
Appendix to the Article “On Time-Sensitive

Control Dependencies”

Simon Bischof, Martin Hecker, Gregor Snelting

August 11, 2021

Contents

1 Basic Definitions and Lemmas 2

2 Lemmas 1.1 and 1.2 6
2.1 Standard control dependency, Lemma 1.1 6
2.2 Example from Fig. 1 right, Lemma 1.2 9

3 Control Dependence in Arbitrary Graphs 11
3.1 Definitions for maximal paths and sink paths 11
3.2 Lemmas about maximal paths 13
3.3 Proof of Theorem 2.1, vMAX part 18
3.4 Lemmas about sink paths . 22
3.5 Proof of Theorem 2.1, vSINK part 29

4 Timing Sensitive Control Dependence 32
4.1 Basic Properties of Timing Sensitive Control Dependence . . 32
4.2 Timing Sensitive Slicing . 40
4.3 Soundness and Minimality of Timing Sensitive Control De-

pendence . 45
4.3.1 Definition of (clocked) Traces and Time-Sensitive Non-

Interference . 45
4.3.2 Soundness of Timing Sensitive Control Dependence . . 47
4.3.3 Minimality of Timing Sensitive Control Dependence . 56

5 Proofs for the Algorithm section 64
5.1 Postdominance Frontiers . 64
5.2 Transitive Reductions and Pseudo-forests 68
5.3 Transitivity results . 69

5.3.1 Reducible Graphs . 69
5.3.2 Graphs with unique exit node 78

5.4 Timing Sensitive Postdominance Frontiers 80

1

Appendix to the Article ”On Time-Sensitive Control Dependencies” con-
taining definitions and proofs for NTICD, NTSCD and TSCD.

In this theory, we use Isabelle’s ”theorem” command for results presented
in the article, and the ”lemma” command for all lemmas that are needed to
prove the former.

theory NTXCD-Proofs
imports

Slicing .Postdomination
Coinductive.Coinductive-List
Digraph-Basic

begin

The CFG locale gives us a graph structure. Loops are permitted, but multi-
edges are not. Isolated nodes are not permitted (they are not interesting
for us anyway). The graph is assumed to have an entry node (which does
not have to be unique). There are no assumptions regarding exit nodes,
reachability from the entry node or whether the graph is reducible.

There is no explicit node or edge set, instead there is a predicate valid-edge
that describes whether an edge is valid. Nodes are valid if they are source
or target node of a valid edge (this is the reason why isolated nodes are not
permitted). Edges are labeled, but we do not use those labels in this theory.

In the CFG locale, a graph can be infinite. In this theory, however, we
assume graphs to be finite, and add this assumption to lemmas if needed.

context CFG
begin

1 Basic Definitions and Lemmas

successor set of a node

definition succs :: ′node ⇒ ′node set
where succs n == {targetnode e | e. valid-edge e ∧ sourcenode e = n}

edge relation

definition edge-rel ≡ {(n1 , n2). n2 ∈ succs n1}

Definitions of a path. Note that in the node list, the start node is included
(for non-empty paths) but the end node is not.

abbreviation is-path :: ′node ⇒ ′node list ⇒ ′node ⇒ bool
where is-path n ns n ′ == Digraph-Basic.path edge-rel n ns n ′ ∧ valid-node n

Definitions of a path reachability

definition reaches :: ′node ⇒ ′node ⇒ bool
where reaches n m == ∃ns. path n ns m

2

Lemmas about Paths

lemma succs-valid : y ∈ succs x =⇒ valid-node x ∧ valid-node y
using succs-def by auto

lemma is-path-valid-node: is-path n ns m =⇒ valid-node m
using path-append-conv [of edge-rel] edge-rel-def succs-def by (cases ns rule: rev-cases)
auto

lemma succs-path: x ∈ succs p =⇒ is-path p [p] x
using edge-rel-def succs-def by (auto intro: path1)

lemma is-path-succs-empty : assumes is-path n ns m
succs n = {}

shows ns = [] ∧ n = m
proof−

from assms have Digraph-Basic.path edge-rel n ns m by simp
from this assms show ?thesis unfolding edge-rel-def by cases auto

qed

lemma path-to-is-path: assumes path n es n ′

shows is-path n (sourcenodes es) n ′

using assms
proof (induction rule: path.induct)

case (Cons-path n ′′ as n ′ a n)
with edge-rel-def succs-def sourcenodes-def show ?case by (auto intro: Digraph-Basic.path.intros)

qed (auto simp add : sourcenodes-def)

lemma path-append : is-path n ns n ′ =⇒ is-path n ′ ns ′ n ′′ =⇒ is-path n (ns@ns ′)
n ′′

using path-conc by auto

lemma succs-path-extend : x ∈ succs p =⇒ is-path x ns y =⇒ is-path p (p#ns) y
using edge-rel-def succs-def by (auto intro: path-prepend)

lemma is-path-split : assumes is-path u (ns1 @n#ns2) v
shows is-path u ns1 n is-path n (n#ns2) v

proof−
from assms path-conc-conv [of - u] obtain n ′

where path-gen: Digraph-Basic.path edge-rel u ns1 n ′

Digraph-Basic.path edge-rel n ′ (n#ns2) v by auto
with this[unfolded path-cons-conv] edge-rel-def succs-def assms
show is-path u ns1 n is-path n (n#ns2) v by auto

qed

lemma path-split-elem: assumes is-path n ns n ′

m ∈ set ns
obtains ns1 ns2 where ns = ns1 @m#ns2 is-path n ns1 m

is-path m (m#ns2) n ′

proof−

3

from split-list [OF assms(2)] obtain ns1 ns2 where ns = ns1 @m#ns2 by auto
with that is-path-split [OF assms(1)[unfolded this]] show ?thesis by auto

qed

lemma path-split-elem2 : assumes is-path n ns n ′

m ∈ set ns ∪ {n ′}
obtains ns1 ns2 where ns = ns1 @ns2 is-path n ns1 m is-path

m ns2 n ′

proof (cases m ∈ set ns)
case True
with path-split-elem[OF assms(1) True] that show ?thesis by metis

next
case False
with assms path0 that [of ns []] is-path-valid-node show ?thesis by auto

qed

lemma edge-rel-impl-path:
(a, b) ∈ edge-rel =⇒ is-path a [a] b
using edge-rel-def succs-path by simp

lemma edge-impl-valid-target : (a,b) ∈ edge-rel =⇒ valid-node b
unfolding edge-rel-def succs-def by auto

lemma edge-rel-rtrancl-path:
assumes (a,b) ∈ edge-rel∗ and valid-node a shows ∃ns. is-path a ns b
using assms

proof (induction rule:rtrancl-induct)
case base
with path0 show ?case by metis

next
case (step y z)
then obtain ns where is-path a ns y by blast
with step path-append edge-rel-impl-path have is-path a (ns@[y]) z by auto
thus ?case by auto

qed

lemma reaches-intros:
valid-node n =⇒ reaches n n
valid-edge e =⇒ sourcenode e = n =⇒ targetnode e = m =⇒ reaches n m
using path.intros path-edge reaches-def by metis+

lemma reaches-trans: reaches n1 n2 =⇒ reaches n2 n3 =⇒ reaches n1 n3
using path-Append reaches-def by metis

lemma scc-path:
assumes n ∈ scc-of edge-rel m and valid-node m
obtains ns where is-path m ns n

using assms node-in-scc-of-node scc-of-is-scc is-scc-connected edge-rel-rtrancl-path
by metis

4

lemma lset-split : assumes n ∈ lset ns
obtains ns1 ns2 where ns = lappend (llist-of ns1) (LCons n ns2)

using split-llist [OF assms, unfolded lfinite-eq-range-llist-of] by auto

lemma lset-split-first : assumes n ∈ lset ns
obtains ns1 ns2 where ns = lappend (llist-of ns1) (LCons n ns2)

n /∈ set ns1
using split-llist-first [OF assms, unfolded lfinite-eq-range-llist-of] by auto

lemma is-path-Cons: is-path n (n ′#ns) m =⇒ n = n ′ ∧ (∃ x . x ∈ succs n ∧
is-path x ns m)

using path-cons-conv [of edge-rel] edge-rel-def succs-valid by auto

lemma is-path-snoc: is-path n (ns@[n ′]) m =⇒ m ∈ succs n ′ ∧ is-path n ns n ′

using path-append-conv [of edge-rel] edge-rel-def by auto

lemma path-first : assumes is-path n ns m
obtains ns ′ ns ′′ where is-path n ns ′ m m /∈ set ns ′ ns = ns ′@ns ′′

using assms
proof (cases m ∈ set ns)

case True
from split-list-first [OF this] obtain ns ′ ns2 where ns = ns ′@m#ns2 m /∈ set

ns ′ by auto
with is-path-split [OF assms[unfolded this(1)]] that show ?thesis by auto

qed auto

lemma path-last : assumes is-path n ns m
ns 6= []

obtains ns ′ ns ′′ where is-path n (n#ns ′′) m n /∈ set ns ′′ ns =
ns ′@n#ns ′′

using assms
proof (cases ns)

case (Cons n ′ ns2)
with is-path-Cons assms have n ∈ set ns by auto
with split-list-last obtain ns3 ns4 where ns = ns3 @n#ns4 n /∈ set ns4 by

metis
with is-path-split assms that show ?thesis by blast

qed auto

lemma path-end-unique: assumes ∃ns. is-path n ns m
n 6= m

obtains ns ′ where is-path n (n#ns ′) m m /∈ set ns ′ n /∈ set ns ′

proof−
from assms obtain ns where path: is-path n ns m ns 6= [] by force+
with path-last assms obtain ns1 where is-path n (n#ns1) m n /∈ set ns1 by

metis
with path-first [OF this(1)] obtain ns3 ns4
where second-split : is-path n ns3 m m /∈ set ns3 n#ns1 = ns3 @ns4 by auto

5

with assms obtain n ′ ns3 ′ where ns3 = n ′#ns3 ′ by (cases ns3) auto
with second-split have ns1 = ns3 ′@ns4 m /∈ set ns3 ′ by auto
with second-split 〈n /∈ set ns1 〉 that show ?thesis by auto

qed

lemma path-rev-last : assumes is-path p ns n
shows last (n#rev ns) = p

using assms
proof (cases ns)

case Cons
with assms[unfolded this, unfolded path-cons-conv] show ?thesis by auto

qed auto

lemma is-path-induct [consumes 1]:
assumes is-path n ns m

valid-node m =⇒ P m [] m∧
n x ns. is-path n (n#ns) m =⇒ x ∈ succs n =⇒ is-path x ns m =⇒ P

x ns m
=⇒ P n (n#ns) m

shows P n ns m
proof−

from assms have Digraph-Basic.path edge-rel n ns m valid-node n by auto
from this assms edge-rel-def assms succs-valid show ?thesis by induction auto

qed

end

2 Lemmas 1.1 and 1.2

2.1 Standard control dependency, Lemma 1.1

The assumption that there is a unique exit node reachable from all other
nodes is given by the Postdomination locale.

context Postdomination
begin

lemma Exit-is-path: valid-node n =⇒ ∃ns. is-path n ns (-Exit-)
using Exit-path path-to-is-path by blast

lemma Exit-succs: succs (-Exit-) = {}
using succs-def Exit-source by auto

The Postdomination framework does not allow the exit node to postdom-
inate any node. However, in reality it postdominates every (valid) node.
Therefore, this definition expresses the correct postdominance relation.

definition postdom :: ′node ⇒ ′node ⇒ bool (- postdom - [51 ,50])
where n ′ postdom n ≡ n ′ = (-Exit-) ∨ n ′ postdominates n

6

Definition of control dependence introduced by Wolfe [31]. This is the defi-
nition we use.

definition cd :: ′node ⇒ ′node ⇒ bool
where cd n m == (∃ x1∈succs n. m postdom x1) ∧ (∃ x2∈succs n. ¬ m postdom

x2)

lemma postdom-succs: assumes m postdom n
x ∈ succs n
n 6= m

shows m postdom x
proof−

from assms succs-def obtain e
where e-gen: valid-edge e sourcenode e = n targetnode e = x by auto
{

fix es
assume path x es (-Exit-) m 6= (-Exit-)
with path.intros e-gen assms postdominate-def postdom-def
have m ∈ set (sourcenodes (e#es)) by auto
with sourcenodes-def e-gen assms have m ∈ set (sourcenodes es) by auto

}
with assms postdominate-def e-gen postdom-def show ?thesis by auto

qed

lemma postdom-refl : valid-node n =⇒ n postdom n
using postdominate-refl postdom-def by auto

lemma postdom-intro-all-succs: assumes succs n 6= {}∧
x . x ∈ succs n =⇒ m postdom x

shows m postdom n
proof−
{

fix es
assume path: path n es (-Exit-) m 6= (-Exit-)
with empty-path-nodes assms Exit-succs have es 6= [] by auto
with path path-split-Cons obtain e es ′ where split : es = e#es ′

valid-edge e sourcenode e = n path (targetnode e) es ′ (-Exit-) by metis
with assms succs-def postdom-def postdominate-def sourcenodes-def path
have m ∈ set (sourcenodes es) by auto

}
with postdom-def postdominate-def assms succs-valid show ?thesis by fastforce

qed

Shows that for n 6= m, the definition of cd we use is equivalent to another
often-used definition.

lemma control-dependence-alt : assumes n 6= m
shows cd n m ←→ (∃ x1∈succs n. m postdom x1) ∧ ¬ m postdom n

proof−
{

fix x

7

assume not-postdom: ¬ m postdom n succs n 6= {} m postdom x
with succs-def postdominate-def postdom-def have valid-node n valid-node m

by auto
with postdominate-def not-postdom postdom-def obtain es

where no-m-path: path n es (-Exit-) m /∈ set (sourcenodes es) by auto
from this Exit-succs not-postdom path.intros obtain e es ′

where valid-edge e sourcenode e = n es = e#es ′ path (targetnode e) es ′

(-Exit-)
by cases auto

with succs-def postdominate-def postdom-def no-m-path sourcenodes-def not-postdom
have ∃ x2∈succs n. ¬ m postdom x2 by auto

}
with cd-def postdom-succs assms show ?thesis by fast

qed

lemma postdom-cd-variant : assumes n 6= m ¬ m postdom n
shows (∃ x∈succs n. m postdom x)

←→ (∃ns. is-path n ns m ∧ (∀ z∈set ns − {n,m}. m postdom z)) (is ?L
←→ ?R)
proof−
{

fix x
assume x-assms: x ∈ succs n m postdom x
with postdominate-implies-path postdom-def assms path-to-is-path
obtain ns1 where is-path x ns1 m by metis
with path-first obtain ns where ns-gen: is-path x ns m m /∈ set ns by metis
from this x-assms(2) have ∀ z∈set ns − {n,m}. m postdom z
proof (induction rule: is-path-induct)

case (2 x x ′ ns)
with postdom-succs[of m x] show ?case by auto

qed auto
with x-assms ns-gen succs-path-extend have ?R by fastforce

}
note succs-postdom-to-path-postdom = this
{

fix ns
assume is-path n ns m ∀ z∈set ns − {n,m}. m postdom z
from this assms have ?L
proof (induction rule: is-path-induct)

case (2 n x ns)
then show ?case
proof (cases x ∈ {n,m})

case True
from 2 postdom-def have valid-node x m 6= (-Exit-) by auto
with True 2 postdominate-refl postdom-def show ?thesis by auto

next
case False
with 2 (3) obtain x ′ ns ′ where ns = x ′#ns ′ by (cases ns) auto
with 2 (3) is-path-Cons have ns = x#ns ′ by auto

8

with 2 False show ?thesis by auto
qed

qed auto
}
with succs-postdom-to-path-postdom show ?thesis by auto

qed

Lemma 1.1. The right side is the original definition of control dependence
by Ferrante et al. [11].

theorem control-dependence-alt2 : assumes n 6= m
shows cd n m ←→ (∃ns. is-path n ns m ∧ (∀ z∈set ns − {n,m}. m postdom z))

∧ ¬ m postdom n
using assms control-dependence-alt postdom-cd-variant by metis

end

2.2 Example from Fig. 1 right, Lemma 1.2

Edge relation for Fig. 1 right.

definition node-rel-example1 :: nat × nat ⇒ bool
where node-rel-example1 e == e ∈ {(1 ,2), (1 ,3), (2 ,3), (3 ,4), (1 ,5), (4 ,5)}

interpretation example1 :
CFG fst snd λx . Predicate (λs. False) node-rel-example1 1

proof unfold-locales qed (auto simp add : node-rel-example1-def)

interpretation example1 :
CFGExit fst snd λx . Predicate (λs. False) node-rel-example1 1 5

proof unfold-locales qed (auto simp add : node-rel-example1-def)

interpretation example1 :
Postdomination fst snd λx . Predicate (λs. False) node-rel-example1 1 5

proof unfold-locales
let ?path = example1 .path
let ?valid-node = example1 .valid-node
let ?reaches = example1 .reaches
have Collect example1 .valid-node = {1 ,2 ,3 ,4 ,5}

using example1 .valid-node-def node-rel-example1-def by auto
then have valids:

∧
n. example1 .valid-node n ←→ n ∈ {1 ,2 ,3 ,4 ,5}

by auto
from valids example1 .reaches-intros
have self : ?reaches 1 1 ?reaches 5 5 by auto
have node-rel-example1 (1 ,2)

node-rel-example1 (1 ,3) node-rel-example1 (2 ,3)
node-rel-example1 (3 ,4) node-rel-example1 (4 ,5)
unfolding node-rel-example1-def by auto

with example1 .reaches-intros have step: ?reaches 1 2 ?reaches 1 3
?reaches 2 3 ?reaches 3 4 ?reaches 4 5 by auto

9

with example1 .reaches-trans have ?reaches 1 4 ?reaches 1 5
?reaches 2 5 ?reaches 3 5 by metis+

with self step valids example1 .reaches-def
show

∧
n. ?valid-node n =⇒ ∃ns. ?path 1 ns n∧

n. ?valid-node n =⇒ ∃ns. ?path n ns 5 by auto
qed

Following are the proofs for Lemma 1.2. The different statements are sepa-
rated into different Isabelle theorems.

Part of Lemma 1.2

theorem example1-y-postdom-n2 : example1 .postdom 4 3
proof−

from node-rel-example1-def example1 .succs-def
have succs: example1 .succs 3 = {4} by simp
with example1 .succs-valid example1 .postdom-refl have example1 .postdom 4 4

by auto
with example1 .postdom-intro-all-succs succs show ?thesis by fastforce

qed

Part of Lemma 1.2

theorem example1-y-postdom-n1 : example1 .postdom 4 2
proof−

from node-rel-example1-def example1 .succs-def have example1 .succs 2 = {3}
by simp

with example1 .postdom-intro-all-succs example1-y-postdom-n2 show ?thesis by
fastforce
qed

Part of Lemma 1.2

theorem example1-y-not-postdom-Exit : ¬ example1 .postdom 4 5
proof

assume example1 .postdom 4 5
with example1 .postdominate-implies-path obtain ns where example1 .path 5 ns

4
unfolding example1 .postdom-def by auto

with example1 .path-Exit-source show False by auto
qed

Part of Lemma 1.2

theorem example1-cd-x-y : example1 .cd 1 4
proof−

from example1 .succs-def node-rel-example1-def
have 2 ∈ example1 .succs 1 5 ∈ example1 .succs 1 by auto
with example1 .cd-def example1-y-postdom-n1 example1-y-not-postdom-Exit show

?thesis by auto
qed

10

3 Control Dependence in Arbitrary Graphs

3.1 Definitions for maximal paths and sink paths

context CFG
begin

Definition of a maximal path

coinductive max-path :: ′node ⇒ ′node llist ⇒ bool
where succs n ′ = {} =⇒ valid-node n ′ =⇒ max-path n ′ (llist-of [n ′])
| y ∈ succs x =⇒ max-path y ns =⇒ max-path x (LCons x ns)

Nontermination-sensitive postdomination. on-max-paths n m ←→m vMAX

n ←→ m lies on all maximal paths starting in n. See Definition 2.1.

definition on-max-paths :: ′node ⇒ ′node ⇒ bool
where on-max-paths n m = (∀ns. max-path n ns −→ m ∈ lset ns)

on-max-paths-prev n m1 m2 ←→ on all maximal paths starting in n, m1
occurs before m2. Used to define →dod.

definition on-max-paths-prev :: ′node ⇒ ′node ⇒ ′node ⇒ bool
where on-max-paths-prev n m1 m2 = (∀ns. max-path n ns −→

(∃ns1 ns2 . ns = lappend (llist-of ns1) (LCons m1 ns2) ∧ m2 /∈ set ns1))

Helper definitions to define sinks. We use the condensation graph, where
every SCC is shrunk to a single node.

definition cond-edges ≡ ((λ(n1 ,n2). (scc-of edge-rel n1 , scc-of edge-rel n2)) ‘
edge-rel) − Id
definition cond-nodes ≡ {scc. ∃n. scc = scc-of edge-rel n ∧ valid-node n}

lemma cond-edges-no-self-loop:
assumes (s1 ,s2) ∈ cond-edges shows s1 6= s2 using assms unfolding cond-edges-def

by auto

lemma cond-nodes-scc: s ∈ cond-nodes =⇒ n ∈ s =⇒ s = scc-of edge-rel n
using scc-of-unique[of n] cond-nodes-def by auto

Lemma to ensure our definition of condensation graphs is correct

lemma cond-edges-alt :
assumes s1 ∈ cond-nodes
and s2 ∈ cond-nodes

shows (s1 , s2) ∈ cond-edges
←→ (∃n1 ∈ s1 . ∃n2 ∈ s2 . (n1 , n2) ∈ edge-rel ∧ scc-of edge-rel n1 6= scc-of

edge-rel n2)
(is ?P ←→ ?right)

proof
assume (s1 , s2) ∈ cond-edges
then obtain n1 n2 where

(s1 ,s2) = (scc-of edge-rel n1 , scc-of edge-rel n2)

