
Information Flow Control for Java
Based on Path Conditions in Dependence Graphs

Christian Hammer∗

University of Passau,
Passau, Germany.

hammer@fmi.uni-passau.de

Jens Krinke
FernUniversität in Hagen,

Hagen, Germany.
krinke@acm.org

Gregor Snelting
University of Passau,

Passau, Germany.
snelting@fmi.uni-passau.de

Abstract

Language-based information flow control (IFC) is a
powerful tool to discover security leaks in software. Most
current IFC approaches are however based on non-
standard type systems. Type-based IFC is elegant, but not
precise and can lead to false alarms.

We present a more precise approach to IFC which ex-
ploits active research in static program analysis. Our IFC
approach is based on path conditions in program depen-
dence graphs (PDGs). PDGs are a sophisticated and pow-
erful analysis device, and today can handle realistic pro-
grams in full C or Java. We first recapitulate a theorem
connecting the classical notion of noninterference to PDGs.

We then introduce path conditions in Java PDGs. Path
conditions are necessary conditions for information flow;
today path conditions can be generated and solved for real-
istic programs. We show how path conditions can produce
witnesses for security leaks.

The approach has been implemented for full Java and
augmented with classical security level lattices. Examples
and case studies demonstrate the feasibility and power of
the method.

1 Introduction

Information Flow Control (IFC) is an important tech-
nique for discovering security leaks in software. IFC has
two main tasks:

• guarantee that confidential data cannot leak to public
variables (confidentiality);

• guarantee that critical computations cannot be manip-
ulated from outside (integrity).

∗This research was supported by Deutsche Forschungsgemeinschaft
(DFG grant Sn11/9-1).

State-of-the-art IFC exploits program analysis to assign
and propagate security levels to variables and expressions,
guaranteeing that any potential security leak is found.
Language-Based IFC [23] utilizes the program source code
alone to discover security leaks. This has the huge advan-
tage that it can exploit a long history of research on pro-
gram analysis, and will discover any security leaks caused
by software itself, though this approach may miss informa-
tion flow through e.g. physical side channels, which are usu-
ally handled by separate approaches.

In their recent overview article, Sabelfeld and Myers [23]
survey contemporary IFC approaches based on program
analysis. Most contemporary analysis methods are based
on non-standard type systems. Security levels are coded as
types, and the typing rules catch illegal flow of informa-
tion [18, 24]. Type systems can handle sequential as well
as concurrent programs, and can even be used to discover
timing leaks [2].

However, type-based analysis is usually not flow sensi-
tive, context sensitive, nor object sensitive. This leads to
imprecision and thus to a high number of false alarms. For
example, the well-known program fragment

1 if (confidential==1)
2 public = 42

3 else
4 public = 17;

5 public = 0;

is considered insecure by type-based IFC, as type-based IFC
is not flow-sensitive. It does not see that the potential in-
formation flow from confidential to public in the if-
statement is guaranteed to be killed by the following assign-
ment. Type-based IFC performs even worse in the presence
of unstructured control flow or exceptions.

Fortunately, program analysis has much more to offer
than just sophisticated type systems. In particular, the pro-
gram dependence graph (PDG) has become, after lively re-
search in adaptations for real world languages, a standard
data structure allowing various kinds of powerful program

c©2007 IEEE. To be published in the Proceedings IEEE International Symposium on Secure Software Engineering, 2006 in Arlington, Virgina, USA.
Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the
IEEE.

analyses. Recently, we proved a theorem connecting PDGs
to the classical noninterference criterion [26].

Still, the PDG can only decide whether there is a poten-
tial information flow from a to b, or whether this is def-
initely not the case. The PDG does not provide detailed
insight into the circumstances of a flow. And even PDGs
sometimes generate false alarms.

We therefore proposed to base IFC on a combination of
dependence graphs and constraint solving. While Snelting
published the original idea already in 1996 [25], more elab-
orate algorithms were needed to make the approach work
and scale for full C and realistic programs [21, 26].

Later, Hammer et al. developed a precise PDG for full
Java [11], which is much more difficult than C due to the
effects of inheritance and dynamic dispatch, and due to the
concurrency caused by thread programming. Krinke’s PDG
algorithm [14] for multi-threaded programs has recently
been integrated. Today, we can handle realistic Java pro-
grams and thus have a powerful tool for IFC available that
is much more precise than conventional approaches.

In this paper, we augment Java PDGs with Denning-
Style security level lattices and introduce path conditions
for Java PDGs. We present a new technique to generate
path conditions for dynamic dispatch. Path conditions can
(sometimes) be solved for input variables, such solved con-
ditions act as a witness for illegal flow: it will become vis-
ible when the program is fed with the witness. We present
several examples and performance data, and compare the
approach to type-based IFC systems such as Jif [18].

2 Dependence Graphs and Noninterference

Program dependence graphs are a standard tool to model
information flow through a program. Program statements or
expressions are the graph nodes. A data dependence edge
x → y means that statement x assigns a variable which is
used in statement y (without being reassigned underway).
A control dependence edge x→ y means that the mere exe-
cution of y depends on the value of the expression x (which
is typically a condition in an if- or while-statement).

