two Cmp nodes1 have to have the same
comparison relation in order to be considered similar. The similar nodes
relation is transitive, meaning if node A and node B as well as node B and
node C are similar, then node A and node C are also similar.

• isomorphic subgraph pair (ISP): Two sets of nodes which are both subgraphs
of an ir_graph. In every subgraph, all nodes are reachable from the exit node.
Every node in one subgraph has a corresponding node in the other subgraph,
which is similar. If there is an ISP with the node sets A and B, and an ISP
with the node sets B and C, then there is an ISP with A and C as well.

• isomorphic subgraph group (ISG) / pattern: One or more ISPs combined. The
ISPs’ transitivity is used to group them together into a pattern.

• entry, exit: We define the entry and exit of a pattern according to the control
flow and not in reversed order like the edges in libFirm. This means that the
algorithm for finding ISPs starts at the exit node and works its way up to the
pattern’s entry. When talking about edges, we will use the same direction as
libFirm though, meaning that the path through the pattern goes from the exit
to the entry.

1compares two inputs according to the nodes relation attribute, outputs a value of the internal
boolean mode
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3. Design and Implementation
This chapter explains the steps that the outline optimization goes through. First,
patterns and their arguments have to be found. Then, three checks are run to ensure
that the pattern is eligible. Finally, the pattern is extracted into a new function and
replaced with a call to the function at every occurrence.

3.1. Finding the patterns
We divide finding possible patterns into two steps. Firstly, the algorithm searches
for an ISP. The algorithm takes two similar nodes and then tries to expand the
subgraphs by looking at the predecessors. Secondly, the optimization tries to group
ISPs together in order to have a larger number of isomorphic subgraphs in one group,
which are usually the preferred patterns, and in the course of grouping ISPs together
transforms them into ISGs.

3.1.1. Finding the ISPs
The outline algorithm for finding ISPs uses a data structure as shown in Figure 3.1.
It has two pointer sets, graph1 and graph2, containing pointers to ir_nodes. Edges
are saved implicitly, meaning if node A and node B are in the pointer set, the
edge between those two nodes is part of the subgraph as well. outer_nodes_graph1
and outer_nodes_graph2 are arrays which contain nodes that are entry nodes to
the subgraph during the expansion of the subgraph. change signals whether the
subgraphs changed during the previous iteration or not and is therefore used as the
criterion for terminating the algorithm. deleted shows whether the subgraphs are still
considered for outlining or if the algorithm found a cause that makes the subgraphs
ineligible for outlining.
The goal of the first step taken by the pattern finding algorithm is to create all

ISPs with the minimal node count of eight since smaller patterns would lead to
more nodes when outlined. To achieve this, all nodes in all ir_graphs are placed
into pointer sets, each pointer set only containing nodes that are similar. Then, the
algorithm creates the ISPs which always consist of two nodes that are in the same
pointer set. The implementation of the algorithm is optimized though, as shown in
Figure 3.2a. We use the same strategy that saves all similar nodes in a list of pointer
sets (lines 2-4, 10-12), but the algorithm already creates and tries to expand the
ISPs (lines 5-9) while the similar_nodes_list is still being populated. Therefore, the
algorithm can disregard most of the ISPs immediately (lines 8-9), since the pattern
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3.1. FINDING THE PATTERNS

isomorphic_subgraph_pair

graph1 : pset
graph2 : pset
outer_nodes_graph1 : ir_node[]
outer_nodes_graph2 : ir_node[]
exit_graph1 : ir_node
exit_graph2 : ir_node
change : bool
deleted : bool

Figure 3.1.: isomorphic subgraph pair struct used by the algorithm

size is too small. This saves a huge amount of memory since most of the ISPs are
smaller than the minimum node count.

The modus operandi of the expansion algorithm is shown in Figure 3.3. The graph
is expanded in a breadth-first-search like manner. The nodes A1 and A2 are the exit
nodes of the ISP as well as the outer nodes before the expansion of the ISP is started.
Then, the algorithm checks whether the corresponding predecessors are similar and
adds them to the pattern, as shown in Figure 3.3b. The B and C nodes are outer
nodes and are considered in the next iteration. They add their similar predecessors
in Figure 3.3c. Since there are no more nodes to expand the subgraphs after the
second iteration, the D nodes are marked and the algorithm terminates as shown in
Figure 3.3d. The pseudo code for this algorithm is outlined in Figure 3.2b (lines 2-6,
8, 21, 24).

