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A Syntactic Approach to Structure GenerativityFranz-Josef Grosch�Abteilung SoftwaretechnologieTechnische Universit�at Braunschweig, GermanyJuly 12, 1996AbstractAdvanced module systems like Standard ML's [13, 17] support structure generativity.Structure generativity denotes the mechanism that parameterized modules (functors) gen-erate a "new" module instance (structure) for every application to a suitable argument. Thisoperational behaviour is essentially a side e�ect. Since interfaces in general depend on moduleinstances, module instances are computationally characterised as "stamps" for the purpose ofinterface-checking.This paper presents a typed module calculus that makes instances of modules syntacticallyapparent in expressions and interfaces. The module calculus has a simple rewriting semanticswithout side e�ects. Interface-checking is based on a type system with dependent functions,strong sums and additionally a non-standard variant of weak sums. A module system derivedfrom the module calculus forms a separate layer above some typed core language. As ademonstrating example, we sketch M/SML, a module language on top of core SML.Key words: module language, ML, type systems, dependent types1 IntroductionModule systems provide support for factoring large software systems into separate but dependentprogram units. These program units, called simple modules (or just modules for short) in thefollowing and variously known as clusters, packages, or structures, in their simplest form de�necollections of identi�ers: types and values in a purely functional setting, additionally variablesand exceptions for imperative features, and even classes for the object-oriented paradigm. Thetypes of simple modules, called simple interfaces for convenience, are known as de�nition modules,package speci�cations, and signatures. They classify a simple module's exported identi�ers withtypes for values and with kinds for type constructors. In general, simple interfaces as well assimple modules depend on preceding, so-called imported modules. That is, simple interfaces areessentially dependent types.In order to build a large system, simple modules and simple interfaces have to be organized ina hierarchical, or more exactly, topological order with respect to the relationship "depends-on".This can be done rigidly, by de�ning modules one after another in a language like Modula-2 [24]or more exible in a language like SML [17, 16], where dependencies are expressed via functorparameters and structures are linked by functor applications.An essential feature of SML's module system is structure generativity. Structure generativitydeals with the question when a structure is instantiated in order to be part of a system. This is noproblem in a static module system like Modula-2's modules where declaration and instantiation� This work is funded by the Deutsche Forschungsgemeinschaft, grant Sn11/4-1. Author's current address: Tech-nische Universit�at Braunschweig, Abteilung Softwaretechnologie, B�ultenweg 88, D-38106 Braunschweig/Germany.E-mail: grosch@ips.cs.tu-bs.de. 1



of a module coincide and an instance of a module is simply identi�ed by the module's name. InSML, structures are instantiated as the result of functor applications, and structure generativitydenotes the computational behaviour that a "new" instance of a structure is generated for everyfunctor application. Essentially, this is a side e�ect at the module level.Since signatures in general depend on structures (or more exactly on instances of structures)structure generativity is also important for the static semantics of SML's modules. In the staticsemantics instances are identi�ed by stamps. This computational characterisation of SML's type-checker is standardized in [17] and has been extended to higher-order functors in [15].In this work we want to treat module instances in a more abstract, type-theoretic framework.We abandon the side e�ect of module instantiation and develop a module calculus that has a simplerewriting semantics and makes instances of simple modules syntactically apparent in expressions.For the purpose of interface-checking, we develop a type system, based on dependent functions,strong sums and a non-standard variant of weak sums that also makes module instances apparent.In this module calculus a complete software system is simply an expression, and the expression'stype represents its interface. In a sense, the module calculus is purely functional. Furthermore, wewill sketch a module language on top of core SML that is derived from the module calculus.To reach our goals, we reassess MacQueen's proposal for the module system of SML [13]. Aswe will see, this leads us to a module system similar in spirit but technically quite di�erent toSML's modules. We adopt MacQueen's de�nition that a module, in its simplest form, is a namedcollection of declarations whose purpose is to de�ne an environment. That means, a simple moduleis identi�ed by a name, classi�ed by a simple interface, and realized by an implementation.The purpose of our module calculus is to describe systems. Declaring a simple module m withinterface M and implementation i, for later use within some expression u with interface U is,roughly, a dependent pair: (m :M = i; ufmg) : (m :M � Ufmg);where m may occur free in expression ufmg and interface Ufmg. We prefer the notation:dec[m :M is i] ufmg : some[m :M ] Ufmg:We call this binding construct a system. The expression u which uses the simple module m is alsocalled the export part.However, as MacQueen points out, the implementation as well as the interface of a simplemodule often contain free identi�ers referring to other modules or to prede�ned declarations.Therefore, he argues, a module in general is a dependent function (called functor in SML) from anenvironment of de�nition to the de�ned environment:fun(x :A)mfxg : all(x :A)Mfxg:There seems to be a contradiction between MacQueens explanation of a module as the result ofa function application and our understanding, where a simple module is declared as a part ofa system. A closer look shows that the �rst is the implementor's view (What is necessary toimplement a module?), while the second is the system architect's view (How can I use a certainmodule in a system's architecture?). But both views do not exclude each other.It is no problem to add an additional parameter module x with interface A to our notion of asystem: F = fun(x :A) (dec[m :Mfxg is ifxg] (ufxgfmg)):We get a parameterized system (a function), where the interface of module m, its implementationi, and the export part u may refer to the parameter module x. If F is applied to a matchingmodule a, x is substituted by a. The result is a system which declares simple modules a and mand exports u.dec[a :A is i0] (Fa) � dec[a :A is i0] (dec[m :Mfx ag is ifx ag] (ufx agfmg)):2