A path x →∗ y means that information can flow from
x to y; if there is no path, it is guaranteed that there is no
information flow. In particular, all statements influencing y
(the so-called backward slice) are easily computed as

BS (y) = {x | x→∗ y}

For the small C program and its dependence graph in figure
1, there is a path from statement 1 to statement 9, indicating
that input variable a will eventually influence output vari-
able z. Since there is no path (1) →∗ (4), there is definitely
no influence from a to x.

The power of PDGs (compared to e.g. type systems)
stems from the fact that they are flow sensitive: the order

1 a = u();

2 while (n>0) {
3 x = v();

4 if (x>0)
5 b = a;

6 else
7 c = b;

8 }

9 z = c;

Start

1 2

3 4

5 7

9

Figure 1. A small program and its dependence
graph

of statements does matter and is taken into account; as a
result the PDG never indicates influences which are in fact
impossible due to the given statement order of the program.

Note that PDGs and slicing are much more complex for
realistic languages with procedures, complex control flow,
and data structures. An overview of fundamental slicing
techniques can be found in [15, 28]; we will not discuss
technical details here. For the full C or Java language,
the computation of precise dependence graphs and slices is
absolutely nontrivial; there is ongoing research worldwide
since 15 years. The state of the art in PDGs and slicing is
summarized in the recent work by Krinke [13].

If there is no PDG path from a to b, it is guaranteed there
is no information flow from a to b. This is true for all in-
formation flow which is not caused by hidden physical side
channels such as timing leaks. It is therefore not surprising
that traditional technical definitions for secure information
flow such as noninterference are related to PDGs.

Noninterference was introduced in [9]. Every statement
a has a security level dom(a). Noninterference between two
security levels, written as d 6{ e means that no statement
with security level d may influence a statement of security
level e. A system is thus considered safe according to the
Goguen/Meseguer noninterference criterion, if for all pos-
sible statement sequences x and all final statements a

output(run(z0, x), a) = output(run(z0, purge(x, dom(a))), a)

where purge removes all statements from statement se-
quence x which must not influence a’s security level
dom(a). That is, the final program output must be un-
changed if any statement which must not influence the last
statement according to its security level is deleted.

Our following theorem demonstrates how PDGs can be
used to check for noninterference.
Theorem. If

s ∈ BS (a) =⇒ dom(s){ dom(a)

1 class PasswordFile {
2 private String[] names;
3 private String[] passwords;
4 public boolean check(String user,
5 String password) {

6 boolean match = false;
7 try {
8 for (int i=0; i<names.length; i++) {
9 if (names[i]==user

10 && passwords[i]==password) {

11 match = true;
12 break;
13 }

14 }

15 }

16 catch (NullPointerException e) {}
17 catch (IndexOutOfBoundsException e) {};
18 return match;
19 }

20 }

Figure 2. A Java password checker

then the noninterference criterion is satisfied for a.
Proof. See [26]

Thus if dom(s) 6{ dom(a) (s and a have noninterfering
security levels), there must be no PDG path s →∗ a, other-
wise a security leak has been discovered.

The power and generality of the theorem should not be
underestimated. Its generality stems from the fact that it
is independent of specific languages or slicing algorithms;
it just exploits a fundamental property of any correct slice.
Applying the theorem results in a linear-time noninterfer-
ence test for a, as all s ∈ BS (a) must be traversed once.

But note that even the PDG is a conservative approxima-
tion; due to imprecision of the underlying program analysis
algorithms it may contain too many edges (but never too
few). In any case, PDGs are much more precise than type-
based systems. The example from the introduction does not
have a PDG path (1)→∗ (5) and thus is considered safe; no
false alarm is generated.

3 PDGs for Java

In the following, we assume some familiarity with slic-
ing technology, as presented for example in [28].

Intraprocedural PDGs can easily be constructed for
method bodies, using the well-known algorithms from lit-
erature. Interprocedural slicing, however, is more tricky.
The standard analysis relies on system dependence graphs
(SDGs), which include dependences for calls as well as
transitive dependences between parameters. SDGs are
context-sensitive, that is, different calls to the same proce-

Figure 3. PDG for figure 2

dure or method are indeed distinguished; avoiding spurious
dependences.

While SDGs in general are well understood, dynamic
dispatch and objects as method parameters make SDG con-
struction more difficult. Treatment of dynamic dispatch is
well known: possible targets of method calls are approxi-
mated statically (in our case using points-to [16, 22] infor-
mation), and for all possible target methods the standard
interprocedural SDG construction is done.

Figure 2 shows a small Java class for checking a pass-
word (taken from [18]) which utilizes methods and excep-
tions. The initial PDG for the check method can be seen
in figure 3. Solid lines represent control dependence and
dashed lines represent data dependence. Node 0 is the
method entry with its parameters in node 1 and 2 (we use
pw and pws as a shorthand for password and passwords).
Nodes 3 – 6 represent the fields of the class, note that be-
cause the fields are arrays, the reference and the elements
are distinguished. Nodes 7 and 8 represent the initializa-
tions of the local variables match and i in lines 6 and 8. All
these nodes are immediate control dependent on the method
entry. The other nodes represent the statements (nodes 12,
13, and 14) and the predicates (nodes 9, 10, and 11).