Since a libFirm ir_graph is far more complex than the example, we have to add
additional constraints and functionality to the ISP expansion algorithm.

It is important that the nodes are exclusive to one subgraph and are not shared by
the two subgraphs except for constlike1 nodes. In Figure 3.4, one subgraph consists
of the first two lines, the other subgraph consists of line two and three. If the two
subgraphs were outlined, a would be incremented four times, which would obviously
alter the semantics of the program and is therefore not desired.
If one predecessor node is already part of its subgraph but the other predecessor

is not part of its subgraph, the ISP will be discarded. The subgraph where the
predecessor is already part of it contains a cycle where the other does not. Therefore,
they are not an ISP and are discarded by setting the deleted flag (Figure 3.2b, lines
9-11).
We have to check the relation of the current nodes’ blocks and the predecessors’

blocks. Nodes can only be added to the subgraph if they are either in the same block
as the successors (lines 22-24) or the nodes’ blocks are connected directly to the
blocks of nodes’ successors via control flow edges (lines 12-13, 15-18) since we cannot
skip blocks that are in between. The current blocks have to have the same number
of control flow edges going into them (line 14), otherwise the subgraphs cannot be

1Node flag which indicates that the node always outputs the same value when it has the same
attributes, therefore these nodes are part of the ir_graph only once
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3.1. FINDING THE PATTERNS

1 function init_isomorphic_subgraph_pair_and_expand :
2 foreach node in al l_ir_graphs_nodes :
3 i f e x i s t s entry in s i m i l a r _ n o d e s _ l i s t
4 where i s_s imi lar_node ( node , entry . f i r s t_node ) :
5 foreach s imi lar_node in entry . nodes :
6 i s p = init_new_isp ( node , s imi lar_node )
7 maximum_expand_isp ( i s p )
8 i f pat te rn_s i ze ( i s p ) >= 8 and ! i s p . d e l e t e d :
9 isp_array . append ( i s p )

10 entry . nodes . add ( node )
11 e l se :
12 add_new_entry_to_similar_nodes_list ( node )

a init a isomorphic subgraph pair structure and calling expand
1 function maximum_expand_isp ( isomorphic_subgraph_pair i s p ) :
2 while i s p . change and ! i s p . d e l e t e d :
3 foreach ( node1 , node2 ) in
4 i s p . outer_nodes_graph1 zipWith i s p . outer_nodes_graph2 :
5 foreach ( pred_node1 , pred_node2 ) in
6 node1 . pred_nodes zipWith node2 . pred_nodes :
7 i f are_nodes_exclus ive ( pred_node1 , pred_node2 , i s p )
8 and i s_s imi lar_node ( pred_node1 , pred_node2 ) :
9 i f in_subgraph ( pred_node1 , i s p . graph1 )

10 xor in_subgraph ( pred_node2 , i s p . graph2 ) :
11 i s p . d e l e t e d = true
12 i f node1 . b lock != pred_node1 . b lock
13 and node2 . b lock != pred_node2 . b lock
14 and i s_s imi la r_b lock ( node1 . block , node2 . b lock )
15 and e x i s t s x in node1 . b lock . cfg_preds . b lock
16 where x == pred_node1 . b lock
17 and e x i s t s y in node2 . b lock . cfg_preds . b lock
18 where y == pred_node2 . b lock :
19 add_blocks ( pred_node1 . block , pred_node2 . block , i s p )
20 add_phis ( node1 . block , node2 . block , i s p )
21 add_nodes ( pred_node1 , pred_node2 , i s p )
22 e l se i f node1 . b lock == pred_node1 . b lock
23 and node2 . b lock == pred_node2 . b lock :
24 add_nodes ( pred_node1 , pred_node2 , i s p )

b expanding a similar subgraphs structure

Figure 3.2.: Pseudo code for finding ISPs

expanded to the new blocks. If the blocks have more than one control flow input,
all Phi nodes have to be added to the subgraphs as well since the outlined function
is not able to indicate which control flow is chosen to the caller and therefore the
values have to be chosen inside the function.