11

(n1 , n2) ∈ edge-rel
(scc-of edge-rel n1 , scc-of edge-rel n2) ∈ cond-edges
unfolding cond-edges-def
by (metis (no-types, lifting) Diff-iff case-prod-conv imageE old .prod .exhaust)

thus ?right using cond-edges-no-self-loop
by (metis node-in-scc-of-node prod .inject)

next
assume ?right
then obtain n1 n2 where n-props: n1 ∈ s1 n2 ∈ s2 (n1 , n2) ∈ edge-rel

scc-of edge-rel n1 6= scc-of edge-rel n2 by auto
with cond-nodes-scc assms have s1 = scc-of edge-rel n1 s2 = scc-of edge-rel n2

by auto
with n-props assms show ?P unfolding cond-nodes-def cond-edges-def by auto

qed

Definition of sink nodes

definition sink-node n ≡ ¬(∃ scc. (scc-of edge-rel n, scc) ∈ cond-edges)

Definition of sink paths

definition sink-path :: ′node ⇒ ′node llist ⇒ bool
where sink-path n ns

== max-path n ns ∧
(∃n ′. n ′ ∈ lset ns ∧ sink-node n ′

∧ (succs n ′ 6= {}
−→ (∀n ′′ ∈ scc-of edge-rel n ′. ¬ lfinite (lfilter (λx . x = n ′′)

ns))))

Nontermination-insensitive postdomination. on-sink-paths n m←→m vSINK

n ←→ m lies on all sink paths starting in n. See Definition 2.1.

definition on-sink-paths :: ′node ⇒ ′node ⇒ bool
where on-sink-paths n m == ∀ns. sink-path n ns −→ m ∈ lset ns

Definition that is equivalent to on-sink-paths but easier to work with

definition on-ext-paths :: ′node ⇒ ′node ⇒ bool
where on-ext-paths x n == ∀ns n ′. is-path x ns n ′

−→ (∃ns ′ n ′′. is-path n ′ ns ′ n ′′

∧ n ∈ set (ns@ns ′@[n ′′]))

lemma subseteq-mono[mono]: (
∧

x . P x −→ Q x) =⇒ A ⊆ {x . P x} −→ A ⊆ {x .
Q x}
by auto

Definition of NTSCD (Definition 2.2)

definition ntscd :: ′node ⇒ ′node ⇒ bool
where ntscd p n == (∃ x1∈succs p. on-max-paths x1 n) ∧ (∃ x2∈succs p. ¬

on-max-paths x2 n)

Definition of NTICD (Definition 2.2)

12

definition nticd :: ′node ⇒ ′node ⇒ bool
where nticd p n == (∃ x1∈succs p. on-sink-paths x1 n) ∧ (∃ x2∈succs p. ¬

on-sink-paths x2 n)

Rule system defined in Theorem 2.1 (least fixed point).

inductive Ds :: ′node ⇒ ′node ⇒ bool
where Id : valid-node m =⇒ Ds m m
| Succ: succs n ⊆ {x . Ds m x} =⇒ ∃ns. is-path n ns m =⇒ Ds m n

Rule system defined in Theorem 2.1 (greatest fixed point).

coinductive Di :: ′node ⇒ ′node ⇒ bool
where Id : valid-node m =⇒ Di m m
| Succ: succs n ⊆ {x . Di m x} =⇒ ∃ns. is-path n ns m =⇒ Di m n

3.2 Lemmas about maximal paths

lemma max-path-hd : max-path n (LCons n ′ ns) =⇒ n = n ′

by (cases rule: max-path.cases) auto

lemma max-path-LCons: assumes max-path n ns
obtains ns ′ where ns = LCons n ns ′

proof−
from assms have ns 6= LNil by (cases rule: max-path.cases) auto
then obtain n ′ ns ′ where ns = LCons n ′ ns ′ by (cases ns) auto
with max-path-hd assms that show ?thesis by auto

qed

lemma max-path-valid-node: max-path n ns =⇒ valid-node n
by (cases rule: max-path.cases) (auto simp add : succs-def)

lemma max-path-no-succs: assumes max-path n ns
succs n = {}

shows ns = LCons n LNil
using assms by cases auto

lemma max-path-step: assumes max-path x ns
succs x 6= {}

obtains y ns ′ where ns = LCons x ns ′ max-path y ns ′ y ∈ succs
x
using assms by (cases rule: max-path.cases) simp

lemma max-path-step-LCons: assumes max-path x (LCons x ′ ns)
ns 6= LNil

obtains y where x = x ′ max-path y ns y ∈ succs x
using assms by (cases rule: max-path.cases) auto

lemma max-path-append : assumes is-path n ns n ′

max-path n ′ ns ′

shows max-path n (lappend (llist-of ns) ns ′)

13

proof−
from assms have Digraph-Basic.path edge-rel n ns n ′ by auto
from this assms(2) edge-rel-def max-path.intros
show ?thesis by (induction rule: Digraph-Basic.path.induct) auto

qed

lemma max-path-end : assumes is-path n ns n ′

succs n ′ = {}
shows max-path n (llist-of (ns@[n ′]))

proof−
from assms max-path.intros is-path-valid-node have max-path n ′ (llist-of [n ′])

by auto
from max-path-append [OF assms(1) this, unfolded lappend-llist-of-llist-of] show

?thesis .
qed

lemma max-path-split : assumes max-path n (lappend (llist-of ns) (LCons n ′ ns ′))
shows max-path n ′ (LCons n ′ ns ′) ∧ is-path n ns n ′

using assms
proof (induction ns arbitrary : n)

case Nil
with max-path-hd [of n n ′] max-path-valid-node show ?case by (auto intro:

max-path.intros)
next

case (Cons a ns n)
with max-path-hd have n = a by auto
have lappend (llist-of ns) (LCons n ′ ns ′) 6= LNil by (cases ns) auto
with Cons(2) max-path-hd obtain n2 where n2 ∈ succs n
max-path n2 (lappend (llist-of ns) (LCons n ′ ns ′)) by (cases rule: max-path.cases)

auto
with succs-path-extend [of n2 n] Cons 〈n = a〉 show ?case by auto

qed

lemma max-path-split-elem: assumes max-path n ns
m ∈ lset ns

obtains ns1 ns2 where is-path n ns1 m max-path m (LCons
m ns2)

ns = lappend (llist-of ns1) (LCons m ns2)
using assms lset-split that max-path-split assms by metis

Builds a cyclic repetition of the given list.

primcorec cycle :: ′a list ⇒ ′a llist
where cycle ys = (case ys of [] ⇒ LNil

| (x#xs) ⇒ LCons x (cycle (xs@[x])))

lemma cycle-hd : assumes cycle xs = LCons x ys
obtains xs ′ where xs = x#xs ′

proof (cases xs)
case Nil

14

with cycle.code have cycle xs = LNil by auto
with assms show ?thesis by auto

next
case (Cons z zs)
from cycle.code[of z#zs] Cons that assms show ?thesis by auto

qed

lemma cycle-lset : lset (cycle xs) ⊆ set xs
proof

fix x
assume x ∈ lset (cycle xs)
with lset-split obtain ns1 ns2
where cycle xs = lappend (llist-of ns1) (LCons x ns2) .
then show x ∈ set xs
proof (induction ns1 arbitrary : xs)

case (Nil xs)
with cycle-hd [of xs] obtain xs ′ where xs = x#xs ′ by auto
with cycle.code show ?case by auto

next
case (Cons y ys xs)
hence cycle-LCons: cycle xs = LCons y (lappend (llist-of ys) (LCons x ns2))

by auto
with cycle-hd [of xs] obtain xs ′ where xs = y#xs ′ by auto
with cycle.code[of y#xs ′] cycle-LCons
have cycle (xs ′@[y]) = lappend (llist-of ys) (LCons x ns2) by auto
with Cons(1)[OF this] 〈xs = y#xs ′〉 show ?case by auto

qed
qed

lemma cycle-infinite: assumes xs 6= []
shows ¬ lfinite (cycle xs)

proof
assume lfinite (cycle xs)
then obtain xs ′where llist-of xs ′= cycle xs by (auto simp add : lfinite-eq-range-llist-of)
with assms show False
proof (induction xs ′ arbitrary : xs)

case Nil
with cycle.code[of xs] show ?case by (cases xs) auto

next
case (Cons a xs ′)
with cycle.code[of xs] show ?case by (cases xs) auto

qed
qed

lemma cycle-lappend-unfold : cycle (xs@ys) = lappend (llist-of xs) (cycle (ys@xs))
proof (induction xs arbitrary : ys)

case (Cons x xs)
with cycle.code[of x#xs@ys] Cons[of ys@[x]] show ?case by auto

qed auto

15

lemma lfilter-cycle: lfilter P (cycle xs) = cycle (filter P xs)
proof (coinduction arbitrary : xs)

case Eq-llist
show ?case
proof (cases ∃ x∈set xs. P x)

case True
with split-list-first-prop obtain x xs1 xs2

where split : xs = xs1 @x#xs2 ∀ x ′∈set xs1 . ¬ P x ′ P x by metis
with cycle-lappend-unfold [of xs1] cycle.code[of x#-] show ?thesis by auto

next
case False
with cycle-lset [of xs] lfilter-False filter-False show ?thesis by auto

qed
qed

lemma cycle-max-path: is-path n (n#ns) n =⇒ max-path n (cycle (n#ns))
proof (coinduction arbitrary : n ns rule: max-path.coinduct)

case (max-path n ns)
from cycle.code[of n#ns] have cycle-unfold : cycle (n#ns) = LCons n (cycle

(ns@[n])) by auto
show ?case
proof (cases ns)

case Nil
with max-path path-append-conv [of - n []] edge-rel-def have n ∈ succs n by

auto
with max-path cycle-unfold Nil show ?thesis by auto

next
case (Cons y ys)
with max-path is-path-split [of - [n] y]
have paths: is-path y (y#ys) n is-path n [n] y by auto
with path-append-conv [of - n []] edge-rel-def have y ∈ succs n by auto
from path-append [OF paths] have is-path y (y#ys@[n]) y by simp
with Cons 〈y ∈ succs n〉 cycle-unfold show ?thesis by auto

qed
qed

lemma cycle-max-path-neq-nil : is-path n ns n =⇒ ns 6= [] =⇒ max-path n (cycle
ns)
using path-cons-conv [of - n] cycle-max-path by (cases ns) auto

lemma lappend-split-eq : assumes lappend (llist-of ns1) (LCons n ns2)
= lappend (llist-of ms1) (LCons m ms2)

m /∈ set ns1
n /∈ set ms1

shows m = n
using assms
proof (induction ns1 arbitrary : ms1)

case (Nil ms1)

16

then show ?case by (cases ms1) auto
next

case (Cons a ns1 ms1)
then show ?case by (cases ms1) auto

qed

Given a valid node, this function creates a maximal path starting in that
node.

primcorec ext-max-path :: ′node ⇒ ′node llist
where ext-max-path x =

(if succs x = {}
then llist-of [x]
else LCons x (ext-max-path (SOME y . y ∈ succs x)))

lemma max-path-ext : valid-node x =⇒ max-path x (ext-max-path x)
proof (coinduction arbitrary : x rule: max-path.coinduct)

case max-path
show ?case
proof (cases succs x = {})

let ?y = SOME y . y ∈ succs x
case False
with someI have y-props: ?y ∈ succs x by fast
with ext-max-path.code have ext-max-path x = LCons x (ext-max-path ?y) by

auto
with y-props succs-valid show ?thesis by auto

qed (auto simp add : max-path ext-max-path.code)
qed

lemma on-max-paths-prev-trivial : on-max-paths-prev n n m
unfolding on-max-paths-prev-def

proof clarify
fix ns
assume max-path n ns
with max-path-LCons obtain ns ′ where ns = LCons n ns ′ by auto
then show (∃ns1 ns2 . ns = lappend (llist-of ns1) (LCons n ns2) ∧ m /∈ set

ns1)
by (auto intro: exI [of - []])

qed

lemma on-max-paths-not-prev : assumes on-max-paths n m1
¬ on-max-paths-prev n m1 m2

obtains ns where is-path n ns m2 m1 /∈ set ns
proof−

from assms on-max-paths-prev-def obtain ns1 where ns1-gen: max-path n ns1
∀ns2 ns3 . ns1 = lappend (llist-of ns2) (LCons m1 ns3) −→ m2 ∈ set ns2

by auto
with assms on-max-paths-def have m1 ∈ lset ns1 by auto
with lset-split-first obtain ns2 ns3

where ns23-gen: ns1 = lappend (llist-of ns2) (LCons m1 ns3) m1 /∈ set ns2

17

by metis
with ns1-gen split-list obtain ns2a ns2b where ns2 = ns2a@m2 #ns2b by metis
with max-path-split ns1-gen ns23-gen have is-path n (ns2a@m2 #ns2b) m1 by

auto
with that is-path-split [OF this] ns23-gen 〈ns2 = ns2a@m2 #ns2b〉 show ?thesis

by simp
qed

3.3 Proof of Theorem 2.1, vMAX part

First, we prove multiple lemmas that help us prove Theorem 2.1

Proof of the Reflexivity of on-max-paths (and therefore vMAX). Also will
be part of Observation 5.1.

theorem on-max-paths-refl : on-max-paths x x
unfolding on-max-paths-def by clarify (cases rule: max-path.cases, auto)

Proof of the Transitivity of on-max-paths (and therefore vMAX). Also will
be part of Observation 5.1.

theorem on-max-paths-trans: assumes on-max-paths x y
on-max-paths y z

shows on-max-paths x z
proof−
{

fix ns
assume max-path x ns
with assms on-max-paths-def max-path-split-elem 〈max-path x ns〉 obtain ns1

ns2
where ns = lappend (llist-of ns1) (LCons y ns2) max-path y (LCons y ns2)

by metis
with assms on-max-paths-def have z ∈ lset ns by auto

}
with assms on-max-paths-def show ?thesis by auto

qed

lemma Ds-valid-node: assumes Ds m n
shows valid-node m valid-node n

using assms by (induction rule: Ds.cases) (auto simp add : is-path-valid-node)

lemma Ds-imp-max-paths: Ds m n =⇒ on-max-paths n m
proof (induction rule: Ds.induct)
next

case (Succ n m)
then obtain ns ′ where is-path: is-path n ns ′ m by auto
show ?case unfolding on-max-paths-def
proof clarify

fix ns
assume max-path: max-path n ns
show m ∈ lset ns

18

proof (cases succs n = {})
case True
with is-path-succs-empty is-path max-path-LCons max-path lset-intros(1)
show ?thesis by metis

next
case False
with max-path-step max-path obtain x ns2

where ns = LCons n ns2 max-path x ns2 x ∈ succs n by metis
with Succ on-max-paths-def show ?thesis by auto

qed
qed

qed (simp add : on-max-paths-refl)

This function constructs a maximal path that starts in the node given as
second argument and that doesn’t contain the node given as first argument.
Precondition: ¬ Ds n x.

primcorec avoid-path :: ′node ⇒ ′node ⇒ ′node llist
where avoid-path n x =

(if succs x = {}
then llist-of [x]
else LCons x (avoid-path n (SOME y . y ∈ succs x ∧ ¬ Ds n y)))

lemma not-Ds-cont : ¬ Ds m n =⇒ succs n 6= {} =⇒ ∃ x . x ∈ succs n ∧ ¬ Ds m
x
proof−

have not-Ds-cont : ∀ x . x ∈ succs n −→ Ds m x =⇒ succs n 6= {} =⇒ Ds m n
proof

assume ∀ x . x ∈ succs n −→ Ds m x succs n 6= {}
then obtain x where x-gen: Ds m x x ∈ succs n by auto
from this path0 [of edge-rel] obtain ns where is-path x ns m by cases blast+
with x-gen succs-path-extend show ∃ns. is-path n ns m by blast

qed auto
then show ¬ Ds m n =⇒ succs n 6= {} =⇒ ∃ x . x ∈ succs n ∧ ¬ Ds m x by

auto
qed

lemma not-Ds-max-path: ¬ Ds n x =⇒ valid-node x =⇒ max-path x (avoid-path
n x)
proof (coinduction arbitrary : x rule: max-path.coinduct)

case (max-path x)
then show ?case
proof (cases succs x = {})

case True
with max-path avoid-path.code show ?thesis by auto

next
let ?y = SOME y . y ∈ succs x ∧ ¬ Ds n y
case False
with avoid-path.code have path: avoid-path n x = LCons x (avoid-path n ?y)

by auto

19

from max-path not-Ds-cont [THEN someI-ex] False have ?y ∈ succs x ¬ Ds n
?y by auto

with path succs-def show ?thesis by auto
qed

qed

lemma not-Ds-avoid-n: ¬ Ds n x =⇒ valid-node x =⇒ n /∈ lset (avoid-path n x)
proof (rule ccontr)

assume assm: ¬ Ds n x valid-node x ¬ n /∈ lset (avoid-path n x)
with lset-split [of n avoid-path n x] obtain ns1 ns2
where avoid-path n x = lappend (llist-of ns1) (LCons n ns2) by auto
with assm show False
proof (induction ns1 arbitrary : x)

case (Nil x)
with Ds.intros avoid-path.code show ?case by (cases succs x = {}) auto

next
case (Cons a ns1 x)
hence path: avoid-path n x = LCons a (lappend (llist-of ns1) (LCons n ns2))

by auto
with avoid-path.code have cont : succs x 6= {} by (cases ns1) auto
let ?y = SOME y . y ∈ succs x ∧ ¬ Ds n y
from Cons avoid-path.code cont have avoid-path n x = LCons x (avoid-path n

?y) by auto
with path have path ′: avoid-path n ?y = lappend (llist-of ns1) (LCons n ns2)

by auto
from Cons not-Ds-cont [THEN someI-ex] cont have ?y ∈ succs x ¬ Ds n ?y

by auto
with succs-def Cons(1)[OF this(2)] path ′ show ?thesis by auto

qed
qed

lemma max-paths-imp-Ds: on-max-paths x n =⇒ valid-node x =⇒ Ds n x
proof (rule ccontr)

assume on-max-paths x n valid-node x ¬ Ds n x
with not-Ds-max-path on-max-paths-def not-Ds-avoid-n show False by blast

qed

Proof of the vMAX part of Theorem 2.1.

theorem Ds-max-paths: Ds n x ←→ on-max-paths x n ∧ valid-node x
using max-paths-imp-Ds Ds-imp-max-paths Ds-valid-node by auto

lemma on-max-paths-ex-path: on-max-paths n m =⇒ valid-node n =⇒ ∃ns. is-path
n ns m

using Ds-max-paths Ds.cases path0 by metis

lemma ntscd-cond-succ: assumes ¬ on-max-paths p n
x ∈ succs p
on-max-paths x n

shows ntscd p n

20

unfolding ntscd-def
proof

from assms on-max-paths-def obtain ns where ns-gen: max-path p ns n /∈ lset
ns by auto

with assms max-path-step obtain x2 ns ′

where max-path x2 ns ′ ns = LCons p ns ′ x2 ∈ succs p by blast
with ns-gen on-max-paths-def show ∃ x2∈succs p. ¬ on-max-paths x2 n by auto

qed (insert assms, blast)

This function itself is never used in this theory. It is only defined to use the
resulting induction rule.

function ntscd-steps :: ′node ⇒ ′node list ⇒ ′node list
where ntscd-steps p (n#ns) = (if n = p then (n#ns)

else ntscd-steps p (dropWhile (λm. on-max-paths m
n) (n#ns)))

| ntscd-steps p [] = []
proof−

fix Q x
assume (

∧
p n ns. (x :: ′node × ′node list) = (p, n # ns) =⇒ Q) (

∧
p. x = (p,

[]) =⇒ Q)
thus Q by (cases x , cases snd x) auto

qed auto
termination
proof (relation measure (length o snd))

fix p n ns
from on-max-paths-refl length-dropWhile-le[of λm. on-max-paths m n ns]
show ((p:: ′node, dropWhile (λm. on-max-paths m n) (n # ns)), (p, n # ns))

∈ measure (length ◦ snd) by auto
qed auto

lemma ntscd-rtranclpI ′: assumes is-path p ns n
∀m∈set (n#rev ns). p 6= m −→ ¬ on-max-paths p m

shows ntscd∗∗ p n
using assms
proof (induction p n#rev ns arbitrary : n ns rule: ntscd-steps.induct)

case (1 p n ns)
show ?case
proof (cases n = p)

let ?ds = dropWhile (λm. on-max-paths m n) (n#rev ns)
let ?ts = takeWhile (λm. on-max-paths m n) (n#rev ns)
from on-max-paths-refl have ?ts 6= [] by auto
then obtain ts-h ts ′ where ts-split : ?ts = ts-h#ts ′ by (cases ?ts) auto
case False
with 1 have not-max : ¬ on-max-paths p n by simp
from 1 (2) path-rev-last last-in-set [of n # rev ns] have p ∈ set (n#rev ns) by

auto
with 1 dropWhile-eq-Nil-conv not-max have ?ds 6= [] by auto
then obtain n ′ ns-r where ?ds = n ′#rev (rev ns-r) by (cases ?ds) auto
then obtain ns ′ where ds-split : ?ds = n ′#rev ns ′ by blast