This PDG is still incomplete, as it does not include ex-
ceptions. Dynamic runtime exceptions can alter the control
flow of a program an thus may lead to implicit flow, in case
the exception is caught by some handler on the call-stack,
or else represent a covert channel in case the exception is
propagated to the top of the stack yielding a program ter-
mination with stack trace. This is why many type-based
approaches disallow (or even ignore!) implicit exceptions.

Our analysis conservatively adds control flow edges
from bytecode instructions which might throw unchecked
exceptions to an appropriate exception handler [6], or per-
colates the exception to the callee which in turn receives
such a conservative control flow edge. Thus, our analy-
sis does not miss implicit flow caused by these exceptions,
hence even the covert channel of uncaught exceptions is
checked. The resulting final PDG is shown in figure 4.

Figure 4. PDG with exceptions for figure 2

Method parameters are another issue. SDGs support
call-by-value-result parameters, and use one SDG node per
in- resp. out-parameter. Java supports only call-by-value; in
particular, for reference types the object reference is passed
to the method. However, field values stored in actual pa-
rameter objects may be changed during a method call. Such
possible field changes have to be made visible in the SDG
by adding modified fields to the formal-out parameters.

To improve precision, we made the analysis object-
sensitive by representing nested parameter objects as trees.
Unfolding object trees stops once a fixed point with respect
to the aliasing situation of the containing object is reached.
Thus we obtain a safe dependency criterion which leads to
more precise Java slices than previous approaches [11].

Figure 5 shows another small example program, which
serves to illustrate the effects of dynamic dispatch and
object-sensitivity. We will explain the details of security
levels in the next section, right here we use two security
levels Low < High. The main method holds two variables
where secure is annotated with High and the other with
Low. Thus both statements provide a security level and are
underlined in the source code. Secure data must not af-
fect visible output of a program. Hence the arguments to
System.out.println require that any node on any path
to the output node provides a level not exceeding a given
level, in our case Low. Statements that require a given se-
curity level are overlined.

Figure 6 shows the SDG for this example. For brevity we
omitted the PDGs of the set and get methods. The effects
of method calls are reflected by summary edges (shown as
dashed edges in figure 6) between actual-in and actual-out
parameter nodes. Summary edges have been introduced by
Reps et al. They represent a transitive dependence between

1 class A {
2 int x;
3 void set() { x = 0; }
4 void set(int i) { x = i; }
5 int get() { return x; }
6 }

7

8 class B extends A {
9 void set() { x = 1; }

10 }

11

12 class InfFlow {
13 static void main(String[] a) {
14 // part 1: no information flow

15 int secure = 0, pub = 1;

16 A o = new A();
17 o.set(secure);

18 o = new A();
19 o.set(pub);

20 System.out.println(o.get());

21 // part 2: dynamic dispatch

22 if (secure==0 && a[0].equals("007"))
23 o = new B();
24 o.set();

25 System.out.println(o.get());

26 //part 3: instanceof

27 o.set(42);

28 System.out.println(o instanceof B);

29 }

30 }

Figure 5. Another Java program

the corresponding formal-in and formal-out node pair. For
example, the call to o.set(secure) contains two sum-
mary edges, one from the target object o and one from
secure to the field x of o; representing the side-effect that
the value of secure is written to the field x of the this-
pointer in set. Summary edges enable context-sensitive
slicing in SDGs in time linear to the number of nodes.

First, a new A object is created where field x is initialized
to secure. However, this object is no longer used after-
wards as the variable is overwritten with a new object whose
x field is set to pub, the variable annotated with Low. Thus
the value of x in o does no longer contain High information,
so (20) is a perfectly legal statement. Information flow con-
trol based on slicing can detect this fact: In figure 6 there ex-
ists no path (15) →∗ (20) from the initialization of secure
to the first print statement (i.e. the leftmost println node).
Instead, we have a path from the initialization of pub to this
output node. The fact that we did not generate a false alarm
here stems from the object-sensitivity of our PDG based on
points-to data, flow-sensitivity of PDGs, and from context-
sensitivity of backward slicing with summary edges.

main

o o o

x

o o o

x

secure pub o = new B() o o

xo

secure = 0pub = 1 A o = new A() o.set(secure) o = new A() o.set(pub) println(o.get()) o.set() println(o.get())secure==0

o o

x

o.set(42) println(o instanceof B)

Figure 6. PDG for main in figure 5

The next statements show an illegal flow of information:
Line (22) checks whether secure is zero and creates an ob-
ject of class B in this case. The invocation of set on o is
dynamically dispatched: If the target object is an instance
of A then x is set to zero; if it has type B, x receives the value
one. (22) - (24) are analogous to the following implicit flow:
if (secure==0 && ...) o.x = 0 else o.x = 1;

In the PDG we have a path from secure to the predicate
testing secure to o.set() and its target object o. Follow-
ing the summary edge one reaches the x field and finally
the second output node. This path is a witness for the ille-
gal flow. Our analysis thus rejects this program because it
prints out the High value of o.x in (25).

But even if the value of x was not dependent on secure
(after statement 27) an attacker could exploit the runtime
type of o to gain information about the value of secure
(28). This implicit information flow is detected by our
analysis as well, since there is a PDG path (15)→∗ (28).