The simplest system we can imagine declares one simple module and exports it.dec[a :A is ia] aWhat seems rather useless becomes more meaningful if we imagine a system which declares twomodules a and b and exports module b.dec[a :A is ia] (dec[b :Bfag is ibfag] b)In general, it should be possible that a system exports more than one module. Therefore, weadditionally introduce labelled tupels (which are essentially strong sums, see for example [7, 22])in order to be able to group several simple modules of a system into one exported expression1.dec[a :A is ia] (dec[b :Bfag is ibfag] hla = a; lb = biNow, both modules a and b are exported as a tuple where a is labelled with la and b is labelledwith lb.So far, we have separated two concerns: instances of simple modules are made explicit bydeclarations, and the export part speci�es which components of a system can be used from outside.The question arises, how to use such a system. First, we can imagine a (sub-)system as a componentof a larger system. Since a system is simply an expression of a calculus with a rewriting semantics(see section 4 below) using a system or applying a parameterized system is equivalent to textuallyinserting the system itself. Second and more important, if a system (a client) depends on anothersystem (the supplier), the supplier system has to be opened in order to enable access to the internalstructure.2 Using systems|module instances made explicitNow, if we want to use a system partially or as a whole in another context, we somehow haveto open or to eliminate the system. Since we regard a system as a dependent pair combined of amodule declaration and an export part we have to use an appropriate elimination form. There areseveral syntactic formulations for eliminating dependent pairs [22, 7, 18]. We prefer the followingsyntactic form: use p as [x]y in eThis means, bind the �rst resp. the second part of system p to variables x resp. y in expression e.The standard computation rule for dependent pairs using our notation is as follows:use (dec[a :A is ia] b) as [x]y in e! efx iagfy  bfa iagg:In words, ia substitutes x in e, and since b depends on a, a is substituted by ia before b substitutesy in e.Because we are interested in making module instances explicit in interfaces, we could regardsystems as standard weak sums (see for example, [22]). The typing rule for weak sums has thefollowing form: � ` p : some[a :A] B �; x :A; y :B ` e : C� ` use p as [x]y in e : C x; y =2 C:If we assume weak sums, every use of a system \generates" an instance of its declared module.This is very similar to Mitchell and Plotkin's type-theoretic explanation of abstract types [18].But, for our purpose weak sums are lacking in several respects. Generating module instances isstill implicitly connected to the reduction of use. Furthermore, dependencies from expression e tothe used system p expressed via variables x and y must not be propagated into the interface C of1In general, a labelled tuple contains arbitrary expressions3



e. This leads to the well-known critique [6, 14, 4] that weak sums have to be eliminated globallyfor all their clients.What we really need is an elimination form that makes instances explicit in expressions andallows for the propagation of dependencies through interfaces. Therefore, we propose the followingnon-standard computation rule for use:use (dec[a :A is ia] b) as [x]y in e! dec[a :A is ia] (efx agfy  bg) :Instead of the implementation ia the module's name a substitutes x. At the same time, we (re)binda outside, ensuring that a does not escape its scope. Consequently, the implementation ia remainsthe same. What seems to be a \cheap trick" solves several problems at once.First, instances are made explicit, because we can regard every dec-bound module name as aninstance of the assigned implementation. If we need two instances of a simple module, we have touse a system two times, and we get two instances due to �-conversion. For example:S � dec[a :A is ia] buse S as [x]y in (use S as [u]v in f x u)! dec[a :A is ia] ((use S as [u]v in f x u)fx agfy  bg)! dec[a :A is ia] (dec[a0 :A is ia] (f a u)fu a0gfv  bg)! dec[a :A is ia] (dec[a0 :A is ia] (f a a0)):Here, using system S two times, \generates" two instances of implementation ia, named a and a0.Second, we get an system closure mechanism for free. An arbitrary part of a system can onlybe used in its context. Imagine a system S � dec[a :A is ia] dec[b :B is ib] dec[c :C is ic] d; using bfrom system S automatically rebuilds the context, b depends on:use S as [u]v in (use v as [x]y in f x)� dec[a :A is ia] (dec[b :B is ib] f b)At the same time, those parts of system S which are not needed are disregarded in the result.If we look at the appropriate non-standard typing rule, this closure mechanism (the completemodular structure of the result) is also apparent in the resulting interface:� ` p : some[a :A] B �; x :A; y :B ` c : C� ` use p as [x]y in c : some[a :A] (Cfx ag) ; y =2 C:The result of using a system again is a system. The interface shows the modular structure anexpression will have after a reduction is possible. Similar to weak sums, y must not occur in C,because it would otherwise escape its scope.To sum up, the proposed elimination form makes instances of simple modules apparent inexpressions and interfaces and supplies the relevant context when using a system partially or as awhole. It allows the propagation of dependencies through interfaces and eliminates the need to usea system globally for all its clients. Unfortunately, use cannot be called an elimination constructbecause the result of using a system again is a system. But, it does exactly what we need.Together with function abstractions and labelled tuples, as mentioned in the introduction, weget a complete module calculus. But before we formally describe the module calculus and itstyping system, we take a look at the connection of the core and the module language.3 Embedding a core languageFrom the module calculus' point of view a simple module is an indivisible unit, an atom, identi�edby a name for later reference and speci�ed by a simple interface hiding local declarations of theaccompanying implementation. Simple interfaces and implementations are determined by sometyped core language and connect the separated layers of module and core language.4



