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Abstract

Advanced module systems like Standard ML’s [13, 17] support structure genmerativity.
Structure generativity denotes the mechanism that parameterized modules (functors) gen-
erate a "new” module instance (structure) for every application to a suitable argument. This
operational behaviour is essentially a side effect. Since interfaces in general depend on module
instances, module instances are computationally characterised as ”stamps” for the purpose of
interface-checking.

This paper presents a typed module calculus that makes instances of modules syntactically
apparent in expressions and interfaces. The module calculus has a simple rewriting semantics
without side effects. Interface-checking is based on a type system with dependent functions,
strong sums and additionally a non-standard variant of weak sums. A module system derived
from the module calculus forms a separate layer above some typed core language. As a
demonstrating example, we sketch M/SML, a module language on top of core SML.

Key words: module language, ML, type systems, dependent types

1 Introduction

Module systems provide support for factoring large software systems into separate but dependent
program units. These program units, called simple modules (or just modules for short) in the
following and variously known as clusters, packages, or structures, in their simplest form define
collections of identifiers: types and values in a purely functional setting, additionally variables
and exceptions for imperative features, and even classes for the object-oriented paradigm. The
types of simple modules, called simple interfaces for convenience, are known as definition modules,
package specifications, and signatures. They classify a simple module’s exported identifiers with
types for values and with kinds for type constructors. In general, simple interfaces as well as
simple modules depend on preceding, so-called imported modules. That is, simple interfaces are
essentially dependent types.

In order to build a large system, simple modules and simple interfaces have to be organized in
a hierarchical, or more exactly, topological order with respect to the relationship ”depends-on”.
This can be done rigidly, by defining modules one after another in a language like Modula-2 [24]
or more flexible in a language like SML [17, 16], where dependencies are expressed via functor
parameters and structures are linked by functor applications.

An essential feature of SML’s module system is structure generativity. Structure generativity
deals with the question when a structure is instantiated in order to be part of a system. This is no
problem in a static module system like Modula-2’s modules where declaration and instantiation
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of a module coincide and an instance of a module is simply identified by the module’s name. In
SML, structures are instantiated as the result of functor applications, and structure generativity
denotes the computational behaviour that a "new” instance of a structure is generated for every
functor application. Essentially, this is a side effect at the module level.

Since signatures in general depend on structures (or more exactly on instances of structures)
structure generativity is also important for the static semantics of SML’s modules. In the static
semantics instances are identified by stamps. This computational characterisation of SML’s type-
checker is standardized in [17] and has been extended to higher-order functors in [15].

In this work we want to treat module instances in a more abstract, type-theoretic framework.
We abandon the side effect of module instantiation and develop a module calculus that has a simple
rewriting semantics and makes instances of simple modules syntactically apparent in expressions.
For the purpose of interface-checking, we develop a type system, based on dependent functions,
strong sums and a non-standard variant of weak sums that also makes module instances apparent.
In this module calculus a complete software system is simply an expression, and the expression’s
type represents its interface. In a sense, the module calculus is purely functional. Furthermore, we
will sketch a module language on top of core SML that is derived from the module calculus.

To reach our goals, we reassess MacQueen’s proposal for the module system of SML [13]. As
we will see, this leads us to a module system similar in spirit but technically quite different to
SML’s modules. We adopt MacQueen’s definition that a module, in its simplest form, is a named
collection of declarations whose purpose is to define an environment. That means, a simple module
is identified by a name, classified by a simple interface, and realized by an implementation.

The purpose of our module calculus is to describe systems. Declaring a simple module m with
interface M and implementation ¢, for later use within some expression u with interface U is,
roughly, a dependent pair:

(m: M =i,u{m}): (m: M x U{m}),
where m may occur free in expression u{m} and interface U{m}. We prefer the notation:
dec[m: M isi| u{m} : some[m: M]U{m}.

We call this binding construct a system. The expression u which uses the simple module m is also
called the export part.

However, as MacQueen points out, the implementation as well as the interface of a simple
module often contain free identifiers referring to other modules or to predefined declarations.
Therefore, he argues, a module in general is a dependent function (called functor in SML) from an
environment of definition to the defined environment:

fun(z:A) m{z} : all(z: A) M{z}.

There seems to be a contradiction between MacQueens explanation of a module as the result of
a function application and our understanding, where a simple module is declared as a part of
a system. A closer look shows that the first is the implementor’s view (What is necessary to
implement a module?), while the second is the system architect’s view (How can I use a certain
module in a system’s architecture?). But both views do not exclude each other.

It is no problem to add an additional parameter module z with interface A to our notion of a

system:
F = fun(z: A) (dec[m: M{z}isi{z}] (u{z}{m})).

We get a parameterized system (a function), where the interface of module m, its implementation
i, and the export part u may refer to the parameter module z. If F' is applied to a matching
module a, x is substituted by a. The result is a system which declares simple modules a and m
and exports u.

decla: Aisi'] (Fa) = dec[a: Aisi'] (dec[m: M{x + a}isi{z < a}] (u{z + a}{m})).



The simplest system we can imagine declares one simple module and exports it.
decla:Aisi,] a

What seems rather useless becomes more meaningful if we imagine a system which declares two
modules a and b and exports module b.

dec[a: Aisi,] (dec[b: B{a}isip{a}] b)

In general, it should be possible that a system exports more than one module. Therefore, we
additionally introduce labelled tupels (which are essentially strong sums, see for example [7, 22])
in order to be able to group several simple modules of a system into one exported expression'.

dec[a: Aisi,] (dec[b: B{a}isip{a}] (lo = a,lp = b)

Now, both modules a and b are exported as a tuple where a is labelled with I, and b is labelled
with lb.