Let us finally say a few words about PDGs for concur-
rent or multi-threaded programs which are common in Java.
Krinke [12, 14] was the first author to present a precise al-
gorithm for slicing concurrent programs. The method needs
may-happen-in-parallel information to start with; several al-
gorithms are known for this problem. Based on this so-
called MHP analysis, Krinke’s algorithm does not only add
dependences between variables in different threads; it does
in particular ensure that the sequence of statements in a
PDG path does correspond to a possible execution order.
Paths which contain impossible execution orders (and thus
would introduce “time-traveling”) are filtered out. This al-
gorithm is precise, but expensive and limited to a fixed num-
ber of threads. We are currently implementing it and ex-
plore variations which trade precision for performance and
flexibility.

4 Security levels and declassification

The noninterference criterion prevents illegal flow, but in
practice one wants more detailed information about secu-
rity levels of individual statements. Thus theoretical mod-
els for IFC utilize a lattice L = (L,t,u) of security levels,
the simplest consisting just of two security levels High and
Low. We provide a specification option for the lattice, and

an option to mark some (or all) statements with their se-
curity level. The security level of statement resp. its PDG
node x is written S (x), and confidentiality requires that an
information receiver must have at least the security level of
any sender. In PDGs, this implies

S (x) ≥
⊔

y∈pred(x)

S (y)

which ensures S (y) { S (x). The dual condition for in-
tegrity is

S (x) ≤
�

y∈pred(x)

S (y)

However, this assumes that every statement resp. node has
a security level specified, which is not realistic. We want to
specify provided as well as required security levels not for
all statements, but for certain selected statements only. The
provided security level specifies that a statements sends in-
formation with the provided security level and the required
security level specifies that only information with a smaller
security level may reach that statement1. From those we
compute the actual security levels and compare them with
the required ones. The provided security levels are defined
by a partial function P : N → L, where N is the set of nodes
resp. statements of the programs. Thus, l = P(s) specifies
the statement’s security level. The required security levels
are defined similarly as a partial function R : N → L. The
actual security level S (x) for a statement x is computed from
the security levels of its predecessor and its own provided
security level (if present):

S (x) =
{

P(x) t
⊔

y∈pred(x) S (y) if P(x) defined⊔
y∈pred(x) S (y) otherwise

For simplicity in presentation, we extend P to a total func-
tion P′ such that all statements have a provided security
level:

P′(x) =
{

P(x) if P(x) defined
⊥ otherwise

Note that ⊥ is the neutral element (for t). Now l = P′(x)
gives the provided security level of any statement x.

S (x) = P′(x) t
⊔

y∈pred(x)

S (y)

1The term required may be misleading here—it is actually more like a
limit

Figure 7. PDG for figure 2 with computed se-
curity levels

Due to the monotonicity of the computation and the limited
height of the security level lattice, a minimal fixed point
for S is guaranteed to exist and can be computed using a
standard iteration.

The computed S ensures confidentiality; integrity can be
computed similarly. However, for real confidentiality, the
required security levels have to be checked against the com-
puted ones:

∀l = R(x) : l ≥ S (x)

Thus, for any l = R(x) such that l � S (x) we have a confi-
dentiality violation at x because S (x) 6{ l (the security level
of S (x) is not allowed to influence level l). Note that it is �
and not < because l and S (x) might not be comparable.

Declassification is introduced into this model by another
partial function D : N → L similar to P and R. This func-
tion specifies a declassification to security level d at state-
ment s (d = D(s)). A declassification simply changes the
computation of S :

S (x) =
{

D(x) if D(x) defined
P′(x) t

⊔
y∈pred(x) S (y) otherwise

The incoming security levels are ignored and replaced by
the declassification security level. Note that the declassifi-
cation may raise the security level if the incoming security
level is lower than the specified declassification level.

The computation of S (s) can be expressed through trans-
fer functions F : L → L in the form F(x) = ps t x or
F(x) = ds where ps and ds are constants (predefined by P
and D). The transfer functions build a monotone function
space and with the lattice of security levels L we have a
monotone data flow analysis framework. Thus, all proper-
ties of monotone data flow analysis frameworks apply, par-
ticularly the existence of a minimal fixed point for S .

As an example, consider the PDG for the password pro-
gram (figure 3) again. We choose a three-level security
lattice: public, confidential, and secret where public {

confidential { secret. The list of passwords is secret, thus
P(3) = secret ∧ P(4) = secret. The list of names and the
parameter password is confidential, because they should
never be visible to a user. Thus, P(1) = confidential∧P(5) =
confidential ∧ P(6) = confidential. Starting with these pro-
vided security levels, we can compute the actual security
levels which are depicted in Figure 7 through white for pub-
lic, light gray for confidential, and gray for secret. In a
first attempt, we require that no confidential or secret in-
formation flows out of the method, thus we require the re-
turn statement to have a required security level of public
(R(14) = public). However, this shows an interference, be-
cause S (14) = secret and secret 6{ public. It is clear that
match has to be computed from secret information but it re-
veals no secure data. Therefore, the return statements gets
a declassification to public, D(14) = public.

As usual, procedures or methods require context-
sensitive analysis. Consider the following fragment, in
which the function f has no side-effects and thus is safe:

1 secret = 1;

2 public = 2;

3 s = f(secret);

4 x = f(public);

5 p = x;

Here, secret has a (provided) security level of High,
public has Low and s has a (required) security level of
High and p has Low. If we ignore calling context and han-
dle the SDG edges like data or control dependence edges,
we will have a violation for p: The security level High from
secret will propagate into f due to the call f(secret).
Because computed security level of f is then High, the call
f(public) will propagate High to p. To solve this issue,
an approach similar to context sensitive slicing is used.