21

with takeWhile-dropWhile-id have split : n#rev ns = ?ts@n ′#rev ns ′ by metis
with ts-split have rev ns = ts ′@n ′#rev ns ′ by auto
with rev-rev-ident [of ns] have ns = ns ′@n ′#rev ts ′ by auto
with 1 (2) is-path-split [of - ns ′]
have split-path: is-path p ns ′ n ′ is-path n ′ (n ′#rev ts ′) n by auto
from split have set (n ′#rev ns ′) ⊆ set (n#rev ns) by auto
with 1 have ∀m∈set (n ′ # rev ns ′). p 6= m −→ ¬ on-max-paths p m by auto
with 1 False ds-split split-path have ntscd∗∗ p n ′ by auto
from ds-split [unfolded dropWhile-eq-Cons-conv] have ¬ on-max-paths n ′ n by

auto
obtain x2 where on-max-paths x2 n x2 ∈ succs n ′

proof (cases rev ts ′)
case Nil
with split-path path-last-is-edge[of - - [n ′]] edge-rel-def have n ∈ succs n ′ by

auto
with that on-max-paths-refl show ?thesis by auto

next
case (Cons t ′ ts ′′)
with split-path have is-path n ′ (n ′#t ′#ts ′′) n by auto
with is-path-split [of - [n ′]] have is-path n ′ [n ′] t ′ by auto
with path-last-is-edge[of - - [n ′]] edge-rel-def have t ′ ∈ succs n ′ by auto
from ts-split Cons have t ′ ∈ set ?ts by auto
hence on-max-paths t ′ n by (auto dest : set-takeWhileD)
with 〈t ′ ∈ succs n ′〉 that show ?thesis by auto

qed
with 〈¬ on-max-paths n ′ n〉 ntscd-cond-succ have ntscd n ′ n by auto
with 〈ntscd∗∗ p n ′〉 show ?thesis by auto

qed auto
qed

lemma ntscd-rtranclpI : assumes is-path p ns n
∀m∈set ns ∪ {n}. p 6= m −→ ¬ on-max-paths p m

shows ntscd∗∗ p n
using assms ntscd-rtranclpI ′ by auto

3.4 Lemmas about sink paths

lemma on-ext-pathsE : on-ext-paths x n =⇒ is-path x ns n ′

=⇒ (∃ns ′ n ′′. is-path n ′ ns ′ n ′′ ∧ n ∈ set (ns@ns ′) ∪ {n ′′})
using on-ext-paths-def by auto

lemma sink-node-reachable:
assumes sink-node n is-path n ns m
shows m ∈ scc-of edge-rel n

using assms
proof (induction ns arbitrary : m rule: rev-induct)

case (snoc x xs m)
hence x-rel : x ∈ scc-of edge-rel n (x , m) ∈ edge-rel unfolding path-append-conv

by auto

22

show ?case
proof (rule ccontr)

assume m /∈ scc-of edge-rel n
with scc-of-unique have scc-change: scc-of edge-rel m 6= scc-of edge-rel n by

auto
from x-rel have (scc-of edge-rel x , scc-of edge-rel m)

∈ (λ(n1 , n2). (scc-of edge-rel n1 , scc-of edge-rel n2)) ‘ edge-rel by auto
with x-rel scc-change cond-edges-def

have (scc-of edge-rel n, scc-of edge-rel m) ∈ cond-edges by (auto dest !: scc-of-unique)
with assms sink-node-def show False by auto

qed
qed simp

lemma sink-node-path: assumes sink-node n
is-path n ns y

shows ∀m∈set (ns@[y]). m ∈ scc-of edge-rel n
proof

fix m
assume in-set : m ∈ set (ns@[y])
show m ∈ scc-of edge-rel n
proof (cases m = y)

case True
with assms sink-node-reachable show ?thesis by blast

next
case False
with in-set have m ∈ set ns by auto
with path-split-elem assms sink-node-reachable show ?thesis by blast

qed
qed

lemma cond-nodes-edges: cond-edges ⊆ cond-nodes × cond-nodes
unfolding cond-edges-def cond-nodes-def edge-rel-def succs-def by auto

lemma cond-edge-impl-path:
assumes (a, b) ∈ cond-edges
assumes (ϕa ∈ a)
assumes (ϕb ∈ b)
shows (ϕa, ϕb) ∈ edge-rel∗

unfolding cond-edges-def
proof −

from assms(1)
obtain x y where x-y-props:

(x , y) ∈ edge-rel
a = scc-of edge-rel x
b = scc-of edge-rel y

unfolding cond-edges-def by auto
hence x ∈ a y ∈ b by auto

with assms(2) x-y-props(2)

23

have (ϕa, x) ∈ edge-rel∗ by (meson is-scc-connected scc-of-is-scc)
moreover with assms(3) x-y-props(3) 〈y ∈ b〉

have (y , ϕb) ∈ edge-rel∗ by (meson is-scc-connected scc-of-is-scc)
ultimately
show (ϕa, ϕb) ∈ edge-rel∗ using x-y-props(1)
by (meson rtrancl .rtrancl-into-rtrancl rtrancl-trans)

qed

lemma path-in-cond-impl-path:
assumes (a, b) ∈ cond-edges+

assumes (ϕa ∈ a)
assumes (ϕb ∈ b)
shows (ϕa, ϕb) ∈ edge-rel∗

using assms
proof (induction arbitrary : ϕb rule:trancl-induct)

case step
fix y z ϕb

assume (y , z) ∈ cond-edges

hence is-scc edge-rel y unfolding cond-edges-def by auto
hence ∃ϕy. ϕy ∈ y using scc-non-empty ′ by auto
then obtain ϕy where ϕy-in-y : ϕy ∈ y by auto

assume ϕb-elem: ϕb ∈ z
assume

∧
ϕb. ϕa ∈ a =⇒ ϕb ∈ y =⇒ (ϕa, ϕb) ∈ edge-rel∗

with assms(2) ϕy-in-y
have ϕa-to-ϕy: (ϕa, ϕy) ∈ edge-rel∗ using cond-edge-impl-path by auto

from ϕb-elem ϕy-in-y 〈(y , z) ∈ cond-edges〉

have (ϕy, ϕb) ∈ edge-rel∗ using cond-edge-impl-path by auto
with ϕa-to-ϕy

show (ϕa, ϕb) ∈ edge-rel∗ by auto
next

case (base ϕb y)
thus ?case

using assms(2) cond-edge-impl-path by blast
qed

lemma cond-edges-acyclic: acyclic cond-edges
proof (rule acyclicI , rule allI , rule ccontr , clarify)

fix x

Assume there is a cycle in the condensation graph.

assume cyclic: (x , x) ∈ cond-edges+

have nonrefl : (x , x) /∈ cond-edges unfolding cond-edges-def by auto

from this cyclic
obtain b where b-on-path: (x , b) ∈ cond-edges (b, x) ∈ cond-edges+

by (meson converse-tranclE)

24

hence x ∈ cond-nodes b ∈ cond-nodes using cond-nodes-edges by auto
hence nodes-are-scc: is-scc edge-rel x is-scc edge-rel b

using scc-of-is-scc unfolding cond-nodes-def by auto

have ∃ϕx. ϕx ∈ x ∃ϕb. ϕb ∈ b using nodes-are-scc scc-non-empty ′ ex-in-conv
by auto

then obtain ϕx ϕb where ϕxb-elem: ϕx ∈ x ϕb ∈ b by metis
with nodes-are-scc(1) b-on-path path-in-cond-impl-path cond-edge-impl-path ϕxb-elem(2)
have ϕb ∈ x
by − (rule is-scc-closed)

with nodes-are-scc ϕxb-elem
have x = b using is-scc-unique[of edge-rel] by simp
hence (x , x) ∈ cond-edges using b-on-path by simp
with nonrefl
show False by simp

qed

lemma finite-CFG-impl-finite-condensation: assumes finite (Collect valid-node)
shows finite cond-edges

proof−
from edge-rel-def succs-valid have edge-rel ⊆ Collect valid-node × Collect valid-node

by auto
with assms finite-subset have finite edge-rel by auto
with finite-Diff finite-imageI cond-edges-def show ?thesis by auto

qed

For each node, we can find a sink that is reachable from it.

lemma leafE :
assumes valid-node n and finite cond-edges
shows ∃ sink . (scc-of edge-rel n, sink) ∈ cond-edges∗ ∧ ¬(∃ out . (sink , out) ∈

cond-edges)
proof −

define reachable-cond where [simp]:
reachable-cond ≡ {(m2 , m1). (scc-of edge-rel n, m1) ∈ cond-edges∗ ∧ (m1 ,

m2) ∈ cond-edges+}
show ?thesis
proof (rule wfE-min[of reachable-cond - fst ‘ reachable-cond ∪ {scc-of edge-rel

n}])
have subset : reachable-cond ⊆ converse (cond-edges+) by auto
hence finite reachable-cond using assms by (simp add : finite-subset)
thus wf (reachable-cond)

by (meson assms acyclic-converse cond-edges-acyclic cyclic-subset
finite-acyclic-wf subset wf-acyclic wf-trancl)

next
from assms(1)
show scc-of edge-rel n ∈ fst ‘ reachable-cond ∪ {scc-of edge-rel n} by auto

next

25

fix sink
assume sink1 : sink ∈ fst ‘ reachable-cond ∪ {scc-of edge-rel n}
assume sink2 : scc /∈ fst ‘ reachable-cond ∪ {scc-of edge-rel n}

if (scc, sink) ∈ reachable-cond for scc
have left : (scc-of edge-rel n, sink) ∈ cond-edges∗ using sink1 by auto
{

fix out
have (sink , out) /∈ cond-edges
proof (rule ccontr , simp)

assume (sink , out) ∈ cond-edges
with left
have (out , sink) ∈ reachable-cond

by auto
with sink2
show False by auto

qed
}
hence right : ¬(∃ out . (sink , out) ∈ cond-edges) by auto
with left show ?thesis by −(rule exI , rule conjI)

qed
qed

lemma path-sink-path-append :
assumes is-path n ns n ′ and sink-path n ′ ns ′

shows sink-path n (lappend (llist-of ns) ns ′)
using assms sink-path-def max-path-append by auto

lemma sink-path-exists: assumes valid-node n and finite (Collect valid-node)
obtains ns where sink-path n ns

proof −
from assms finite-CFG-impl-finite-condensation obtain sink

where sink : (scc-of edge-rel n, sink) ∈ cond-edges∗ ¬(∃ out . (sink , out) ∈
cond-edges)

by (auto dest : leafE)
with assms(1) have sink-scc: sink ∈ cond-nodes unfolding cond-nodes-def

cond-edges-def
proof (cases sink = scc-of edge-rel n)

case False
with assms(1) sink(1)
have (scc-of edge-rel n, sink) ∈ cond-edges+

unfolding cond-edges-def by (metis rtranclD)
from this edge-impl-valid-target cond-edges-def
show sink ∈ {scc-of edge-rel n |n. valid-node n} by cases auto

qed auto

with node-in-scc-of-node obtain n ′where n ′: n ′∈ sink unfolding cond-nodes-def
by fastforce

have n: n ∈ scc-of edge-rel n by (rule node-in-scc-of-node)

26

obtain ns where ns: is-path n ns n ′

proof (−, cases (scc-of edge-rel n) = sink)
case True
thus ?thesis

using scc-path that n ′ assms(1) by metis
next

case False
thus ?thesis using n n ′ edge-rel-rtrancl-path path-in-cond-impl-path sink(1)

assms(1) that
by (metis rtrancl-eq-or-trancl)

qed

from ns n ′ sink-scc
have scc: scc-of edge-rel n ′= sink using scc-of-unique unfolding cond-nodes-def

by fast
with sink ns have sink-node: sink-node n ′ unfolding sink-path-def sink-node-def

by fast
show ?thesis
proof (cases succs n ′ = {})

case True
with max-path-end [OF ns] sink-node sink-path-def that show ?thesis by fastforce
next

case False
from scc-path is-path-valid-node scc ns have sink ⊆ Collect valid-node by blast
with assms finite-subset scc have finite sink sink ⊆ scc-of edge-rel n ′ by auto
then obtain ns2 where ns2-gen: is-path n ′ ns2 n ′ ∀m ∈ sink − {n ′}. m ∈

set ns2
proof (induction arbitrary : thesis rule: finite-subset-induct)

case empty
with ns is-path-valid-node path0 show ?case by fast

next
case (insert m F)
with scc-path is-path-valid-node ns obtain ns1 where path1 : is-path n ′ ns1

m by blast
with insert scc-of-unique have n ′ ∈ scc-of edge-rel m by fastforce
with scc-path is-path-valid-node path1 obtain ns2 where path2 : is-path m

ns2 n ′ by blast
from insert obtain ns3 where path3 : is-path n ′ ns3 n ′ ∀m∈F−{n ′}. m ∈

set ns3 by auto
with path1 path2 path-append have cycle-path: is-path n ′ (ns1 @ns2 @ns3) n ′

by auto
{

assume m 6= n ′

with path2 is-path-Cons have m ∈ set ns2 by (cases ns2) auto
}
with path3 insert cycle-path show ?case by fastforce

qed
from False obtain n2 where n2-gen: n2 ∈ succs n ′ by auto
with succs-path sink-node-reachable sink-node scc-of-unique

27

have n ′ ∈ scc-of edge-rel n2 by fastforce
with scc-path n2-gen succs-valid obtain ns3 where is-path n2 ns3 n ′ by blast
with ns2-gen succs-path-extend path-append n2-gen
have full-path: is-path n ′ (n ′#ns3 @ns2) n ′ ∀m ∈ sink . m ∈ set (n ′#ns3 @ns2)

by auto
with cycle-max-path-neq-nil have max-path: max-path n ′ (cycle (n ′#ns3 @ns2))

by auto
from cycle.code[of n ′#-] have cycle-n ′: n ′ ∈ lset (cycle (n ′#ns3 @ns2)) by

auto
{

fix n ′′

assume n ′′ ∈ scc-of edge-rel n ′

with scc full-path
have filter (λx . x = n ′′) (n ′#ns3 @ns2) 6= [] by (auto simp add : filter-empty-conv)
with lfilter-cycle cycle-infinite
have ¬ lfinite (lfilter (λx . x = n ′′) (cycle (n ′#ns3 @ns2))) by metis

}
with max-path sink-node ns cycle-n ′ sink-path-def path-sink-path-append that
show ?thesis by blast

qed
qed

Equivalence of on-ext-paths and on-sink-paths. This allows us to use the eas-
ier to handle on-ext-paths in proofs and then convert them to on-sink-paths.

lemma on-sink-ext-paths-equiv : assumes finite (Collect valid-node)
shows on-ext-paths x n ←→ on-sink-paths x n

proof
assume ext-paths: on-ext-paths x n
{

fix ns m
assume assm: sink-path x ns

with sink-path-def obtain n ′ where n ′-gen: max-path x ns n ′ ∈ lset ns
sink-node n ′

succs n ′ 6= {} −→ (∀n ′′ ∈ scc-of edge-rel n ′. ¬ lfinite (lfilter (λx . x = n ′′)
ns)) by auto

with max-path-split-elem obtain ns1 ns2
where ns-split : ns = lappend (llist-of ns1) (LCons n ′ ns2) is-path x ns1 n ′

by metis
have n ∈ lset ns
proof (cases n ∈ scc-of edge-rel n ′)

case True
show ?thesis
proof (cases succs n ′ = {})

case True
with 〈n ∈ scc-of edge-rel n ′〉 scc-path ns-split is-path-valid-node
obtain ns ′ where is-path n ′ ns ′ n by blast
with is-path-succs-empty True n ′-gen show ?thesis by auto

next
case False

28

with n ′-gen 〈n ∈ scc-of edge-rel n ′〉 have (lfilter (λx . x = n) ns) 6= LNil
by auto

with lfilter-eq-LNil show ?thesis by auto
qed

next
case False
with ext-paths on-ext-paths-def ns-split obtain ns ′ n ′′

where is-path n ′ ns ′ n ′′ n ∈ set (ns1 @ns ′@[n ′′]) by blast
with sink-node-path n ′-gen False ns-split show ?thesis by auto

qed
}
with on-sink-paths-def show on-sink-paths x n by auto

next
assume sink-paths: on-sink-paths x n
show on-ext-paths x n unfolding on-ext-paths-def
proof (clarify del : conjE)

fix ns n ′

assume path1 : is-path x ns n ′

with sink-path-exists assms finite-CFG-impl-finite-condensation is-path-valid-node[OF
this]

obtain ns1 where sink-ext : sink-path n ′ ns1 by auto
with path-sink-path-append [OF path1] have sink-path x (lappend (llist-of ns)

ns1) by auto
with sink-paths on-sink-paths-def have n-elem: n ∈ lset (lappend (llist-of ns)

ns1) by auto
show ∃ns ′ n ′′. is-path n ′ ns ′ n ′′ ∧ n ∈ set (ns @ ns ′ @ [n ′′])
proof (cases n ∈ set ns)

case True
with is-path-valid-node path1 path0 show ?thesis by fastforce

next
case False
with n-elem have n ∈ lset ns1 by auto
with sink-ext sink-path-def max-path-split lset-split
obtain ns2 where n-ext : is-path n ′ ns2 n by metis
then show ?thesis by auto

qed
qed

qed

3.5 Proof of Theorem 2.1, vSINK part

First, we prove multiple lemmas that help us prove Theorem 2.1

lemma on-ext-paths-ex : on-ext-paths x n =⇒ valid-node x =⇒ ∃ns. is-path x ns n
using path0 on-ext-pathsE path-split-elem2 by (metis append-Nil)

Proof of the Reflexivity of on-sink-paths (and therefore vSINK). Part of
Observation 5.1.

theorem on-sink-paths-refl : on-sink-paths x x

29

proof−
{

fix ns
assume sink-path x ns
with sink-path-def max-path-LCons obtain ns ′ where ns = LCons x ns ′ by

blast
then have x ∈ lset ns by auto

}
with on-sink-paths-def show ?thesis by auto

qed

lemma on-ext-paths-trans: assumes on-ext-paths x y
on-ext-paths y z

shows on-ext-paths x z
unfolding on-ext-paths-def
proof (clarify del : conjE)

fix ns n ′

assume path: is-path x ns n ′

with assms on-ext-paths-def obtain ns1 n1 ′

where ext1 : is-path n ′ ns1 n1 ′ y ∈ set (ns@ns1 @[n1 ′]) by blast
show ∃ns ′ n ′′. is-path n ′ ns ′ n ′′ ∧ z ∈ set (ns @ ns ′ @ [n ′′])
proof (cases y = n1 ′)

case True
with on-ext-paths-ex [OF assms(2)] ext1 is-path-valid-node obtain ns2
where is-path y ns2 z by auto

with ext1 True path-append have is-path n ′ (ns1 @ns2) z z ∈ set (ns@ns1 @ns2 @[z])
by auto

thus ?thesis by auto
next

case False
with ext1 have y ∈ set (ns@ns1) by auto
with path-split-elem path-append [OF path ext1 (1)] obtain ys1 ys2
where y-split : ns@ns1 = ys1 @y#ys2 is-path y (y#ys2) n1 ′ by blast
from on-ext-pathsE [OF assms(2) this(2)] obtain ns2 n2 ′

where is-path n1 ′ ns2 n2 ′ z ∈ set ((y#ys2)@ns2 @[n2 ′]) by auto
with ext1 path-append y-split
have path2 : is-path n ′ (ns1 @ns2) n2 ′ z ∈ set ((ys1 @y#ys2)@ns2 @[n2 ′]) by

auto
from this[folded y-split(1)] have z ∈ set (ns@(ns1 @ns2)@[n2 ′]) by auto
with path2 show ?thesis by blast

qed
qed

Proof of the Transitivity of on-sink-paths (and therefore vSINK). Also will
be part of Observation 5.1.

theorem on-sink-paths-trans: assumes finite (Collect valid-node)
on-sink-paths x y
on-sink-paths y z

shows on-sink-paths x z

30

using assms on-sink-ext-paths-equiv on-ext-paths-trans by blast

lemma Di-ex-path: Di n x =⇒ ∃ns. is-path x ns n
by (cases rule: Di .cases) (auto intro: path0)

lemma Di-imp-ext-paths: assumes Di m n
shows on-ext-paths n m

unfolding on-ext-paths-def
proof (clarify del : conjE)

fix ns n ′

assume is-path: is-path n ns n ′

from this assms show ∃ns ′ n ′′. is-path n ′ ns ′ n ′′ ∧ m ∈ set (ns @ ns ′ @ [n ′′])
proof (induction ns arbitrary : n)

case (Nil n)
with Di-ex-path[of m n ′] path0 show ?case by auto

next
case (Cons a ns n)
with is-path-Cons obtain x where x-gen: n = a x ∈ succs n is-path x ns n ′

by blast
from Cons(3) show ?case
proof cases

case Id
with x-gen path0 [of edge-rel n ′] is-path-valid-node[of x] show ?thesis by

fastforce
next

case Succ
with x-gen Cons(1)[of x] show ?thesis by auto

qed
qed

qed

lemma ext-paths-imp-Di : on-ext-paths x n =⇒ valid-node x =⇒ Di n x
proof (coinduction arbitrary : x rule: Di .coinduct)

case (Di x)
show ?case
proof (cases n = x)

case False
from Di on-ext-paths-ex have path-ex : ∃ns. is-path x ns n by auto
have

∧
y . y ∈ succs x =⇒ on-ext-paths y n unfolding on-ext-paths-def

proof (clarify del : conjE)
fix y ns n ′

assume y ∈ succs x is-path y ns n ′

with succs-path-extend have is-path x (x#ns) n ′ by auto
from Di on-ext-pathsE [OF Di(1) this] False
show ∃ns ′ n ′′. is-path n ′ ns ′ n ′′ ∧ n ∈ set (ns @ ns ′ @ [n ′′]) by auto

qed
with succs-def path-ex Di show ?thesis by auto

qed (simp add : Di)
qed

31

lemma Di-ext-paths: assumes valid-node x
shows Di n x ←→ on-ext-paths x n

using Di-imp-ext-paths ext-paths-imp-Di assms by auto

Proof of the vSINK part of Theorem 2.1.

theorem Di-sink-paths: assumes valid-node x
finite (Collect valid-node)

shows Di n x ←→ on-sink-paths x n
using Di-ext-paths on-sink-ext-paths-equiv assms by auto

Noted in Section 2.2 directly after Definition 2.1.

theorem on-max-paths-implies-on-sink-paths: assumes on-max-paths n m
shows on-sink-paths n m

using on-max-paths-def on-sink-paths-def sink-path-def assms by auto

Definition 2.3.

definition dod :: ′node ⇒ ′node ⇒ ′node ⇒ bool
where dod n m1 m2 == m1 6= m2 ∧ n 6= m1 ∧ n 6= m2 ∧ on-max-paths n m1
∧ on-max-paths n m2

∧ (∃ x1∈succs n. on-max-paths-prev x1 m1 m2)
∧ (∃ x2∈succs n. on-max-paths-prev x2 m2 m1)

4 Timing Sensitive Control Dependence

4.1 Basic Properties of Timing Sensitive Control Depen-
dence

Part of Definition 3.1: at-pos k ns n = m ∈k ns

definition at-pos :: nat ⇒ ′node llist ⇒ ′node ⇒ bool
where at-pos k ns n == llength ns > k ∧ lnth ns k = n