So far, we have separated two concerns: instances of simple modules are made explicit by
declarations, and the export part specifies which components of a system can be used from outside.
The question arises, how to use such a system. First, we can imagine a (sub-)system as a component
of a larger system. Since a system is simply an expression of a calculus with a rewriting semantics
(see section 4 below) using a system or applying a parameterized system is equivalent to textually
inserting the system itself. Second and more important, if a system (a client) depends on another
system (the supplier), the supplier system has to be opened in order to enable access to the internal
structure.

2 Using systems—module instances made explicit

Now, if we want to use a system partially or as a whole in another context, we somehow have
to open or to eliminate the system. Since we regard a system as a dependent pair combined of a
module declaration and an export part we have to use an appropriate elimination form. There are
several syntactic formulations for eliminating dependent pairs [22, 7, 18]. We prefer the following
syntactic form:

use p as [z]y ine

This means, bind the first resp. the second part of system p to variables = resp. y in expression e.
The standard computation rule for dependent pairs using our notation is as follows:

use (dec[a: Aisi,] b) as [z]y in e = e{z <+ i, }{y + b{a + i,}}.

In words, i, substitutes z in e, and since b depends on a, a is substituted by i, before b substitutes
yin e.

Because we are interested in making module instances explicit in interfaces, we could regard
systems as standard weak sums (see for example, [22]). The typing rule for weak sums has the

following form:
Pkp:somela:A]B T,z:A,y:Bte:C

z,y ¢ C.
Ftusepas[zlyine: C
If we assume weak sums, every use of a system “generates” an instance of its declared module.
This is very similar to Mitchell and Plotkin’s type-theoretic explanation of abstract types [18].
But, for our purpose weak sums are lacking in several respects. Generating module instances is
still implicitly connected to the reduction of use. Furthermore, dependencies from expression e to
the used system p expressed via variables  and y must not be propagated into the interface C' of

'In general, a labelled tuple contains arbitrary expressions



e. This leads to the well-known critique [6, 14, 4] that weak sums have to be eliminated globally
for all their clients.

What we really need is an elimination form that makes instances explicit in expressions and
allows for the propagation of dependencies through interfaces. Therefore, we propose the following
non-standard computation rule for use:

use (dec[a: Aisi,]b) as [z]y in e — dec[a: Aisi,] (e{z + a}{y < b}) .

Instead of the implementation 4, the module’s name a substitutes z. At the same time, we (re)bind
a outside, ensuring that a does not escape its scope. Consequently, the implementation ¢, remains
the same. What seems to be a “cheap trick” solves several problems at once.

First, instances are made explicit, because we can regard every dec-bound module name as an
instance of the assigned implementation. If we need two instances of a simple module, we have to
use a system two times, and we get two instances due to a-conversion. For example:

S =decla:Aisiy] b
use S as [z]y in (use S as [u]v in f z u) — decla: Aisiy] ((use S as [ulv in f z u){z + a}{y < b})
— decla: Aisi,] (dec[a’: Aisiy] (f a u){u < a'}{v + b})
— decla: Aisi,] (dec[a’: Aisiy] (f a a')).

Here, using system S two times, “generates” two instances of implementation i,, named a and a'.

Second, we get an system closure mechanism for free. An arbitrary part of a system can only
be used in its context. Imagine a system S = dec[a: Aisi,] dec[b: Bisip] dec[c: C'isi.] d; using b
from system S automatically rebuilds the context, b depends on:

use S as [u]v in (use v as [z]y in f x) — decla: Aisi,] (dec[b: Bisiy] f b)

At the same time, those parts of system S which are not needed are disregarded in the result.
If we look at the appropriate non-standard typing rule, this closure mechanism (the complete
modular structure of the result) is also apparent in the resulting interface:

Pkp:somela:A]B T,z:A,y:Btc:C

. 'y ¢l
'k use p as [z]y in ¢ : some[a: A] (C{z < a})

The result of using a system again is a system. The interface shows the modular structure an
expression will have after a reduction is possible. Similar to weak sums, y must not occur in C,
because it would otherwise escape its scope.

To sum up, the proposed elimination form makes instances of simple modules apparent in
expressions and interfaces and supplies the relevant context when using a system partially or as a
whole. It allows the propagation of dependencies through interfaces and eliminates the need to use
a system globally for all its clients. Unfortunately, use cannot be called an elimination construct
because the result of using a system again is a system. But, it does exactly what we need.

Together with function abstractions and labelled tuples, as mentioned in the introduction, we
get a complete module calculus. But before we formally describe the module calculus and its
typing system, we take a look at the connection of the core and the module language.

3 Embedding a core language

From the module calculus’ point of view a simple module is an indivisible unit, an atom, identified
by a name for later reference and specified by a simple interface hiding local declarations of the
accompanying implementation. Simple interfaces and implementations are determined by some
typed core language and connect the separated layers of module and core language.



For the purpose of demonstration we will use core SML [17] as our core language, consequently
implementation modules are called structures and simple interfaces are called signatures. Signatures
classify core language declarations. These are types, values, and exceptions.