Some IFC checkers such as Jif [18] use a generaliza-
tion of Denning’s lattices, the so-called decentralized label
model. This model allows to specify sets of security levels
(called “labels” or “principals”) for every statement, and to
attach a set of operations to any label. This is written e.g.
{o1 : r1, r2; o2 : r2; r3} and thus is slightly more general.
Our approach could easily be generalized to use the decen-
tralized label model as well.

But note that even decentralized labels can not overcome
the impreciseness of type-based analysis. As an example,
we adapted the first part of figure 5 to Jif syntax and anno-
tated the declaration of o and both instantiations of A with
the principal {pp:}. The output statement was replaced by
an equivalent code that allowed public output. Jif reports
that secure data could flow to that public channel and thus
raised a false alarm.

5 Path Conditions

In order to make the analysis more precise, we intro-
duced path conditions, which are necessary conditions for
information flow between two nodes.

The formulae for the generation of path conditions are
quite complex (for details, see [26]), and only the most fun-
damental formula will be given here:

PC(x, y) =
∨

P Path x→∗y

∧
u node in P

E(u)

where E(u) is a necessary condition for the execution of u:

E(x) =
∨

P Control Path Start→∗x

∧
ν→µ∈P

c(ν→ µ)

c(ν → µ) is a condition associated with dependence edge
ν → µ. For control dependences, c(ν → µ) is typi-
cally a condition from a while- or if-statement; for data de-
pendences, more conditions constraining information flow
through data types are added (see examples below). Pro-
gram variables in a path condition are (implicitly) existen-
tially quantified, as they are necessary conditions for poten-
tial information flow.

In Figure 1, we have

c(2→ 3) ≡ c(2→ 4) ≡ (n > 0),

c(4→ 5) ≡ (x > 0), c(4→ 7) ≡ (x ≤ 0),

E(1) ≡ true, E(3) ≡ (n > 0),

E(5) ≡ (n > 0) ∧ (x > 0),

PC(1, 5) ≡ E(1) ∧ E(5) ≡ ∃n, x.(n > 0) ∧ (x > 0)

Slightly more interesting are the following program frag-
ments and their path conditions:

1 a[i+3] = x;

2 if (i>10)
3 y = a[2*j-42];

PC(1, 3) ≡ ∃i, j.(i > 10) ∧ (i + 3 = 2 j − 42)

and

1 a[i+3] = x;

2 if ((i>10)&&(j<5))
3 y = a[2*j-42];

PC(1, 3) ≡ ∃i, j.(i > 10) ∧ (j < 5)
∧ (i + 3 = 2 j − 42)

≡ false

These examples indicate that path conditions give pre-
cise conditions for information flow and can even determine
that such flow is impossible even though there is a path in
the graph.

We will not go into the details of path condition gen-
eration, but the reader should be aware that making path
conditions work for full C resp. Java and realistic programs
is non-trivial. Theoretical and practical work can be found
in [10, 13, 20, 21, 26]. In particular, interprocedural path
conditions, like PDGs and security levels, must be context-
sensitive. Just to mention a few more things: the program
must be transformed into single assignment form first; and
while PDG cycles can be ignored, due to the high number of
cycle-free PDG paths in realistic programs, interval analysis
for irreducible graphs must be exploited to obtain a hierar-
chy of nested sub-PDGs; BDDs must be used to minimize
the size of path conditions. Today, our implementation Val-
Soft can handle C programs up to approx. 10000 LOC and
generate path conditions in a few seconds or minutes.

Path conditions for Java are even more complex, as in-
heritance and dynamic dispatch must be considered. As it
is not known statically which method (re)definition will be
called at runtime, interprocedural path conditions become
implications. As an example, consider the call

y = o.f(x)

where f is redefined several times in classes A, B, and C.
The path condition PC(x, y), constraining information flow
from the actual method parameter x to the return value y,
will basically look as follows:

PC(x, y) ≡ (o instanceof A⇒ PCA(x, y))
∧(o instanceof B⇒ PCB(x, y))
∧(o instanceof C ⇒ PCC(x, y))

where PCA, PCB, PCC are the standard path conditions for
the three (re)definitions of f .

The example also shows that runtime type checks can
be part of path conditions. Note that the number of im-
plications can often be drastically reduced by exploiting
points-to information. Other Java features such as excep-
tions, generic classes, static variables etc. do not influence
the path condition generation: the PDG handles them cor-
rectly, and the standard formulae for path conditions apply.

