Intransitive Noninterference in Dependence Graphs

Christian Hammer
University of Passau, Germany
hammer @fmi.uni-passau.de

Abstract—1In classic information flow control (IFC), noninter-
ference guarantees that no information flows from secret input
channels to public output channels. However, this notion turned
out to be overly restrictive as many intuitively secure programs do
allow some release. In this paper we define a static analysis that
allows intransitive noninterference in combination with context-
sensitive analysis for Java bytecode programs. In contrast to
type systems that annotate variables, our approach annotates
information sources and sinks. To the best of our knowledge this
is the first IFC technique which is flow-, context-, and object-
sensitive. It allows IFC for realistic languages like Java or C and
offers a mechanism for declassification to accommodate some
information leakage for cases where traditional noninterference
is too restrictive.

I. INTRODUCTION

Information Flow Control (IFC) is an important technique
for discovering security leaks in software. IFC has two main
tasks:

. guarantee that confidential data cannot leak to public
variables (confidentiality);

» guarantee that critical computations cannot be manipu-
lated from outside (integrity).

State-of-the-art IFC exploits program analysis to assign and
propagate security levels to variables and expressions, guaran-
teeing that any potential security leak is found. Language-
Based TFC [1] utilizes the program source code alone to
discover security leaks. This has the huge advantage that it
can exploit a long history of research on program analysis,
and will discover any security leaks caused by software itself,
though this approach may miss information flow through e.g.
physical side channels, which are usually handled by separate
approaches.

In their recent overview article, Sabelfeld and Myers [1]
survey contemporary IFC approaches based on program analy-
sis. Most contemporary analysis methods are based on non-
standard type systems. Security levels are coded as types for
variables (and fields in object-oriented software) and the typing
rules catch illegal flow of information [2], [3].

Most of the type-based approaches partition the set of
variables (and fields in object-oriented software) into disjoint
sets (such as secure and public data). If information illicitly
flows e.g. from the secure to the public partition, then the
program is already considered insecure, even if the public
variable is no longer live after that flow. The original intention
was, however, different: Classic noninterference states that the
two streams of (public) output of the same program should be
indistinguishable even if they differentiate on (secret) input, or

Jens Krinke
FernUniversitit in Hagen, Germany
krinke @acm.org

Frank Nodes
University of Passau, Germany

1 1f (confidential==1)
2 public = 42

; else
4 public = 17;
s public = 0;
Fig. 1. A secure program fragment

in other words secure input is not allowed to flow to public
output channels. So we really should not worry about secret
data in a variable as long as its content is not fed to output.

Besides, type-based analysis is wusually not flow-
sensitive, context-sensitive, nor object-sensitive.
This leads to imprecision and thus to a high number of
false alarms. For example, the well-known program fragment
in Figure 1 is considered insecure by type-based IFC, as
type-based IFC is not flow-sensitive. It does not see that
the potential information flow from confidential to
public in the if-statement is guaranteed to be killed by the
following assignment. Type-based IFC performs even worse
in the presence of unstructured control flow or exceptions.
Therefore, type systems greatly overapproximate information
flow control, resulting in too many secure programs rejected
(false positives). First steps towards flow-sensitive type
systems have been proposed, but are restricted to rudimentary
languages like While-languages [4], or languages with no
support for unstructured control flow [5].

Fortunately, program analysis has much more to offer than
just sophisticated type systems. In particular, the program
dependence graph (PDG) [6] has become a standard data
structure allowing various kinds of powerful program analyses
and in particular, efficient program slicing [7]. The first infor-
mation flow control algorithm based on PDGs for full C was
presented by Snelting et al. [8]. Recently, a theorem connecting
PDGs to the classical noninterference criterion was proven [9].
Later, Hammer et al. developed a precise PDG for full Java
[10], which is much more difficult than C due to the effects
of inheritance and dynamic dispatch. Today, we can handle
realistic C and Java programs and thus have a powerful tool
for IFC available that is much more precise than conventional
approaches.

In this paper, we augment PDGs with Denning-Style secu-
rity level lattices. We focus mainly on the precise interproce-
dural analysis with declassification in called methods, a feature
that our previous work [11] could only handle in a conservative

fashion. Finally, we present several examples and performance
data, and compare the approach to type-based IFC systems
such as Jif [3].

II. DEPENDENCE GRAPHS AND NONINTERFERENCE

Program dependence graphs are a standard tool to model
information flow through a program. Program statements or
expressions are the graph nodes. A data dependence edge x —
y means that statement x assigns a variable which is used in
statement y (without being reassigned underway). A control
dependence edge x — y means that the mere execution of y
depends on the value of the expression x (which is typically
a condition in an if- or while-statement).

A path x —* y means that information can flow from x to y;
if there is no path, it is guaranteed that there is no information
flow. In particular, all statements influencing y (the so-called
backward slice) are easily computed as

BS(y) ={x[x "y

If there is no PDG path from a to b, it is guaranteed
there is no information flow from a to b. This is true for all
information flow which is not caused by hidden physical side
channels such as timing leaks. It is therefore not surprising that
traditional technical definitions for secure information flow
such as noninterference are related to PDGs.

Noninterference was introduced in [12]. Every statement
a has a security level dom(a). Noninterference between two
security levels, written as d 7 e means that no statement with
security level d may influence a statement of security level e.
The following theorem demonstrates how PDGs can be used
to check for noninterference.

Theorem. If

s € BS(a) = dom(s) ~ dom(a) (1)

then the noninterference criterion is satisfied for a.
Proof. See [9]

Thus if dom(s) 7% dom(a) (s and a have noninterfering
security levels), there must be no PDG path s —* a, otherwise
a security leak has been discovered.