For the purpose of demonstration we will use core SML [17] as our core language, consequentlyimplementation modules are called structures and simple interfaces are called signatures. Signaturesclassify core language declarations. These are types, values, and exceptions.Contrary to SML, signatures do not contain structure speci�cations. Furthermore, implementa-tions should be separately compilable, and interface-checking module language expressions shouldnot utilize implementation details. Therefore, we regard type speci�cations as abstract (opaque)and additionally introduce speci�cations of type synonyms (manifest types [9]). Similar to SML,we have a notion of subtyping between signatures that allows to de�ne di�erent views of a simplemodule. According to standard techniques, signatures may be thinned and type synonyms maybe converted to abstract types. The paradigmatic signature of a module implementing a stack ofinteger values has the following form:interface INT STACK = sigtype item = int (* type synonym *)type stack (* abstract type *)val push : item ! stack ! stackval pop : stack ! item � stack: : :endIf we now declare a module stack with interface INT STACK for use in some module expressionu, we write: dec[Stack :INT STACK is struct : : : end] uThe combination of module name, interface and implementation struct : : : end is very similar to astructure binding in SML, apart from the fact that the visibility of the module name is restrictedto the expression u. Signatures occurring inside u now can refer to types from Stack by the dotnotation, writing Stack :item or Stack :stack . Structures (module implementations) scoped insideu can refer to types as well as to values and exceptions, e. g. Stack :push .Technically, we guarantee that the identity of an abstract type declared inside a simple moduleis connected to the module's name, in other words, a new abstract type is generated for everyinstance of a simple module. Similar to translucent sums [6] or manifest types [9, 10], we use astrengthening operation (see section 4) to give identities to abstract types. In the example, theabstract type stack is manifestly equivalent to Stack :stack inside expression u.We have seen that signatures and structures naturally depend on module names. Technically,the module calculus is a programming language with dependent types. Therefore, due to reduc-tions, references to a module name may become references to an arbitrary module expression. Asa consequence, interface-checking has to decide the equality of module language expressions, andreductions are also necessary inside structures. As we will discuss in the next section, the modulecalculus is conuent and strongly normalising, which makes structural equality of normal forms anadequate formulation for equality and guarantees a terminating reduction of module expressions.The goal of reducing a module program is the production of an executable software system. Sucha system coincides with our notion of a system. If a module language expression only consists of asequence of module declarations together with an export expression, all simple modules involved inthe complete system are in some topological order with respect to the relationship "depends-on".If all implementations of simple modules have been supplied, the dependencies indicate how to linkthese implementations in order to form an executable program.4 The ��-module calculusEssentially, the foundation of our module calculus is a lambda calculus with types depending onvalues. Since, system declaration and use are the main novell features in our calculus we call itthe ��-module calculus2. The ��-module calculus forms a separate layer above some typed core2� for abstractions and � for declarations 5



Expressions m ::= x variable/namej l labelj fun(x :I)m (function) abstractionj m1 m2 applicationj hl1 = m1; : : : ; ln = mni tuple constructionj m#l tuple selectionj dec[x :S]m (system) declarationj use m1 as [x1]x2 in m2 useInterfaces I ::= S simple interfacej all(x :I1) I2 function interfacej hl1 :I1; : : : ; l1 :Ini tuple interfacej some[x :S] I system interfaceSignatures S ::= sig E end signatureE ::= D;E signature entriesj "D ::= type t opaque type speci�cationj type t = T manifest type speci�cationj val v : T value speci�cationT ::= t type namej m:t type componentj int j bool prede�ned simple typesj T1 ! T2 function typeFigure 1: Syntax of the ��-module calculuslanguage. Therefore, we �rst take a look at syntax and reduction of the module calculus and thenexplain the connection to the core language.4.1 Syntax and reductionFigure 1 shows the syntax of the ��-module calculus. There are two distinct identi�er classesvariables/names (x) and labels (l). Expressions are composed from variables/names, labels, func-tion abstraction and application, tuple construction and selection, and system declaration and use.Abstraction, declaration, and use introduce variables/names. Tuples introduce labels. Labels arevisible in subsequent tuple components and are used to select a tuple component from outside.There are suitable interfaces for every kind of expression. Function interfaces are dependentfunctions. Tuple interfaces are a generalized form of strong sums. System interfaces are a non-standard variant of weak sums, as explained before. Simple interfaces play the role of simpletypes, which characterize simple modules, the simple values of the calculus. The interface of amodule name introduced in a system declaration is syntactically restricted to a simple interface.This reects the fact that system declarations only introduce simple modules. Simple modules andtheir interfaces are determined by the embedded core language. Since we assume an ML-like corelanguage, simple interfaces are called signatures.Signatures allow for the speci�cation of abstract types (opaque type speci�ation), type synonyms6



Reduction for the ��-module calculus(fun(x :A)m1) m2 ! m1fx m2ghl1 = m1; : : : ; lk = mk; : : : ; ln = mni#lk ! mkfl1  m1g � � � flk�1  mk�1guse (dec[x1 :S]m1) as [x2]x3 in m2 ! dec[x1 :S] (m2fx2  x1gfx3  m1g)Figure 2: Reduction rules(manifest type speci�cation), and core language values (value speci�cation). Essentially, type names(t) and values (v) are two further identi�er classes distinct from variables/names and labels. Theseidenti�ers can only be used inside signatures. Type expressions (T ) are composed from prede�nedsimple types, type names, type components and function types. Type components from "imported"modules are referenced via the dot notation; a module expressions (m) quali�es the module anda type name (t) selects the component. Due to type components, interfaces are value-dependenttypes.Although we have signatures, structure construction is not part of the module calculus. Weregard a structure as the implementation of a simple module which is part of the core language. Inthe module calculus itself, a module is either declared by a name in a system declaration or boundvia a variable as a function parameter or in the use construct. The module's signature completelyclassi�es the structure. This makes module expressions independent from representation detailsand allows for separate compilation of structures.The reduction rules for the ��-module calculus are shown in �gure 2. Substitution (fx mg)is de�ned as usual. For simplicity, �-conversion, which has to be considered, is not made explicit inthe reduction rules, and compatibility rules for selecting redexes are omitted. Since simple modulesare indivisible units, there is no reduction rule for the dot notation|the dot notation is simplya quali�ed identi�er. Note that substitutions and reductions also occur inside interfaces, becauseinterfaces depend on module expressions.4.2 The core languageThe core language is connected to the module calculus via module implementations. For everydeclaration of a simple module a structure may (but need not) be supplied as its implementation.The simple module's signature and the implementation are in the same scope. The additionalsyntax which connects structures to the module calculus is shown in �gure 3. To go with signatures,structures contain type and value declarations.The core language distinguishes declarations of type synonyms (non-generative type binding)and of new type constructors (generative type creation). For simplicity, the declaration of construc-tor functions is not part of the syntax, and new type constructors are always nullary. The additionof constructor functions, n-ary type constructors and exception declarations is straightforward.Similar to signatures, structures also may depend on module expressions, when values andtypes from "imported" modules are used via the dot notation. As a consequence, the reduction ofmodule expressions also leads to substitutions inside structures.If all declarations of modules have been implemented by structures, and if the reduced expres-sion does not contain any abstractions, module expressions inside implementations can be reducedto module names, indicating how the separately compiled structures have to be linked. The resultis a sequence of structures, topologically ordered according to the relationship "depends-on". Theexport part indicates the "main module" of the whole system.4.3 Interface inferenceInterface-checking module expressions is a delicate issue, because interfaces may depend on arbi-trary module expressions. The complete typing rules are given in the appendix. Here we only7