Contrary to SML, signatures do not contain structure specifications. Furthermore, implementa-
tions should be separately compilable, and interface-checking module language expressions should
not utilize implementation details. Therefore, we regard type specifications as abstract (opaque)
and additionally introduce specifications of type synonyms (manifest types [9]). Similar to SML,
we have a notion of subtyping between signatures that allows to define different views of a simple
module. According to standard techniques, signatures may be thinned and type synonyms may
be converted to abstract types. The paradigmatic signature of a module implementing a stack of
integer values has the following form:

interface INT_STACK = sig
type item = int (* type synonym *)
type stack (* abstract type *)
val push : item — stack — stack
val pop : stack — item * stack

enci”

If we now declare a module stack with interface INT_STACK for use in some module expression
u, we write:

dec[Stack: INT_STACK isstruct ... end]u

The combination of module name, interface and implementation struct ... end is very similar to a
structure binding in SML, apart from the fact that the visibility of the module name is restricted
to the expression u. Signatures occurring inside u now can refer to types from Stack by the dot
notation, writing Stack.item or Stack.stack. Structures (module implementations) scoped inside
u can refer to types as well as to values and exceptions, e. g. Stack.push.

Technically, we guarantee that the identity of an abstract type declared inside a simple module
is connected to the module’s name, in other words, a new abstract type is generated for every
instance of a simple module. Similar to translucent sums [6] or manifest types [9, 10], we use a
strengthening operation (see section 4) to give identities to abstract types. In the example, the
abstract type stack is manifestly equivalent to Stack.stack inside expression wu.

We have seen that signatures and structures naturally depend on module names. Technically,
the module calculus is a programming language with dependent types. Therefore, due to reduc-
tions, references to a module name may become references to an arbitrary module expression. As
a consequence, interface-checking has to decide the equality of module language expressions, and
reductions are also necessary inside structures. As we will discuss in the next section, the module
calculus is confluent and strongly normalising, which makes structural equality of normal forms an
adequate formulation for equality and guarantees a terminating reduction of module expressions.

The goal of reducing a module program is the production of an executable software system. Such
a system coincides with our notion of a system. If a module language expression only consists of a
sequence of module declarations together with an export expression, all simple modules involved in
the complete system are in some topological order with respect to the relationship ”depends-on”.
If all implementations of simple modules have been supplied, the dependencies indicate how to link
these implementations in order to form an executable program.

4 The M\-module calculus

Essentially, the foundation of our module calculus is a lambda calculus with types depending on
values. Since, system declaration and use are the main novell features in our calculus we call it
the Ad-module calculus®. The Ad-module calculus forms a separate layer above some typed core

2\ for abstractions and 6 for declarations



Expressions

m = variable/name
| 1 label
| fun(z:I)m (function) abstraction
| m1 mo application
| (It =m4,...,l, =m,) tuple construction
| m+ tuple selection
| dec[z:S]m (system) declaration
| use my as [z1]zs in ma use

Interfaces

I == S simple interface
| all(z:I) I, function interface
| (:L,... 0 :1,) tuple interface
| some[z:S]|I system interface

Signatures

S == sig Fend signature

E = DFE signature entries
| €

D == typet opaque type specification
| typet=T manifest type specification
| valv:T value specification

T ==t type name
| m.t type component
| int | bool predefined simple types
| Th =T function type

Figure 1: Syntax of the Ad-module calculus

language. Therefore, we first take a look at syntax and reduction of the module calculus and then
explain the connection to the core language.

4.1 Syntax and reduction

Figure 1 shows the syntax of the Ad-module calculus. There are two distinct identifier classes
variables/names (z) and labels (I). Expressions are composed from variables/names, labels, func-
tion abstraction and application, tuple construction and selection, and system declaration and use.
Abstraction, declaration, and use introduce variables/names. Tuples introduce labels. Labels are
visible in subsequent tuple components and are used to select a tuple component from outside.

There are suitable interfaces for every kind of expression. Function interfaces are dependent
functions. Tuple interfaces are a generalized form of strong sums. System interfaces are a non-
standard variant of weak sums, as explained before. Simple interfaces play the role of simple
types, which characterize simple modules, the simple values of the calculus. The interface of a
module name introduced in a system declaration is syntactically restricted to a simple interface.
This reflects the fact that system declarations only introduce simple modules. Simple modules and
their interfaces are determined by the embedded core language. Since we assume an ML-like core
language, simple interfaces are called signatures.

Signatures allow for the specification of abstract types (opaque type specifiation), type synonyms



Reduction for the Ad-module calculus

(fun(z:A) my) mo = my{z < my}
<l1 :ml,...,lk:mk,...,ln:mn>#lk — mk{h(—ml}---{lk,l(—mk,l}
use (dec[zy:S]m1) as [za]zs in Mo —  dec[z:S] (ma{xzs < x1 }H{z3 < m1})

Figure 2: Reduction rules

(manifest type specification), and core language values (value specification). Essentially, type names
(t) and values (v) are two further identifier classes distinct from variables/names and labels. These
identifiers can only be used inside signatures. Type expressions (T') are composed from predefined
simple types, type names, type components and function types. Type components from ”imported”
modules are referenced via the dot notation; a module expressions (m) qualifies the module and
a type name (t) selects the component. Due to type components, interfaces are value-dependent
types.

Although we have signatures, structure construction is not part of the module calculus. We
regard a structure as the implementation of a simple module which is part of the core language. In
the module calculus itself, a module is either declared by a name in a system declaration or bound
via a variable as a function parameter or in the use construct. The module’s signature completely
classifies the structure. This makes module expressions independent from representation details
and allows for separate compilation of structures.

The reduction rules for the Ad-module calculus are shown in figure 2. Substitution ({z < m})
is defined as usual. For simplicity, a-conversion, which has to be considered, is not made explicit in
the reduction rules, and compatibility rules for selecting redexes are omitted. Since simple modules
are indivisible units, there is no reduction rule for the dot notation—the dot notation is simply
a qualified identifier. Note that substitutions and reductions also occur inside interfaces, because
interfaces depend on module expressions.