The generality of the theorem stems from the fact that it is
independent of specific languages or slicing algorithms; it just
exploits a fundamental property of any correct slice. Applying
the theorem results in a linear-time noninterference test for a,
as all s € BS(a) must be traversed once. However, as we will
see later, it is not possible to use declassification in a purely
slicing based approach.

But note that even the PDG is a conservative approximation;
due to imprecision of the underlying program analysis algo-
rithms it may contain too many edges (but never too few).
In any case, PDGs are much more precise than type-based
systems. The example from the introduction in Figure 1 does
not have a PDG path (1) —* (5) and thus is considered safe;
no false alarm is generated.

On the other hand, it must be noted that any slicing
based security analysis is sensitive to semantic preserving

transformations: Usually, any slicing approach does not elim-
inate statements like “if (h > h) then 1 = 0” and will
assume a transitive dependence from h to 1. Thus, semantic
consistency as postulated by Sabelfeld and Sands [13] is hard
to achieve.

In the following, we assume some familiarity with slicing
technology, as presented for example in [14], [15]; we will
not discuss technical details here. Note that the computation
of precise dependence graphs and slices is still a complex
problem.

Intraprocedural PDGs can easily be constructed for method
bodies, using the well-known algorithms from literature. In-
terprocedural slicing, however, is more tricky. The standard
analysis relies on system dependence graphs (SDGs), which
include dependences for calls as well as transitive dependences
between parameters [16]. SDGs are context-sensitive, that is,
different calls to the same procedure or method are indeed
distinguished; avoiding spurious dependences. In the follow-
ing, we will refer to SDGs when we are talking about the
complete system and we will refer to PDGs in the the sense
of procedure dependence graphs: they represent that part of a
SDG that corresponds to a single procedure or method.

Figure 2 shows a small Java class for checking a password
(taken from [3]). The PDG for the check method can be
seen in Figure 3. Solid lines represent control dependence
and dashed lines represent data dependence (ignore the shade
of the nodes for now). Node O is the method entry with
its parameters in nodes 1 and 2 (we use pw and pws as a
shorthand for password and passwords). Nodes 3 — 6 represent
the fields of the class, note that because the fields are arrays,
the reference and the elements are distinguished. Nodes 7 and
8 represent the initializations of the local variables match and
i in lines 6 and 8. All these nodes are immediate control
dependent on the method entry. The other nodes represent the
statements (nodes 12, 13, and 14) and the predicates (nodes
9, 10, and 11).

While SDGs in general are well understood dynamic dis-
patch and objects as method parameters make SDG construc-
tion more difficult, and the use of points-to analysis alone is
not sufficient. Treatment of dynamic dispatch is well known:
possible targets of method calls are approximated statically
(in our case using points-to information [17], [18]), and for
all possible target methods the standard interprocedural SDG
construction is done.

Method parameters are another issue. SDGs support call-by-
value-result parameters, and use one SDG node per in- resp.
out-parameter. Java supports only call-by-value; in particular,
for reference types the object reference is passed to the
method. However, field values stored in actual parameter
objects may be changed during a method call. Such possible
field changes have to be made visible in the SDG by adding
modified fields to the formal-out parameters. To improve pre-
cision, we made the analysis object-sensitive by representing
nested parameter objects as trees. Unfolding object trees stops
once a fixed point with respect to the aliasing situation of the
containing object is reached.

1 class PasswordFile {

) private String[] names; /*P:confidential*/
3 private String[] passwords; /*P:secret®*/

4 public boolean check(String user,

5 String password /*P:confidential*/) {
6 boolean match = false;

7 for (int i=0; i<names.length; i++) {

8 if (names[i]==user

9 && passwords[i]==password) {

10 match = true;

1 break;

12 }

13 }

14 return match; /*R:public®*/

15 }

Fig. 2. A Java password checker

1 class A {

» int x;

5 void set() { x = 0; }

+ void set(int i) { x = 1i;}

s int get() { return x; }

6 }

; class B extends A {

s void set() { x = 1; }

9 }

0o class InfFlow {

Fig. 3. PDG for check in Figure 2 n void main(String[] a){

12 //1. no information flow

13 int sec = 0 /*P:High*/;

14 int pub =1 /*P:Low*/;

15 A o = new AQ);

16 o.set(sec);

17 o = new AQ);

18 o.set(pub);

v System.out.println(o.get());
20 //2. dynamic dispatch

21 if (sec==0 && a[0].equals("007"))
2 o = new BQ);

2 o.set();

» System.out.println(o.get());
25 //3. instanceof

2% o.set(42);

» System.out.println(o _instanceof B);
28 }

29 }

Dynamic runtime exceptions can alter the control flow
of a program an thus may lead to implicit flow, in case
the exception is caught by some handler on the call-stack,
or else represent a covert channel in case the exception
is propagated to the top of the stack yielding a program
termination with stack trace. This is why many type-based
approaches disallow (or even ignore) implicit exceptions. Our
analysis conservatively adds control flow edges from bytecode
instructions which might throw unchecked exceptions to an
appropriate exception handler [19], or percolates the exception
to the callee which in turn receives such a conservative control
flow edge. Thus, our analysis does not miss implicit flow
caused by these exceptions, hence even the covert channel
of uncaught exceptions is checked.