3.1.2. Grouping ISPs together
After all isomorphic subgraph pairs are expanded to their maximum size, the next
step of the outline optimization tries to group ISPs together into ISGs. These data
structures contain all isomorphic subgraphs in an array (the pattern) as well as arrays
of the pattern arguments and return values, which are calculated later. Figure 3.5
outlines how the grouping is implemented.
First, the ISPs are sorted by their number of nodes in descending order (line 2).
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3.1. FINDING THE PATTERNS

A1

B1 C1

D1 E1

A2

B2 C2

D2 F2

a Start

A1

B1 C1

D1 E1

A2

B2 C2

D2 F2

b After the first iteration

A1

B1 C1

D1 E1

A2

B2 C2

D2 F2

c After the second iteration

A1

B1 C1

D1 E1

A2

B2 C2

D2 F2

d Final result

Figure 3.3.: Schematic example of the expansion algorithm, light blue nodes are
the outer nodes of the ISP

a++;
a++;
a++;

Figure 3.4.: Example why nodes have to be exclusive to a pattern

Then, the optimization iterates over the sorted array (line 3). If the current ISP is
not marked as deleted and all checks are successful (lines 5-6), a new ISG is created
and the two subgraphs are copied to the new data structure (line 7). Next, the
optimization tries to match other ISPs to the ISG. Since the ISPs are sorted by their
pattern size, the algorithm tries to match the array elements starting at index plus
one up until the pattern size changes (lines 8-9). It is sufficient to only look at those
ISPs in this range in order to make sure that if there is a ISP that matches the ISG,
it will be matched and added to the ISG. We take advantage of lazy evaluation and
only check whether the pattern is the same (line 15), which compares the entries
of the pointer sets, when one exit node is the same as in the ISG (lines 13-14).
Furthermore, we already run a few checks on the pattern occurrence (line 16) which
will be discussed later. If the match is successful, the pattern not yet contained in
the ISG will be added to it and the ISP will be marked as deleted (lines 17-18).
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3.2. CALCULATING THE ARGUMENTS

1 function group_isps_to_isgs :
2 sort_isp_array ( )
3 for i n t i = 0 ; i < isp_array . l ength ; i ++:
4 i s p = isp_array [ i ]
5 i f ! i s p . d e l e t e d :
6 i f run_checks_on_isp ( i s p ) :
7 i s g = init_new_isg_with_isp ( i s p )
8 match_i = i + 1
9 while match_i < isp_array . l ength and

10 pat te rn_s i ze ( i s p ) == patte rn_s i ze ( i sp_array [ match_i ] ) :
11 isp_to_match = isp_array [ match_i ]
12 i f ! isp_to_match . d e l e t e d :
13 i f ( i s p . exit_graph1 == isp_to_match . exit_graph1 or
14 i s p . exit_graph1 == isp_to_match . exit_graph2 ) and
15 is_same_pattern ( i sp , isp_to_match ) and
16 run_checks_on_isp ( isp_to_match ) :
17 add_isp_to_isg ( i sg , isp_to_match )
18 isp_to_match . d e l e t e d = true
19 match_i++
20 i s p . d e l e t e d = true
21 i sg_array . append ( i s g )

Figure 3.5.: algorithm for grouping ISPs into ISGs

3.2. Calculating the arguments

A pattern has pattern arguments and return values. Pattern arguments are values
outside of the pattern that are needed inside of it, return values are values inside the
pattern which are needed outside of it. They are calculated in two separate steps
and saved into the corresponding arrays for each pattern.

3.2.1. Pattern arguments

Nodes inside of the pattern can depend on values which are outside of the pattern.
Consider an ir_node n which is part of the pattern. n depends on a value v that is
not part of the pattern. We call v a pattern argument and n an argument dependent.
In order to find all pattern arguments, it is sufficient to only iterate over all nodes in
the pattern and to look for data dependency edges where the destination is not part
of the pattern. Checking for pattern arguments is done for every occurrence of the
pattern since it is possible that in one pattern occurrence two different argument
dependents point to the same pattern argument whereas in the other occurrence the
argument dependents point to two different pattern arguments as shown in Figure 3.6.
However, if two or more different argument dependents in the pattern point to the
same pattern arguments in every occurrence, the pattern arguments are combined
and the node’s value is only passed once to the outlined function. Primitive types
like integers and floats are passed as values, more complex types like arrays and
structs are passed to the outlined function as pointers.
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3.2. CALCULATING THE ARGUMENTS