Thus we omit further details on path conditions for Java,
but present the path conditions for figure 5. First, remember
that there is no path (17) →∗ (20), thus PC(17, 20) ≡ false:
no false alarm, thanks to flow and object sensitivity. But as
mentioned earlier, there is a path from line 15 (node 2 in
figure 6) to 25 via 18, 19, 20, 22 and 24. Line 25 prints the
value of o’s field x, and this value depends on the secure
variable. Thus the path indicates a potential security leak,
which is not obvious due to the dynamic dispatch in line 24.
The path condition for the path is

PC(15, 25) ≡ true ∧ true ∧
(
secure == 0 ∧ a[0].equals(“007′′)

)
∧true ∧ true ∧ (o instanceof A⇒ true)

∧(o instanceof B⇒ true)

≡ secure == 0 && a[0].equals(“007′′)

This path condition seems trivial enough, but demonstrates
the concept of a witness: if the first program parameter is
“007”, then an illegal flow (15) →∗ (24) will happen, and
the printed value of o.x will depend on the value of the
secure variable. Such a witness will be quite convincing
to a jury in a law suit.

Generally speaking, path conditions for illegal flow
which can be solved for the program’s input variables act as
a witness for a security leak. Providing input values accord-
ing to the solved conditions makes any illegal information
flow visible immediately. We have already seen a simple
example for a witness. The general mechanism to compute
witnesses works as follows.

When we discover an interference at a statement s where
the required security level R(s) is not larger than the ac-
tual (computed) security level S (s), we can investigate the
source of this interference. We distinguish between immedi-
ate and transitive interference. The immediate interference
exists between s and its predecessors which lead to the com-
puted security level S (s). Usually, only a subset of the pre-
decessors is responsible for the interference—it is the mini-
mal subset N ⊆ pred(s) that lead to S (s): S (s) =

⊔
y∈N S (y).

Path conditions give the condition PI of the immediate
interference and we can compute it through

PI =
∧

y∈N PC(y, s).
Often, we are more interested in the transitive interfer-

ence, i.e. the interference between a statement s with a
required security level of l and a statement x with a pro-
vided security level p, where there is a path x →∗ s which
“transmits” p to s. To investigate the transitive interference,
we use the correspondence between slicing and noninterfer-
ence. The first step is to compute the backwards slice BS (s)
that gives all statements that may influence s. From BS (s)
we extract all statements with a provided security level as
the possible set of information sources:

T = {x ∈ BS (s) | x ∈ dom P}

The computed security level cannot be smaller as (or not
comparable to) any provided security level at its sources:
∀x ∈ T : P(x) ≤ S (s). Again, we need the minimal subset
T ′ of T that computes S (s): S (s) =

⊔
y∈T ′ S (y). Path con-

ditions give the condition PT of the transitive interference
and we can compute it through

PT =
∧
y∈T ′

PC(y, s)

Note that there may exist multiple minimal subsets N and
T ′ and we might want to examine all of them.

Applying these formulae to figure 7, we obtain the fol-
lowing witness:

PT ≡ PC(3, 14) ≡ (i < names.length)
∧(names[i] = user) ∧ (passwords[i] = password)

This simple path condition is already in solved form. But
in general solving path conditions for input variables, in or-
der to obtain explicit witnesses, is not easy for realistic pro-
grams: they consist of huge heaps of conditions extracted
from control statements such as if, while, switch; combined
into substantial amounts of conjunctions and disjunctions
with implicit existential quantifiers upfront. As a first step,
a minimal disjunctive normal form is computed before any
further constraint solving is attempted.

Since path conditions are existentially quantified, it is
natural to apply quantifier elimination [30] and use sys-
tems such as Redlog [7]. Quantifier elimination replaces
an existentially quantified variable by constraints on other
variables, and the theory guarantees that both formulae are
equivalent. But note that not all path conditions can be
solved due to decidability problems. In practice, path condi-
tions can be solved for medium-sized programs containing
mostly arithmetic conditions.

6 Preliminary Experience

At the time of this writing, the Java slicer and security
levels are fully operational, while the path condition gener-
ator is being adapted from the C version. To give the reader
an idea how the system performs on realistic programs, we
report some preliminary findings.

Our largest object of study is the Purse applet from the
“Pacap” case study [5]. This program is written in JavaCard
and contains all JavaCard API PDGs and stubs for native
API methods. The program is 9835 lines long. The PDG
(including necessary API parts) consists of 184590 nodes
and 1484975 edges. The time for PDG construction was
277 seconds plus 2338 seconds for generation of summary
edges. The latter is measured separately as it is only nec-
essary for context-sensitive slicing but requires an O(n3) al-
gorithm.

Next, 10620 backward slices were selected by choosing
a random node as a starting point. The average slice size
is 109093 nodes, which is about 50% of the whole source
code. This is typical for backward slices and illustrates why
precise witnesses can only be achieved via path conditions
as described in section 5.

As a case study for IFC we chose another JavaCard ap-
plet called Wallet2. It is only 252 lines long but with the
necessary API parts and stubs the PDG consists of 21274
nodes and 87726 edges. The time for PDG construction
was 16 seconds plus 19 for summary edges.

Access to the wallet is granted only after supplying the
correct PIN which we annotated with the provided secu-
rity level high. We annotated the response method to the
terminal with required level low. A check with our sys-
tem found—as expected—that the PIN value might leak

2www.javaworld.com/javaworld/jw-07-1999/jw-07-javacard.html

out through the method checking the entered PIN. This is
a classic application of declassification: after downgrading
the boolean result to low this method showed no further vi-
olations.

7 Related Work

Several papers have been written about PDGs and slicers
for Java, but to our knowledge only the Indus slicer devel-
oped by Hatcliff et al. [19] is—besides ours—fully imple-
mented and can handle full Java. Indus is customizable,
embedded into Eclipse, and has a very nice GUI, but is less
precise than our slicer. In particular, it allows time traveling
for concurrent programs.