4.2 The core language

The core language is connected to the module calculus via module implementations. For every
declaration of a simple module a structure may (but need not) be supplied as its implementation.
The simple module’s signature and the implementation are in the same scope. The additional
syntax which connects structures to the module calculus is shown in figure 3. To go with signatures,
structures contain type and value declarations.

The core language distinguishes declarations of type synonyms (non-generative type binding)
and of new type constructors (generative type creation). For simplicity, the declaration of construc-
tor functions is not part of the syntax, and new type constructors are always nullary. The addition
of constructor functions, n-ary type constructors and exception declarations is straightforward.

Similar to signatures, structures also may depend on module expressions, when values and
types from ”imported” modules are used via the dot notation. As a consequence, the reduction of
module expressions also leads to substitutions inside structures.

If all declarations of modules have been implemented by structures, and if the reduced expres-
sion does not contain any abstractions, module expressions inside implementations can be reduced
to module names, indicating how the separately compiled structures have to be linked. The result
is a sequence of structures, topologically ordered according to the relationship ”depends-on”. The
export part indicates the "main module” of the whole system.

4.3 Interface inference

Interface-checking module expressions is a delicate issue, because interfaces may depend on arbi-
trary module expressions. The complete typing rules are given in the appendix. Here we only



Structure implementations:

m u= ...
| dec[z:Siss]m declaration and implementation
|

s un= struct e end structure

e == d,e structure entries
| €

d == typet=T type binding (non-generative)
| datatype ¢ type creation (generative)
| valv:t=c value declaration

c = mw (value) component
| core language expressions

Figure 3: Syntax for the core language

discuss the essential and the most unusual rules shown in figure 4.

The rules are written down in a non-deterministic manner, in order to show the principal infer-
ence steps. All derivations start from an aziom. There are three axioms: an empty tuple interface,
an empty signature and the kind type are wellformed. The symbol [0 denotes wellformedness and
symbol [ ] denotes an empty basis. There is a start and a weakening rule for variables/names, labels,
opaque types, type synonyms and values®. Interface formation rules for function, system, and tuple
interfaces, and rules for signature formation and type formation allow to derive wellformedness of
complex and simple interfaces.

Function interfaces are dependent functions introduced by abstractions. Tuple interfaces are
a generalized form of strong sums, which are introduced by tuple construction. System interfaces
are introduced by system declarations and may be regarded as a non-standard variant of weak
sums. Note that the syntactic restriction that names introduced by declarations must have simple
interfaces is reflected by the declaration rule and by the formation rule for system interfaces.
The elimination rules for function interfaces (application) and tuple interfaces (tuple selection) are
standard. Rather unusual is the rule use.

The syntactic construct use matches an expression m; that has a system interface to variables
To and z3 for use in expression ms. s binds a simple module and, therefore, has a simple interface.
x3 binds the export part of the used system. The resulting interface again is a system interface,
where the declared name is rebound by z; in the resulting system interface. That means, I> may
very well contain z» but must not contain z3, because x5 is substituted by z; while 3 would
escape its scope. Figuratively, the typing rule use reflects the fact that the module declared in
the used system is always part of the using expression, ensuring the system closure mechanism
mentioned in section 2.

Type specifications in signatures may refer to internally declared type names. Therefore, the
module rules extend the basis ensuring that type names do not escape their scope when typing
type components and value components referenced via the dot notation.

The conversion rule allows to convert interfaces. It integrates several important conversion
operations. First of all, our type system supports the idea that abstract types are connected to the
instance of the module they are declared in. This approach is very similar to the approaches of Leroy
[9, 10] or Harper and Lillebridge [6]. Similar to Leroy’s system, we use a strengthening operation

3stmt denotes an arbitrary type statement



(axiom) [[F():O []Fsig end: O [1F type: O

Fkr1:0O

(start) — 2 ¢T other start rules omitted

Dz Ikax:1

F'kstmt T'HI1:0
(weakening) ,x ¢ T other weakening rules omitted

T,x:1TF stmt

r=s:d z:S+1:0

(interface formation) other interface formation rules omitted

I+ some[z:S]I: 0O
(signature formation) omitted
(type formation) omitted
(module) ['Fm:sigtypet, B end other module rules omitted
I type t - m :sig E end
Dox:Lbm:I, Tral(z:):O
Crfun(z:L;)m:all(z: 1) I»
TkEmy:all(z:L); Thkmg: L

(abstraction)

(application)
I'my mo: Il{l‘ <« m2}

'+ <12 =ma,... ,ln :mn>{ll %ml} : <12212,... ,ln : [n>{l1 (—ml}
Ckmi:L TE{(:h,...  l,:1,): 0

Th(h=may..dy=mp): (li:Dy,enn ln: 1)
Chm:(:hy... eIy, 1)
T m#ly : I{ly < m#l - {lg—1 < m#l_1}
Le:LiFm:I TFsome[z:S]I:0
T+ dec[z:S]m : some[z:S] T
(us0) I'Fmy:somefzy:S| L T,z2:S,23: 1 Fmg: Iy s ¢ I
Tk use my as [z]y in mgy : some[xy :S] ([2{z2 + 21})
F'tm:I, THL:O Li/m<rl
'tm:1s

(tuple construction)

(tuple selection)

(declaration)

(conversion)

Figure 4: Interface inference rules

(figure 5) to represent the fact that abstract type components in signatures are not arbitrary types,
but come from the module expression they are connected to. Different to Leroy’s approach we do
not restrict strengthening to path expressions, but allow arbitrary module expressions.