Add Is

Proj Is resProj Is res

Load[Is]

Proj M M

Load[Is]

Address &_a P

01

00

01

0

1

a Same value twice

Add Is

Proj Is resProj Is res

Load[Is]

Address &_c P Proj M M

Load[Is]

Address &_b P

01

00

01

0

1

b Two different values

Figure 3.6.: Two patterns that are similar, but Figure 3.6a uses variable a twice
whereas Figure 3.6b uses variable b and c

3.2.2. Return values
Like pattern arguments, there can also be nodes outside of the pattern which depend
on values inside the pattern. Consider an ir_node n which is not part of the pattern,
but depends on the value v which is part of the pattern. We call v a return value
and n a return value dependent. In order to find all return values, the outline
optimization checks all data dependencies in the ir_graph. If the optimization finds
a data dependency that goes from outside the pattern into it, the return value node
will be added to the array for each pattern occurrence. Every occurrence has to be
checked for the data dependencies since for one occurrence there might be a return
value dependent whereas for another occurrence there might not be.

libFirm can only return a limited number of values with the built-in Return node
depending on the back end. For example, the x86 back end has only two registers for
returning values. Therefore, if the function has more return values than supported by
the back end, another approach has to be used. In the ir_graph where the pattern
occurs, memory is allocated for every additional return value. We call the allocated
chunk of memory the return value store. The pointers to the return value stores
are then passed as arguments to the outlined function. The outlined function saves
the values from the return value nodes to the given addresses. After the call to the
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outlined function, these values are loaded from the return value store and the data
dependencies going into the pattern are rerouted to the corresponding Proj nodes,
which output the loaded return values.

3.3. Checking the patterns
Before a pattern can be outlined, it must be checked whether outlining is possible or
not. Three criteria have to be met:

• The pattern is a single entry single exit (SESE) region [13] meaning that the
pattern has exactly one entry and exactly one exit for the control flow since it
is not possible to pass control flow to a function nor return it.

• There is no path out and back into the pattern since a pattern argument would
depend on a return value then.

• The memory chain is not separated since it is not possible to return nor inject
a memory state mid-function.

If all of the checks are successful, the pattern is eligible for outlining and replacement
with calls to the function.

3.3.1. SESE region
In order for a pattern to be considered for outlining, it has to be a SESE region. To
understand what a SESE region is, a few simple C examples are given in Figure 3.7.
The regions highlighted in Figure 3.7a and Figure 3.7b are not SESE regions in the
control flow graph since they do not include the whole if body. Figure 3.7c takes the
if clause and the body, Figure 3.7d additionally takes a term before the if clause, and
Figure 3.7e only takes the if body making them a SESE region. Figure 3.7f shows
that loops can also be SESE regions.

According to Johnson, Pearson, and Pingali [13] the following criteria have to be
met for the entry edge a and exit edge b for a region to be a SESE region:

1. a dominates b

2. b postdominates a

3. every cycle containing a also contains b and vice versa

Dominance and postdominance is defined as follows:

• an edge x dominates the edge y if every path from the start node to y includes
x

• an edge x postdominates the edge y if every path from y to the end node
includes x
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int a = 2 ;
int b = 1 ;
i f ( a > b) {

b = a ;
b++;

}

a Not a SESE region

int a = 2 ;
int b = 1 ;
i f ( a > b) {

b = a ;
b++;

}

b Not a SESE region

int a = 2 ;
int b = 1 ;
i f ( a > b) {

b = a ;
b++;

}

c SESE region

int a = 2 ;
int b = 1 ;
i f ( a > b) {

b = a ;
b++;

}

d SESE region

int a = 2 ;
int b = 1 ;
i f ( a > b) {

b = a ;
b++;

}

e SESE region

int a = 1 ;
for ( int i = 0 ; i < 5 ; i++) {

a++;
}

f SESE region

Figure 3.7.: Four examples of a SESE region and two examples that are not a SESE
region

The first condition makes sure that every path that enters the pattern does so via the
entry edge. The second condition makes sure that every path that exits the pattern
exits it via the exit edge. The third condition is needed for eliminating patterns
where backedges either enter or exit the pattern.