Structure implementations:m ::= : : :j dec[x :S is s]m declaration and implementationj : : :s ::= struct e end structuree ::= d; e structure entriesj "d ::= type t = T type binding (non-generative)j datatype t type creation (generative)j val v : t = c value declarationc ::= m:v (value) componentj ::: core language expressionsFigure 3: Syntax for the core languagediscuss the essential and the most unusual rules shown in �gure 4.The rules are written down in a non-deterministic manner, in order to show the principal infer-ence steps. All derivations start from an axiom. There are three axioms: an empty tuple interface,an empty signature and the kind type are wellformed. The symbol � denotes wellformedness andsymbol [ ] denotes an empty basis. There is a start and a weakening rule for variables/names, labels,opaque types, type synonyms and values3. Interface formation rules for function, system, and tupleinterfaces, and rules for signature formation and type formation allow to derive wellformedness ofcomplex and simple interfaces.Function interfaces are dependent functions introduced by abstractions. Tuple interfaces area generalized form of strong sums, which are introduced by tuple construction. System interfacesare introduced by system declarations and may be regarded as a non-standard variant of weaksums. Note that the syntactic restriction that names introduced by declarations must have simpleinterfaces is reected by the declaration rule and by the formation rule for system interfaces.The elimination rules for function interfaces (application) and tuple interfaces (tuple selection) arestandard. Rather unusual is the rule use.The syntactic construct use matches an expression m1 that has a system interface to variablesx2 and x3 for use in expressionm2. x2 binds a simple module and, therefore, has a simple interface.x3 binds the export part of the used system. The resulting interface again is a system interface,where the declared name is rebound by x1 in the resulting system interface. That means, I2 mayvery well contain x2 but must not contain x3, because x2 is substituted by x1 while x3 wouldescape its scope. Figuratively, the typing rule use reects the fact that the module declared inthe used system is always part of the using expression, ensuring the system closure mechanismmentioned in section 2.Type speci�cations in signatures may refer to internally declared type names. Therefore, themodule rules extend the basis ensuring that type names do not escape their scope when typingtype components and value components referenced via the dot notation.The conversion rule allows to convert interfaces. It integrates several important conversionoperations. First of all, our type system supports the idea that abstract types are connected to theinstance of the module they are declared in. This approach is very similar to the approaches of Leroy[9, 10] or Harper and Lillebridge [6]. Similar to Leroy's system, we use a strengthening operation3stmt denotes an arbitrary type statement 8



(axiom) [ ] ` h i : � [ ] ` sig end : � [ ] ` type : �(start) � ` I : ��; x :I ` x : I ; x =2 � other start rules omitted(weakening) � ` stmt � ` I : ��; x :I ` stmt ; x =2 � other weakening rules omitted(interface formation) � ` S : � �; x :S ` I : �� ` some[x :S] I : � other interface formation rules omitted(signature formation) omitted(type formation) omitted(module) � ` m : sig type t; E end�; type t ` m : sig E end other module rules omitted(abstraction) �; x :I1 ` m : I2 � ` all(x :I1) I2 : �� ` fun(x :I1)m : all(x :I1) I2(application) � ` m1 : all(x :I2) I1 � ` m2 : I2� ` m1 m2 : I1fx m2g(tuple construction) � ` hl2 = m2; : : : ; ln = mnifl1  m1g : hl2 :I2; : : : ; ln : Inifl1  m1g� ` m1 : I1 � ` hl1 :I1; : : : ; ln :Ini : �� ` hl1 = m1; : : : ln = mni : hl1 :I1; : : : ; ln :Ini(tuple selection) � ` m : hl1 :I1; : : : ; lk :Ik ; : : : ; ln :Ini� ` m#lk : Ikfl1  m#l1g � � � flk�1  m#lk�1g(declaration) �; x :I1 ` m : I � ` some[x :S] I : �� ` dec[x :S]m : some[x :S] I(use) � ` m1 : some[x1 :S] I1 �; x2 :S; x3 :I1 ` m2 : I2� ` use m1 as [x]y in m2 : some[x1 :S] (I2fx2  x1g) ; x3 =2 I2(conversion) � ` m : I1 � ` I2 : � I1=m <:� I2� ` m : I2Figure 4: Interface inference rules(�gure 5) to represent the fact that abstract type components in signatures are not arbitrary types,but come from the module expression they are connected to. Di�erent to Leroy's approach we donot restrict strengthening to path expressions, but allow arbitrary module expressions.Beside strengthening, our module calculus also supports a subtyping relation (see �gure 5)between interfaces in order to allow for di�erent views of a simple module. Subtyping betweeninterfaces (<:�) is de�ned as usual: signatures may be thinned, manifest type speci�cations areconsidered subtypes of opaque type speci�cations, function interfaces are contra-variant, tuple andsystem interfaces are covariant. 9