Beside strengthening, our module calculus also supports a subtyping relation (see figure 5)
between interfaces in order to allow for different views of a simple module. Subtyping between
interfaces (<:r) is defined as usual: signatures may be thinned, manifest type specifications are
considered subtypes of opaque type specifications, function interfaces are contra-variant, tuple and
system interfaces are covariant.



Strengthening

(sig E end)/m = sig E/m end
e/m=c¢
(type t, E)/m = type t = m.t, E/m
(typet =T,E)/m =type t =T, E/m
(valv:T,E)/m=valv:T,E/m
I/m=1I

Subtyping of interfaces (<:r)

all(z: 1) Iy <:r all(z:17) I < I <, L < I
where IV =T, z:I]
()< ()

(Ih: Ly, ..ol L)y <op (oI G0 o 1) < L < I,
(Ia: Ly ...yl L) <ipr (o215, o0 Lyt 1))
where IV =T,1; :I;
some[a:S] I <:r some[a:S'] I < S<p S, I<p I’
where IV =T,a:S
sig E end <:r sig end;
sig Di,...,Dy end <:psig Dy,...,D, end <« D, <:v Djforie{l,...,m}
where IV =T, Dy,...,D,
and o:{1,...,m}—=>{1,...,n}
type t <:r type ¢
typet =T <: type t
val v : Ty <:;pvalv:Th < Ty ~rTs
typet =T, <:r typet =1T> < Ty ~r Ty

Manifest equality of types (~r) (reflexivity and transitivity omitted)

T, — Ty ~p Tll — TQI < Ty =r Tll, T5 ~p TQI

tar T < T'Ht=T:type

m.at ~p T < T'kFm:sigtypet=T,FE end
t%rt

mi.t & mo.t = mp = my

Syntactic equality of expressions modulo reduction (=)
(simple syntactic equality of expressions (=) and reduction (—) omitted)

my =my < mi=mh, my->»mi, ms—»m)

Figure 5: Conversion

Due to dependencies, the subtyping relation has to consider manifest equality of types (=r).
Subtyping and manifest equality need basis I' as an additional parameter because manifest type
specifications which determine manifest type equality are recorded in the basis. Two type compo-
nents are manifestly equal if the qualifying module expressions are syntactically equal (=) modulo
reduction (—»).

Syntactic equality (=) is the last step in converting interfaces. We have chosen a simplified form
of syntactic equality which is obviously decidable. For simplicity, we regard any two expressions
containing interface annotations as different. For practical purposes this form of equality seems

10



to be sufficient. We are not sure whether syntactic equality is decidable if we take interface
annotations into account.
Without proof, we state the following proposition:

Proposition 1 Reduction in the A\d-module calculus is confluent and strongly normalising.

These properties guarantee a terminating reduction and make syntactic equality of expressions
modulo reduction a meaningful relation.

Type-checking structures is fairly standard. The rules are given in the appendix. Basis I' is the
same for type-checking a simple module’s implementation and the system declaration the module
is declared in. Since type-checking structures and interface-checking module expressions use the
same basis, there are also start and weakening rules for value specifications.

5 M/SML—a module language for core SML

As an example for a module language based on the Ad-module calculus, we are implementing
M/SML, a module language for core SML. For several reason we have chosen the core of SML as
our core language. Core SML has a rich type system that is formally defined [17], SML itself has a
powerful module system, and variants of SML’s module system are the subject of ongoing research
(see section 6). In this section we will sketch additional features of M/SML necessary for a module
language which are not covered by the Ad-module calculus.

First of all, interface declarations are an essential feature of a module language. Interface
declarations define a name for a signature or an arbitrary complex interface. Without any restric-
tion, function, tuple, and system interfaces may be declared. The example shows the well-known
interface characterizing a module that represents an order.

interface ORD = sig

type t
val less: t -> t -> bool
end

MacQueen’s signature closure rule [13] claims that a signature should contain the structures it
depends on as substructures. In SML, the names of these substructures are free and are instantiated
with every use of the signature. M/SML does not allow for substructures. In order to express the
dependency of an interface from certain modules, we use parameterized interfaces. Parameterized
interfaces are functions from modules to interfaces which can be ”instantiated” at different uses
by application to a matching module.

The interface DICT for a dictionary depends on a module that realizes keys and can be charac-
terized as an order.

interface DICT (Key: ORD) = sig
type key = Key.t
type ’a dict
val empty: dict
val add: key -> ’a -> ’a dict -> ’a dict
end

An SML signature that serves the same purpose has the following form:

signature DICT = sig
structure Key: ORD
type key = Key.t
(* rest as above *)
end
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The main difference is that the SML signature is instantiated implicitly, while parameterized
interfaces in M/SML have to be applied explicitly.

Since system declarations are the most unusual part of M/SML, we will start with the most
simple system.

IntOrder = dec [IntOrd: INT_ORD] IntOrd

The system IntOrder consists of a single simple module Int0rd that is also exported. The interface
INT_ORD is a subinterface of ORD and can be characterized by the following interface declaration.

interface INT_ORD = ORD with sig type t = int end

MakeDict represents a dictionary that is parameterized by a key. Note that the interface of
Dict is characterized by applying parameterized interface DICT to module Key. Key—or more
exactly what Key will be, when MakeDict has been applied—and Dict are exported as a tuple.

MakeDict = fun (Key: ORD)
dec [Dict: DICT Key]
<Key = Key, Dictionary = Dict>

In order to build a dictionary with integer keys we use system IntOrder and apply MakeDict.
Since we use IntOrder via the export part the declaration is matched with a wild card ().