Since libFirm calculates the dominance informations using blocks, the entry and
exit block are used instead of the edges. Johnson et al.’s criteria are not sufficient for
our use case. In addition to the entry and exit, we have to consider the blocks in
between as well. The outline optimization adds two further constraints to the SESE
definition:

• all blocks between the entry and exit block (inner blocks) have to be part of
the pattern

• all nodes belonging to an inner block are part of the pattern
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3.3. CHECKING THE PATTERNS

3.3.2. Pattern exit and reentry

We will use an example to explain the problem which arises from a pattern exit and
reentry. In Figure 3.8, the nodes Address a, Address b, and Mul are arguments of
the highlighted pattern. The value loaded by the Load node is a return value. Since
the Mul node depends on the return value, outlining this pattern would result in the
Call node depending on a value that is calculated by the called function. Thus, the
pattern is not eligible for outlining.

Load[Is]

Proj M MAdd P

Address &_a P Mul Is

Const 0x4 Is Proj Is res

Load[Is]

Address &_b PProj M M

01

001

01

0

0 1

Figure 3.8.: Pattern exit and reentry

The outline optimization checks for every argument if there is a path to the start
node that enters the pattern. If such path exists, the argument will have a dependency
on a return value and the pattern will therefore be excluded from outlining.

3.3.3. Memory chain

Since a memory state cannot be returned nor injected mid-function, the memory
nodes inside a pattern have to form a complete chain without interruption. This is
similar to the pattern exit and reentry, however we check for an uninterrupted chain
differently. First, the number of memory nodes in the pattern is counted. Then,
starting from the last memory node, the check walks the memory chain until a node
is not part of the pattern anymore counting the memory nodes throughout. If the
two counts match, the memory chain inside the pattern is uninterrupted.
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3.4. Extracting the patterns
If all checks on the pattern are successful, we will copy the pattern to a new function
first and then replace all occurrences of the pattern with a call to the new function.

3.4.1. Creating a new function
First, a new ir_graph representing the new function has to be created. A newly
created method already has some basic nodes like the Start and End node. Then, the
outline optimization creates the Proj nodes for the arguments as seen in Figure 3.9.

Proj P Arg 0Proj P Arg 1

Proj T T_args

Start

00

0

Figure 3.9.: Proj nodes to a function’s arguments

One pattern occurrence is picked for copying the nodes which has to be done in
two steps. First, the optimization iterates over all nodes in the pattern and creates a
copy in the new function. A link from every original node to the new node is set.
The edges of the new method’s nodes are set using the edges of the original pattern
and the link to the new nodes in the second iteration.

Next, the argument dependents’ edges which point to a pattern argument are set
to the corresponding Proj nodes.
Then, if the start block2 is not part of the pattern, the control flow will be fixed

since the copied blocks are not connected to the new function’s start block. A Jmp
node to the entry block is added to the start block. The cfopt optimization will
merge the blocks together later.
Lastly, the last memory node in the pattern has to be found. It is either directly

attached to the Return node or used for the storing of return values. Every return
value of a pattern as described in Section 3.2.2 has to be either returned by the
built-in Return node or stored at the passed address at the end of the new function.
An example for storing one return value is given in Figure 3.10. In this example, there
are more return values than the back end can handle. One value can be returned
by the built-in Return node, the other has to be stored in the return value store.

2block containing the Start node
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The second argument of the outlined function is the address where the return value
should be stored, thus the Store node having the Proj 1 as the pointer input. The
Return Value 1 node holds the value which is needed outside of the pattern and is
therefore the value input for the Store node.