Strengthening (sig E end)=m = sig E=m end"=m = "(type t; E)=m = type t = m:t; E=m(type t = T;E)=m = type t = T;E=m(val v : T;E)=m = val v : T;E=mI=m = ISubtyping of interfaces (<:�)all(x :I1) I2 <:� all(x :I 01) I 02 ( I 01 <:� I1; I2 <:�0 I 02where �0 = �; x :I 01h i <:� h ihl1 :I1; : : : ; ln :Ini <:� hl1 :I 01; : : : ; ln :I 0ni ( I1 <:� I 01;hl2 :I2; : : : ; ln :Ini <:�0 hl2 :I 02; : : : ; ln :I 0niwhere �0 = �; l1 :I1some[a :S] I <:� some[a :S0] I 0 ( S <:� S0; I <:�0 I 0where �0 = �; a :Ssig E end <:� sig end;sig D1; : : : ; Dn end <:� sig D01; : : : ; D0m end ( D�(i) <:�0 D0i for i 2 f1; : : : ;mgwhere �0 = �; D1; : : : ; Dnand � : f1; : : : ;mg ! f1; : : : ; ngtype t <:� type ttype t = T <:� type tval v : T1 <:� val v : T2 ( T1 �� T2type t = T1 <:� type t = T2 ( T1 �� T2Manifest equality of types (��) (reexivity and transitivity omitted)T1 ! T2 �� T 01 ! T 02 ( T1 �� T 01; T2 �� T 02t �� T ( � ` t = T : typem:t �� T ( � ` m : sig type t = T;E endt �� tm1:t �� m2:t ( m1 = m2Syntactic equality of expressions modulo reduction (=)(simple syntactic equality of expressions (�) and reduction (�) omitted)m1 = m2 ( m01 � m02; m1 � m01; m2 � m02Figure 5: ConversionDue to dependencies, the subtyping relation has to consider manifest equality of types (��).Subtyping and manifest equality need basis � as an additional parameter because manifest typespeci�cations which determine manifest type equality are recorded in the basis. Two type compo-nents are manifestly equal if the qualifying module expressions are syntactically equal (=) moduloreduction (�).Syntactic equality (�) is the last step in converting interfaces. We have chosen a simpli�ed formof syntactic equality which is obviously decidable. For simplicity, we regard any two expressionscontaining interface annotations as di�erent. For practical purposes this form of equality seems10



to be su�cient. We are not sure whether syntactic equality is decidable if we take interfaceannotations into account.Without proof, we state the following proposition:Proposition 1 Reduction in the ��-module calculus is conuent and strongly normalising.These properties guarantee a terminating reduction and make syntactic equality of expressionsmodulo reduction a meaningful relation.Type-checking structures is fairly standard. The rules are given in the appendix. Basis � is thesame for type-checking a simple module's implementation and the system declaration the moduleis declared in. Since type-checking structures and interface-checking module expressions use thesame basis, there are also start and weakening rules for value speci�cations.5 M/SML|a module language for core SMLAs an example for a module language based on the ��-module calculus, we are implementingM/SML, a module language for core SML. For several reason we have chosen the core of SML asour core language. Core SML has a rich type system that is formally de�ned [17], SML itself has apowerful module system, and variants of SML's module system are the subject of ongoing research(see section 6). In this section we will sketch additional features of M/SML necessary for a modulelanguage which are not covered by the ��-module calculus.First of all, interface declarations are an essential feature of a module language. Interfacedeclarations de�ne a name for a signature or an arbitrary complex interface. Without any restric-tion, function, tuple, and system interfaces may be declared. The example shows the well-knowninterface characterizing a module that represents an order.interface ORD = sigtype tval less: t -> t -> boolendMacQueen's signature closure rule [13] claims that a signature should contain the structures itdepends on as substructures. In SML, the names of these substructures are free and are instantiatedwith every use of the signature. M/SML does not allow for substructures. In order to express thedependency of an interface from certain modules, we use parameterized interfaces. Parameterizedinterfaces are functions from modules to interfaces which can be "instantiated" at di�erent usesby application to a matching module.The interface DICT for a dictionary depends on a module that realizes keys and can be charac-terized as an order.interface DICT (Key: ORD) = sigtype key = Key.ttype 'a dictval empty: dictval add: key -> 'a -> 'a dict -> 'a dictendAn SML signature that serves the same purpose has the following form:signature DICT = sigstructure Key: ORDtype key = Key.t... (* rest as above *)end 11



The main di�erence is that the SML signature is instantiated implicitly, while parameterizedinterfaces in M/SML have to be applied explicitly.Since system declarations are the most unusual part of M/SML, we will start with the mostsimple system.IntOrder = dec [IntOrd: INT_ORD] IntOrdThe system IntOrder consists of a single simple module IntOrd that is also exported. The interfaceINT ORD is a subinterface of ORD and can be characterized by the following interface declaration.interface INT_ORD = ORD with sig type t = int endMakeDict represents a dictionary that is parameterized by a key. Note that the interface ofDict is characterized by applying parameterized interface DICT to module Key. Key|or moreexactly what Key will be, when MakeDict has been applied|and Dict are exported as a tuple.MakeDict = fun (Key: ORD)dec [Dict: DICT Key]<Key = Key, Dictionary = Dict>In order to build a dictionary with integer keys we use system IntOrder and apply MakeDict.Since we use IntOrder via the export part the declaration is matched with a wild card ( ).IntKeyDict = use IntOrder as [_] Key inMakeDict KeyUsually, the use of a system happens only via the export part, therefore, we could abbreviate theas-part of use.IntKeyDict = use IntOrder as Key inMakeDict KeyThe resulting system IntKeyDict can be characterized by interface INT KEY DICT.interface INT_KEY_DICT = some [IntKey: INT_ORD]some [IntKeyDict: DICT IntKey]<Key: INT_ORD, Dictionary: DICT IntKey>If we want to add an extension module that de�nes additional operations on dictionaries, e.g.a domain function that returns a set of keys, we need a set module and the extension itself. Thesemodules are characterized by parameterized interfaces SET and EXT.interface SET (Elt: ORD) = sigtype elt = Elt.ttype setval empty: setval member: elt -> set -> bool...endinterface EXT (Key:ORD) (KeySet: SET Key) =sigval domain: 'a dict -> KeySet.setendThe set as well as the extension can be realized very generally, in order to allow for reuse indi�erent contexts. 12