IntKeyDict = use IntOrder as [_] Key in
MakeDict Key

Usually, the use of a system happens only via the export part, therefore, we could abbreviate the
as-part of use.

IntKeyDict = use IntOrder as Key in
MakeDict Key

The resulting system IntKeyDict can be characterized by interface INT_KEY_DICT.

interface INT_KEY_DICT = some [IntKey: INT_QORD]
some [IntKeyDict: DICT IntKeyl]
<Key: INT_ORD, Dictionary: DICT IntKey>

If we want to add an extension module that defines additional operations on dictionaries, e.g.
a domain function that returns a set of keys, we need a set module and the extension itself. These
modules are characterized by parameterized interfaces SET and EXT.

interface SET (Elt: ORD) = sig
type elt = Elt.t
type set
val empty: set
val member: elt -> set -> bool

end

interface EXT (Key:0RD) (KeySet: SET Key) =

sig
val domain: ’a dict -> KeySet.set
end

The set as well as the extension can be realized very generally, in order to allow for reuse in
different contexts.
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MakeSet = fun (Elt: ORD)
dec [Set: SET Elt]
Set
ExtendDict = fun (E1t:0RD)
fun (EltDict: DICT Elt)
fun (EltSet: SET Elt)
dec [Extend: EXT Elt EltSet]

<Key = Elt,
Keyset = EltSet,
Dictionary = EltDict,

Extensions = ExtendDict>

If we now want to build an extension of the integer dictionary above, we have to use system
IntKeyDict, combine it with a KeySet, and build an appropriate extension. Normally, a system
consists of several declarations. Therefore, use allows to match such a ”curried” system in one
step.

IntKeyExtDict = use IntKeyDict as [_]1[_] Dict in
use MakeSet (Dict#Key) as [_] KeySet in
ExtendDict (Dict#Key) (Dict#Dictionary) IntSet

We can abbreviate matching all leading declarations, and accessing the ”last” export just the same
way as matching one declaration and accessing the export part.

IntKeyExtDict = use IntKeyDict as Dict in
use MakeSet (Dict#Key) as KeySet in
ExtendDict (Dict#Key) (Dict#Dictionary) KeySet

If we additionally introduce pattern matching for tuples, IntKeyExtDict can be written down very
elegantly:

IntKeyExtDict = use IntKeyDict as <Key, Dictionary> in
use MakeSet Key as Keyset in
ExtendDict Key Dictionary Keyset

Until now, no implementations of simple modules have been supplied. Preferably, every declara-
tion defines a unique name global to the top-level expression it occurs in. Then, the accompanying
implementation can be separated, provided top-level declarations are also unique. The implemen-
tations needed above can be added separately.

implementation IntOrd of IntOrder = struct ... end
implementation Dict of MakeDict = struct ... end
implementation Set of MakeSet = struct ... end

implementation Extend of ExtendDict struct ... end

The environment for the implementation remains the same as the environment for the declaration.
Separate compilation of implementations is possible and reorganization of module programs is
rather easy.

If all implementations have been supplied, a system like IntKeyExtDict can be compiled into an
executable program. Currently we compile implementations into SML structures which maintain
reduction of module expressions via import lists. Several instances of an implementation are simply
represented as duplicated code.

6 Related work

The central aim of the Ad-module calculus is to integrate the side effect of generating module
instances into a calculus with a simple rewriting semantics. The idea to use names for representing
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instances is inspired by calculi which integrate side effects into functional languages, especially
Odersky’s Av-calculus [19]. While Av is essentially a calculus of local names, Ad may be character-
ized as a calculus of global names.

The Ad-module calculus is a predicative calculus, where types depend on values. A non-standard
variant of weak sums is used to explain module generativity. Similar in spirit, Mitchell and Plotkin
[18] use the SOL-calculus to give a type-theoretic account of abstract types. A type and its
operations may be packaged into an abstract type—essentially a weak sum. An abstract type has
to be opened, thereby generating a “new” type before it can be used. Although the SOL-calculus is
impredicative, with values depending on types, using a system in the Ad-module calculus is similar
to combining open and pack in SOL, with systems instead of abstract types.

MacQueen’s original explanation of SML’s module system using strong sums [14] has been
further developed in the XSML-calculus [7]. The XSML-calculus is a predicative calculus with
strong sums that is used to give a type-theoretic explanation of Standard ML regarding, both, the
core and the module language. Structure generativity is not explained. Since structures may occur
in interfaces, type-checking XSML is undecidable, because of the need for checking the equality of
arbitrary core language expressions. In [8] Harper et. al. show how to introduce a phase distinction
that makes type-checking decidable. The Ad-module calculus also embodies strong sums, but they
are only used to form labelled tuples of module expressions. These tuples do not contain any core
language expressions. Module instances can only occur in tuples, if they have been bound before
in a declaration.

Type generativity and abstract types are not explained by the XSML-calculus. In order to
prevent the need for weak sums, which have to be opened globally and to allow access to abstract
types via the dot notation [4], translucent sums [6] or manifest types [9, 12] have been proposed.
Both concepts identify abstract types with the module expression they come from. This leads to
a more abstract and less operational treatment of type generativity than in the definition of SML
[17]. The identity of abstract types (generative type declarations) is intimately connected to the
generation of structure instances. While the operational approach of SML generates “new” types
for every structure instance, in the manifest-types approach abstract types are compatible if they
come from the same path expression. This can be a doubtful feature if two module instances with
compatible abstract types belong to one software system and we want to restructure the system by
substituting one instance by another implementation. This clearly hurts the principle of informa-
tion hiding. The Ad-module calculus also uses manifest types to give identities to abstract types,
but abstract types are new in every module instance, since the instances are explicit. Furthermore,
structure construction is not part of the calculus and, therefore, manifest type expressions are not
restricted to path expressions.