Start

Proj T T_args

Proj P Arg 1

Return Value 1

Store

Proj M

Proj M

Return

Proj Arg 0

Return Value 0

0

0

0

1 2 0

0

0 1

Figure 3.10.: Storing a return value to the passed address, pattern represented by
red box

3.4.2. Replacing the pattern with call to function
After a new function for the pattern is created, the pattern can be replaced by a
call to the function at every occurrence. First, a new entity is created for every
additional return value over the limit given by the back end, so that the address of
the entity can be passed to the function. Then, the outline optimization looks for the
memory input for the call. There are two possibilities: either the pattern contains
memory nodes or it does not. If the pattern contains memory nodes, the memory
node that has an edge going out of the pattern is chosen as the memory input for the
call node. It is the first memory node in the pattern. If the pattern does not contain
memory nodes, we still have to pass a memory state to the function since storing a
return value can add memory nodes. The last memory node in the entry block that
is not reachable from any argument is chosen as the memory input since otherwise
arguments that depend on a value loaded from memory would cause a memory loop.
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We need to fix control flow as well. A Jmp node to the exit block is added to the
entry block.

Finally, the return values have to be connected to the nodes that depend on them.
Return values which are returned by the Return node are extracted by Proj nodes.
A Load node is placed after the call for every additional return value and the edges
that exit the pattern are attached to the loaded values.
Figure 3.11 shows a call to an outlined function with the parameters pointer to

variable a and pointer to variable b. A pointer to where the return value should be
stored is passed as well and the value is loaded directly after the call. To simplify
matters, we do not use the built-in Return node in this example and therefore no
return value is extracted from the output of the call node.

Load[Is]

Proj M M

Call

Address &__outline.0 P Address &_b P Address &_a PProj M MMember P __outline_return_store.1

01

0

01 2 34

Figure 3.11.: Call to the outlined function, built-in Return node is not used

3.5. Performance tuning

Since the brute-force algorithm used in the outline optimization compares every
node with all other nodes and only creates pairs to begin with, the worst-case time
and space complexity is O(n!). Therefore, we added certain mechanisms so that the
optimization is still feasible on some larger graphs.

3.5.1. Leaving out certain nodes

The time and the memory consumption can be reduced by skipping certain nodes
and not considering them as the start for an ISP. For example, it is not necessary
for Proj nodes to be the start of a pattern, because if the predecessors would form a
isomorphic subgraph pair, the Proj node would be a return value anyway. Therefore,
it is sufficient to just check the predecessor, saving one subgraph expansion and the
memory that would otherwise be used by the ISP.
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3.5.2. Aborting when limit is reached
Since it depends on the source code how long the algorithm takes and it cannot be
predicted beforehand, the user has the option to specify two limits after which the
outline optimization will stop if one of them is exceeded. The first limit is a timeout
after which the algorithm stops looking for further isomorphic subgraph pairs. The
second limit is a maximum number of ISPs to look for. Both limits have in common
that after the limits are exceeded, the optimization still has to group the subgraphs
together, run the checks on the pattern, and replace the patterns with a function,
thus still taking more time and allocating more memory.
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4. Evaluation

In order to evaluate our outlining implementation, we use two test suites. We use
libFirm’s own set of test files, the libFirm C test suite [14], as well as the SPEC
CPU2000 benchmark [15]. Testing is conducted on a 3.40GHz Intel R© CoreTM i7-6700
CPU with 32 GB of system memory running Ubuntu 16.04.5. We used the x86 back
end because it is considered stable.

4.1. libFirm’s C test suite
libFirm’s test suite consists of 1783 test files, which test various aspects of the
compiler. We extended the test runner to accept an additional set of compiler flags
in order to compare two binaries to each other. Table 4.1 gives an overview of the
data collected. Unfortunately, there are hardly any test cases where the outline

# of test cases 1783
that fail 106
that fail with outlining 109
where pattern exist 65

# of patterns Ø 1.431
max 9

pattern size Ø 17.817
max 375

# of pattern occurrences Ø 4.226
max 24

# of pattern arguments Ø 6.075
max 128

# of return values Ø 0.892
max 3

size difference of the text sections in bytes Ø 121.19
max 832
min −16

Table 4.1.: Results of the outline optimization being applied to the libFirm test suite
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optimization reduces the size of the text section1. Only one test case has 16 bytes
less than the reference text section, two test cases have the exact same size. We want
to point out the maximal size difference we observed where the outline optimization
adds over 50% in size to the text section. This test case2 is the one that has one
pattern with 128 pattern arguments. We therefore conclude that pattern arguments
have a huge overhead.