Figure 4 shows another small example program, which
serves to illustrate the effects of dynamic dispatch and object-
sensitivity. We will explain the details of security levels in the
next section, right here we use two security levels Low < High.
The main method contains two variables where secure is
annotated with High and the other with Low. Thus both

Fig. 4. Another Java program

main

@ @ ? @ o.set(pub) printin(o.get()) secure::O

‘/@'J

Fig. 5.

statements provide a security level and are underlined in the
source code. Secure data must not affect visible output of
a program. Hence the arguments to System.out.println
require that any node on any path to the output node has a
security level not exceeding a given level, in our case Low.
Statements that require a given security level are underwaved.

Figure 5 shows the SDG for this example. For brevity we
omitted the PDGs of the set and get methods. The effects of
method calls are reflected by summary edges (shown as dashed
edges in Figure 4) between actual-in and actual-out parameter
nodes. Summary edges as introduced by Horwitz et al. [16]
represent a transitive dependence between the corresponding
formal-in and formal-out node pair. For example, the call to
o.set(secure) contains two summary edges, one from the
target object o and one from secure to the field x of o;
representing the side-effect that the value of secure is written
to the field x of the this-pointer in set. Summary edges
enable context-sensitive slicing in SDGs in time linear to the
number of nodes.

First, a new A object is created where field x is initialized
to secure. However, this object is no longer used afterward
as the variable is overwritten with a new object whose x field
is set to pub, the variable annotated with Low. Thus the value
of x in o does no longer contain High information, so (19) is
a perfectly legal statement. Information flow control based on
slicing can detect this fact: In Figure 4 there exists no path
(15) —* (20) from the initialization of secure to the first print
statement (i.e. the leftmost println node). Instead, we have
a path from the initialization of pub to this output node. The
fact that we did not generate a false alarm here stems from the
object-sensitivity of our SDG based on points-to data, flow-
sensitivity of SDGs, and from context-sensitivity of backward
slicing with summary edges.

The next statements show an illegal flow of information:
Line (21) checks whether secure is zero and creates an
object of class B in this case. The invocation of o.set is
dynamically dispatched: If the target object is an instance
of A then x is set to zero; if it has type B, x receives the
value one. (21) - (23) are analogous to the implicit flow:
if (secure==0 && ...) 0.x = 0 else 0.x = 1; In the
PDG we have a path from secure to the predicate testing
secure to o.set() and its target object o. Following the
summary edge one reaches the x field and finally the second
output node. This path is a witness for the illegal flow. Our
analysis thus rejects this program because it prints out the
High value of o.x in (24).

@ printin(o.get())

!
CoD <)
\
.
A
OO >
B

printin(o instanceof B)

o new () o
O

SDG for the program in Figure 4

But even if the value of x was not dependent on secure
(after statement 26) an attacker could exploit the runtime type
of o to gain information about the value of secure (27). This
implicit information flow is detected by our analysis as well,
since there is a PDG path (15) —* (28).

In order to compare our approach with type-based IFC, we
analyzed the program from Figure 4 using Jif [3]. Jif uses a
generalization of Denning’s lattices, the so-called decentral-
ized label model. It allows to specify sets of security levels
(called “labels” or “principals”) for every statement, and to
attach a set of operations to any label. This is written e.g.
{o1 : 11,1302 : ry;r3) and thus is slightly more general. Our
approach could easily be generalized to use the decentralized
label model as well.

We adapted the first part of Figure 4 to Jif syntax and
annotated the declaration of o and both instantiations of A
with the principal {pp:}. The output statement was replaced
by an equivalent code that allowed public output. Jif reports
that secure data could flow to that public channel and thus
raised a false alarm. Thus even decentralized labels can not
overcome the impreciseness of type-based analysis.

III. SECURITY LEVELS AND DECLASSIFICATION

The noninterference criterion prevents illegal flow, but in
practice one wants more detailed information about security
levels of individual statements. Thus theoretical models for
IFC utilize a lattice £ = (L,U,M) of security levels, the
simplest consisting just of two security levels High and Low.
We provide a specification option for the lattice, and an option
to mark some (or all) statements with their security level. The
security level of statement with PDG node x is written S (x),
and confidentiality requires that an information receiver must
have at least the security level of any sender. In PDGs, this
implies

Yy € pred(x) : S(x) = S(y)

which ensures S (y) ~» S(x). The dual condition for integrity
is
Yy € pred(x) : S(x) <S©)

However, this assumes that every statement resp. node has
a security level specified, which is not realistic. We want
to specify provided as well as required security levels not
for all statements, but for certain selected statements only.
The provided security level specifies that a statement sends
information with the provided security level and the required
security level specifies that only information with a smaller

security level may reach that statement!. The provided security
levels are defined by a partial function P : N — L, where N
is the set of nodes resp. statements of the programs. Thus,
[= P(s) specifies the statement’s security level. The required
security levels are defined similarly as a partial function
R : N — L. Thus, P(s) specifies the security level of the
information generated at s and R(s) specifies the maximal
allowed security level of the information reaching s. In analogy
to Theorem 1 from Section II, information with security level
[that is generated at some node x in the dependence graph,
is propagated along the dependences and should not reach
another node a which has a required security level which is
smaller than /. Thus a program represented as a dependence
graph does not violate confidentiality, iff

Ya € dom(R) : Vx € BS (a) ndom(P) : P(x) < R(a)

i.e. the backward slice from a node a with a required security
level R(a) must not contain a node x that has a higher security
level P(x).

Usually, the number of nodes that have a specified security

level is low, e.g. points of output. Therefore, the above
criterion can easily be transformed into an algorithm that
checks a program for confidentiality:
SDG-Based Confidentiality Check. For every node in the
dependence graph that has a required security level specified,
compute the backward slice, and check that no node in the
slice has a higher provided security level specified.