Part of Definition 3.1: at-pos-first k ns n = m ∈kF IRST ns

definition at-pos-first :: nat ⇒ ′node llist ⇒ ′node ⇒ bool
where at-pos-first k ns n == llength ns > k ∧ lnth ns k = n ∧ (∀ k ′<k . lnth ns

k ′ 6= n)

Part of Definition 3.2 (vk
T IME [F IRST])

definition on-max-paths-pos-k-first :: ′node ⇒ nat ⇒ ′node ⇒ bool
where on-max-paths-pos-k-first n k m == ∀ns. max-path n ns −→ at-pos-first k

ns m

Part of Definition 3.2 (vT IME [F IRST])

definition on-max-paths-pos-first :: ′node ⇒ ′node ⇒ bool
where on-max-paths-pos-first n m == ∃ k . on-max-paths-pos-k-first n k m

lemma at-pos-succ: at-pos (k+1) (LCons n ns) m ←→ at-pos k ns m

32

using at-pos-def Suc-ile-eq by auto

lemma not-at-pos-first-to-at-pos: assumes ¬ at-pos-first k ns m
shows ¬ at-pos k ns m ∨ (∃ k ′<k . at-pos k ′ ns m)

using assms at-pos-first-def at-pos-def
proof (cases enat k < llength ns ∧ lnth ns k = m)

case True
with assms at-pos-first-def obtain k ′ where k ′-gen: lnth ns k ′ = m k ′ < k by

auto
with True enat-ord-simps less-trans have enat k ′ < llength ns by metis
with k ′-gen at-pos-def show ?thesis by auto

next
case False
with assms at-pos-first-def at-pos-def show ?thesis by auto

qed

Lemma 3.1.

theorem on-max-paths-pos-k-first-k-unique: assumes valid-node n
on-max-paths-pos-k-first n k1 m
on-max-paths-pos-k-first n k2 m

shows k1 = k2
proof (rule ccontr)

assume k1 6= k2
with assms obtain k k ′

where k-gen: on-max-paths-pos-k-first n k m on-max-paths-pos-k-first n k ′ m k
< k ′

by (cases k1 < k2) auto
from assms max-path-ext obtain ns where max-path n ns by auto
with k-gen on-max-paths-pos-k-first-def at-pos-first-def show False by auto

qed

lemma on-max-paths-pos-k-first-m-unique: assumes valid-node n
on-max-paths-pos-k-first n k m1
on-max-paths-pos-k-first n k m2

shows m1 = m2
proof−

from assms max-path-ext obtain ns where max-path n ns by auto
with assms on-max-paths-pos-k-first-def at-pos-first-def show ?thesis by auto

qed

Definition 3.3.

definition tscd :: ′node ⇒ ′node ⇒ bool
where tscd n m == ∃ k . (∃ x1∈succs n. on-max-paths-pos-k-first x1 k m)

∧ (∃ x2∈succs n. ¬ on-max-paths-pos-k-first x2 k m)

Rule System from Theorem 3.1.

inductive Tfirst :: ′node ⇒ nat ⇒ ′node ⇒ bool
where Tfirst n 0 n

33

| ∀ x∈succs n. Tfirst x k m =⇒ m 6= n =⇒ is-path n ns m =⇒ ns 6= [] =⇒
Tfirst n (k+1) m

lemma on-max-paths-pos-k-first-refl : on-max-paths-pos-k-first n 0 n
proof−
{

fix ns
assume max-path n ns
with max-path-LCons obtain ns ′ where ns = LCons n ns ′ by auto
with at-pos-first-def zero-enat-def have at-pos-first 0 ns n by auto

}
with on-max-paths-pos-k-first-def show ?thesis by auto

qed

lemma on-max-path-pos-first-0 : valid-node n =⇒ on-max-paths-pos-k-first n 0 m
=⇒ n = m

using on-max-paths-pos-k-first-m-unique on-max-paths-pos-k-first-refl by metis

lemma on-max-paths-pos-first-refl : on-max-paths-pos-first n n
using on-max-paths-pos-first-def on-max-paths-pos-k-first-refl by metis

lemma on-max-paths-pos-k-first-0 : valid-node n =⇒ on-max-paths-pos-k-first n 0
m =⇒ n = m

using on-max-paths-pos-k-first-m-unique on-max-paths-pos-k-first-refl by metis

lemma at-pos-first-step: assumes n 6= m
at-pos-first k ns m

shows at-pos-first (k+1) (LCons n ns) m
proof−
{

fix k ′

assume k ′ < k+1
with assms at-pos-first-def have lnth (LCons n ns) k ′ 6= m by (cases k ′) auto

}
with assms at-pos-first-def Suc-ile-eq show at-pos-first (k+1) (LCons n ns) m

by auto
qed

lemma at-pos-first-succ-Suc: assumes at-pos-first (k+1) (LCons n ns) m
shows at-pos-first k ns m

using assms at-pos-first-def Suc-ile-eq by auto

lemma at-pos-first-succ-neq : assumes n 6= m
at-pos-first k (LCons n ns) m

shows k > 0 at-pos-first (k−1) ns m
proof−

from assms at-pos-first-def show k > 0 by force
with at-pos-first-succ-Suc assms show at-pos-first (k−1) ns m by (cases k) auto

qed

34

lemma on-max-paths-pos-k-first-end-node: assumes valid-node n
on-max-paths-pos-k-first n k m
succs n = {}

shows k = 0 n = m
proof−

from assms max-path.intros have max-path n (llist-of [n]) by auto
with assms on-max-paths-pos-k-first-def have at-pos-first k (llist-of [n]) m by

auto
with at-pos-first-def enat-0-iff show k = 0 n = m by auto

qed

lemma Tfirst-path: valid-node n =⇒ Tfirst n k m =⇒ ∃ns. is-path n ns m
by (cases rule: Tfirst .cases) (auto intro: exI [of - []])

Proof of Theorem 3.1.

theorem on-max-paths-pos-first-Tfirst-equiv : assumes valid-node n
shows Tfirst n k m ←→ on-max-paths-pos-k-first

n k m
proof

assume Tfirst n k m
then show on-max-paths-pos-k-first n k m
proof (induction)

case (1 n)
with on-max-paths-pos-k-first-refl show ?case by auto

next
case (2 n k m ns)
with is-path-Cons[of n] have has-succs: succs n 6= {} by (cases ns) auto
{

fix ns
assume max-path n ns
with 2 max-path-step has-succs obtain x ns ′

where ns = LCons n ns ′ max-path x ns ′ x ∈ succs n by metis
with 2 on-max-paths-pos-k-first-def at-pos-first-step have at-pos-first (k+1)

ns m by auto
}
with on-max-paths-pos-k-first-def show ?case by auto

qed
next

assume on-max-paths-pos-k-first n k m
with assms show Tfirst n k m
proof (induction k arbitrary : n)

case (0 n)
with on-max-path-pos-first-0 Tfirst .intros show ?case by auto

next
case (Suc k n)
with max-path-ext have max-path n (ext-max-path n) by auto
with max-path-LCons obtain ns where max-path: max-path n (LCons n ns)

by metis

35

with Suc on-max-paths-pos-k-first-def at-pos-first-def
have llength (LCons n ns) > Suc k ∀ k ′<k+1 . lnth (LCons n ns) k ′ 6= m by

auto
with max-path enat-0-iff obtain x where x-gen: x ∈ succs n by cases auto
from 〈∀ k ′<k+1 . lnth (LCons n ns) k ′ 6= m〉 have n 6= m by auto
{

fix x1
assume succ: x1 ∈ succs n
{

fix ns
assume max-path x1 ns
with succ max-path.intros have max-path n (LCons n ns) by auto
with at-pos-first-succ-Suc on-max-paths-pos-k-first-def Suc(3)
have at-pos-first k ns m by fastforce

}
with Suc succ succs-valid on-max-paths-pos-k-first-def have Tfirst x1 k m by

auto
}
note succs-Tfirst = this
with x-gen succs-valid [of x n] Tfirst-path succs-path-extend obtain ns

where is-path n (n#ns) m by metis
with succs-Tfirst Tfirst .intros 〈n 6= m〉 show ?case by auto

qed
qed

lemma lset-at-pos-first : assumes m ∈ lset ns
obtains k where at-pos-first k ns m

proof−
from assms lset-split-first obtain ns1 ns2

where ns = lappend (llist-of ns1) (LCons m ns2) m /∈ set ns1 by metis
then have at-pos-first (length ns1) ns m
proof (induction ns1 arbitrary : ns)

case Nil
with at-pos-first-def enat-0 show ?case by auto

next
case (Cons n ns1)
with at-pos-first-step show ?case by auto

qed
with that show ?thesis by auto

qed

lemma on-max-paths-prev-at-pos-first : assumes on-max-paths-prev n m1 m2
max-path n ns
at-pos-first k1 ns m1
at-pos-first k2 ns m2
m1 6= m2

shows k1 < k2
proof−

from assms on-max-paths-prev-def obtain ns1 ns2

36

where ns = lappend (llist-of ns1) (LCons m1 ns2) m2 /∈ set ns1 by auto
with assms(2−5) show ?thesis
proof (induction ns1 arbitrary : n k1 k2 ns)

case Nil
with at-pos-first-def show ?case by fastforce

next
case (Cons n ′ ns1)
then show ?case
proof (cases n ′ = m1)

case True
with Cons at-pos-first-def show ?thesis by (cases k2 = 0) auto

next
case False
let ?ns ′ = lappend (llist-of ns1) (LCons m1 ns2)
have ?ns ′ 6= LNil by (cases ns1) auto
with Cons(2 ,6) max-path-step-LCons[of n n ′] obtain x

where x-gen: x ∈ succs n max-path x ?ns ′ n = n ′ by auto
with Cons at-pos-first-succ-neq False
have at-post-first-m1 : at-pos-first (k1−1) ?ns ′ m1 by auto
from Cons have n ′ 6= m2 by auto
with Cons at-pos-first-succ-neq x-gen have at-pos-first (k2−1) ?ns ′ m2 by

auto
with at-post-first-m1 Cons x-gen have k1 − 1 < k2 − 1 by auto
then show ?thesis by auto

qed
qed

qed

lemma on-max-paths-pos-k-first-step: assumes on-max-paths-pos-k-first n k m
n 6= m
x ∈ succs n

shows on-max-paths-pos-k-first x (k−1) m
proof−

from on-max-path-pos-first-0 assms succs-valid have k = (k−1)+1 by (cases
k) auto
{

fix ns
assume max-path x ns
with max-path.intros on-max-paths-pos-k-first-def at-pos-first-succ-neq assms
have at-pos-first (k−1) ns m by metis

}
with on-max-paths-pos-k-first-def show ?thesis by auto

qed

lemma on-max-paths-pos-first-chain: assumes on-max-paths-pos-k-first x k1 y
on-max-paths-pos-k-first y k2 z
max-path x ns
at-pos-first k ns z

shows k < k1 ∨ k = k1 + k2

37

using assms
proof (induction k1 arbitrary : x ns k)

case (0 x ns k)
with on-max-paths-pos-k-first-0 max-path-valid-node have valid-node x x = y by

auto
with 0 on-max-paths-pos-k-first-def have at-pos-first k2 ns z by auto
with at-pos-first-def 0 show ?case by (cases rule: linorder-cases) auto

next
case (Suc k1 x ns k)
with max-path-LCons obtain ns ′ where ns-split : ns = LCons x ns ′ by auto
from on-max-paths-pos-k-first-refl have on-max-paths-pos-k-first x 0 x by auto
with on-max-paths-pos-k-first-k-unique Suc max-path-valid-node have x 6= y by

blast
show ?case
proof (cases x = z)

case True
with ns-split Suc at-pos-first-def show ?thesis by auto

next
case False
with Suc ns-split at-pos-first-def obtain k ′ where k = k ′ + 1 by (cases k)

auto
with at-pos-first-succ-Suc Suc ns-split have pos-k ′: at-pos-first k ′ ns ′ z by blast
with at-pos-first-def have ns ′ 6= LNil by auto
from Suc(4) ns-split Suc this obtain x2 where max-path x2 ns ′ x2 ∈ succs x

by cases auto
with pos-k ′ Suc on-max-paths-pos-k-first-step[OF Suc(2)] 〈x 6= y〉 〈k = k ′ + 1 〉

show ?thesis by auto
qed

qed

lemma on-max-paths-pos-first-step: assumes on-max-paths-pos-first n m
n 6= m
x ∈ succs n

shows on-max-paths-pos-first x m
using on-max-paths-pos-first-def on-max-paths-pos-k-first-step assms by metis

lemma on-max-paths-pos-k-first-Suc: assumes on-max-paths-pos-k-first n (k+1)
m

x ∈ succs n
shows on-max-paths-pos-k-first x k m

proof−
from on-max-paths-pos-k-first-refl assms succs-valid on-max-paths-pos-k-first-k-unique
have n 6= m by fastforce
with assms on-max-paths-pos-k-first-step show ?thesis by fastforce

qed

lemma on-max-paths-pos-k-implies-on-max-paths: assumes on-max-paths-pos-k-first
n k m

shows on-max-paths n m

38

proof−
{

fix ns
assume max-path n ns
with assms on-max-paths-pos-k-first-def have at-pos-first k ns m by auto
with lset-conv-lnth at-pos-first-def have m ∈ lset ns by fastforce

}
with on-max-paths-def show ?thesis by auto

qed

lemma on-max-paths-pos-k-first-diff : assumes max-path n ns
at-pos-first k1 ns m1
on-max-paths-pos-k-first n k2 m2
k1 ≤ k2

shows on-max-paths-pos-k-first m1 (k2−k1) m2
using assms

proof (induction k1 arbitrary : n ns k2)
case 0
with max-path-LCons obtain ns ′ where ns = LCons n ns ′ by auto
with 0 at-pos-first-def show ?case by auto

next
case (Suc k1)
with max-path-LCons obtain ns ′ where ns-split : ns = LCons n ns ′ by auto
with Suc at-pos-first-def enat-0-iff have ns ′ 6= LNil by auto
with max-path-step-LCons ns-split Suc(2) obtain x

where x-gen: max-path x ns ′ x ∈ succs n by blast
with at-pos-first-succ-Suc Suc(3) ns-split have at-pos: at-pos-first k1 ns ′ m1 by

auto
from x-gen Suc on-max-paths-pos-k-first-Suc have on-max-paths-pos-k-first x

(k2−1) m2 by auto
with at-pos Suc x-gen show ?case by fastforce

qed

lemma tscd-cond-succ-k : assumes ¬ on-max-paths-pos-k-first n (k+1) m
x ∈ succs n
on-max-paths-pos-k-first x k m
n 6= m

shows tscd n m
proof−

from assms on-max-paths-pos-first-Tfirst-equiv succs-valid have Tfirst x k m by
auto

with assms succs-valid Tfirst-path succs-path-extend obtain ns
where path: is-path n (n#ns) m by metis

{
assume ∀ x2∈succs n. on-max-paths-pos-k-first x2 k m
with on-max-paths-pos-first-Tfirst-equiv assms succs-valid
have ∀ x2∈succs n. Tfirst x2 k m by auto
with path Tfirst .intros on-max-paths-pos-first-Tfirst-equiv assms have False by

blast

39

}
with assms tscd-def show ?thesis by auto

qed

lemma tscd-cond-succ: assumes ¬ on-max-paths-pos-first n m
x ∈ succs n
on-max-paths-pos-first x m

shows tscd n m
using assms on-max-paths-pos-first-def on-max-paths-pos-first-refl tscd-cond-succ-k
by metis

4.2 Timing Sensitive Slicing

Definition of the combined slice of a binary and ternary relation. Used in
Theorem 3.2 as ·∪. See Definition 3.4.

inductive-set combined-slice
:: (′node ⇒ ′node ⇒ bool) ⇒ (′node ⇒ ′node ⇒ ′node ⇒ bool) ⇒ (′node set)

⇒ ′node set
for cd :: ′node ⇒ ′node ⇒ bool
and od :: ′node ⇒ ′node ⇒ ′node ⇒ bool
and M :: ′node set

where m ∈ M =⇒ m ∈ combined-slice cd od M
| cd n m =⇒ m ∈ combined-slice cd od M =⇒ n ∈ combined-slice cd od M
| od n m1 m2 =⇒ m1 ∈ combined-slice cd od M =⇒ m2 ∈ combined-slice

cd od M
=⇒ n ∈ combined-slice cd od M

Definition 3.4: The backward slice of a binary relation.

abbreviation backward-slice :: (′node ⇒ ′node ⇒ bool) ⇒ (′node set) ⇒ ′node
set

where backward-slice cd M == combined-slice cd (λn m1 m2 . False) M

lemma combined-slice-cd-rtranclp: cd∗∗ n m =⇒ m ∈ combined-slice cd od M
=⇒ n ∈ combined-slice cd od M

by (induction rule: rtranclp.induct) (auto intro: combined-slice.intros)

This function itself is never used in this theory. It is only defined to use the
resulting induction rule.

function tscd-steps :: ′node ⇒ ′node list ⇒ ′node list
where tscd-steps p (n#ns) =

(if n = p then (n#ns)
else tscd-steps p (dropWhile (λm. on-max-paths-pos-first m n)

(n#ns)))
| tscd-steps p [] = []

proof−
fix Q x
assume (

∧
p n ns. (x :: ′node × ′node list) = (p, n # ns) =⇒ Q) (

∧
p. x = (p,

[]) =⇒ Q)

40

thus Q by (cases x , cases snd x) auto
qed auto
termination
proof (relation measure (length o snd))

fix p n ns
from on-max-paths-pos-first-refl length-dropWhile-le[of λm. on-max-paths-pos-first

m n ns]
show ((p:: ′node, dropWhile (λm. on-max-paths-pos-first m n) (n # ns)), (p, n

ns))
∈ measure (length ◦ snd) by auto

qed auto

lemma tscd-rtranclpI ′: assumes is-path p ns n
∀m∈set (n#rev ns). p 6= m −→ ¬ on-max-paths-pos-first

p m
shows tscd∗∗ p n

using assms
proof (induction p n#rev ns arbitrary : n ns rule: tscd-steps.induct)

case (1 p n ns)
show ?case
proof (cases n = p)

let ?ds = dropWhile (λm. on-max-paths-pos-first m n) (n#rev ns)
let ?ts = takeWhile (λm. on-max-paths-pos-first m n) (n#rev ns)
from on-max-paths-pos-first-refl have ?ts 6= [] by auto
then obtain ts-h ts ′ where ts-split : ?ts = ts-h#ts ′ by (cases ?ts) auto
case False
with 1 have not-max : ¬ on-max-paths-pos-first p n by simp
from 1 (2) path-rev-last last-in-set [of n # rev ns] have p ∈ set (n#rev ns) by

auto
with 1 dropWhile-eq-Nil-conv not-max have ?ds 6= [] by auto
then obtain n ′ ns-r where ?ds = n ′#rev (rev ns-r) by (cases ?ds) auto
then obtain ns ′ where ds-split : ?ds = n ′#rev ns ′ by blast
with takeWhile-dropWhile-id have split : n#rev ns = ?ts@n ′#rev ns ′ by metis
with ts-split have rev ns = ts ′@n ′#rev ns ′ by auto
with rev-rev-ident [of ns] have ns = ns ′@n ′#rev ts ′ by auto
with 1 (2) is-path-split [of - ns ′]
have split-path: is-path p ns ′ n ′ is-path n ′ (n ′#rev ts ′) n by auto
from split have set (n ′#rev ns ′) ⊆ set (n#rev ns) by auto
with 1 have ∀m∈set (n ′ # rev ns ′). p 6= m −→ ¬ on-max-paths-pos-first p m

by auto
with 1 False ds-split split-path have tscd∗∗ p n ′ by auto
from ds-split [unfolded dropWhile-eq-Cons-conv] have ¬ on-max-paths-pos-first

n ′ n by auto
obtain x2 where on-max-paths-pos-first x2 n x2 ∈ succs n ′

proof (cases rev ts ′)
case Nil
with split-path path-last-is-edge[of - - [n ′]] edge-rel-def have n ∈ succs n ′ by

auto
with that on-max-paths-pos-first-refl show ?thesis by auto

41

next
case (Cons t ′ ts ′′)
with split-path have is-path n ′ (n ′#t ′#ts ′′) n by auto
with is-path-split [of - [n ′]] have is-path n ′ [n ′] t ′ by auto
with path-last-is-edge[of - - [n ′]] edge-rel-def have t ′ ∈ succs n ′ by auto
from ts-split Cons have t ′ ∈ set ?ts by auto
hence on-max-paths-pos-first t ′ n by (auto dest : set-takeWhileD)
with 〈t ′ ∈ succs n ′〉 that show ?thesis by auto

qed
with 〈¬ on-max-paths-pos-first n ′ n〉 tscd-cond-succ have tscd n ′ n by auto
with 〈tscd∗∗ p n ′〉 show ?thesis by auto

qed auto
qed

lemma tscd-rtranclpI : assumes is-path p ns n
∀m∈set ns ∪ {n}. p 6= m −→ ¬ on-max-paths-pos-first p m

shows tscd∗∗ p n
using assms tscd-rtranclpI ′ by auto

lemma on-max-paths-pos-k-first-less-eq : assumes on-max-paths-pos-k-first n k1
m1

on-max-paths-pos-k-first n k2 m2
k1 ≤ k2
max-path n (lappend ns1 ns2)
m2 ∈ lset ns1

shows m1 ∈ lset ns1
proof−
from assms in-lset-conv-lnth obtain k where k-gen: m2 = lnth ns1 k k < llength

ns1 by metis
with lnth-lappend1 have m2 = lnth (lappend ns1 ns2) k by metis
with assms on-max-paths-pos-k-first-def at-pos-first-def not-less have k ≥ k2 by

metis
with assms k-gen enat-ord-simps less-le-trans not-less have k1 < llength ns1 by

metis
with assms on-max-paths-pos-k-first-def at-pos-first-def lnth-lappend1 in-lset-conv-lnth
show ?thesis by metis

qed

lemma on-max-paths-prev-ccontr : assumes on-max-paths-prev x n m
n 6= m
is-path x ms m
n /∈ set ms

shows False
proof−

from assms is-path-valid-node max-path-ext have max-path m (ext-max-path m)
by auto

with max-path-LCons obtain ems ′ where ext-eq : ext-max-path m = LCons m
ems ′ by auto

let ?ms ′ = lappend (llist-of ms) (LCons m ems ′)