4.2. SPEC CPU2000
We use all C benchmarks in the SPEC CPU2000 benchmark, which means we use
eleven integer benchmarks and three floating point benchmarks. We are able to run
all benchmarks without a timeout except for the perlbmk benchmark which ran with
a 30 minute timeout for the outline optimization.

Table 4.2 gives an overview of the data collected applying the outline optimization
to the SPEC CPU2000 benchmark. A more detailed overview is given in Table A.1
and Table A.2 in the Appendix. The outline optimization is able to find some
patterns in all benchmarks except art and mcf. The results show that the outline
optimization has a huge impact on the compile times and that it is not feasible to
run it during development in real world scenarios. Each benchmark was run twenty
times. Most benchmark run times do not differ in a significant way, except for vpr,
mesa, parser, perlbmk, and vortex. These benchmarks do not only add an overhead
in the text section size, but a measurable overhead in running time as well. The
benchmarks that have the most patterns have the biggest difference in text section
size.

4.3. Overhead analysis
We want to take a closer look at the overhead a function has. Therefore, we manually
generate test files where we once have duplicates in the source file and once we
re-factor these duplicates into a separate function.

Figure 4.1 shows one test case that we tried which has a smaller text section when
the minimum function is in-line. It is worth noting that the outline optimization does
not find any patterns in this example because when transformed into an ir_graph,
not all SESE requirements are met, however it is sufficient for showing the overhead
that comes along with a function call.
We take another, simple test file consisting of a hundred asm(”nop”) calls. We

increase the minimum pattern size to 14 and run the outline optimization. The
outlined pattern has a size of 21 with ten occurrences and zero pattern arguments as
well as zero return values. The text size section is 16 bytes less when the outline
optimization is applied to this test case. However, with the increased pattern size,

1part of the binary where the instructions are located
2opt/fehler216.c, initialization of an array with 250 elements with the same value
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# of patterns Ø 20.769
max 66

pattern size Ø 12.54
max 75

# of pattern occurrences Ø 3.646
max 32

# of pattern arguments Ø 4.16
max 31

# of return values Ø 1.426
max 10

compile time ∆ in % Ø 955.50
max 3253.93
min 100.00

run time ∆ in % Ø 2.16
max 18.07
min −0.83

size difference of the text sections in bytes Ø 2509.538
max 7728
min 112

Table 4.2.: Overview of the results of the outline optimization
being applied to the SPEC CPU2000 benchmark

the libFirm’s C test suite average difference of the text sections increases to 267.52
bytes, with only one test case reducing the size of the text section by −208 bytes.
We compare the assembler outputs of a test file with and without outlining in

order to find the number of bytes added to the text section. The result is presented
in Table 4.3. We cannot predict the exact amount of bytes a certain structures will
need since it depends on factors which the middle end does not know. The values
could be used to approximate the size overhead and to improve the pattern choosing,
however, they only apply to the x86 back end. Furthermore, it is not possible to
know how many nodes account for one instruction (and therefore the instruction
size), making it impossible to define an exact threshold for outlining.
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int main ( ) {
int min_ab ;
int min_ac ;

i f ( a < b)
min_ab = a ;

else
min_ab = b ;

i f ( a < c )
min_ac = a ;

else
min_ac = c ;

return min_ab + min_ac ;
}

a text section has 402 bytes

int min( int a1 , int b1 ) {
i f ( a1 < b1 )
return a1 ;

else
return b1 ;

}

int main ( ) {
return min(a , b) + min (a , c ) ;

}

b text section has 450 bytes

Figure 4.1.: First manual test

caller callee
call / function overhead 5 bytes 10 bytes
pattern argument at least 3 bytes 3 bytes
return value with built-in Return node 0 or 3 bytes 3 bytes
return value with return value store at least 6 bytes 5 bytes

Table 4.3.: Overhead of outlining
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5. Conclusion
Our implementation of the outline optimization shows that it is possible to identify
and automatically extract patterns in an IR in theory. However, the evaluation of the
outlining optimization reveals that the optimizations falls short of the anticipated
behavior. It hardly decreases the size of the binary while increasing compile time by
up to 33 times.