Checking each node separately allows a simple yet powerful
diagnosis in the case of a security violation: If a node x in the
backward slice BS (a) has a provided security level that is too
large (P(x) > R(a)), the responsible nodes can be computed
by a chop CH(x,a). The chop computes all nodes that are part
of path from node x to node a, thus it contains all nodes that
may be involved in the propagation from x’s security level to
a.

As an example, consider the PDG for the password program
(Figure 3) again. We choose a three-level security lattice: pub-
lic, confidential, and secret where public ~> confidential ~»
secret. The list of passwords is secret, thus P(3) = P(4) =
secret. The list of names and the parameter password is
confidential, because they should never be visible to a user.
Thus, P(1) = P(5) = P(6) = confidential. Figure 3 shows the
annotated PDG: The security levels are depicted through white
for public, light gray for confidential, and gray for secret.

According to the criterion, we require that no confidential
or secret information flows out of the method, thus we require
the return statement to have a required security level of public
(R(14) = public). A backward slice for node 14 will reveal that
nodes 1 and 3-6 are included in the slice and have a higher
security level, thus a security violation is revealed.

A. Declassification

In practice the above approach is too simple because in
some situations one might accept that information with a

! The term required may be misleading here—it is actually more like a limit

p int foo(int x) {

2 y = ... X . // compute y from x
3 return y; /*D:high -> low*/
« }

5

¢ int check () {

+ int secret = ... /*P:secret*/

8 int high = ... /*P:high*/
9 int x1, x2;

10 x1 = foo(secret);

i x2 = fooChigh);

12 return x2; /*R:low*/

3}

Fig. 6. Example

higher security level flows to a “lower” channel. A typical
example is the password checking method presented earlier:
The result of the method will eventually be used to access the
user’s private data or to output an error message that the login
was not successful. Of course, that areas will not have the same
security level (secret) as the list of passwords. Declassification
allows to lower the security level of incoming information at
specified points. In the example, declassification would reduce
the security level at the return node 14 to security level public
such that the result of the password check can be used in low
security areas.

We model declassification by specifying certain PDG nodes
to be declassification nodes: Let D be the set of declassification
nodes. A declassification node x € D has to have a required
and a provided security level: » = R(x) and p = P(x).
Information reaching x with a maximal security level r is
lowered (declassified) down to p. Now a path from node
y to a with P(y) > R(a) is not a violation, if there is a
declassification node x on the path with P(y) < R(x) and
P(x) < R(a) (assuming that there is no other declassification
node on that path).

According to Sabelfeld and Sands [13], our policy for
expressing intentional information release is describing where
in the system information is released: The set D of declassifi-
cation nodes correspond to code locations—moreover, in the
implemented system the user has to specify the code locations,
which are mapped to declassification nodes by the system.

The above slicing solution no longer works with declassifi-
cation, as information flow with declassification is no longer
transitive and slicing is based on transitive information flow.
A simple solution is to represent declassification nodes as
barriers where slicing stops [20] and restart the computation
from the declassification nodes. However, this would not
only loose some context-sensitivity, but is also too restrictive.
Consider the example in Figure 6: Assuming a security lattice
low < high < secret the above approach will detect the
following security violation: Line 3 requires a maximum level
of high but may be reached with secret from line 10. A
close examination shows that this is overly restrictive: The

information with level secret from line 10 may indeed reach
the declassification in line 3, but the information in x1 is never
used afterward and does not reach an output channel (i.e. a
node with any required security level).

This can easily be solved by applying the basic Theorem 1.
First, we compute the backward slice for every node a with
a required security level specified. By definition of a slice,
no node outside this slice can have any influence on a. The
subsequent analysis (see below) will only consider nodes and
edges that are part of this slice, i.e. the dependence graph is
reduced to the subgraph represented by the initial slice for a.
This avoids spurious dependencies and false alarms caused by
potential security violations outside the backward slice of a,
as in the last example: x1 is not part of the backward slice for
line 12, thus avoiding the spurious security violation at line 3.
Note that we exploit context-sensitive slicing here.

The analysis will then compute the actual required security
level for every node in the (sliced) program dependence graph
by a backward analysis. The actual required security level of
a node is the maximal security level that may reach the node
without causing a security violation at the criterion node under
observation.

The actual incoming (required) security level Sn(x) for a
statement x is computed from the outgoing security levels of
its successors y € succ(x):

Sin(x) = T if suce(x) =0

N a |_|yesucc(x) S OUT(y) otherwise
At nodes without declassification, the outgoing security level
is simply the incoming security level: Sour(x) = Sin(x). At
declassification nodes x € D with a declassification from R(x)

down to P(x), S is replaced with the new required level:
Sour(x) = R(x). Thus

Sour(x) = {

These equations are data flow analysis equations and can
be iteratively solved using a standard algorithm, with a proper
initialization of S out. The initialization is done based on the
criterion node a under observation, i.e. it is checked that no
security violation occurs due to R(a):

R(x) if xe D
Smn(x) otherwise

R(a) ifx=a
SQUT(X) = R()C) if xe D
T otherwise

Note that T is the neutral element (for). Due to the
monotonicity of the computation and the limited height of
the security level lattice, a minimal fixed point for Sy is
guaranteed to exist and can be computed using a standard
iteration. The computed Sy have then to be checked for
confidentiality:

Confidentiality Check With Declassification. For every
node a in the dependence graph that has a required security
level specified which is not a declassification node, compute
the incoming security levels SiN(x) of all statements x in its
backward slice and check the following property:

Vx € dom(P)N BS (a) : P(x) < Sin(x) 2)

Thus, for any / = P(x) such that [£ Sn(x) we have a
confidentiality violation at x because [7 Sn(x) (the security
level [is not allowed to influence the required level of
Snv(x) . Note that it is £ and not > because / and Sn(x)
might not be comparable. Because the slice BS(a) has been
computed first, the confidentiality check can be done during
the dataflow analysis: If the current node has a provided
security level P(x), a computed required level S|y # P(x) is a
violation. Declassification nodes themselves are not considered
as information sinks in the above check, even though they have
to have a required security level. Otherwise, Sabelfeld’s and
Sand’s monotonicity of release principle would be violated.