MakeSet = fun (Elt: ORD)dec [Set: SET Elt]SetExtendDict = fun (Elt:ORD)fun (EltDict: DICT Elt)fun (EltSet: SET Elt)dec [Extend: EXT Elt EltSet]<Key = Elt,Keyset = EltSet,Dictionary = EltDict,Extensions = ExtendDict>If we now want to build an extension of the integer dictionary above, we have to use systemIntKeyDict, combine it with a KeySet, and build an appropriate extension. Normally, a systemconsists of several declarations. Therefore, use allows to match such a "curried" system in onestep. IntKeyExtDict = use IntKeyDict as [_][_] Dict inuse MakeSet (Dict#Key) as [_] KeySet inExtendDict (Dict#Key) (Dict#Dictionary) IntSetWe can abbreviate matching all leading declarations, and accessing the "last" export just the sameway as matching one declaration and accessing the export part.IntKeyExtDict = use IntKeyDict as Dict inuse MakeSet (Dict#Key) as KeySet inExtendDict (Dict#Key) (Dict#Dictionary) KeySetIf we additionally introduce pattern matching for tuples, IntKeyExtDict can be written down veryelegantly:IntKeyExtDict = use IntKeyDict as <Key, Dictionary> inuse MakeSet Key as Keyset inExtendDict Key Dictionary Keyset .Until now, no implementations of simple modules have been supplied. Preferably, every declara-tion de�nes a unique name global to the top-level expression it occurs in. Then, the accompanyingimplementation can be separated, provided top-level declarations are also unique. The implemen-tations needed above can be added separately.implementation IntOrd of IntOrder = struct ... endimplementation Dict of MakeDict = struct ... endimplementation Set of MakeSet = struct ... endimplementation Extend of ExtendDict = struct ... endThe environment for the implementation remains the same as the environment for the declaration.Separate compilation of implementations is possible and reorganization of module programs israther easy.If all implementations have been supplied, a system like IntKeyExtDict can be compiled into anexecutable program. Currently we compile implementations into SML structures which maintainreduction of module expressions via import lists. Several instances of an implementation are simplyrepresented as duplicated code.6 Related workThe central aim of the ��-module calculus is to integrate the side e�ect of generating moduleinstances into a calculus with a simple rewriting semantics. The idea to use names for representing13



instances is inspired by calculi which integrate side e�ects into functional languages, especiallyOdersky's ��-calculus [19]. While �� is essentially a calculus of local names, �� may be character-ized as a calculus of global names.The ��-module calculus is a predicative calculus, where types depend on values. A non-standardvariant of weak sums is used to explain module generativity. Similar in spirit, Mitchell and Plotkin[18] use the SOL-calculus to give a type-theoretic account of abstract types. A type and itsoperations may be packaged into an abstract type|essentially a weak sum. An abstract type hasto be opened, thereby generating a \new" type before it can be used. Although the SOL-calculus isimpredicative, with values depending on types, using a system in the ��-module calculus is similarto combining open and pack in SOL, with systems instead of abstract types.MacQueen's original explanation of SML's module system using strong sums [14] has beenfurther developed in the XSML-calculus [7]. The XSML-calculus is a predicative calculus withstrong sums that is used to give a type-theoretic explanation of Standard ML regarding, both, thecore and the module language. Structure generativity is not explained. Since structures may occurin interfaces, type-checking XSML is undecidable, because of the need for checking the equality ofarbitrary core language expressions. In [8] Harper et. al. show how to introduce a phase distinctionthat makes type-checking decidable. The ��-module calculus also embodies strong sums, but theyare only used to form labelled tuples of module expressions. These tuples do not contain any corelanguage expressions. Module instances can only occur in tuples, if they have been bound beforein a declaration.Type generativity and abstract types are not explained by the XSML-calculus. In order toprevent the need for weak sums, which have to be opened globally and to allow access to abstracttypes via the dot notation [4], translucent sums [6] or manifest types [9, 12] have been proposed.Both concepts identify abstract types with the module expression they come from. This leads toa more abstract and less operational treatment of type generativity than in the de�nition of SML[17]. The identity of abstract types (generative type declarations) is intimately connected to thegeneration of structure instances. While the operational approach of SML generates \new" typesfor every structure instance, in the manifest-types approach abstract types are compatible if theycome from the same path expression. This can be a doubtful feature if two module instances withcompatible abstract types belong to one software system and we want to restructure the system bysubstituting one instance by another implementation. This clearly hurts the principle of informa-tion hiding. The ��-module calculus also uses manifest types to give identities to abstract types,but abstract types are new in every module instance, since the instances are explicit. Furthermore,structure construction is not part of the calculus and, therefore, manifest type expressions are notrestricted to path expressions.All the theoretical work above is used to develop module systems of the ML-family. Manifesttypes constitute the foundation of the module system of Objective Caml (formerly known as CamlSpecial Light [11]). SML-1996 [21] is a proposal for a language based on XSML and translucentsums. Besides theoretical foundations and the handling of type generativity, the integration ofhigher-order functors has been a major goal. All approaches scale up to higher-order functors, themore abstract approaches [10, 8] as well as the more operational approach [23, 15]. The ��-modulecalculus also allows higher-order expressions, but it is not so closely connected to the ML-family.7 Summary and future workThe ��-module calculus introduces a syntactic way to handle the identity of module instances. Sys-tem declaration and the dual use-construct allow to deal with module instances in a calculus witha simple rewriting semantics instead of using an operational semantics which describes structuregeneration as a side e�ect at the module level.The type system describes interfaces of expressions using types (interfaces) that depend onvalues (module expressions). The most simple interfaces are signatures, the interfaces of simplemodules. A non-standard variant of weak sums, called system interfaces, makes module instances14