We already mentioned the overview article by Sabelfeld
and Myers [23], which surveys language-based IFC meth-
ods. The focus is on type-based approaches; dependences
and slicing are mentioned, but the authors obviously do not
consider them a realistic option for IFC. This is amazing,
since PDGs have been around for years. But perhaps the
IFC community ignored PDGs so far, because precise PDGs
for full C or Java are so difficult to construct.

Abadi et al. [1] was the first author to connect slicing
and noninterference, but only for λ-calculus. It is amazing
that our theorem from section 2 (which holds for imperative
languages and their PDGs) was not discovered earlier. Only
Anderson et al. [3] presented an example in which chopping
can be used to show illegal information flow between com-
ponents which were supposedly independent. They do not
employ a security lattice, though.

Volpano and Smith [29] were the first to present a non-
standard type system for IFC. They extended traditional
type systems in order to check for pure noninterference in
simple while-languages with procedure calls. The proce-
dures can be polymorphic with respect to security classes
allowing context-sensitive analysis. They proof noninter-
ference in case the system reports no typing errors. An ex-
tension to multi-threaded languages is given in [24].

Myers [17] defines JFlow, an extension of the Java lan-
guage with a type system for information flow. The JIF
compiler [18] implements this language. We already dis-
cussed that his approach is less precise, but it is more ef-
ficient and supports generic classes and the decentralized
label model; labels and principals are first class objects.

Barthe and Rezk [4] present a security type system
for strict noninterference without declassification, handling
classes and objects. NullPointerException is the only
exception type allowed. Only values annotated with Low
may throw exceptions. Constructors are ignored, instead
objects are initialized with default values. A proof showing
the noninterference property of the type system is given.

Strecker [27] formulates a non-deterministic type system
including the noninterference proof. It handles mayor con-

cepts of MicroJava such as classes, fields and method calls,
but omits arrays and exceptions.

The Pacap case study [5] verifies secure interaction of
multiple JavaCard applets on one smartcard. They employ
model checking to ensure a sufficient condition for their se-
curity policy, which is based on a lattice similar to nonin-
terference without declassification. Implicit exceptions by
bytecode instructions are modeled, but such unstructured
control flow may lead to label creep (cf. [23, Sect. II E]).

Genaim [8] defines an abstract interpretation of the CFG
looking for information leaks. It can handle all byte-
code instructions of single-threaded Java and conservatively
handles implicit exceptions of bytecode instructions. The
analysis is flow- and context-sensitive but does not differ-
entiate fields of different objects. Instead, they propose an
object-insensitive solution folding all fields of a given class.
In our experience [11] object-insensitivity yields too many
spurious dependences. The same is true for the approxi-
mation of the call graph by CHA. In this setting, both will
result in many false alarms.

A combined static and dynamic approach for detection
of illegal information flow was presented recently [10]. It
allows the a-posteriori analysis of programs showing unex-
pected behavior and the computation of an exact witness for
reconstruction of the illegal information flow.

8 Conclusion

We presented a system for information flow control in
Java programs, which is based on path conditions in depen-
dence graphs. Such path conditions are very precise neces-
sary conditions for information flow between two program
points. Our approach is fully automatic, flow-sensitive,
context-sensitive, and object-sensitive.

Thus it is much more precise than traditional, type-based
IFC systems. In particular, unstructured control flow and
exceptions cannot lead to false alarms. We can handle
the full Java language (except reflection) and can analyze
medium-sized programs. Our approach defines and ex-
ploits, for the first time, path conditions in Java PDGs.

Our preliminary results indicate that the number of false
alarms is drastically reduced compared to type-based IFC
systems, while of course all potential security leaks are dis-
covered. Future case studies will apply our technique to
a larger benchmark of IFC problems, and provide quanti-
tative comparisons concerning performance and precision
between our approach and other IFC systems.

Right now, we can handle only medium-sized programs.
Security kernels are usually not really big; still, a better
scale-up is an issue. Another well-known problem in Java
is the API: even the smallest programs loads hundreds of
library classes, which must be analyzed together with the

client code. The bottleneck is always the points-to analysis,
as precise points-to for Java is notoriously difficult.

Thus PDG-based IFC is much more expensive than type-
based IFC. But a precise security analysis which costs min-
utes or even hours of cpu time is not too expensive com-
pared to possible consequences of illegal information flow.
Our final outcome, namely witnesses for illegal information
flow, will be very valuable in law suits against malicious
software vendors.

Acknowledgment. We thank Frank Nodes and Florian
Tausch for their implementation work.

References

[1] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core
calculus of dependency. In Proc. Symposium on Principles
of Programming Languages, pages 147–160. ACM, 1999.

[2] J. Agat. Transforming out timing leaks. In Proceedings of
the ACM Symposium on Principles of Programming Lan-
guages (POPL’00), pages 40–44. ACM Press, 2000.

[3] P. Anderson, T. Reps, and T. Teitelbaum. Design and imple-
mentation of a fine-grained software inspection tool. IEEE
Transactions on Software Engineering, 29(8), aug 2003.