It is easy to show that the above above check is equivalent to
noninterference according to Theorem 1 for programs without
declassification and thus, the presented policy is a conservative
extension of noninterference [13]. Moreover, as the presence
of declassifications cannot be observed by an attacker, the
presented policy obeys the monotonicity of release principle.
It also avoids occlusion and is safe against trailing attacks.

Let us return to the example in Figure 3 and assume R(14) =
public. The computation to check confidentiality for criterion
node 14 will start with a backward slice BS (14). Because node
14 can be reached from every node in the PDG, the slice
will contain the complete PDG, thus it is not reduced. The
subsequent computation of the actual required security levels
will result in Sn(x) = public for all nodes x of the example.
The confidentiality check will reveal violations at nodes 1 and
3—6 because for these nodes, the specified provided level is
higher than the computed actual required.

Now assume the node 14 is a declassification node secret —
public: 14 € D, R(14) = secret, P(14) = public. The
computation of the actual required security levels will result
in SiN(x) = secret for x < 14. The confidentiality check will
no longer reveal a security violation, which may be desirable
depending on the security policy, since only a negligible
amount of information leaks from password checking.

B. Interprocedural Analysis with Declassification

The above criterion can handle declassification even in
the interprocedural case, but a plain extension would lose
context-sensitivity and thus precision. Context-sensitivity can
be achieved by computing the Sy in a two-phase mode
similar to context-sensitive slicing. Therefore, let us shortly
review standard interprocedural slicing, before explaining the
improved criterion.

Context-sensitive slicing relies on an explicit handling of
interprocedural edges. Besides summary edges, there are
parameter-in and -out edges, which connect the actual-in with
the formal-in and the formal-out with the actual-out nodes,
call edges connect the call site with the entry node of the
method. Summary edges represent transitive information flow
between an actual parameter (called actual-in node) and a
variable receiving a return value or the effects of a side-effect
(called actual-out node). As an example, consider Figure 7,
which shows the system dependence graph for Figure 6: Node
2 has a transitive influence on the node 11 along the summary

edge from node 8 to 10. Slicing with summary edges is done
in two phases:

o In the first phase all edges (including the summary
edges) are traversed except parameter-out edges connect-
ing e.g. the result node with the caller’s result variable.

« In the second phase one starts with the omitted edges
and traverses all edges except parameter-in and call edges
(connecting the passed parameters, and the call node to
the callee’s entry node); i.e. one never comes back to the
caller.

Without this two phase approach, the traversal would no longer
be context-sensitive: In that case, apath 1 -4 - 13 - 14 —
15 — 10 — 11 would propagate the actual required security
from node 11 (low) to node 1, where the confidentiality check
would generate a false alarm.

Indeed, the successor function in the definition of Sy can
be adapted to support a similar two-phased approach. Still, this
approach does not compute the most precise solution (although
it is correct), because the effects of declassification in called
procedures are ignored. The problem with summary edges is
that they represent a transitive information flow between pairs
of parameters, but declassification is intransitive. Using them
for computation of the actual security level Sn(x) implies that
every piece of information flowing into a procedure with a
given provided security level / will be treated as if it flew back
out with the same level. If there is declassification on the path
between the corresponding formal parameters, this approach
is overly conservative and leads to many false alarms.

As an example, consider Figure 7 again: The required
security level for node 11 is low as specified. In the first phase
SINR) = SIN®) = SIn(10) = Sour(11) = low due to the
summary edge. This will result in a false alarm because the
declassification at node 15 is ignored.

Thus using summary edges for information flow control will
not generate unsound results, but ignore possible declassifica-
tion possibilities and therefore produce too many false alarms,
as declassifications along transitive paths between procedure
parameters are ignored.

To achieve maximal precision, we additionally assume that
every summary edge from x to y, representing that there
exists at least one path from the corresponding formal-in node
x" to the formal-out node y’, is split in two edges, with a
declassification node d € D in between. For example, there is
a (first half) summary edge from x to the declassification node
d and a (second half) summary edge from d to y. This new
declassification node d represents the declassification effects
on all paths from x’ to y’ that are visible at x". Therefore they
are called summarizing declassification nodes. The provided
security level of such node is P(d) = L, thus the confidentiality
check (Equation 2) will never fail. If there is a declassification
free path from x’ to y’, R(d) will be set to R(d) = T such
that the declassification node d will not be the source of a
confidentiality violation.

If there is no declassification free path from x’ to y’, R(d)
will represent the maximal security level [that is allowed to
reach x’ such that there will be no security violation on a path

Fig. 7.

SDG for Figure 6 with summarizing declassification nodes

from x’ to a declassification node z (I < R(z), z € D) which is
a prefix of a path from x’ to y’.

Figure 7 shows a SDG with summarizing declassification
nodes for the example in Figure 6. The actual-in nodes 4 and
8 are connected to their corresponding formal-in node 13 with
parameter-in edges. The formal-out node 15 is connected to
corresponding actual-out nodes 6 and 10 with parameter-out
edges. The call nodes 3 and 7 are connected to the called
procedure at its entry node 12 with a call edge. The actual-
in nodes 4 and 8 are connected via summary edges via the
declassification nodes 5 and 9 to the actual-out nodes 6 and
10.