All the theoretical work above is used to develop module systems of the ML-family. Manifest
types constitute the foundation of the module system of Objective Caml (formerly known as Caml
Special Light [11]). SML-1996 [21] is a proposal for a language based on XSML and translucent
sums. Besides theoretical foundations and the handling of type generativity, the integration of
higher-order functors has been a major goal. All approaches scale up to higher-order functors, the
more abstract approaches [10, 8] as well as the more operational approach [23, 15]. The Aé-module
calculus also allows higher-order expressions, but it is not so closely connected to the ML-family.

7 Summary and future work

The Ad-module calculus introduces a syntactic way to handle the identity of module instances. Sys-
tem declaration and the dual use-construct allow to deal with module instances in a calculus with
a simple rewriting semantics instead of using an operational semantics which describes structure
generation as a side effect at the module level.

The type system describes interfaces of expressions using types (interfaces) that depend on
values (module expressions). The most simple interfaces are signatures, the interfaces of simple
modules. A non-standard variant of weak sums, called system interfaces, makes module instances
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explicit in interfaces. Together with dependent functions, characterizing parameterized systems,
strong sums for tupling arbitrary module expressions, and manifest types for expressing dependen-
cies, we get a rich type system appropriate for a module language.

Essentially, the Ad-module calculus is a predicative calculus. Simple modules are its simple
values, and signatures may be regarded as “simple” types. In a sense, the calculus is completely
functional. The notion of a software system coincides with our notion of a system. It is simply a
closed expression of the module language. Consequently, the interface reveals the complete modular
structure an expression will have when all parameters have been supplied and the expression is
reduced to normal form. Equational reasoning at the module level is possible, for example, to show
that two different systems are equivalent. Simple modules (and arbitrary module expression)
that interfaces and implementations depend on are always represented syntactically in the module
program. Therefore, it is not possible to declare defective signatures [1] (also called "monsters” in
[16]) which can not be implemented by any structure.

The module language M/SML is just a testbed for the Ad-module calculus. Currently we
are developing a concept-proof implementation of M/SML using parts of the ML-Kit [3] for the
static analysis of module implementations. Since we are mainly interested in the module language,
module language expressions which form an executable system are compiled into a sequence of
SML structures.

Our original motivation was to support the description and development of software architec-
tures [5], using a module language similar to the module language of SML. In principle, SML or one
of its variants could serve this task [2], but in SML the elaboration of module expressions is only
possible if all structures have been implemented. Architectional and implementational concerns
cannot be separated. In M/SML a software achitecture can be designed and module expressions
can be elaborated without supplying implementations for every dec-bound module.

The strict separation of module and implementation languages opens the door for several in-
teresting applications of the Ad-module calculus. For example, we could allow a restricted form of
mutual dependencies between module implementations, similar to Modula-2, where two or more
implementation modules may mutually depend on each other’s definition module.

system mutual = dec [a : A and b : B a]

<a = a, b =b>
implementation a of mutual = struct ... b.f ... end
implementation b of mutual = struct ... a.f ... end

Furthermore, we could apply the Ad-module calculus to the problem of namespace management
for an object-oriented language. In a strongly-typed object-oriented language, a class could play
the role of a simple module, and it seems possible to develop a powerful module system for an
object-oriented core language.
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A Appendix

A.1 Syntax
A.1.1 Module calculus
Expressions
m =
|
|
|
|
|
|
|
Interfaces
I

Signatures S =

=
- :II: — 1

A.1.2 Core language

Implementations

x
l

fun(z:T) m
mi mo

<l1 =my,...
m#l
dec[z:S]m
use my as [z1]z2 in ma

7ln = mn>

S

aII(x:Il) I2

<ll 2]1, ‘e ,ll [n>
some[z:S]| I

sig EZ end

D,E
&

type ¢
typet =T
valv:T

t

m.t

int | bool
T, — Ts

struct e end

= d,e
| €
typet =T
datatype ¢

valv:t=c

m.v
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variable/name

label

(function) abstraction
application

tuple construction
tuple selection
(system) declaration
use

simple interface
function interface
tuple interface
system interface

signature

signature entries

opaque type specification

manifest type specification

value specification

type name

type component
predefined simple types
function type

dec[z:Siss] m declaration and implementation

structure

structure entries
type binding (non-generative)
type creation (generative)

value declaration

(value) component
core language expressions



A.2 Typing rules
A.2.1 Module calculus

(axiom) [[F():O []Fsig end: O [1F type: O
rer:0 rer:0
(start) —— x¢T ——1¢T
Nz:Ikax:1 ri:r+-1:1
't type: 0O 'ET:type T Ftype:O
¢ ¢l
I, type t | t: type [typet =T+t =T : type
'ET: type
¢l
Covalv:TkFvalv: T
(weakening)
Fkstmt THI:O Fkstmt THI:0O
o ¢ T
Dyz: I+ stmt Ll:1F stmt

FFstmt TFtype:O r F'kstmt THT :type T Ftype:O
t

4 ¢T

[ type t - stmt , I type t =T F stmt
'kstmt T'FT:type

, ¢l stmt denotes an arbitrary typing statement
T,val v :TF stmt

(interface formation)
'-n:0 ez:L+IL:O r-s:d I,z:S+1:0

Cral(z:) I, :0O I+ some[z:S]I:0
F|-I12|:| F,lli.[l"<l2CI2,...,ln3In)SD
CH(:L,... 0, 1,): O