42

from 〈max-path m (ext-max-path m)〉 ext-eq assms max-path-append have max-path
x ?ms ′ by auto

with assms on-max-paths-prev-def obtain ms1 ms2 where m /∈ set ms1
?ms ′ = lappend (llist-of ms1) (LCons n ms2) by auto

with assms lappend-split-eq [OF this(2)] show ?thesis by auto
qed

lemma on-max-paths-prev-split :
assumes on-max-paths-prev n m1 m2

valid-node n
obtains ns1 ns2 where is-path n ns1 m1 max-path m1 (LCons m1 ns2)

m1 /∈ set ns1 m2 /∈ set ns1
proof−

from max-path-ext assms have max-path n (ext-max-path n) by simp
with assms on-max-paths-prev-def obtain ns1 ′ ns2

where ns-gen: max-path n (lappend (llist-of ns1 ′) (LCons m1 ns2)) m2 /∈ set
ns1 ′ by auto

with max-path-split have split1 : is-path n ns1 ′ m1 max-path m1 (LCons m1
ns2) by auto

with path-first obtain ns1 nsx where is-path n ns1 m1 m1 /∈ set ns1 ns1 ′ =
ns1 @nsx by metis

with ns-gen split1 that show thesis by auto
qed

Proof of Theorem 3.2.

theorem tscd-slice-includes-ntscd-dod :
combined-slice ntscd dod M ⊆ backward-slice tscd M

proof
fix x
assume x ∈ combined-slice ntscd dod M
then show x ∈ backward-slice tscd M
proof induction

case (2 n m)
with ntscd-def obtain x1 x2 where succs: x1 ∈ succs n on-max-paths x1 m

x2 ∈ succs n ¬ on-max-paths x2 m by auto
with on-max-paths-ex-path succs-valid obtain ns ′ where is-path x1 ns ′ m by

blast
with path-first obtain ns where path1 : is-path x1 ns m m /∈ set ns by metis
with succs succs-path-extend have path2 : is-path n (n#ns) m by blast
{

fix m ′

assume m ′-gen: m ′∈set ns ∪ {m} n 6= m ′ on-max-paths-pos-first n m ′

with path-split-elem2 path1 obtain ns1 ns2
where ns-split : is-path x1 ns1 m ′ ns = ns1 @ns2 by metis

with path1 have m /∈ set ns1 by auto
from succs on-max-paths-def obtain ms where ms-gen: max-path x2 ms m

/∈ lset ms by auto
from m ′-gen on-max-paths-pos-first-step succs have on-max-paths-pos-first x2

m ′ by auto

43

with on-max-paths-pos-first-def on-max-paths-pos-k-first-def ms-gen obtain k
where at-pos-first k ms m ′ by auto

with at-pos-first-def lset-conv-lnth have m ′ ∈ lset ms by fastforce
with max-path-split-elem ms-gen obtain ms1 ms2
where ms-split : max-path m ′ms2 ms = lappend (llist-of ms1) ms2 by metis

with ns-split max-path-append have max-path x1 (lappend (llist-of ns1) ms2)
by auto

with on-max-paths-def succs ms-gen ms-split ns-split path1 lset-lappend-lfinite
have False by auto

}
with path2 tscd-rtranclpI have tscd∗∗ n m by fastforce
with combined-slice-cd-rtranclp 2 show ?case by auto

next
case (3 n m1 m2)
with dod-def obtain x1 x2 where succs: x1 ∈ succs n on-max-paths-prev x1

m1 m2
x2 ∈ succs n on-max-paths-prev x2 m2 m1 m1 6= m2 by auto

with succs-valid on-max-paths-prev-split obtain ns11 ns12
where path1 : is-path x1 ns11 m1 max-path m1 (LCons m1 ns12)

m1 /∈ set ns11 m2 /∈ set ns11 by metis
have tscd∗∗ n m1 ∨ tscd∗∗ n m2
proof (cases ∀m1 ′∈set ns11 ∪ {m1}. n 6= m1 ′ −→ ¬ on-max-paths-pos-first

n m1 ′)
case True
from succs succs-path-extend path1 have is-path n (n#ns11) m1 by auto
with True tscd-rtranclpI show ?thesis by auto

next
case False
then obtain m1 ′

where m1 ′-gen: m1 ′∈set ns11 ∪ {m1} n 6= m1 ′ on-max-paths-pos-first n
m1 ′ by auto

from succs succs-valid on-max-paths-prev-split obtain ns21 ns22
where path2 : is-path x2 ns21 m2 max-path m2 (LCons m2 ns22)

m1 /∈ set ns21 m2 /∈ set ns21 by metis
with succs succs-path-extend have path3 : is-path n (n#ns21) m2 by auto
{

fix m2 ′

assume m2 ′-gen: m2 ′∈set ns21 ∪ {m2} n 6= m2 ′ on-max-paths-pos-first n
m2 ′

with m1 ′-gen on-max-paths-pos-first-def obtain k1 k2
where k-gen: on-max-paths-pos-k-first n k1 m1 ′

on-max-paths-pos-k-first n k2 m2 ′ by auto
obtain m ′ where m ′ ∈ set ns11 ∪ {m1} m ′ ∈ set ns21 ∪ {m2}
proof (cases k1 ≤ k2)

case True
from max-path-append [OF path2 (1 ,2)] succs max-path.intros
have max-path n (lappend (llist-of (n#ns21 @[m2])) ns22)

by (auto simp: lappend-llist-of-LCons)
with on-max-paths-pos-k-first-less-eq [OF k-gen - this] True m2 ′-gen m1 ′-gen

44

that
show ?thesis by fastforce

next
case False
from max-path-append [OF path1 (1 ,2)] succs max-path.intros
have max-path n (lappend (llist-of (n#ns11 @[m1])) ns12)

by (auto simp: lappend-llist-of-LCons)
with on-max-paths-pos-k-first-less-eq [OF k-gen(2 ,1) - this] False m2 ′-gen

m1 ′-gen that
show ?thesis by fastforce

qed
with path-split-elem2 path1 path2 m1 ′-gen m2 ′-gen obtain ns1a ns1b ns2a

ns2b
where split : ns11 = ns1a@ns1b is-path x1 ns1a m ′

ns21 = ns2a@ns2b is-path m ′ ns2b m2 by metis
with path-append path2 have is-path x1 (ns1a@ns2b) m2 by metis

with split on-max-paths-prev-ccontr succs path1 path2 have False by fastforce
}
with path3 tscd-rtranclpI show ?thesis by fastforce

qed
with combined-slice-cd-rtranclp 3 show ?case by auto

qed (auto intro: combined-slice.intros)
qed

4.3 Soundness and Minimality of Timing Sensitive Control
Dependence

4.3.1 Definition of (clocked) Traces and Time-Sensitive Non-Interference

Definition of the set of input nodes (nodes with more than one successor).

definition input-nodes :: ′node set
where input-nodes = {n . ∃ x y . x ∈ succs n ∧ y ∈ succs n ∧ x 6= y}

A trace (unclocked) is a (potentially infinite) list of partial edges.

type-synonym ′a trace = (′a × ′a option) llist

An input is a map from nodes to a (potentially infinite) list of nodes. The
k -th element of the list for a node n gives the successor chosen at the k -th
visit of n.

To guarantee that valid maximal traces are produced when using an input i,
we require that for each n, each element of the list i n has to be a successor
of n. Also, if n is not an exit node, the list i n has to be infinite.

definition is-input :: (′node ⇒ ′node llist) ⇒ bool
where is-input i == ∀n. (∀m∈lset (i n). m ∈ succs n) ∧ (succs n 6= {} −→ ¬

lfinite (i n))

Definition of the next node of the trace, which is read from input. If we

45

choose a node m as a successor, this function returns Some m. If the current
node is an exit node, we return None, resulting in a partial edge.

fun read :: (′node ⇒ ′node llist) ⇒ ′node ⇒ ′node option
where read i n = (if succs n = {} then None else Some (lhd (i n)))

Constructs the trace with given start node according to the given input.
Ends in a partial edge if we reach an exit node, otherwise produces an
infinite trace.

primcorec exec :: ′node ⇒ (′node ⇒ ′node llist) ⇒ ′node trace
where exec n i = LCons (n, read i n)

(if succs n = {} then LNil else exec (lhd (i n)) (i(n:=ltl (i
n))))

Definition of Observational equivalence of inputs given an observable node
set. Inputs are equivalent with regards to a given set if the input lists are
equal for each node of the observable set (i.e. if the chosen successors are
the same at observable nodes).

definition input-obs-equiv :: ′node set ⇒ (′node ⇒ ′node llist) ⇒ (′node ⇒ ′node
llist) ⇒ bool

where input-obs-equiv S i1 i2 == ∀n ∈ S . i1 n = i2 n

A clocked trace is a (potentially infinite) list of partial edges annotated with
the time at which it is executed.

type-synonym ′a t-trace = (nat × ′a × ′a option) llist

Definition of the timed observable sub-trace, given an observable node set
and a starting time. We take a given trace, annotate it with timing infor-
mation (starting at the given time), and then filter out every non-observable
node. Helper definition to describe suffixes of timed observable sub-traces.

fun trace-time-obs ′ :: ′node set ⇒ nat ⇒ ′node trace ⇒ ′node t-trace
where trace-time-obs ′ S k ns = lfilter (λp. fst (snd p) ∈ S) (lzip (iterates Suc

k) ns)

Definition 3.7: Definition of the timed observable sub-trace, given an observ-
able node set, starting at time 0.

fun trace-time-obs :: ′node set ⇒ ′node trace ⇒ ′node t-trace
where trace-time-obs S ns = trace-time-obs ′ S 0 ns

Definition 3.7: Definition of Observational equivalence of timed traces given
an observable node set.

definition trace-time-obs-equiv :: ′node set ⇒ ′node trace ⇒ ′node trace ⇒ bool
where trace-time-obs-equiv S ns1 ns2 == trace-time-obs S ns1 = trace-time-obs

S ns2

Definition 3.8: Time-sensitive Noninterference. If it holds, an attacker gains
no information about choices made at non-observable nodes by observing

46

the resulting trace at observable nodes. This is true even if they have a
clock.

definition noninterferent-time :: ′node set ⇒ bool
where noninterferent-time S == ∀ i1 i2 n. input-obs-equiv S i1 i2

−→ valid-node n −→ is-input i1 −→ is-input i2
−→ trace-time-obs-equiv S (exec n i1) (exec n i2)

4.3.2 Soundness of Timing Sensitive Control Dependence

Alternate definition of equality for potentially infinite lists, which is some-
times easier to work with in proofs.

coinductive llist-eq :: ′a llist ⇒ ′a llist ⇒ bool
where llist-eq LNil LNil
| llist-eq xs ys =⇒ llist-eq (LCons x xs) (LCons x ys)

Proof that the alternate definition of equality for potentially infinite lists is
correct.

lemma llist-eq-is-eq : llist-eq xs ys ←→ xs = ys
proof

assume llist-eq xs ys
then show xs = ys by (coinduction arbitrary : xs ys) (auto elim: llist-eq .cases)

next
assume xs = ys
then show llist-eq xs ys
proof (coinduction arbitrary : xs ys)

case (llist-eq xs ys)
then show ?case by (cases xs; cases ys) auto

qed
qed

Next observable node (annotated with a time). Might not be unique if the
program is not non-interferent. Includes the ”non-observation” (no more
observable events) as an explicit observation. Helper definition for the proof
of Theorem 3.3.

inductive next-obs-t :: ′node set ⇒ ′node ⇒ (′node × nat) option ⇒ bool
where is-path n ns m =⇒ length ns = k =⇒ ∀n ′∈set ns. n ′ /∈ S =⇒ m ∈ S

=⇒ next-obs-t S n (Some (m, k))
| max-path n ns =⇒ ∀n ′∈lset ns. n ′ /∈ S =⇒ next-obs-t S n None

lemma next-obs-t-in-S : assumes valid-node n
n ∈ S

shows next-obs-t S n (Some (n, 0))
using assms next-obs-t .intros(1)[of n []] by auto

lemma next-obs-t-prev-Some: assumes next-obs-t S x (Some (m, k))
x ∈ succs n
n /∈ S

47

shows next-obs-t S n (Some (m, k+1))
using assms succs-path-extend by cases (auto intro!: next-obs-t .intros)

Helper definition for the proof of Theorem 3.3. tcc S holds if all nodes have
only one possible next observation.

definition tcc :: ′node set ⇒ bool
where tcc S == ∀n o1 o2 . valid-node n ∧ next-obs-t S n o1 ∧ next-obs-t S n

o2 −→ o1 = o2

lemma is-input-step: assumes is-input i
shows is-input (i(n := ltl (i n))) succs n 6= {} −→ lhd (i n) ∈ succs n

proof−
from assms is-input-def lset-ltl [of i n] show is-input : is-input (i(n := ltl (i n)))

by auto
from assms is-input-def show succs n 6= {} −→ lhd (i n) ∈ succs n by (cases

i n) auto
qed

lemma is-input-max-path: assumes valid-node n
is-input i

shows max-path n (lmap fst (exec n i))
using assms
proof (coinduction arbitrary : n i)

case (max-path n i)
show ?case
proof (cases succs n = {})

case True
with max-path exec.code show ?thesis by auto

next
let ?n ′ = lhd (i n)
let ?i ′ = i(n := ltl (i n))
case False
with exec.code[of n i]
have lmap fst (exec n i) = LCons n (lmap fst (exec ?n ′ ?i ′)) by auto
with max-path is-input-step False exec.code[of n i] succs-valid show ?thesis by

blast
qed

qed

lemma tscd-slice-sound : shows tcc (backward-slice tscd M) (is tcc ?S)
proof−
{

fix n m k
assume next-obs-t ?S n (Some (m, k))
then obtain ns

where is-path n ns m ∀n ′∈set ns. n ′ /∈ ?S length ns = k m ∈ ?S by cases
auto

then have on-max-paths-pos-k-first n k m
proof (induction ns arbitrary : n k)

48

case Nil
with on-max-paths-pos-k-first-refl show ?case by auto

next
case (Cons n ′ ns n k)
with is-path-Cons obtain n ′′

where split : n = n ′ n ′′ ∈ succs n is-path n ′′ ns m by metis
{

assume ¬ on-max-paths-pos-k-first n k m
with Cons tscd-cond-succ-k split have tscd n m by fastforce
with Cons split have False by (auto intro: combined-slice.intros)

}
then show ?case by auto

qed
}
note next-obs-Some = this
{

fix n m k
assume assm1 : next-obs-t ?S n (Some (m, k))
then have m ∈ ?S by cases auto
from assm1 next-obs-Some have pos-k : on-max-paths-pos-k-first n k m by auto
assume next-obs-t ?S n None
then obtain ns where max-path n ns ∀n ′∈lset ns. n ′ /∈ ?S by cases auto
with pos-k on-max-paths-pos-k-first-def at-pos-first-def lset-conv-lnth 〈m ∈ ?S 〉

have False by fastforce
}
note not-Some-None = this
{

fix n m1 k1 m2 k2
assume obs: next-obs-t ?S n (Some (m1 , k1)) next-obs-t ?S n (Some (m2 ,

k2)) k1 < k2
with next-obs-t .cases next-obs-Some
have m1-obs-pos: m1 ∈ ?S on-max-paths-pos-k-first n k1 m1 by blast+
from obs(2) obtain ns
where ns-gen: m2 ∈ ?S ∀n ′∈set ns. n ′ /∈ ?S length ns = k2 is-path n ns m2
by cases auto

with is-path-valid-node max-path-ext obtain ns ′ where max-path m2 ns ′ by
blast

with ns-gen max-path-append have max-path n (lappend (llist-of ns) ns ′) by
auto

with m1-obs-pos on-max-paths-pos-k-first-def at-pos-first-def
have lnth (lappend (llist-of ns) ns ′) k1 = m1 by auto

with m1-obs-pos ns-gen obs have False by (auto simp add : lnth-lappend-llist-of)
}
note not-Some-Some-unequal-k = this
{

fix n obs1 obs2
assume obs: next-obs-t ?S n obs1 next-obs-t ?S n obs2 valid-node n
have obs1 = obs2
proof (cases obs1)

49

case None
with obs not-Some-None show ?thesis by (cases obs2) auto

next
case (Some o1)
then obtain m1 k1 where obs1 : obs1 = Some (m1 , k1) by fastforce
with obs not-Some-None show ?thesis
proof (cases obs2)

case (Some o2)
then obtain m2 k2 where obs2 : obs2 = Some (m2 , k2) by fastforce

with obs1 obs not-Some-Some-unequal-k have k1 = k2 by (cases rule:
linorder-cases) auto

with obs1 obs2 obs on-max-paths-pos-k-first-m-unique
show ?thesis by (auto dest !: next-obs-Some)

qed auto
qed

}
with tcc-def show ?thesis by auto

qed

lemma trace-time-obs-LNil : assumes trace-time-obs ′ S k (exec n i) = LNil
is-input i
valid-node n

shows next-obs-t S n None
proof−
{

fix m
assume m ∈ lset (lmap fst (exec n i))
then obtain obs1 where obs1-gen: obs1 ∈ lset (exec n i) fst obs1 = m by

auto
with in-lset-conv-lnth obtain k1

where lnth (exec n i) k1 = obs1 k1 < llength (exec n i) by metis
with lset-lzip llength-iterates
have (k+k1 , obs1) ∈ lset (lzip (iterates Suc k) (exec n i)) by force
with assms obs1-gen have m /∈ S by (auto simp add : lfilter-eq-LNil)

}
with is-input-max-path assms next-obs-t .intros show ?thesis by metis

qed

lemma trace-time-obs-LCons: assumes trace-time-obs ′ S k (exec n i) = LCons
(k ′, m, m ′) ns ′

is-input i
valid-node n

shows m ∈ S
next-obs-t S n (Some (m, k ′−k))
k ′ ≥ k
m ′ = read i m
succs m = {} −→ ns ′ = LNil
succs m 6= {} −→

(∃ i ′. ns ′ = trace-time-obs ′ S (k ′+1) (exec (lhd (i

50

m)) i ′)
∧ is-input i ′

∧ input-obs-equiv S i ′ (i(m:=ltl (i m)))
∧ lhd (i m) ∈ succs m)

(is - −→ ?cont)
proof−

from assms lfilter-eq-LConsD [of λobs. fst (snd obs) ∈ S lzip (iterates Suc k)
(exec n i)]

obtain ns1 ′ ns2
where split : lzip (iterates Suc k) (exec n i) = lappend ns1 ′ (LCons (k ′, m, m ′)

ns2)
lfinite ns1 ′ ∀m ′∈lset ns1 ′. fst (snd m ′) /∈ S m ∈ S
ns ′ = lfilter (λobs. fst (snd obs) ∈ S) ns2

by fastforce
with lfinite-eq-range-llist-of obtain ns1 where ns1-gen: ns1 ′ = llist-of ns1 by

auto
with split
have lzip (iterates Suc k) (exec n i) = lappend (llist-of ns1) (LCons (k ′, m, m ′)

ns2)
∀m ′∈set ns1 . fst (snd m ′) /∈ S by auto

with assms(2 ,3) split(4 ,5) have next-obs-t S n (Some (m, k ′−k)) ∧ k ′ ≥ k ∧
m ′ = read i m

∧ (succs m = {} −→ ns ′ = LNil) ∧ (succs m 6= {} −→ ?cont)
proof (induction ns1 arbitrary : n i k)

case (Nil n i k)
let ?i ′ = i(m:=ltl (i m))
let ?n ′ = lhd (i n)
from Nil obtain ks ns ′′

where dezip: iterates Suc k = LCons k ′ ks exec n i = LCons (m, m ′) ns ′′

ns2 = lzip ks ns ′′ by (auto simp add : lzip-eq-LCons-conv)
with exec.code[of n i] have exec: n = m m ′ = read i m

ns ′′ = (if succs n = {} then LNil else exec ?n ′ ?i ′) by auto
with next-obs-t-in-S Nil have obs: next-obs-t S n (Some (m, 0)) by auto
from dezip iterates.code[of Suc k] have iterate: k = k ′ ks = iterates Suc (k+1)

by auto
with exec dezip obs Nil show ?case
proof (cases succs m = {})

case False
with iterate Nil exec dezip
have ns ′: ns ′ = trace-time-obs ′ S (k ′+1) (exec (lhd (i m)) ?i ′) by auto
from Nil False is-input-step have input-step: is-input ?i ′ lhd (i m) ∈ succs

m by auto
from input-obs-equiv-def
have input-obs-equiv S ?i ′ (i(m:=ltl (i m))) by auto
with ns ′ input-step exec obs iterate show ?thesis by fastforce

qed auto
next

case (Cons obs ns1 n i k)
let ?kx = fst obs

51

let ?x = fst (snd obs)
let ?x ′ = snd (snd obs)
let ?i ′ = i(n:=ltl (i n))
let ?n ′ = lhd (i n)
from Cons obtain ks ns ′′

where dezip: iterates Suc k = LCons ?kx ks exec n i = LCons (?x , ?x ′) ns ′′

lzip ks ns ′′ = lappend (llist-of ns1) (LCons (k ′, m, m ′) ns2)
by (auto simp add : lzip-eq-LCons-conv)

then have ns ′′ 6= LNil by (cases ns1) auto
with exec.code[of n i] dezip have succs n 6= {} by auto
with exec.code[of n i] have exec n i = LCons (n, read i n) (exec ?n ′ ?i ′) by

auto
from this dezip(2)
have exec: ?x = n ?x ′ = read i n ns ′′ = exec ?n ′ ?i ′ by auto
from Cons is-input-step 〈succs n 6= {}〉 succs-valid
have valid : is-input ?i ′ ?n ′ ∈ succs n valid-node ?n ′ by metis+
from Cons have ns ′: ns ′ = lfilter (λobs. fst (snd obs) ∈ S) ns2