1) Computation of R(d) for Summarizing Declassification
Nodes: Lets assume that node d is the node between actual-
in x and actual-out y. To compute R(d), it is necessary to
propagate all R(z) that belong to declassification nodes z € D
on a path from x’ to y’. This is done with the data flow equa-
tions and fixed-point iteration shown in Section III-A, where
Sout(y’) is set to T and all nodes and edges not belonging
to a path from x” to y’ are ignored. The resulting Sn(x’) is
the computed value for R(d). However, the computation of
Siv(x") may depend on another summarizing declassification
node e, for which R(e) has not yet been computed. Moreover,
R(d) and R(e) may depend on each other because of recursion.
Again, a proper fixed-point iteration is needed: All summariz-
ing declassification nodes R(n) are initialized to R(n) = T
and the R(n) are computed iteratively until a fixed-point is
reached. Because of the sound initialization (without fixed-
point iteration the results of the confidentiality checks will be
sound but produce many false alarms), the fixed-point iteration
will not result in an unsound solution.

In Figure 7 the computation is only needed for the declas-
sification at node 15 (R(15) = high, P(15) = low) and for the
path between node 13 and 15. The computation will result
in SiN(14) = high and Sn(13) = high, thus the summarizing
declassification nodes 5 and 9 will be set to R(5) = high and
R(9) = high (P(5) = P(9) = 1).

2) The interprocedural IFC check: With summarizing de-
classification nodes it is possible to compute the actual security
levels inside a procedure or method based on data flow
equations as presented in Section III-A. The summary edges
with the summarizing declassification nodes will include the

Fig. 8.

Reduced dependence graph with computed security levels

declassification effects of called procedures. The last step
that is needed is to propagate the actual security levels to
called and calling procedures. Again, we have to make sure
to stay context sensitive. Therefore, the two phase approach
from backward slicing is used, where the computation and
propagation of actual security levels is done in two phases:

1) The first phase ignores edges from the called procedure
to the call site (parameter-out edges). Thus, it will only
propagate the computed actual required security levels
from called procedures to the call site, ascending the call
chain. Due to the summary edges with the summarizing
declassification nodes which are not ignored, the security
levels at the call site will be propagated as if they were
propagated through the called procedure.

2) In the second phase, the computed actual required secu-
rity levels are propagated into called procedures. This is
achieved by ignoring edges from the the call site to the
called procedure (parameter-in and call edges). Again,
summary edges are used.

The summary edges with summarizing declassification nodes
have an essential effect, because they ensure that security
levels are propagated as if they were propagated through
the called procedure. In the first phase, no security level is
propagated into called procedures and in the second phase,
no computed security level is propagated from the called
procedure to the call site.

Of course, the checking for security violations (Equation 2)
is done at last after the second phase.

Lets return to the example in Figure 6 with its SDG in
Figure 7, where we want to check if the required security
level at line 12 cannot be reached with a higher security level.
Thus, node 11 is the criterion node. The analysis starts with
computing the backward slice BS(11) and removes nodes 1
and 3-6 from the SDG.

The initialization of the subsequent fixed-point iteration sets
Sour(11) = R(11) = low, Sour(15) = R(15) = high due to
the declassification node 15, and S oyr(9) = R(9) = high due
to the summarizing declassification, and all other Soyr to T.
The first phase will compute the fixed-point with the following
values: SIN(O) = S[N(7) = S[N(9) = S[N(lo) = lOW, SIN(2) =
SN = Sin(12) = Sin(13) = Sin(14) = high and Sn(11) =
Sn(15) = T. Note that during the first phase the edges 8 — 13

and 7 — 12 are considered but edge 15 — 10 is ignored.

The second phase will propagate the actual security levels
further into the called procedures which is in this example
just hash. Because the parameter-out edge 15 — 10 is now
allowed to be traversed (but 8 — 13 and 7 — 12 not), the
second phase will compute SN(15) = low. The other Sy will
not change during this phase. Figure 8 shows the dependence
graph with the computed S v, where light gray means low and
gray high.

The last step of checking to confidentiality will not reveal a
security violation, because P(2) < Sn(2) and P(15) < Sin(15)
(PY) < Sin(9), even though summarizing declassification
nodes need not to be checked).

IV. REeLATED WORK

Several papers have been written about PDGs and slicers
for Java, but to our knowledge only the Indus slicer [21] is—
besides ours—fully implemented and can handle full Java.
Indus is customizable, embedded into Eclipse, and has a very
nice GUL

The work described in this paper improves our previous
algorithm [11], which was not able to handle declassification in
called procedures precisely. However, that work also describes
the generation and use of path conditions for Java PDGs (i.e.
necessary conditions for an information flow between two
nodes), which can uncover the precise circumstances under
which a security violation can occur.

We already mentioned the overview article by Sabelfeld and
Myers [1], which surveys language-based IFC methods. The
focus is on type-based approaches; dependences and slicing
are mentioned, but the authors obviously do not consider them
a realistic option for IFC. This is amazing, since PDGs have
been around for years.

Abadi et al. [22] were the first to connect slicing and
noninterference, but only for A-calculus. It is amazing that
our Theorem 1 from Section II (which holds for imperative
languages and their PDGs) was not discovered earlier. Only
Anderson et al. [23] presented an example in which chop-
ping can be used to show illegal information flow between
components which were supposedly independent. They do not
employ a security lattice, though.