explicit in interfaces. Together with dependent functions, characterizing parameterized systems,strong sums for tupling arbitrary module expressions, and manifest types for expressing dependen-cies, we get a rich type system appropriate for a module language.Essentially, the ��-module calculus is a predicative calculus. Simple modules are its simplevalues, and signatures may be regarded as \simple" types. In a sense, the calculus is completelyfunctional. The notion of a software system coincides with our notion of a system. It is simply aclosed expression of the module language. Consequently, the interface reveals the complete modularstructure an expression will have when all parameters have been supplied and the expression isreduced to normal form. Equational reasoning at the module level is possible, for example, to showthat two di�erent systems are equivalent4. Simple modules (and arbitrary module expression)that interfaces and implementations depend on are always represented syntactically in the moduleprogram. Therefore, it is not possible to declare defective signatures [1] (also called "monsters" in[16]) which can not be implemented by any structure.The module language M/SML is just a testbed for the ��-module calculus. Currently weare developing a concept-proof implementation of M/SML using parts of the ML-Kit [3] for thestatic analysis of module implementations. Since we are mainly interested in the module language,module language expressions which form an executable system are compiled into a sequence ofSML structures.Our original motivation was to support the description and development of software architec-tures [5], using a module language similar to the module language of SML. In principle, SML or oneof its variants could serve this task [2], but in SML the elaboration of module expressions is onlypossible if all structures have been implemented. Architectional and implementational concernscannot be separated. In M/SML a software achitecture can be designed and module expressionscan be elaborated without supplying implementations for every dec-bound module.The strict separation of module and implementation languages opens the door for several in-teresting applications of the ��-module calculus. For example, we could allow a restricted form ofmutual dependencies between module implementations, similar to Modula-2, where two or moreimplementation modules may mutually depend on each other's de�nition module.system mutual = dec [a : A and b : B a]<a = a, b = b>implementation a of mutual = struct ... b.f ... endimplementation b of mutual = struct ... a.f ... endFurthermore, we could apply the ��-module calculus to the problem of namespace managementfor an object-oriented language. In a strongly-typed object-oriented language, a class could playthe role of a simple module, and it seems possible to develop a powerful module system for anobject-oriented core language.References[1] Maria Virginia Aponte. Extending record typing to type parametric modules with sharing.In 20th Symposium on Principles of Programming Languages, pages 465{478. ACM Press,January 1993.[2] Edoardo Biagioni, Robert Harper, and Peter Lee. Implementing software architectures inStandard ML. In ICSE-17 Workshop on Research Issues in the Intersection of SoftwareEngineering and Programming Languages, 1994. Position Paper.[3] Lars Birkedal, Nick Rothwell, Mads Tofte, and David N. Turner. The ML Kit version 1.Technical Report 93/14, DIKU, University of Copenhagen, Denmark, 1993.4The topological order according to the depends-on relation between simple modules is not unique15
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A AppendixA.1 SyntaxA.1.1 Module calculusExpressions m ::= x variable/namej l labelj fun(x :I)m (function) abstractionj m1 m2 applicationj hl1 = m1; : : : ; ln = mni tuple constructionj m#l tuple selectionj dec[x :S]m (system) declarationj use m1 as [x1]x2 in m2 useInterfaces I ::= S simple interfacej all(x :I1) I2 function interfacej hl1 :I1; : : : ; l1 :Ini tuple interfacej some[x :S] I system interfaceSignatures S ::= sig E end signatureE ::= D;E signature entriesj "D ::= type t opaque type speci�cationj type t = T manifest type speci�cationj val v : T value speci�cationT ::= t type namej m:t type componentj int j bool prede�ned simple typesj T1 ! T2 function typeA.1.2 Core languageImplementations m ::= : : :j dec[x :S is s]m declaration and implementationj : : :s ::= struct e end structuree ::= d; e structure entriesj "d ::= type t = T type binding (non-generative)j datatype t type creation (generative)j val v : t = c value declarationc ::= m:v (value) componentj ::: core language expressions17



A.2 Typing rulesA.2.1 Module calculus[ ] ` h i : � [ ] ` sig end : � [ ] ` type : �(axiom) � ` I : ��; x :I ` x : I ; x =2 � � ` I : ��; l :I ` l : I ; l =2 �(start) � ` type : ��; type t ` t : type ; t =2 � � ` T : type � ` type : ��; type t = T ` t = T : type ; t =2 �� ` T : type�; val v : T ` val v : T ; v =2 �� ` stmt � ` I : ��; x :I ` stmt ; x =2 � � ` stmt � ` I : ��; l :I ` stmt ; l =2 �(weakening)� ` stmt � ` type : ��; type t ` stmt ; t =2 � � ` stmt � ` T : type � ` type : ��; type t = T ` stmt ; t =2 �� ` stmt � ` T : type�; val v : T ` stmt ; v =2 � stmt denotes an arbitrary typing statement� ` I1 : � �; x :I1 ` I2 : �� ` all(x :I1) I2 : � � ` S : � �; x :S ` I : �� ` some[x :S] I : �(interface formation) � ` I1 : � �; l1 :I1 ` hl2 :I2; : : : ; ln :Ini : �� ` hl1 :I1; : : : ; ln :Ini : �� ` T : type �; type t = T ` sig E end : �� ` sig type t = T;E end : �(signature formation)� ` type : � �; type t ` sig E end : �� ` sig type t; E end : � � ` T : type � ` sig E end : �� ` sig val v : T;E end : �� ` T1 : type � ` T2 : type� ` T1 ! T2 : type(type formation)� ` m : sig type t; E end� ` m:t : type � ` m : sig type t = T;E end � ` T : type � ` t : type� ` m:t = T : type� ` m : sig type t; E end�; type t ` m : sig E end(module) � ` m : sig type t = T;E end�; type t = T ` m : sig E end � ` m : sig val v : T;E end�; val v : T ` m : sig E end18