∀m ′∈set ns1 . fst (snd m ′) /∈ S by auto
from dezip exec iterates.code[of Suc k]
have lzip (iterates Suc (k+1)) (exec ?n ′ ?i ′) = lappend (llist-of ns1) (LCons

(k ′,m,m ′) ns2)
by auto

with Cons valid ns ′

have step: next-obs-t S ?n ′ (Some (m, k ′ − (k+1))) ∧ (k+1) ≤ k ′

∧ m ′ = read ?i ′ m
∧ (succs m = {} −→ ns ′ = LNil)
∧ (succs m 6= {}
−→ (∃ i ′. ns ′ = trace-time-obs ′ S (k ′ + 1) (exec (lhd (?i ′ m)) i ′)

∧ is-input i ′

∧ input-obs-equiv S i ′ (?i ′(m := ltl (?i ′ m)))
∧ lhd (?i ′ m) ∈ succs m))

by blast
with step add-diff-assoc2 diff-cancel2 have k-diff : k ′−(k+1)+1 = k ′−k by

metis
from Cons exec have n /∈ S by auto
with next-obs-t-prev-Some[where ?k=k ′ − (k+1)] k-diff step valid
have obs-step: next-obs-t S n (Some (m, k ′ − k)) ∧ k ≤ k ′ by auto
from step 〈n /∈ S 〉 〈m ∈ S 〉 have read : ?i ′ m = i m m ′ = read i m by auto
with step obs-step show ?case
proof (cases succs m = {})

case False
with step obtain i ′ where i ′-gen: ns ′ = trace-time-obs ′ S (k ′ + 1) (exec

(lhd (?i ′ m)) i ′)
is-input i ′ input-obs-equiv S i ′ (?i ′(m := ltl (?i ′ m)))
lhd (?i ′ m) ∈ succs m by auto

with read input-obs-equiv-def 〈n /∈ S 〉

have ns ′ = trace-time-obs ′ S (k ′ + 1) (exec (lhd (i m)) i ′)
input-obs-equiv S i ′ (i(m := ltl (i m)))
lhd (i m) ∈ succs m by auto

52

with False obs-step read i ′-gen show ?thesis by blast
qed auto

qed
with 〈m ∈ S 〉 show m ∈ S next-obs-t S n (Some (m, k ′−k)) k ′ ≥ k m ′ = read

i m
succs m = {} −→ ns ′ = LNil succs m 6= {} −→ ?cont by auto

qed

lemma trace-time-obs-equiv-subset : assumes S1 ⊆ S2
trace-time-obs-equiv S2 ns1 ns2

shows trace-time-obs-equiv S1 ns1 ns2
proof−
{

fix ns :: ′node t-trace
from assms have (λp. fst (snd p) ∈ S1) = (λp. fst (snd p) ∈ S1 ∧ fst (snd

p) ∈ S2) by auto
then have lfilter (λp. fst (snd p) ∈ S1) ns

= lfilter (λp. fst (snd p) ∈ S1 ∧ fst (snd p) ∈ S2) ns by metis
with lfilter-lfilter [symmetric] have lfilter (λp. fst (snd p) ∈ S1) ns

= lfilter (λp. fst (snd p) ∈ S1) (lfilter (λp. fst (snd p) ∈ S2) ns) by metis
}
from assms this[of lzip - ns1] this[of lzip - ns2] trace-time-obs-equiv-def
show ?thesis by auto

qed

lemma singleton-repeat : assumes ∀m ∈ lset ns. m ∈ {x}
¬ lfinite ns

shows ns = repeat x
using assms

proof (coinduction arbitrary : ns)
case Eq-llist
then obtain n ns ′ where ns = LCons n ns ′ by (cases ns) auto
with Eq-llist show ?case by auto

qed

lemma is-input-linear-repeat : assumes is-input i
succs n 6= {}
n /∈ input-nodes

shows i n = repeat (THE x . x ∈ succs n)
proof−

from assms input-nodes-def obtain x where succs n = {x} by auto
with assms is-input-def singleton-repeat show ?thesis by fastforce

qed

lemma input-obs-equiv-input-nodes: assumes input-obs-equiv (S ∩ input-nodes)
i1 i2

is-input i1
is-input i2

shows input-obs-equiv S i1 i2

53

proof−
{

fix n
assume n-gen: n ∈ S n /∈ input-nodes
have i1 n = i2 n
proof (cases succs n = {})

case True
with assms is-input-def have ∀m∈ lset (i1 n). False ∀m∈ lset (i2 n). False

by blast+
then show ?thesis by (cases i1 n; cases i2 n) auto

next
case False
with assms n-gen is-input-linear-repeat show ?thesis by metis

qed
}
with input-obs-equiv-def assms show ?thesis by fastforce

qed

lemma tcc-noninterferent-time: assumes tcc S
shows noninterferent-time S

proof−
{

obtain k :: nat where k = 0 by simp
fix n i1 i2
assume valid : valid-node n is-input i1 is-input i2
assume input-obs-equiv S i1 i2
with valid
have llist-eq (trace-time-obs ′ S k (exec n i1)) (trace-time-obs ′ S k (exec n i2))
proof (coinduction arbitrary : k n i1 i2)

case (llist-eq k n i1 i2)
show ?case
proof (cases trace-time-obs ′ S k (exec n i1))

case LNil
then show ?thesis
proof (cases trace-time-obs ′ S k (exec n i2))

case (LCons x21 x22)
with trace-time-obs-LCons[where ?m=fst (snd x21)] llist-eq
have Some-obs: next-obs-t S n (Some ((fst (snd x21)), fst x21 − k)) by

(cases x21) auto
from LNil llist-eq trace-time-obs-LNil have next-obs-t S n None by auto
with Some-obs assms tcc-def llist-eq show ?thesis by auto

qed auto
next

case split1 : (LCons p1 ns1)
obtain k1 ′ n1 n1 ′ where p1-split : p1 = (k1 ′, n1 , n1 ′) by (cases p1)
with trace-time-obs-LCons[where ?m=n1] llist-eq split1
have obs1 : next-obs-t S n (Some (n1 , k1 ′−k)) ∧ n1 ∈ S k1 ′ ≥ k by auto
show ?thesis
proof (cases trace-time-obs ′ S k (exec n i2))

54

case LNil
with llist-eq trace-time-obs-LNil have next-obs-t S n None by auto
with obs1 assms tcc-def llist-eq show ?thesis by auto

next
case split2 : (LCons p2 ns2)
obtain k2 ′ n2 n2 ′ where p2-split : p2 = (k2 ′, n2 , n2 ′) by (cases p2)
with trace-time-obs-LCons[where ?m=n2] llist-eq split2
have next-obs-t S n (Some (n2 , k2 ′−k)) k2 ′ ≥ k by auto
with obs1 tcc-def llist-eq assms eq-diff-iff [of k k1 ′ k2 ′]
have n-eq : n1 = n2 k1 ′ = k2 ′ by auto
note splits = split1 split2 p1-split p2-split
from llist-eq splits trace-time-obs-LCons
have n ′-reads: n1 ′ = read i1 n1 n2 ′ = read i2 n2 by metis+
show ?thesis
proof (cases succs n1 = {})

case True
with n-eq have read i1 n1 = read i2 n2 by auto
with True llist-eq splits trace-time-obs-LCons n-eq llist-eq .intros(1)
show ?thesis by metis

next
case False
let ?n1 ′ = lhd (i1 n1)
let ?n2 ′ = lhd (i2 n2)
from llist-eq splits n-eq trace-time-obs-LCons(6) False
obtain i1 ′ i2 ′ where cont : ns1 = trace-time-obs ′ S (k1 ′+1) (exec ?n1 ′

i1 ′)
is-input i1 ′

input-obs-equiv S i1 ′ (i1 (n1 :=ltl (i1 n1)))
?n1 ′ ∈ succs n1
ns2 = trace-time-obs ′ S (k2 ′+1) (exec ?n2 ′ i2 ′)
is-input i2 ′

input-obs-equiv S i2 ′ (i2 (n2 :=ltl (i2 n2)))
?n2 ′ ∈ succs n2

by metis
with input-obs-equiv-def llist-eq n-eq
have input-equiv : input-obs-equiv S i1 ′ i2 ′ by auto
from llist-eq cont n-eq input-obs-equiv-def obs1 input-nodes-def
have n ′-gen: ?n1 ′ = ?n2 ′ by (cases n1 ∈ input-nodes) auto
with llist-eq splits n-eq n ′-reads cont input-equiv succs-valid [of ?n2 ′ n2]
show ?thesis by auto

qed
qed

qed
qed
with trace-time-obs-equiv-def llist-eq-is-eq 〈k = 0 〉

have trace-time-obs-equiv S (exec n i1) (exec n i2) by fastforce
}
with noninterferent-time-def show ?thesis by auto

qed

55

Proof of Theorem 3.3 (Soundness of Time-Sensitive Control Dependence).

theorem tscd-slice-noninterferent-time: assumes S = backward-slice tscd M
shows noninterferent-time S

proof−
from assms tscd-slice-sound combined-slice.intros have tcc S by auto
with tcc-noninterferent-time show noninterferent-time S by auto

qed

lemma M-subset-slice: M ⊆ combined-slice cd od M
using combined-slice.intros by blast

Proof of Corollary 3.1 Note that since S ⊆ backward-slice tscd S, the premise
is equivalent to backward-slice tscd S = S.

theorem tscd-slice-noninterferent-time ′: assumes backward-slice tscd S ⊆ S
shows noninterferent-time S

proof−
from assms M-subset-slice have backward-slice tscd S = S by blast
with tscd-slice-noninterferent-time show ?thesis by blast

qed

4.3.3 Minimality of Timing Sensitive Control Dependence

lemma is-input-prepend : assumes is-input i
x ∈ succs n

shows is-input (i(n:=LCons x (i n)))
using assms is-input-def by auto

lemma trace-time-obs-shift : trace-time-obs ′ S (k+k ′) ns
= lmap (λ(k , n). (k+k ′, n)) (trace-time-obs ′ S k ns)

proof−
have pred-f : (λp. fst (snd p) ∈ S) o (λ(k , n). (k+k ′, n)) = (λp. fst (snd p) ∈

S) by auto
have iterates Suc (k+k ′) = lmap (λk . k+k ′) (iterates Suc k) by (coinduction

arbitrary : k) force
with lzip-lmap1 [of λk . k+k ′ iterates Suc k ns]

lfilter-lmap[of λp. fst (snd p) ∈ S λ(k , n). (k+k ′, n), unfolded pred-f]
show ?thesis by auto

qed

lemma trace-time-obs-equiv-LCons:
assumes trace-time-obs-equiv S (LCons (n,n1) ns1) (LCons (n,n2) ns2)
shows trace-time-obs-equiv S ns1 ns2

proof−
let ?f = (λ(k , n). (k+(1 ::nat), n))
from assms trace-time-obs-equiv-def
have trace-time-obs ′ S 0 (LCons (n,n1) ns1) = trace-time-obs ′ S 0 (LCons

(n,n2) ns2) by auto
with iterates.code[of Suc 0] have trace-time-obs ′ S 1 ns1 = trace-time-obs ′ S 1

ns2

56

by (cases n ∈ S) auto
with trace-time-obs-shift [of S 0 1] llist .inj-map-strong [of - - ?f ?f]
have trace-time-obs ′ S 0 ns1 = trace-time-obs ′ S 0 ns2 by auto
with trace-time-obs-equiv-def show ?thesis by auto

qed

Helper function to generate a valid input.

fun arbitrary-input :: ′node ⇒ ′node llist
where arbitrary-input n = (if succs n = {} then LNil else repeat (SOME x . x ∈

succs n))

lemma arbitrary-input-succs-infinite: succs n 6= {} =⇒ ¬ lfinite (arbitrary-input
n)

using lfinite-iterates by auto

lemma arbitrary-input-in-succs: n ′ ∈ lset (arbitrary-input n) =⇒ n ′ ∈ succs n
using someI [of λx . x ∈ succs n] by (cases succs n = {}) auto

Given a maximal path, generates a valid input whose execution results in
that path.

primcorec max-path-to-input :: ′node llist ⇒ ′node ⇒ ′node llist
where max-path-to-input ns n =

(case ldropWhile (λn ′. n ′ 6= n) ns of
LNil ⇒ arbitrary-input n

| LCons n1 LNil ⇒ arbitrary-input n
| LCons n1 (LCons n2 ns ′) ⇒ LCons n2 (max-path-to-input (LCons n2

ns ′) n))

lemma max-path-to-input-cases:
assumes max-path-to-input ns n = ms

ldropWhile (λn ′. n ′ 6= n) ns = LNil =⇒ ms = arbitrary-input n =⇒ P∧
n1 . ldropWhile (λn ′. n ′ 6= n) ns = LCons n1 LNil =⇒ ms =

arbitrary-input n =⇒ P∧
n1 n2 ns ′. ldropWhile (λn ′. n ′ 6= n) ns = LCons n1 (LCons n2 ns ′)

=⇒ ms = LCons n2 (max-path-to-input (LCons n2 ns ′) n)
=⇒ P

shows P
proof−

show ?thesis
proof (cases ldropWhile (λn ′. n ′ 6= n) ns)

case LNil
with assms max-path-to-input .code show ?thesis by auto

next
case (LCons m1 ms ′)
with assms max-path-to-input .code show ?thesis by (cases ms ′) auto

qed
qed

lemma ldropWhile-LCons:

57

assumes ldropWhile P xs = LCons x xs ′

obtains xs1 where xs = lappend (llist-of xs1) (LCons x xs ′) ¬ P x
proof−
from assms ldropWhile-eq-LNil-iff have ex-not-P : ∃ x∈lset xs. ¬ P x by fastforce
with lfinite-ltakeWhile[of P] lfinite-eq-range-llist-of obtain xs1

where ltakeWhile P xs = llist-of xs1 by auto
from this[symmetric] have xs = lappend (llist-of xs1) (ldropWhile P xs) by auto
with assms lhd-ldropWhile[OF ex-not-P] that show ?thesis by auto

qed

lemma max-path-input : assumes max-path n ns
shows is-input (max-path-to-input ns)

proof−
{

fix m m ′

assume m ′ ∈ lset (max-path-to-input ns m)
with lset-split obtain ns1 ns2

where max-path-to-input ns m = lappend (llist-of ns1) (LCons m ′ ns2) by
metis

with assms have m ′ ∈ succs m
proof (induction ns1 arbitrary : n ns)

case (Nil n ns)
show ?thesis
proof (cases rule: max-path-to-input-cases[OF Nil(2)])

case 1
have m ′ ∈ lset (LCons m ′ ns2) by auto
with arbitrary-input-in-succs 1 show ?thesis by auto

next
case (2 n1)
have m ′ ∈ lset (LCons m ′ ns2) by auto
with arbitrary-input-in-succs 2 show ?thesis by auto

next
case (3 n1 n2 ns ′)
from ldropWhile-LCons[OF 3 (1)] obtain ns1

where ns-split : ns = lappend (llist-of ns1) (LCons n1 (LCons n2 ns ′))
n1 = m by metis

with 3 Nil max-path-split have max-path m (LCons m (LCons m ′ ns ′)) by
auto

from this Nil max-path-hd show ?thesis by cases auto
qed

next
case (Cons x ns1 n ns)
show ?thesis
proof (cases rule: max-path-to-input-cases[OF Cons(3)])

case 1
have m ′ ∈ lset (lappend (llist-of (x # ns1)) (LCons m ′ ns2)) by auto
with arbitrary-input-in-succs 1 show ?thesis by auto

next
case (2 n1)

58

have m ′ ∈ lset (lappend (llist-of (x # ns1)) (LCons m ′ ns2)) by auto
with arbitrary-input-in-succs 2 show ?thesis by auto

next
case (3 n1 n2 ns ′)
from ldropWhile-LCons[OF 3 (1)] obtain ns1 ′

where ns-split : ns = lappend (llist-of ns1 ′) (LCons n1 (LCons n2 ns ′))
by metis

with lappend-llist-of-LCons
have ns = lappend (llist-of (ns1 ′@[n1])) (LCons n2 ns ′) by auto
with 3 Cons max-path-split have max-path n2 (LCons n2 ns ′) by auto
with Cons 3 show ?thesis by auto

qed
qed

}
note set-succs = this
{

fix n
assume succs n 6= {}
assume lfinite (max-path-to-input ns n)
with lfinite-eq-range-llist-of obtain ns1

where max-path-to-input ns n = llist-of ns1 by auto
then have False
proof (induction ns1 arbitrary : ns)

case (Nil ns)
from 〈succs n 6= {}〉 iterates.code[of λx . x SOME x . x ∈ succs n]
show ?thesis by (cases rule: max-path-to-input-cases[OF Nil]) auto

next
case (Cons n ′ ns1)
show ?thesis
proof (cases rule: max-path-to-input-cases[OF Cons(2)])

case 1
with 〈succs n 6= {}〉 arbitrary-input-succs-infinite lfinite-llist-of show ?thesis

by metis
next

case (2 n1)
with 〈succs n 6= {}〉 arbitrary-input-succs-infinite lfinite-llist-of show ?thesis

by metis
next

case (3 n1 n2 ns ′)
with Cons show ?thesis by auto

qed
qed

}
with set-succs is-input-def show ?thesis by metis

qed

lemma max-path-exec: assumes max-path n ns
shows ns = lmap fst (exec n (max-path-to-input ns))

proof−

59

from assms have llist-eq ns (lmap fst (exec n (max-path-to-input ns)))
proof (coinduction arbitrary : n ns)

case (llist-eq n ns)
show ?case
proof (cases succs n = {})

case True
with llist-eq max-path-no-succs have ns = LCons n LNil by auto
from True exec.code have lmap fst (exec n (max-path-to-input ns)) = LCons

n LNil by auto
with llist-eq-is-eq 〈ns = LCons n LNil 〉 show ?thesis by auto

next
case False
with llist-eq max-path-step obtain n ′ ns ′

where ns-split : ns = LCons n ns ′ max-path n ′ ns ′ by metis
let ?i = max-path-to-input ns
let ?i ′ = ?i(n:=ltl (?i n))
from ns-split max-path-LCons obtain ns ′′ where ns ′-split : ns ′ = LCons n ′

ns ′′ by auto
with ns-split have ldropWhile (λn ′. n ′ 6= n) ns = LCons n (LCons n ′ ns ′′)

by auto
with max-path-to-input .code[of ns n] ns ′-split
have input-n: ?i n = LCons n ′ (max-path-to-input ns ′ n) by auto
{

fix n2
have ?i ′ n2 = max-path-to-input ns ′ n2
proof (cases n2 = n)

case True
with input-n show ?thesis by auto

next
case False
with ns-split max-path-to-input .code show ?thesis by auto

qed
}
then have ?i ′ = max-path-to-input ns ′ by auto
with input-n False exec.code[of n ?i]
have lmap fst (exec n (max-path-to-input ns))

= LCons n (lmap fst (exec n ′ (max-path-to-input ns ′))) by auto
with ns-split show ?thesis by auto

qed
qed
with llist-eq-is-eq show ?thesis by auto

qed

lemma at-pos-obs-lset : assumes at-pos k (lmap fst ns) m
obtains m ′ where (k ,m,m ′) ∈ lset (lzip (iterates Suc 0) ns)

proof−
obtain k ′ :: nat where k ′ = 0 by simp
from assms obtain m ′ where (k+k ′,m,m ′) ∈ lset (lzip (iterates Suc k ′) ns)
proof (induction k arbitrary : k ′ ns thesis)

60

case 0
with at-pos-def obtain n ns ′ where split : ns = LCons n ns ′ fst n = m by

(cases ns) auto
then obtain m ′ where n = (m,m ′) by (cases n) simp
with 0 iterates.code[of Suc k ′] split show ?case by auto

next
case (Suc k k ′ ns thesis)
with at-pos-def obtain n ns ′ where split : ns = LCons n ns ′ by (cases ns)

auto
with at-pos-succ Suc have at-pos k (lmap fst ns ′) m by auto
with Suc(1)[of k ′+1] obtain m ′

where (k+k ′+1 ,m,m ′) ∈ lset (lzip (iterates Suc (k ′+1)) ns ′) by auto
with Suc iterates.code[of Suc k ′] split show ?case by auto

qed
with 〈k ′ = 0 〉 that show ?thesis by auto

qed

lemma no-obs-after-k : assumes (k ,m,m ′) ∈ lset (lzip (iterates Suc k ′) ns)
k < k ′

shows False
proof−

from assms lset-split obtain ns1 ns2
where lzip (iterates Suc k ′) ns = lappend (llist-of ns1) (LCons (k ,m,m ′) ns2)

by metis
with assms(2) show ?thesis
proof (induction ns1 arbitrary : ns k ′)

case Nil
with iterates.code[of Suc k ′] show ?case by (cases ns) auto

next
case (Cons n ns1)
with iterates.code[of Suc k ′] Cons(1)[of k ′+1] show ?case by (cases ns) auto

qed
qed

lemma lset-obs-at-pos: assumes (k ,m,m ′) ∈ lset (lzip (iterates Suc 0) ns)
shows at-pos k (lmap fst ns) m

proof−
from assms obtain k ′ where (k+k ′,m,m ′) ∈ lset (lzip (iterates Suc k ′) ns) k ′

= 0 by auto
from this(1) show ?thesis
proof (induction k arbitrary : k ′ ns)

case (0 k ′ ns)
then obtain n ns ′ where ns-split : ns = LCons n ns ′ by (cases ns) auto
with 0 no-obs-after-k [of k ′ m m ′] iterates.code[of Suc k ′] at-pos-def ns-split

enat-0
show ?case by auto

next
case (Suc k k ′ ns)
then obtain n ns ′ where ns-split : ns = LCons n ns ′ by (cases ns) auto

61

with iterates.code[of Suc k ′] Suc
have (k+k ′+1 ,m,m ′) ∈ lset (lzip (iterates Suc (k ′+1)) ns ′) by auto
with at-pos-succ Suc(1)[of k ′+1] ns-split show ?case by auto

qed
qed

Proof of Theorem 3.4 (Minimality of Time-Sensitive Control Dependence).
In this version, the trace showing the violation of the non-interference cri-
terion might start at any node of the graph.