Myers [24] defines JFlow, an extension of the Java language
with a type system for information flow. The JIF compiler [3]
implements this language. We already discussed in Section II
that his approach is less precise, but it is more efficient and
supports generic classes and the decentralized label model;
labels and principals are first class objects.

Barthe and Rezk [25] present a security type system for
strict noninterference without declassification, handling classes
and objects. NullPointerException is the only exception
type allowed. Only values annotated with Low may throw ex-
ceptions. Constructors are ignored, instead objects are initial-
ized with default values. A proof showing the noninterference
property of the type system is given.

Amtoft et al. [5] present an interprocedural flow-sensitive
Hoare-like logic for information flow control in a rudimentary

object-oriented language. Casts, type tests, visibility modifiers
other than public, and exception handling are not yet consid-
ered. Only structured control flow is allowed.

The Pacap case study [26] verifies secure interaction of mul-
tiple JavaCard applets on one smart card. They employ model
checking to ensure a sufficient condition for their security
policy, which is based on a lattice similar to noninterference
without declassification. Implicit exceptions are modeled, but
such unstructured control flow may lead to label creep (cf. [1,
Sect. II E]).

Genaim [27] defines an abstract interpretation of the CFG
looking for information leaks. It can handle all bytecode
instructions of single-threaded Java and conservatively han-
dles implicit exceptions of bytecode instructions. The analy-
sis is flow- and context-sensitive but does not differentiate
fields of different objects. Instead, they propose an object-
insensitive solution folding all fields of a given class. In our
experience [10] object-insensitivity yields too many spurious
dependences. The same is true for the approximation of the
call graph by CHA. In this setting, both will result in many
false alarms.

A combined static and dynamic approach for detection
of illegal information flow was presented recently [28]. It
allows the a-posteriori analysis of programs showing unex-
pected behavior and the computation of an exact witness for
reconstruction of the illegal information flow.

An area uncovered by our system is security policies, defin-
ing under which circumstances declassification is allowed.
Li and Zdancewic [29] define a framework for downgrading
policies for a core language with conditionals and fixed-points,
yielding a formalized security guarantee with a program
equivalence proof.

Static analysis is often used for source code security analysis
[30]. Information flow control is closely related to tainted
variable analysis. There are even approaches like the one from
Pistoia et al. [31] that use slicing for such kind analysis or
the one from Livshits and Lam [32], [33] that uses IPSSA, a
representation very similar to dependence graphs. However,
these analyses only use a trivial security level (tainted/un-
tainted) with a trivial declassification (untaint) and could
greatly benefit from our approach.

V. CONCLUSION

We presented a system for information flow control in PDGs
integrating method calls and declassification without losing
precision at call sites. Our approach is fully automatic, flow-
sensitive, context-sensitive, and object-sensitive. Thus it is
much more precise than traditional, type-based IFC systems.
In particular, unstructured control flow and exceptions cannot
lead to false alarms. The presented approach has been imple-
mented inside the IDE Eclipse. The plugin allows definition
of security lattices, automatic generation of SDG’s, annota-
tion of security levels to SDG nodes via source annotation
and automatic security checks. We can handle the full Java
bytecode and can analyze medium-sized programs, which are
typical in a security setting with restricted environments like

JavaCard; still, a better scale-up is an issue. Another well-
known problem when this approach is to be extended to full
Java is the API, which loads hundreds of library classes even
for the smallest programs, with lots of native code, most of
which have influence on information flow and must therefore
be modeled in a conservative manner. A version for C is
planned.

Our preliminary results indicate that the number of false
alarms is drastically reduced compared to type-based IFC
systems, while of course all potential security leaks are dis-
covered. Future case studies will apply our technique to a
larger benchmark of IFC problems, and provide quantitative
comparisons concerning performance and precision between
our approach and other IFC systems.

Thus PDG-based IFC is much more expensive than type-
based IFC. But a precise security analysis which costs minutes
or even hours of CPU time is not too expensive compared to
possible consequences of illegal information flow or myriad
false alarms to be resolved manually.

Acknowledgment. Gregor Snelting provided valuable re-
marks.

REFERENCES

[1]1 A. Sabelfeld and A. Myers, “Language-based information-flow security,”
IEEE Journal on Selected Areas in Communications, vol. 21, no. 1,
January 2003.

[2] G. Smith and D. Volpano, “Secure information flow in a multi-threaded
imperative language,” in Proceedings of the Twenty-Fifth ACM Sympo-
sium on Principles of Programming Languages, San Diego, CA, January
1998, pp. 355-364.

[3] A.C. Myers, S. Chong, N. Nystrom, L. Zheng, and S. Zdancewic, “Jif:
Java information flow,” http://www.cornell.edu/jif, 1999.

[4] S. Hunt and D. Sands, “On flow-sensitive security types,” in POPL ’06:

Conference record of the 33rd ACM SIGPLAN-SIGACT symposium on

Principles of programming languages. New York, NY, USA: ACM

Press, 2006, pp. 79-90.

T. Amtoft, S. Bandhakavi, and A. Banerjee, “A logic for information

flow in object-oriented programs,” in POPL’06: Conference record of the

33rd ACM SIGPLAN-SIGACT symposium on Principles of programming

languages. New York, NY, USA: ACM Press, 2006, pp. 91-102.