�; x :I1 ` m : I2 � ` all(x :I1) I2 : �� ` fun(x :I1)m : all(x :I1) I2(abstraction) � ` m1 : all(x :I2) I1 � ` m2 : I2� ` m1 m2 : I1fx m2g(application) � ` hl2 = m2; : : : ; ln = mnifl1  m1g : hl2 :I2; : : : ; ln : Inifl1  m1g� ` m1 : I1 � ` hl1 :I1; : : : ; ln :Ini : �� ` hl1 = m1; : : : ln = mni : hl1 :I1; : : : ; ln :Ini(tuple construction)
� ` m : hl1 :I1; : : : ; lk :Ik; : : : ; ln :Ini� ` m#lk : Ikfl1  m#l1g � � � flk�1  m#lk�1g(tuple selection) �; x :I1 ` m : I � ` some[x :S] I : �� ` dec[x :S]m : some[x :S] I(declaration) � ` m1 : some[x1 :S] I1 �; x2 :S; x3 :I1 ` m2 : I2� ` use m1 as [x]y in m2 : some[x1 :S] (I2fx2  x1g) ; x3 =2 I2(use) � ` m : I1 � ` I2 : � I1=m <:� I2� ` m : I2(conversion)A.2.2 Core language�; x :S ` m : I � ` i : S � ` some[x :S] I : �� ` dec[x :S is i]m : some[x :S] I(declaration) � ` sig end : �� ` struct end : sig end(structure)� ` T : type � ` struct e endft Tg : sig E endft Tg � ` sig type t = T;E end : �� ` struct type t = T; e end : sig type t = T;E end�; type t ` struct e end : sig E end � ` sig type t; E end : �� ` struct datatype t; e end : sig type t; E end�; v :T ` c : T �; v :T ` struct e end : sig E end � ` sig val v : T;E end : �� ` struct val v : T = c; e end : sig val v : T;E end� ` m : sig val v : T;E end� ` m:v : T further core language rules omitted(value component)

19



A.3 Conversion and reductionA.3.1 Strengthening (=) (sig E end)=m = sig E=m end"=m = "(type t; E)=m = type t = m:t; E=m(type t = T;E)=m = type t = T;E=m(val v : T;E)=m = val v : T;E=mI=m = IA.3.2 Subtyping of interfaces (<:�)all(x :I1) I2 <:� all(x :I 01) I 02 ( I 01 <:� I1; I2 <:�0 I 02where �0 = �; x :I 01h i <:� h ihl1 :I1; : : : ; ln :Ini <:� hl1 :I 01; : : : ; ln :I 0ni ( I1 <:� I 01;hl2 :I2; : : : ; ln :Ini <:�0 hl2 :I 02; : : : ; ln :I 0niwhere �0 = �; l1 :I1some[a :S] I <:� some[a :S0] I 0 ( S <:� S0; I <:�0 I 0where �0 = �; a :Ssig E end <:� sig endsig D1; : : : ; Dn end <:� sig D01; : : : ; D0m end ( D�(i) <:�0 D0i for i 2 f1; : : : ;mgwhere �0 = �; D1; : : : ; Dnand � : f1; : : : ;mg ! f1; : : : ; ngtype t <:� type ttype t = T <:� type tval v : T1 <:� val v : T2 ( T1 �� T2type t = T1 <:� type t = T2 ( T1 �� T2A.3.3 Manifest equality of types (��)T1 ! T2 �� T 01 ! T 02 ( T1 �� T 01; T2 �� T 02t �� T ( � ` t = T : typem:t �� T ( � ` m : sig type t = T;E endt �� tm1:t �� m2:t ( m1 = m2T2 �� T1 ( T1 �� T2T1 �� T3 ( T1 �� T2; T2 �� T3A.3.4 Syntactic equality of expressions modulo reduction (=)m1 = m2 ( m01 � m02; m1 � m01; m2 � m02
20



A.3.5 Simple syntactic equality of expressions (�)x � xm1 m2 � m01 m02 ( m1 � m01; m2 � m02m#l � m0#l ( m � m0h i � h ihl1 = m1; : : : ; ln = mni� hl1 = m01; : : : ; ln = m0ni ( m1 � m01; hl2 = m2; : : : ln = mnifl1  m1g� hl2 = m02; : : : ; ln = m0nifl1  m1guse m1 as [x]y in m2� use m01 as [x]y in m02 ( m1 � m01; m2 � m02A.3.6 Reduction (�) m� mm1 � m2 ( m1 ! m2m1 � m3 ( m1 � m2; m2 � m3A.3.7 One-step reduction (!)The compatibility rules for selecting a redex and �-conversion are omitted.(fun(x :A)m1) m2 ! m1fx m2ghl1 = m1; : : : ; lk = mk; : : : ; ln = mni#lk ! mkfl1  m1g � � � flk�1  mk�1guse (dec[x1 :S]m1) as [x2]x3 in m2 ! dec[x1 :S] (m2fx2  x1gfx3  m1g)
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