theorem tscd-minimal : assumes ¬ (S ′ ⊇ backward-slice tscd M) (is ¬ (- ⊇ ?S))
M ⊆ S ′

shows ¬ noninterferent-time S ′

proof−
from assms obtain n ′ where n ′ ∈ ?S n ′ /∈ S ′ by auto
from this assms obtain n m where nm-gen: n /∈ S ′ m ∈ S ′ tscd n m by

induction auto
with tscd-def obtain k x1 x2 where x-gen: x1 ∈ succs n ¬ on-max-paths-pos-k-first

x1 k m
x2 ∈ succs n on-max-paths-pos-k-first x2 k m

by auto
with succs-valid have valid : valid-node n valid-node x2 by auto
from on-max-paths-pos-k-first-def x-gen obtain ns

where ns-gen: max-path x1 ns ¬ at-pos-first k ns m by auto
with max-path-input max-path-exec obtain i

where i-gen: is-input i ns = lmap fst (exec x1 i) by metis
from i-gen is-input-max-path valid have max-path x2 (lmap fst (exec x2 i)) by

auto
with at-pos-def at-pos-first-def x-gen on-max-paths-pos-k-first-def
have at-pos-x2 : at-pos k (lmap fst (exec x2 i)) m

∀ k ′<k . ¬ at-pos k ′ (lmap fst (exec x2 i)) m by auto
from ns-gen not-at-pos-first-to-at-pos have ¬ at-pos k ns m ∨ (∃ k ′<k . at-pos k ′

ns m) by auto
then have trace-time-obs S ′ (exec x1 i) 6= trace-time-obs S ′ (exec x2 i)
proof

assume ¬ at-pos k ns m
from 〈m ∈ S ′〉 at-pos-obs-lset [OF at-pos-x2 (1)] obtain m ′

where m ′-gen: (k ,m,m ′) ∈ lset (trace-time-obs S ′ (exec x2 i)) by auto
from lset-obs-at-pos[of k m m ′] 〈¬ at-pos k ns m〉 〈m ∈ S ′〉 i-gen
have (k ,m,m ′) /∈ lset (trace-time-obs S ′ (exec x1 i)) by auto
with m ′-gen show ?thesis by metis

next
assume ∃ k ′<k . at-pos k ′ ns m
then obtain k ′ where at-pos k ′ ns m k ′ < k by auto
with 〈m ∈ S ′〉 at-pos-obs-lset [of k ′] i-gen obtain m ′

where m ′-gen: (k ′,m,m ′) ∈ lset (trace-time-obs S ′ (exec x1 i)) by auto
from lset-obs-at-pos[of k ′ m m ′] at-pos-x2 〈m ∈ S ′〉 〈k ′ < k 〉

have (k ′,m,m ′) /∈ lset (trace-time-obs S ′ (exec x2 i)) by auto
with m ′-gen show ?thesis by metis

qed

62

with trace-time-obs-equiv-def
have obs-not-equiv : ¬ trace-time-obs-equiv S ′ (exec x1 i) (exec x2 i) by auto
let ?i1 = i(n:=LCons x1 (i n))
let ?i2 = i(n:=LCons x2 (i n))
from input-obs-equiv-def nm-gen i-gen is-input-prepend x-gen
have inputs: input-obs-equiv S ′ ?i1 ?i2 is-input ?i1 is-input ?i2 by auto
from x-gen exec.code have exec n ?i1 = LCons (n, Some x1) (exec x1 i)

exec n ?i2 = LCons (n, Some x2) (exec x2 i) by auto
with obs-not-equiv trace-time-obs-equiv-LCons
have ¬ trace-time-obs-equiv S ′ (exec n ?i1) (exec n ?i2) by metis
with valid inputs noninterferent-time-def show ?thesis by blast

qed

Proof of Theorem 3.4 (Minimality of Time-Sensitive Control Dependence).
In this version, the trace showing the violation of the non-interference cri-
terion has to start at the entry node. Here, we need to assume that every
node is reachable from the entry node.

theorem tscd-minimal-entry-node:
assumes ¬ (S ′ ⊇ backward-slice tscd Os) (is ¬ (- ⊇ ?S))

Os ⊆ S ′∧
n. valid-node n =⇒ ∃ns. is-path (-Entry-) ns n

obtains i1 i2 where is-input i1 is-input i2 input-obs-equiv S ′ i1 i2
¬ trace-time-obs-equiv S ′ (exec (-Entry-) i1) (exec (-Entry-) i2)

proof−
from assms tscd-minimal noninterferent-time-def obtain i1 i2 n

where i-n-gen: valid-node n is-input i1 is-input i2 input-obs-equiv S ′ i1 i2
¬ trace-time-obs-equiv S ′ (exec n i1) (exec n i2) by metis

with assms obtain ns where is-path (-Entry-) ns n by auto
with that i-n-gen show ?thesis
proof (induction ns arbitrary : n i1 i2 rule: rev-induct)

case (snoc n ′ ns ′ n i1 i2)
let ?i1 ′ = i1 (n ′:=LCons n (i1 n ′))
let ?i2 ′ = i2 (n ′:=LCons n (i2 n ′))
from snoc(8) is-path-snoc succs-valid
have split : n ∈ succs n ′ valid-node n ′ is-path (-Entry-) ns ′ n ′ by metis+
with snoc(4 ,5) is-input-prepend have is-input : is-input ?i1 ′ is-input ?i2 ′ by

auto
from snoc(6) input-obs-equiv-def have input-equiv : input-obs-equiv S ′ ?i1 ′ ?i2 ′

by auto
from split exec.code have exec n ′ ?i1 ′ = LCons (n ′, Some n) (exec n i1)

exec n ′ ?i2 ′ = LCons (n ′, Some n) (exec n i2) by auto
with trace-time-obs-equiv-LCons snoc(7)
have ¬ trace-time-obs-equiv S ′ (exec n ′ ?i1 ′) (exec n ′ ?i2 ′) by metis
with snoc split is-input input-equiv show ?case by blast

qed auto
qed

63

5 Proofs for the Algorithm section

5.1 Postdominance Frontiers

Definition 5.2, part 1. spdom = 1−v-Postdominance.

abbreviation spdom pdrel n m == ∃m ′6=m. pdrel n m ′ ∧ pdrel m ′ m

Definition 5.2, part 2.

abbreviation ipdom pdrel n == {m. spdom pdrel n m ∧ (∀m ′. spdom pdrel n m ′

−→ pdrel m m ′)}

Definition 5.3.

abbreviation pdf pdrel m == {n. ¬ spdom pdrel n m ∧ (∃ x∈succs n. pdrel x m)}

lemma on-max-paths-step: assumes on-max-paths n m
n 6= m
x ∈ succs n

shows on-max-paths x m
proof−
{

fix ns
assume max-path x ns
with assms max-path.intros on-max-paths-def have m ∈ lset ns by fastforce

}
with on-max-paths-def show ?thesis by blast

qed

lemma on-sink-paths-step: assumes on-sink-paths n m
n 6= m
x ∈ succs n

shows on-sink-paths x m
proof−
{

fix ns
assume sink-path x ns
with assms succs-path path-sink-path-append on-sink-paths-def have m ∈ lset

ns by fastforce
}
with on-sink-paths-def show ?thesis by auto

qed

Ntscd part of Lemma 5.1

theorem ntscd-on-max-paths-frontier :
assumes n 6= m
shows n ∈ pdf on-max-paths m ←→ ntscd n m

proof
assume n ∈ pdf on-max-paths m
with assms on-max-paths-refl ntscd-cond-succ show ntscd n m by fast

64

next
assume ntscd n m
with ntscd-def obtain x1 x2 where x1 ∈ succs n x2 ∈ succs n

on-max-paths x1 m ¬ on-max-paths x2 m by auto
with on-max-paths-step assms on-max-paths-trans show n ∈ pdf on-max-paths

m by fast
qed

lemma nticd-cond-succ: assumes finite (Collect valid-node)
¬ on-sink-paths p n
x ∈ succs p
on-sink-paths x n

shows nticd p n
proof−

from assms on-sink-ext-paths-equiv on-ext-paths-def obtain ns n ′

where ext : is-path p ns n ′ ∀ns ′ n ′′. is-path n ′ ns ′ n ′′−→ n /∈ set (ns@ns ′@[n ′′])
by metis

have ∃ x2∈succs p. ¬ on-ext-paths x2 n
proof (cases ns)

case Nil
from assms on-sink-ext-paths-equiv on-ext-paths-ex succs-valid obtain ns ′

where is-path x ns ′ n by metis
with Nil assms succs-path-extend ext show ?thesis by fastforce

next
case (Cons p ′ ns2)
with ext is-path-Cons obtain x2

where x2-gen: p ′ = p x2 ∈ succs p is-path x2 ns2 n ′ by blast
from ext Cons have ∀ns ′ n ′′. is-path n ′ ns ′ n ′′ −→ n /∈ set (ns2 @ns ′@[n ′′])

by auto
with x2-gen on-ext-paths-def show ?thesis by metis

qed
with assms on-sink-ext-paths-equiv nticd-def show ?thesis by auto

qed

Nticd part of Lemma 5.1

theorem nticd-on-max-paths-frontier :
assumes finite (Collect valid-node)

n 6= m
shows n ∈ pdf on-sink-paths m ←→ nticd n m

proof
assume n ∈ pdf on-sink-paths m
with assms on-sink-paths-refl nticd-cond-succ show nticd n m by fast

next
assume nticd n m
with nticd-def obtain x1 x2 where x1 ∈ succs n x2 ∈ succs n

on-sink-paths x1 m ¬ on-sink-paths x2 m by auto
with on-sink-paths-step assms on-sink-paths-trans show n ∈ pdf on-sink-paths

m by fast
qed

65

Definition 5.5, part 1.

abbreviation closedG pdrel == ∀n x m. x ∈ succs n ∧ pdrel n m ∧ n 6= m −→
pdrel x m

Definition 5.5, part 2.

abbreviation noJoin pdrel == ∀n m1 m2 m12 . (m12 ∈ ipdom pdrel m1 ∧ m12
∈ ipdom pdrel m2

∧ pdrel n m1 ∧ pdrel n m2 ∧ m1 6= m2 ∧
valid-node n)

−→ m1 ∈ ipdom pdrel m2 ∨ m2 ∈ ipdom pdrel
m1

Part of Lemma 5.2: vMAX is closed under →G.

theorem on-max-paths-closedG : closedG on-max-paths
using on-max-paths-step by auto

Part of Lemma 5.2: vSINK is closed under →G.

theorem on-sink-paths-closedG : closedG on-sink-paths
using on-sink-paths-step by auto

abbreviation linearizable pdrel == ∀n m1 m2 . valid-node n ∧ pdrel n m1 ∧ pdrel
n m2

−→ pdrel m1 m2 ∨ pdrel m2 m1

”linearize” lemma to be instantiated with vMAX and vSINK .

lemma on-all-paths-linearize: assumes closedG P∧
n m. P n m =⇒ valid-node n =⇒ ∃ns. is-path n

ns m
shows linearizable P

proof−
{

fix n m1 m2
assume assms2 : valid-node n P n m1 P n m2
with assms obtain ns where is-path n ns m2 by metis
with assms assms2 have P m1 m2 ∨ P m2 m1
proof (induction ns arbitrary : n)

case (Cons a ns n)
with is-path-Cons Cons show ?case by blast

qed auto
}
then show ?thesis by auto

qed

lemma linearizable-noJoin: assumes linearizable P∧
n m1 m2 . P n m1 =⇒ P m1 m2 =⇒ P n m2∧
n. P n n

shows noJoin P
proof−

66

{
fix n m1 m2 m12
assume assms2 : m12 ∈ ipdom P m1 m12 ∈ ipdom P m2 P n m1 P n m2 m1

6= m2 valid-node n
with assms have P m1 m2 ∨ P m2 m1 by blast
with assms2 obtain m1 ′ m2 ′

where m ′-gens: m12 ∈ ipdom P m1 ′ m12 ∈ ipdom P m2 ′ P n m1 ′ P n m2 ′

m1 ′ 6= m2 ′ P m1 ′ m2 ′ m1 ′ ∈ {m1 , m2} m2 ′ ∈ {m1 , m2}
by blast

{
fix m ′

assume spdom P m1 ′ m ′

with m ′-gens assms have P m12 m ′ ∧ P m2 ′ m12 by blast
with assms have P m2 ′ m ′ by blast

}
with assms m ′-gens(5 ,6) have m2 ′ ∈ ipdom P m1 ′ by blast
with m ′-gens have m1 ∈ ipdom P m2 ∨ m2 ∈ ipdom P m1 by auto

}
then show ?thesis by blast

qed

”linearize” lemma for vMAX .

lemma on-max-paths-linearize: linearizable on-max-paths
using on-all-paths-linearize on-max-paths-step on-max-paths-ex-path by blast

Part of Lemma 5.2: vMAX lacks joins.

theorem on-max-path-noJoin: noJoin on-max-paths
using on-max-paths-refl on-max-paths-trans linearizable-noJoin[OF on-max-paths-linearize]
by blast

”linearize” lemma for vSINK .

lemma on-sink-paths-linearize: assumes finite (Collect valid-node)
shows linearizable on-sink-paths

proof−
from assms on-ext-paths-ex on-sink-ext-paths-equiv
have

∧
n m. on-sink-paths n m =⇒ valid-node n =⇒ ∃ns. is-path n ns m by

blast
with assms on-all-paths-linearize on-sink-paths-step show ?thesis by blast

qed

Part of Lemma 5.2: vSINK lacks joins.

theorem on-sink-path-noJoin: assumes finite (Collect valid-node)
shows noJoin on-sink-paths

proof−
from assms on-sink-paths-linearize have linearizable on-sink-paths by simp
from on-sink-paths-refl on-sink-paths-trans[OF assms] linearizable-noJoin[OF

this]
show ?thesis by blast

qed

67

5.2 Transitive Reductions and Pseudo-forests

Theorems for the properties of the transitive, reflexive reductions (see Ob-
servation 5.1).

We will not give a full mechanized proof here due to the complexity of
formalizing transitive, reflexive reductions.

We will however prove lemmas here and give a pen-and-paper proof on why
they imply those properties.

For v ∈ {vMAX , vSINK}, we will need linearizable: m1 v n =⇒ m2 v
n =⇒ m2 v m1 ∨ m1 v m2 and scc: n 6= m1 =⇒ m1 v n =⇒ m2 v n
=⇒ n v m1 =⇒ n v m2. The linearizable part has already been proved
in the previous section, the scc part will be proved in this section.

Now, assume we have m1 < n and m2 < n. (with < being the corresponding
transitive, reflexive reduction of v (*)). Then from (*) we have m1 v n
and m2 v n. With ”linearize”, we have m2 v m1 ∨ m1 v m2 (w.l.o.g. let
m2 v m1 be true). This means we have (via (*), m1 v n and m2 v m1)
a path in the ”<-graph” from n to m2. But since m2 < n and (*), this
path must contain the m2 < n edge. But then n v m1, and ”scc” gives
us n v m2 (note m1 < n and (*) gives us n 6= m1). Thus, n, m1 and
m2 belong to the same SCC of the ”¡-graph”. In any transitive, reflexive
reduction, the nodes of an SCC in the original graph form a cycle without
other edges between them (Theorem 2 of ”The Transitive Reduction of a
Directed Graph” by Aho, Alfred and R. Garey, M and Ullman, Jeffrey (doi
10.1137/0201008)). But then m1 = m2.

”scc” lemma to be instantiated with vMAX and vSINK .

lemma on-all-paths-scc: assumes closedG P∧
n m. P n m =⇒ valid-node n =⇒ ∃ns. is-path n ns m∧
n m1 m2 . P n m1 =⇒ P m1 m2 =⇒ P n m2∧
n. P n n

valid-node n n 6= m1 P n m1 P n m2 P m1 n
shows P m2 n

proof−
from assms obtain ns where path: is-path n ns m2 by metis
show ?thesis
proof (cases ns)

case Nil
with path assms(4) show ?thesis by simp

next
case Cons
with path is-path-Cons have n ∈ set ns by auto
with split-list-last obtain ns1 ns2 where ns-split : ns = ns1 @n#ns2 n /∈ set

ns2 by metis
with path is-path-split have is-path n (n#ns2) m2 by blast
with is-path-Cons obtain x where x-gen: x ∈ succs n is-path x ns2 m2 by

blast

68

with assms have P x n by blast
with x-gen(2) ns-split(2) show ?thesis
proof (induction ns2 arbitrary : x)

case Nil
then show ?case by auto

next
case (Cons a ns2 x)
with is-path-Cons obtain y where a = x y ∈ succs x is-path y ns2 m2 by

blast
with assms(1) Cons show ?case by auto

qed
qed

qed

”scc” lemma for vMAX .

lemma on-max-paths-scc: assumes valid-node n
n 6= m1
on-max-paths n m1
on-max-paths n m2
on-max-paths m1 n

shows on-max-paths m2 n
using assms on-all-paths-scc[of on-max-paths n m1 m2] on-max-paths-step on-max-paths-ex-path

on-max-paths-refl on-max-paths-trans by blast

”scc” lemma for vSINK .

lemma on-sink-paths-scc: assumes finite (Collect valid-node)
valid-node n
n 6= m1
on-sink-paths n m1
on-sink-paths n m2
on-sink-paths m1 n

shows on-sink-paths m2 n
proof−

from assms on-ext-paths-ex on-sink-ext-paths-equiv
have

∧
n m. on-sink-paths n m =⇒ valid-node n =⇒ ∃ns. is-path n ns m by

blast
with assms on-all-paths-scc[of on-sink-paths n m1 m2] on-sink-paths-step on-sink-paths-refl

on-sink-paths-trans show ?thesis by blast
qed

5.3 Transitivity results

5.3.1 Reducible Graphs

To define reducibility, we need an additional assumption that every node is
reachable from the entry node.

context
assumes Entry-path:

∧
n. valid-node n =⇒ ∃ns. is-path (-Entry-) ns n

69

assumes reducible:
∧

n ns. is-path n ns n ∧ ns 6= []
−→ (∃m ∈ set ns. ∀m ′ ∈ set ns. ∀ns ′. is-path (-Entry-)

ns ′ m ′

−→ m ∈ set (ns ′@[m ′]))
begin

Definition of Weak Order Dependency. Not used in any results given in the
article, but an important definition to make proofs about reducible graphs
easier.

definition wod :: ′node ⇒ ′node ⇒ ′node ⇒ bool
where wod n m1 m2 == m1 6= m2

∧ (∃ms1 . is-path n ms1 m1 ∧ m2 /∈ set ms1)
∧ (∃ms2 . is-path n ms2 m2 ∧ m1 /∈ set ms2)

∧ (∃ x ∈ succs n. on-max-paths-prev x m1 m2 ∨ on-max-paths-prev
x m2 m1)

lemma on-max-path-prev-non-step-wod : assumes on-max-paths n m1
x ∈ succs n
on-max-paths-prev x m1 m2
¬ on-max-paths-prev n m1 m2
n 6= m2
m1 6= m2

shows wod n m1 m2
proof−

from assms succs-valid on-max-paths-prev-split obtain ns11
where ns1-split : is-path x ns11 m1 m2 /∈ set ns11 by metis

with succs-path-extend assms have path1 : is-path n (n#ns11) m1 by blast
from assms on-max-paths-not-prev obtain ns2 where is-path n ns2 m2 m1 /∈

set ns2 by metis
with path1 ns1-split assms wod-def show ?thesis by auto

qed

lemma paths-order-ntscd-tranclp: assumes is-path p pns n
m /∈ set pns
is-path p pms m
n /∈ set pms
x ∈ succs p
n 6= m
on-max-paths-prev x n m

shows ntscd∗∗ p m ∨ ntscd∗∗ p n
proof (clarify)

assume ¬ ntscd∗∗ p n
from max-path-ext assms succs-valid have max-ext-x : max-path x (ext-max-path

x) by auto
from assms on-max-paths-prev-split succs-valid obtain xns
where xns-gen: is-path x xns n n /∈ set xns m /∈ set xns by metis
from path-first [OF assms(1)] obtain ns ns ′

where pn-path: is-path p ns n pns = ns@ns ′ by blast
with assms have m /∈ set ns by auto