J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence

graph and its use in optimization,” ACM Transactions on Programming
Languages and Systems, vol. 9, no. 3, pp. 319-349, July 1987.
[71 M. Weiser, “Program slicing,” IEEE Transactions on Software Engineer-
ing, vol. 10, no. 4, pp. 352-357, July 1984.
[8] T. Robschink and G. Snelting, “Efficient path conditions in dependence
graphs,” in Proceedings International ACM/IEEE Conference on Soft-
ware Engineering (ICSE’02), Orlando, FL, May 2002, pp. 478-488.
[91 G. Snelting, T. Robschink, and J. Krinke, “Efficient path conditions in
dependence graphs for software safety analysis,” ACM Transactions on
Software Engineering and Methodology, 2007, to appear.
[10] C. Hammer and G. Snelting, “An improved slicer for java,” in Proceed-
ings of the ACM-SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering. ACM Press, 2004, pp. 17-22.

[11] C. Hammer, J. Krinke, and G. Snelting, “Information flow control for
java based on path conditions in dependence graphs,” in Proc. IEEE
International Symposium on Secure Software Engineering (ISSSE’06),
Mar. 2006.

[12] J. Goguen and J. Meseguer, “Interference control and unwinding,” in
Proc. Symposium on Security and Privacy. 1EEE, 1984, pp. 75-86.

[13] A. Sabelfeld and D. Sands, “Dimensions and principles of declassifica-
tion,” in Proceedings of the 18th IEEE Computer Security Foundations
Workshop (CSFW’05), 2005, pp. 255-269.

[14] F. Tip, “A survey of program slicing techniques,” Journal of Program-
ming Languages, vol. 3, no. 3, pp. 121-189, Sept. 1995.

[5

[t}

[6

e}

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

J. Krinke, “Program slicing,” in Handbook of Software Engineering and
Knowledge Engineering. World Scientific Publishing, 2005, vol. 3:
Recent Advances.

S. B. Horwitz, T. W. Reps, and D. Binkley, “Interprocedural slicing using
dependence graphs,” ACM Transactions on Programming Languages
and Systems, vol. 12, no. 1, pp. 26-60, Jan. 1990.

A. Rountev, A. Milanova, and B. G. Ryder, “Points-to analysis for
Java using annotated constraints,” in Proc. 16th Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOP-
SLA’01), 2001, pp. 43-55.

O. Lhotak and L. Hendren, “Scaling Java points-to using Sparc,” in
Compiler Construction, 12th International Conference, ser. LNCS, 2003,
pp. 153-169.

C. Chambers, I. Pechtchanski, V. Sarkar, M. J. Serrano, and H. Srini-
vasan, “Dependence analysis for java,” in Proceedings of the 12th Inter-
national Workshop on Languages and Compilers for Parallel Computing.
Springer-Verlag, 1999, pp. 35-52.

J. Krinke, “Slicing, chopping, and path conditions with barriers,” Soft-
ware Quality Journal, vol. 12, no. 4, 2004.

J. H. Ganeshan Jayaraman, Venkatesh Prasad Ranganath, “Kaveri:
Delivering the indus java program slicer to eclipse,” in Fundamental
Approaches to Software Engineering: Sth International Conference, ser.
LNCS, vol. 3442, 2005, pp. 269-272.

M. Abadi, A. Banerjee, N. Heintze, and J. Riecke, “A core calculus
of dependency,” in Proc. Symposium on Principles of Programming
Languages (POPL’99). ACM, 1999, pp. 147-160.

P. Anderson, T. Reps, and T. Teitelbaum, “Design and implementation of
a fine-grained software inspection tool,” IEEE Transactions on Software
Engineering, vol. 29, no. 8, aug 2003.

A. C. Myers, “Jflow: practical mostly-static information flow control,” in
POPL ’99: Proceedings of the 26th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. New York, NY, USA: ACM
Press, 1999, pp. 228-241.

[25]

[26]

(27]

[28]

[29]

[30]

(31]

[32]

(33]

G. Barthe and T. Rezk, “Non-interference for a JVM-like language,”
in TLDI ’05: Proceedings of the 2005 ACM SIGPLAN international
workshop on Types in languages design and implementation. New
York, NY, USA: ACM Press, 2005, pp. 103-112.

P. Bieber, J. Cazin, A. E. Marouani, P. Girard, J.-L. Lanet, V. Wiels, and
G.Zanon, “The PACAP prototype: a tool for detecting Java Card illegal
flow,” in Java Card Forum, Cannes, France, Sept. 2000.

S. Genaim and F. Spoto, “Information flow analysis for java bytecode,”
in 6th International Conference on Verification, Model Checking, and
Abstract Interpretation (VMCAI 2005), ser. LNCS, vol. 3385. Paris,
France: Springer, Jan. 2005, pp. 346-362.

C. Hammer, M. Grimme, and J. Krinke, “Dynamic path conditions
in dependence graphs,” in Proceedings of the ACM SIGPLAN 2006
Workshop on Partial Evaluation and Program Manipulation (PEPM
’06), Jan 2006, pp. 58-67.

P. Li and S. Zdancewic, “Downgrading policies and relaxed noninterfer-
ence,” in POPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. New York, NY,
USA: ACM Press, 2005, pp. 158-170.

B. Chess and G. McGraw, “Static analysis for security,” IEEE Security
& Privacy, November/December 2004.

M. Pistoia, R. J. Flynn, L. Koved, and V. C. Sreedhar, “Interprocedural
analysis for privileged code placement and tainted variable detection,”
in ECOOP 2005 — 19th European Conference on Object-Oriented
Programming, ser. Lecture Notes in Computer Science, vol. 3586, 2005.
V. B. Livshits and M. S. Lam, “Tracking pointers with path and
context sensitivity for bug detection in C programs,” in ACM SIGSOFT
Symposium on the Foundations of Software Engineering, 2003, pp. 317—
326.

——, “Finding security vulnerabilities in java applications with static
analysis,” in USENIX Security Symposium, 2005.