[4] G. Barthe and T. Rezk. Non-interference for a JVM-like
language. In TLDI ’05: Proceedings of the 2005 ACM SIG-
PLAN international workshop on Types in languages design
and implementation, pages 103–112, New York, NY, USA,
2005. ACM Press.

[5] P. Bieber, J. Cazin, A. E. Marouani, P. Girard, J.-L. Lanet,
V. Wiels, and G.Zanon. The PACAP prototype: a tool for de-
tecting Java Card illegal flow. In Java Card Forum, Cannes,
France, Sept. 2000.

[6] C. Chambers, I. Pechtchanski, V. Sarkar, M. J. Serrano, and
H. Srinivasan. Dependence analysis for java. In Proceed-
ings of the 12th International Workshop on Languages and
Compilers for Parallel Computing, pages 35–52. Springer-
Verlag, 1999.

[7] A. Dolzmann and T. Sturm. Redlog: Computer algebra
meets computer logic. ACM SIGSAM Bulletin, 31(2):2–9,
1997.

[8] S. Genaim and F. Spoto. Information flow analysis for
java bytecode. In 6th International Conference on Verifica-
tion, Model Checking, and Abstract Interpretation (VMCAI
2005), volume 3385 of LNCS, pages 346–362, Paris, France,
Jan. 2005. Springer.

[9] J. Goguen and J. Meseguer. Interference control and un-
winding. In Proc. Symposium on Security and Privacy,
pages 75–86. IEEE, 1984.

[10] C. Hammer, M. Grimme, and J. Krinke. Dynamic path con-
ditions in dependence graphs. In Proceedings of the ACM
SIGPLAN 2006 Workshop on Partial Evaluation and Pro-
gram Manipulation (PEPM ’06), pages 58–67, Jan 2006.

[11] C. Hammer and G. Snelting. An improved slicer for java. In
Proceedings of the ACM-SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering, pages
17–22. ACM Press, 2004.

[12] J. Krinke. Static slicing of threaded programs. In Pro-
ceedings of the Workshop on Program Analysis for Software
Tools and Engineering, pages 35–42, 1998.

[13] J. Krinke. Advanced Slicing of Sequential and Concurrent
Programs. PhD thesis, Universität Passau, July 2003.

[14] J. Krinke. Context-sensitive slicing of concurrent programs.
In Proc. FSE/ESEC, pages 178–187. ACM Press, 2003.

[15] J. Krinke. Program slicing. In Handbook of Software En-
gineering and Knowledge Engineering, volume 3: Recent
Advances. World Scientific Publishing, 2005.

[16] O. Lhotak and L. Hendren. Scaling Java points-to using
Sparc. In Compiler Construction, 12th International Con-
ference, LNCS, pages 153–169, 2003.

[17] A. C. Myers. Jflow: practical mostly-static information flow
control. In POPL ’99: Proceedings of the ACM Symposium
on Principles of programming languages, pages 228–241,
New York, NY, USA, 1999. ACM Press.

[18] A. C. Myers, N. Nystrom, L. Zhebg, and S. Sdanewic. Jif:
Java information flow. http://www.cornell.edu/jif.

[19] V. Ranganath, T. Amtoft, A. Banerjee, M. Dwyer, and
J. Hatcliff. A new foundation for control dependence and
slicing for modern pogram structures. In Proceedings of the
European Symposium on Programming (ESOP’05), pages
77–93. LNCS 3444, 2005.

[20] T. Robschink. Pfadbedingungen in Abhängigkeitsgraphen
und ihre Anwendung in der Softwaresicherheitstechnik. PhD
thesis, Universität Passau, Januar 2005. in German.

[21] T. Robschink and G. Snelting. Efficient path condi-
tions in dependence graphs. In Proceedings International
ACM/IEEE Conference on Software Engineering (ICSE’02),
pages 478–488, Orlando, FL, May 2002.

[22] A. Rountev, A. Milanova, and B. G. Ryder. Points-to analy-
sis for Java using annotated constraints. In Proc. 16th
Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications, pages 43–55, 2001.

[23] A. Sabelfeld and A. Myers. Language-based information-
flow security. IEEE Journal on Selected Areas in Communi-
cations, 21(1), January 2003.

[24] G. Smith and D. Volpano. Secure information flow in a
multi-threaded imperative language. In Proceedings of the
ACM Symposium on Principles of Programming Languages,
pages 355–364, San Diego, CA, January 1998.

[25] G. Snelting. Combining slicing and constraint solving for
validation of measurement software. In Proc. Static Analysis
Symposium, volume 1145 of LNCS, pages 332–348, 1996.

[26] G. Snelting, T. Robschink, and J. Krinke. Efficient path con-
ditions in dependence graphs for software safety analysis.
ACM Transactions on Software Engineering and Methodol-
ogy, to appear 2005.

[27] M. Strecker. Formal analysis of an information flow type
system for MicroJava (extended version). Technical report,
Technische Universität München, July 2003.

[28] F. Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3(3):121–189, Sept. 1995.

[29] D. Volpano and G. Smith. A type-based approach to pro-
gram security. In Proc. TAPSOFT’97, LNCS 1214, pages
607–621, Lille, France, Apr. 1997.

[30] V. Weispfenning. Simulation and optimization by quantifier
elimination. Journal of Symbolic Computation, 24(2):189–
208, 1997.