There is still room for improvement though. Better heuristics could lead to better
pattern selection, resulting in more test cases with reduced binary size. Furthermore,
we only consider the maximal pattern, so reducing a pattern and only testing a
subpattern might lead to better candidates. Finally, using a better FSM algorithm
would probably improve the compile time significantly.

We assume that finding duplicates using PDGs and then either displaying or
outlining them at source code level is the preferred option. It eliminates duplicates
and makes the source code more error proof.

However, the pattern finding algorithm at compiler level could be used for finding
small procedures that might be interesting for creating a new instruction at processor
level. Designing and implementing an optimized instruction for a pattern would not
only decrease the binary size, but furthermore might be able to improve run time.
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A. Appendix

main

Start Block 60

Block 80

Block 79

Block 86

End Block 58

End 59

Jmp 87

Proj M M 73

Proj X true 77 Proj X false 78

Cond 76

Cmp b greater 75

Proj Is res 70Proj Is res 74

Load[Is] 72

Address &_x P 71 Proj M M 69

Load[Is] 68

Address &_a P 67Proj M M 66

Start 63

Return 90

Const 0x0 Is 88Phi[loop] 89

Proj M M 84

Store 83

Address &_x P 71 Const 0x5 Is 82 Jmp 85 0

0

1

0 1

0

0

0

0

0

0
0

0

01

0
0

01

0

0 1

0

0 1

0

1
2

Figure A.1.: ir_graph from Figure 2.3b
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pat. size pat. occurrences pat. arguments return values
# of pat.1 Ø max Ø max Ø max Ø max

gzip 2 11 14 3.5 4 2.5 3 0.5 1
vpr 12 9.417 13 2.333 5 2.917 4 1.833 4
gcc 57 14.404 71 3.754 29 4.14 31 1.421 4
mesa 66 11.985 32 3.106 16 5.091 17 1.258 4
art 0
mcf 0
equake 3 12 16 5 10 5.667 11 1 2
crafty 3 12 15 2 2 6 10 1.333 3
ammp 4 14.25 15 3.25 5 3 4 2.25 3
parser 4 9.75 10 3.5 7 3.25 6 1 2
perlbmk2 45 13.756 75 4.511 32 3.044 23 2.244 10
gap 14 11.571 35 5.714 21 4.929 10 0.786 3
vortex 49 11.837 30 3.265 21 4.102 13 1.082 4
bzip2 1 15 15 3 3 8 8 0 0
twolf 10 9.875 15 3.375 6 3.375 5 1.5 3
1 pattern
2 run with a timeout of 30 minutes

Table A.1.: The different SPEC CPU2000 benchmarks with the statistics of the outline optimization
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run time
compile time Ø in seconds σM text section size in bytes

outline reference outline reference ∆ outline reference outline reference ∆
gzip 40s 10s 57.608 58.088 -0.83% 0.063 0.083 43426 43298 128
vpr 3m11s 29s 44.536 43.519 2.34% 0.046 0.021 154738 153746 992
gcc 2h44min8s 6min42s 18.904 18.909 -0.02% 0.005 0.005 1820275 1813507 6768
mesa 21min54s 1min57s 41.058 40.082 2.44% 0.014 0.025 696914 689186 7728
art 16s 3s
mcf 4s 2s
equake 25s 3s 20.881 20.947 -0.32% 0.031 0.028 17602 17138 464
crafty 3m54s 55s 23.815 23.555 1.11% 0.007 0.016 183570 182754 816
ammp 1m53s 22s 78.786 78.809 -0.03% 0.178 0.115 126866 126114 752
parser 7m09s 37s 56.059 54.864 2.18% 0.043 0.035 183266 182738 528
perlbmk 1h39m30s 2m58s 45.138 43.977 2.64% 0.015 0.021 856355 849699 6656
gap 30m27s 2m12s 22.939 22.894 0.19% 0.020 0.024 561138 558354 2784
vortex 13m10s 1m38s 39.991 33.872 18.07% 0.020 0.059 742242 738178 4064
bzip2 2m16s 8s 43.417 43.310 0.25% 0.038 0.037 47170 47058 112
twolf 2m55s 1m0s 60.734 60.654 0.13% 0.115 0.066 189330 188498 832

Table A.2.: The different SPEC CPU2000 benchmarks with their compile times, run times, and the text section sizes
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