70

from path-first [OF assms(3)] obtain ms ms ′

where pm-path: is-path p ms m m /∈ set ms pms = ms@ms ′ by auto
with assms have n /∈ set ms by auto
have ms 6= []
proof

assume ms = []
with path-empty-conv pm-path have p = m by auto
with path-empty-conv assms pn-path have ns 6= [] by auto
with 〈m /∈ set ns〉 path-cons-conv [of - p] 〈p = m〉 pn-path show False by (cases

ns) auto
qed
from assms on-max-paths-def on-max-paths-prev-def have on-max-paths x n by

auto
with assms ntscd-cond-succ 〈¬ ntscd∗∗ p n〉 have max-paths: on-max-paths p n

by auto
from is-path-valid-node[OF pm-path(1)] max-path-ext
have max-ext-m: max-path m (ext-max-path m) by auto
with pm-path max-path-append have max-path p (lappend (llist-of ms) (ext-max-path

m)) by auto
with 〈n /∈ set ms〉 max-paths on-max-paths-def have n ∈ lset (ext-max-path m)

by auto
from lset-split [OF this] obtain ens1 ens2
where ext-max-path m = lappend (llist-of ens1) (LCons n ens2) by auto
with max-ext-m max-path-split have path-mns: ∃mns. is-path m mns n by simp

blast
show ntscd∗∗ p m
proof (cases ∃nms. is-path n nms m)

case False
{

fix m ′

assume m ′-gen: m ′ ∈ set (m# rev ms) m ′ 6= p on-max-paths p m ′

with on-max-paths-step assms have on-max-paths x m ′ by auto
with max-ext-x on-max-paths-def have m ′ ∈ lset (ext-max-path x) by auto
with max-path-split-elem max-ext-x obtain ms1 ′ where path-xm ′: is-path x

ms1 ′ m ′ by metis
obtain ms3 ′ where is-path m ′ ms3 ′ m
proof (cases m=m ′)

case True
with path0 is-path-valid-node[OF path-xm ′] that [of []] show ?thesis by auto

next
case False
with m ′-gen have m ′ ∈ set ms by auto
with path-split-elem pm-path(1) that show ?thesis by blast

qed
with path-xm ′ path-append have is-path x (ms1 ′@ms3 ′) m by auto

with on-max-paths-prev-ccontr [OF assms(7 ,6) this] have n ∈ set (ms1 ′@ms3 ′)
by auto

with path-split-elem 〈is-path x (ms1 ′@ms3 ′) m〉 False have False by blast
}

71

with ntscd-rtranclpI [OF pm-path(1)] show ?thesis by auto
next

case True
with assms path-end-unique obtain nms
where cycle1 : is-path n (n#nms) m n /∈ set nms m /∈ set nms by blast
from path-end-unique path-mns assms obtain mns
where cycle2 : is-path m (m#mns) n m /∈ set mns n /∈ set mns by blast
let ?cs = n#nms@m#mns
from path-append [OF cycle1 (1) cycle2 (1)] have is-path n ?cs n by auto
with reducible[of n ?cs] obtain d where dom: d ∈ set ?cs
∀m ′∈set ?cs. ∀ns. is-path (-Entry-) ns m ′ −→ d ∈ set (ns @ [m ′]) by auto

from Entry-path assms obtain ps where entry-p-path: is-path (-Entry-) ps p
by auto

have dom-path: d ∈ set (ps@[p])
proof (rule ccontr)

assume d /∈ set (ps@[p])
from pm-path entry-p-path path-append succs-path-extend assms xns-gen(1)
have is-path (-Entry-) (ps@ms) m is-path (-Entry-) (ps@p#xns) n by auto
with dom 〈d /∈ set (ps@[p])〉 have d ∈ set (ms@[m]) d ∈ set (xns@[n]) by

auto
with 〈m /∈ set xns〉 〈n /∈ set ms〉 assms(6) have d-elem: d ∈ set ms d ∈ set

xns by auto
with path-split-elem xns-gen obtain ns1 ns2
where xns-d-split : xns = ns1 @d#ns2 is-path x ns1 d by blast
from d-elem path-split-elem pm-path obtain ms1 ms2
where ms = ms1 @d#ms2 is-path d (d#ms2) m by blast
with xns-d-split 〈n /∈ set xns〉 〈n /∈ set ms〉 path-append
have is-path x (ns1 @d#ms2) m n /∈ set (ns1 @d#ms2) by auto
from on-max-paths-prev-ccontr [OF assms(7 ,6) this] show False .

qed
obtain dps where dps-gen: is-path d dps p
proof (cases d ∈ set ps)

case True
with path-split-elem entry-p-path that show ?thesis by blast

next
case False
with dom-path assms path0 [of - p] that [of []] show ?thesis by auto

qed
obtain c cs where c-gen: is-path c cs p c ∈ set ?cs ∀ c ′∈set (tl cs). c ′ /∈ set

?cs
proof (cases dps)

case Nil
with dom that [OF dps-gen] show ?thesis by auto

next
case (Cons d ′ dps ′)
with path-cons-conv [of - d] dps-gen dom have ∃ c∈set dps. c ∈ set ?cs by

auto
from split-list-last-propE [OF this] obtain cs1 c cs2
where cs-gen: dps = cs1 @c#cs2 c ∈ set ?cs ∀ c ′∈set cs2 . c ′ /∈ set ?cs by

72

auto
with is-path-split [OF dps-gen[unfolded this(1)]] that show ?thesis by auto

qed
with path-cons-conv [of - c] have n-set-cs: n 6= c =⇒ n /∈ set cs by (cases cs)

auto
{

fix pps
assume pcs-gen: n /∈ set pps is-path p pps p pps 6= []
with pcs-gen cycle-max-path-neq-nil have max-path p (cycle pps) by auto
with max-paths on-max-paths-def cycle-lset [of pps] pcs-gen have False by

auto
}
note cycle-ccontr = this
show ?thesis
proof (cases c ∈ set (m#mns))

case True
with path-split-elem cycle2 obtain mcs cns
where mns-split : is-path m mcs c m#mns = mcs@c#cns by blast
have False
proof (rule cycle-ccontr)
from mns-split path-append pm-path c-gen show is-path p (ms@mcs@cs) p

by auto
from assms cycle2 True have n /∈ set (m#mns) by auto
with mns-split 〈ms 6= []〉 n-set-cs 〈n /∈ set ms〉

show ms@mcs@cs 6= [] n /∈ set (ms@mcs@cs) by auto
qed
thus ?thesis ..

next
case False
with c-gen have c ∈ set (n#nms) by simp
with path-split-elem cycle1 obtain ncs cms
where nms-split : is-path n ncs c n#nms = ncs@c#cms by blast
{

fix m ′

assume m ′-gen: m ′ ∈ set (m#rev ms) m ′ 6= p on-max-paths p m ′

with on-max-paths-step assms have on-max-paths x m ′ by auto
from m ′-gen assms 〈n /∈ set ms〉 have m ′6=n by auto
obtain mms ′ pms ′

where ms-split : is-path m ′ mms ′ m n /∈ set mms ′ is-path p pms ′ m ′ n /∈
set pms ′

proof (cases m=m ′)
case True
with path0 is-path-valid-node[OF assms(3)] that [of []] pm-path 〈n /∈ set

ms〉

show ?thesis by auto
next

case False
with m ′-gen have m ′ ∈ set ms by auto
with path-split-elem pm-path(1) obtain ms1 ms2

73

where ms = ms1 @m ′#ms2 is-path m ′ (m ′#ms2) m is-path p ms1 m ′ by
blast

with that 〈n /∈ set ms〉 show ?thesis by auto
qed
from xns-gen nms-split c-gen succs-path[OF assms(5)] path-append
have is-path x (xns@ncs@cs@[p]) x by auto

with cycle-max-path-neq-nil have max-path x (cycle (xns@ncs@cs@[p])) by
auto

with 〈on-max-paths x m ′〉 on-max-paths-def cycle-lset [of xns@ncs@cs@[p]]
have m ′ ∈ set (xns@ncs@cs@[p]) by auto
have False
proof (cases m ′ ∈ set xns)

case True
with path-split-elem xns-gen obtain xms ′ xms ′′

where is-path x xms ′ m ′ xns = xms ′@m ′#xms ′′ by blast
with path-append ms-split xns-gen
have is-path x (xms ′@mms ′) m n /∈ set (xms ′@mms ′) by auto
with on-max-paths-prev-ccontr [OF assms(7 ,6)] show ?thesis by blast

next
case False
with 〈m ′ ∈ set (xns@ncs@cs@[p])〉 m ′-gen have m ′ ∈ set (ncs@cs) by

auto
then obtain n ′ nps ′ where nps ′-gen: ncs@cs = n ′#nps ′ by (cases

ncs@cs) auto
with path-append [OF nms-split(1) c-gen(1)] have is-path n (n ′#nps ′) p

by auto
with nps ′-gen path-cons-conv [of edge-rel n n ′] edge-rel-def succs-valid

obtain n2
where nps ′-path: n=n ′ is-path n2 nps ′ p by blast
with 〈m ′ ∈ set (ncs@cs)〉 nps ′-gen 〈m ′6=n〉 have m ′ ∈ set nps ′ by auto
with path-split-elem nps ′-path obtain nps1 nps2

where nps ′-split : nps ′ = nps1 @m ′#nps2 is-path m ′ (m ′#nps2) p by blast
have n /∈ set nps ′

proof (cases ncs)
case Nil
with nps ′-gen c-gen(3) show ?thesis by auto

next
case (Cons a list)
with nms-split(2) cycle1 (2) nps ′-gen n-set-cs show ?thesis by force

qed
with 〈nps ′ = nps1 @m ′#nps2 〉 have n-not-elem: n /∈ set (m ′#nps ′) by

auto
show ?thesis
proof (rule cycle-ccontr)

from n-not-elem nps ′-split ms-split path-append
show n /∈ set (pms ′@m ′#nps2) is-path p (pms ′@m ′#nps2) p pms ′@m ′#nps2

6= [] by auto
qed

qed

74

}
with ntscd-rtranclpI [OF pm-path(1)] show ?thesis by auto

qed
qed

qed

lemma reducible-wod-imp-ntscd-tranclp: assumes wod n m1 m2
shows ntscd∗∗ n m1 ∨ ntscd∗∗ n m2

proof−
from assms wod-def obtain ms1 ms2
where order-paths: is-path n ms1 m1 m2 /∈ set ms1 is-path n ms2 m2 m1 /∈ set

ms2 by auto
from assms wod-def obtain x
where m1 6= m2 x ∈ succs n on-max-paths-prev x m1 m2 ∨ on-max-paths-prev

x m2 m1 by auto
with paths-order-ntscd-tranclp order-paths show ?thesis by blast

qed

lemma ntscd-not-on-max-paths: assumes ntscd n m
n 6= m

shows ¬ on-max-paths n m
using assms ntscd-def on-max-paths-step by blast

lemma ntscd-rtrancl-not-on-max-paths: assumes ntscd∗∗ n m
n 6= m

shows ¬ on-max-paths n m
proof

assume on-max-paths n m
with assms show False
proof (induction rule: converse-rtranclp-induct)

case (step x y)
show ?case
proof (cases y = m)

case True
with step ntscd-not-on-max-paths show ?thesis by auto

next
case False
with step have ¬ on-max-paths y m x 6= y by auto
with on-max-paths-def obtain ns where ns-gen: max-path y ns m /∈ lset ns

by auto
from step ntscd-def obtain x1 where x1-gen: on-max-paths x1 y x1 ∈ succs

x by auto
with on-max-paths-ex-path succs-valid path-first obtain ns1

where ns1-gen: is-path x1 ns1 y y /∈ set ns1 by metis
with succs-path-extend x1-gen max-path-append ns-gen
have max-path x (lappend (llist-of (x#ns1)) ns) by blast
with step on-max-paths-def ns1-gen ns-gen have m ∈ set ns1 by auto
with ns1-gen path-split-elem obtain ns1 ′ ns1 ′′

where ns1-split : is-path x1 ns1 ′ m ns1 = ns1 ′@m#ns1 ′′ by metis

75

from step ntscd-def obtain x2 where x2 ∈ succs x ¬ on-max-paths x2 y by
auto

with on-max-paths-def obtain ns2
where ns2-gen: max-path x2 ns2 y /∈ lset ns2 by auto

with max-path.intros(2) 〈x2 ∈ succs x 〉 step(4 ,5) on-max-paths-def
have m ∈ lset ns2 by fastforce
with ns2-gen max-path-split-elem obtain ns2 ′ ns2 ′′

where ns2-split : max-path m (LCons m ns2 ′′)
ns2 = lappend (llist-of ns2 ′) (LCons m ns2 ′′) by metis

with ns1-split ns1-gen ns2-gen max-path-append
have max-path x1 (lappend (llist-of ns1 ′) (LCons m ns2 ′′))

y /∈ lset (lappend (llist-of ns1 ′) (LCons m ns2 ′′)) by auto
with x1-gen on-max-paths-def show ?thesis by auto

qed
qed simp

qed

lemma reducible-on-max-paths-order : assumes on-max-paths n m1
on-max-paths n m2
m1 6= m2

shows on-max-paths-prev n m1 m2 ∨ on-max-paths-prev
n m2 m1
proof (cases valid-node n)

case True
with max-path-ext obtain ns where max-path n ns by auto
with assms on-max-paths-def max-path-split-elem obtain ns1

where is-path n ns1 m1 by metis
with assms show ?thesis
proof (induction ns1 arbitrary : n)

case Nil
with path-empty-conv on-max-paths-prev-trivial show ?case by auto

next
case (Cons n ′ ns1 n)
show ?case
proof (cases n = m2 ∨ n = m1)

case False
from Cons is-path-Cons obtain x

where x-gen: x ∈ succs n is-path x ns1 m1 n = n ′ by metis
with on-max-paths-step False Cons
have max-paths: on-max-paths x m1 on-max-paths x m2 by metis+

with Cons x-gen have x-prev : on-max-paths-prev x m1 m2 ∨ on-max-paths-prev
x m2 m1 by auto

from Cons ntscd-rtrancl-not-on-max-paths False have ¬ ntscd∗∗ n m1 ¬
ntscd∗∗ n m2 by auto

with reducible-wod-imp-ntscd-tranclp have ¬ wod n m1 m2 ¬ wod n m2 m1
by auto

with on-max-path-prev-non-step-wod x-prev Cons x-gen False show ?thesis
by blast

qed (auto simp add : on-max-paths-prev-trivial)

76

qed
qed (auto simp add : on-max-paths-prev-def max-path-valid-node)

Proof of Theorem 5.1. The assumption of a reducible graph is given by the
context, so it is an implicit assumption of this theorem.

theorem reducible-on-max-paths-first-pos-trans: assumes on-max-paths-pos-first x
y

on-max-paths-pos-first y z
shows on-max-paths-pos-first x z

proof (cases valid-node x ∧ y 6= z)
case non-trivial : True
from assms on-max-paths-pos-first-def obtain k1 k2
where k-gen: on-max-paths-pos-k-first x k1 y on-max-paths-pos-k-first y k2 z by

auto
from on-max-paths-pos-k-implies-on-max-paths on-max-paths-trans k-gen
have on-max-paths: on-max-paths x y on-max-paths y z on-max-paths x z by

blast+
show ?thesis
proof (cases on-max-paths-prev x y z)

case True
{

fix ns
assume max-path: max-path x ns
with on-max-paths on-max-paths-def lset-at-pos-first obtain k

where z-pos: at-pos-first k ns z by blast
from max-path k-gen on-max-paths-pos-k-first-def have at-pos-first k1 ns y

by auto
with k-gen max-path on-max-paths-pos-first-chain z-pos on-max-paths-prev-at-pos-first

True
have at-pos-first (k1 +k2) ns z by fastforce

}
with on-max-paths-pos-first-def on-max-paths-pos-k-first-def show ?thesis by

auto
next

case False
with on-max-paths reducible-on-max-paths-order non-trivial
have z-prev-y : on-max-paths-prev x z y by auto

from on-max-paths max-path-ext non-trivial obtain ns where max-path:
max-path x ns by auto

with on-max-paths on-max-paths-def lset-at-pos-first lset-at-pos-first obtain k
where z-pos: at-pos-first k ns z by blast

from max-path k-gen on-max-paths-pos-k-first-def have at-pos-first k1 ns y by
auto

with k-gen max-path z-pos on-max-paths-prev-at-pos-first z-prev-y non-trivial
have less1 : k < k1 by fastforce
with on-max-paths-pos-k-first-diff k-gen z-pos max-path
have z-y : on-max-paths-pos-k-first z (k1−k) y by auto
from on-max-paths-prev-split z-prev-y non-trivial max-path-valid-node
have valid-node z by metis

77

{
fix ns2
assume max-path2 : max-path x ns2
with on-max-paths on-max-paths-def lset-at-pos-first lset-at-pos-first obtain

k ′

where z-pos2 : at-pos-first k ′ ns2 z by blast
from max-path2 k-gen on-max-paths-pos-k-first-def have at-pos-first k1 ns2 y

by auto
with k-gen max-path2 z-pos2 on-max-paths-prev-at-pos-first z-prev-y non-trivial
have less2 : k ′ < k1 by fastforce
with on-max-paths-pos-k-first-diff k-gen z-pos2 max-path2
have on-max-paths-pos-k-first z (k1−k ′) y by auto
with z-y on-max-paths-pos-k-first-k-unique 〈valid-node z 〉 have k1−k ′ = k1−k

by auto
with less1 less2 have k ′ = k by auto
with less1 less2 z-pos2 have at-pos-first k ns2 z by auto

}
with on-max-paths-pos-first-def on-max-paths-pos-k-first-def show ?thesis by

auto
qed

next
case False
with assms on-max-paths-pos-first-def on-max-paths-pos-k-first-def max-path-valid-node
show ?thesis by auto

qed

end

end

5.3.2 Graphs with unique exit node

The assumption that there is a unique exit node reachable from all other
nodes is given by the Postdomination locale.

context Postdomination
begin

lemma unique-exit-on-max-paths-first-pos-k-trans: assumes on-max-paths-pos-k-first
x k1 y

on-max-paths-pos-k-first y k2 z
shows on-max-paths-pos-k-first x (k1 +k2)

z
proof (cases valid-node x)

case x-valid : True
{

fix ns
assume max-path x ns
with assms x-valid have at-pos-first (k1 +k2) ns z
proof (induction k1 arbitrary : x ns)

78

case 0
with on-max-paths-pos-k-first-0 have x = y by auto
with 0 on-max-paths-pos-k-first-def show ?case by auto

next
case (Suc k1 x ns)
then show ?case
proof (cases x = z)

case True
with Suc on-max-paths-pos-k-first-refl on-max-paths-pos-k-first-k-unique
have z 6= y by blast

with Suc True on-max-paths-pos-k-first-end-node Exit-succs have z 6=
(-Exit-) by auto

{
fix ns ′

assume is-path y ns ′ (-Exit-)
with Exit-succs max-path-end have max-path y (llist-of (ns ′@[(-Exit-)]))

by auto
with Suc on-max-paths-pos-k-first-def at-pos-first-def in-lset-conv-lnth
have z ∈ lset (llist-of (ns ′@[(-Exit-)])) by metis
with 〈z 6= (-Exit-)〉 have z ∈ set ns ′ by simp

}
note exit-path-z = this
with path0 have y 6= (-Exit-) by fastforce
from Suc on-max-paths-pos-k-first-def at-pos-first-def
have at-pos-first (Suc k1) ns y by auto
with at-pos-first-def in-lset-conv-lnth have y ∈ lset ns by metis
with Suc max-path-split-elem max-path-valid-node have valid-node y by

metis
with Exit-is-path obtain ns2 where ns2-gen: is-path y ns2 (-Exit-) by

auto
with exit-path-z have ns2 6= [] by fastforce
with path-last ns2-gen obtain ns3

where ns3-gen: is-path y (y#ns3) (-Exit-) y /∈ set ns3 by metis
with 〈z 6= y〉 exit-path-z split-list obtain ns4 ns5

where ns3 = ns4 @z#ns5 by fastforce
with ns3-gen is-path-split [of - y#ns4]
have ns3-split : is-path z (z#ns5) (-Exit-) y /∈ set (z#ns5) by auto
with Exit-succs max-path-end [of - z#ns5]
have max-path z (llist-of (z#ns5 @[(-Exit-)])) by auto
with True Suc on-max-paths-pos-k-first-def at-pos-first-def in-lset-conv-lnth
have y ∈ lset (llist-of (z#ns5 @[(-Exit-)])) by metis
with ns3-split 〈y 6= (-Exit-)〉 show ?thesis by auto

next
case False
from Suc on-max-paths-pos-k-first-end-node have succs x 6= {} by blast
with Suc max-path-step obtain x ′ ns ′

where step: ns = LCons x ns ′ max-path x ′ ns ′ x ′ ∈ succs x by metis
with on-max-paths-pos-k-first-Suc Suc(2) have on-max-paths-pos-k-first x ′

k1 y by force

79

with step Suc succs-valid have at-pos-first (k1 + k2) ns ′ z by fastforce
with at-pos-first-step step False show ?thesis by auto

qed
qed

}
with on-max-paths-pos-k-first-def show ?thesis by auto

qed (auto simp add : on-max-paths-pos-k-first-def max-path-valid-node)

Proof of Theorem 5.2. The assumption of a unique exit node is given by the
locale context, so it is an implicit assumption of this theorem.

theorem unique-exit-on-max-paths-first-pos-trans: assumes on-max-paths-pos-first
x y

on-max-paths-pos-first y z
shows on-max-paths-pos-first x z

using assms on-max-paths-pos-first-def unique-exit-on-max-paths-first-pos-k-trans
by metis

end

5.4 Timing Sensitive Postdominance Frontiers

context CFG
begin

Definition 5.7, redefinition of 1−v-Postdominance.

abbreviation spdom ′ pdrel n m == pdrel n m ∧ (∃m ′6=m. pdrel n m ′ ∧ pdrel m ′

m)

Redefinition of the Postdominance Frontier, which uses the redefined 1−v-
Postdominance from Definition 5.7.

abbreviation pdf ′ pdrel m == {n. ¬ spdom ′ pdrel n m ∧ (∃ x∈succs n. pdrel x
m)}

Proof of Theorem 5.3.

theorem tscd-on-max-paths-pos-first-frontier :
assumes n 6= m
shows n ∈ pdf ′ on-max-paths-pos-first m ←→ tscd n m

proof
assume pdf : n ∈ pdf ′ on-max-paths-pos-first m
with assms on-max-paths-pos-first-refl have ¬ on-max-paths-pos-first n m by

auto
with pdf tscd-cond-succ show tscd n m by auto

next
assume tscd n m
with tscd-def obtain k x1 x2 where succs: x1 ∈ succs n x2 ∈ succs n

on-max-paths-pos-k-first x1 k m ¬ on-max-paths-pos-k-first x2 k m by auto
with on-max-paths-pos-first-def on-max-paths-pos-k-first-step assms

on-max-paths-pos-k-first-k-unique succs-valid have ¬ on-max-paths-pos-first
n m by metis

80

with succs assms on-max-paths-pos-first-def show n ∈ pdf ′ on-max-paths-pos-first
m by auto
qed

end

end

81

	Basic Definitions and Lemmas
	Lemmas 1.1 and 1.2
	Standard control dependency, Lemma 1.1
	Example from Fig. 1 right, Lemma 1.2

	Control Dependence in Arbitrary Graphs
	Definitions for maximal paths and sink paths
	Lemmas about maximal paths
	Proof of Theorem 2.1, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 MAX part
	Lemmas about sink paths
	Proof of Theorem 2.1, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 SINK part

	Timing Sensitive Control Dependence
	Basic Properties of Timing Sensitive Control Dependence
	Timing Sensitive Slicing
	Soundness and Minimality of Timing Sensitive Control Dependence
	Definition of (clocked) Traces and Time-Sensitive Non-Interference
	Soundness of Timing Sensitive Control Dependence
	Minimality of Timing Sensitive Control Dependence

	Proofs for the Algorithm section
	Postdominance Frontiers
	Transitive Reductions and Pseudo-forests
	Transitivity results
	Reducible Graphs
	Graphs with unique exit node

	Timing Sensitive Postdominance Frontiers