(signature formation)
'ET:type D' typet =T+t sig E end:O

I'Fsigtypet=T,FE end : O
I'Htype:O0 T, typettl sig Eend: O F'FT:type TtsigEend:O

I'Fsigtypet,E end: O Fsigvalv:T,E end: O
I'ET):type T FT5:type
FI—T1—>T2:type
' m :sig type t, E end F'Fm:sigtypet=T,Eend T FT:type T'Ft:type

(type formation)

'Fm.t:type FFmit=T:type

' m:sig type t, E end
(module)

[ typet+m :sig E end
'Fm:sigtypet=T,FE end 'Fm:sigvalv:T,FE end

Itypet =T Fm :sig E end [valv:TFm:sig E end
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Dox:Lkm: I, Tral(z:)L:0O
Tk fun(z:L)m:all(z: 1) I

(abstraction)

Fl—mlzall(x:Ig)Il F|_m2:.[2

(application)
T'Fmymsy: Il{l' — ’I’TLQ}

(tuple construction)
'k (lz =ma,... ,ln = mn>{ll %ml} : <l2112,... ,ln : In>{ll le}
Phkmy:L THi:L,... 0, 1,): 0O

F"(ll :ml,...ln:mn> : <l1:Il,... ,ln:In)

(tuple selection)
Chm:(i:hy.oo ol Iy e gt 1)

'k m#lk : Ik{ll «— m#ll} s {lk—l — m#lk_l}

To:Li-m:I TFsome[z:S]I:0

(declaration)
T+ dec[z:S]m : some[z:S] T

T'Fmq :somefzy:S| 1 T,z3:S,23:11 Fmo: I
(use) ,x3 & Iy
I'F use my as [z]y in my : some[zy :S] (I2{z2 < 21})

FI—m:I1 F"I2|:| Il/m<:pI2
'tEm: I

(conversion)

A.2.2 Core language

(declaration)
Fiz:SkEm:I TkFi:S Ttsome[z:S]I:0
I+ dec[z:Sisi] m : some[z:S] I
'k sig end: O
(structure)

' F struct end :sig end
CHT:type Tkstructeend{t <« T}:sig Eend{t < T} T'Fsigtypet=T,E end:O

' F struct type t =T, e end : sig type t =T, FE end
I type t - struct e end : sig E end T F sigtypet,E end: O

I' F struct datatype ¢, e end : sig type t, E end
Fv:Tke:T T,v:TFstructeend:sigEend T'Fsigvalv:T,E end:O

I'Fstructval v : T =c,e end :sigval v:T,FE end

(value component)
'Fm:sigvalv:T,FE end

'tEmw:T

further core language rules omitted
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A.3 Conversion and reduction

A.3.1 Strengthening (/)

(sig E end)/m = sig E/m end
e/m=c¢
(type t,E)/m =type t = m.t, E/m
(typet =T,E)/m =type t =T,E/m
(valv:T,E)/m =valv:T,E/m

I/m=1
A.3.2 Subtyping of interfaces (<:r)
all(z: 1) I <:r all(z: 1) I, < II<rh, L < I}
where IV =T, z: I]
()< ()
(Lol ) <op (eI, 1y 1) < I <rlj,

(Ia:lay .. ln L) <opr (a2 15,00 L2 1))

where IV =T,y : I
some[a: S| I <:r somef[a:S'] I < S<rp S, I<qp I’

where IV =T a:S
sig I/ end <:r sig end
sig D1,...,Dyp end <:rsig Dy,...,D; end <« D, < Djforie{l,...,m}

where IV =T, Dy,... ,D,

and o:{1,... ,m}—=>{1,...,n}
type t <:r type ¢
typet =T <: typet
valv: Ty <:rvalv:Ty
typet =T, <:pr type t =T>

T1 ~r T2
T1 ~r T2

T

A.3.3 Manifest equality of types (~r)

T, > ThrrT —-Ty <« TimrT], Tor~rT,

t~r T < I'Ht=T:type

m.at ~p T < T'kFm:sigtypet=T,FE end
trt

mq.t & mo.t <= M1 =My

T ~r Ty < Ty ~r T

T, ~r T3 < Ty=~rTy, Ty=rTs

A.3.4 Syntactic equality of expressions modulo reduction (=)

mp =my < mj=mh, mg > mi, me—>mh
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A.3.5 Simple syntactic equality of expressions (=)

r=z
my mg = mi mj &
m# = m' 41 =
(=)
<ll =mi,... 7ln:mn>

=l =mi,...,.l,=ml) <«
use my as [z]y in mo

= use mj as [z]y in m} &

A.3.6 Reduction (—)

m —-m
mp — ms
myp — ms

A.3.7 One-step reduction (—)

m; =mf, my=m)
m=m'
mlzm'l, (l2=m2,...ln=mn>{ll le}
= <l2 = m’2, ,ln = m;z){ll < ml}
m; =my, my=m)

<= mp — my
< mi > Mma, My —>» M3

The compatibility rules for selecting a redex and a-conversion are omitted.

(fun(z: A) my) mo

= my{z < my}

(llzmla"'7lk:mk7"'aln:mn>#lk — mk{ll(_ml}“'{lkfl(_mkfl}

use (dec[zy:S]m1) as [za]zs in ma

— dec[z:S] (m2{xs < 21 }H{z3 < m1})
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