
Polymorphic Components for Monomorphic Languages

Franz-Josef Grosch and Gregor Snelting
Arbeitsgruppe Softwaretechnologie

Technische Universität Braunschweig
Gaußstraße 17, D-33 Braunschweig

Abstract
Most procedural programming languages, due to their re-
stricted type systems, do not allow for polymorphic software
components in the style of functional languages. Such poly-
morphism however greatly increases the potential for com-
ponent reuse, while still guaranteeing the security of strong
typing. In this paper, we show how to obtain polymorphic
software components for “ordinary” languages like C or
Modula-2. Our method is based on generic type inference
in a software component library. The source of polymor-
phism is the use of free (undeclared) names in a component.
The analysis algorithm will infersignature schemes, which
are analoguous to type schemes in functional languages.
Signature schemes can be used to check library consistency
and allow to retrieve components by usage patterns.

1 Introduction

Polymorphism, as introduced in the functional language
ML [9], is one of the most fruitful approaches to increase
software reusability. ML polymorphism allows to define
functions which can be fed with arguments of different
types, thereby providing for software components which
can be used in different contexts, while at the same time
guaranteeing the security of strong typing. The possible
usage contexts of a polymorphic function are described
by a type scheme, and theory guarantees that for correct
programs, such type schemes always exist (principal type
property), and that uses of a polymorphic function will not
produce any runtime errors due to type mismatches (well-
typed programs can’t go wrong) [6]. Another advantage
of polymorphic type inference is that type schemes can be
used as search keys for component retrieval [10,11,12].

Unfortunately, this kind of polymorphism is not avail-
able for ordinary procedural languages. Thus, components
written in e.g. Modula-2 or C must be either monomor-
phic — as in classical libraries —, thereby hampering the
potential for being reused. Or one has to use special tricks,
thereby corrupting readability and type safeness. As an ex-
ample of the latter situation, consider the generic Modula-2
programs presented in [18], [5] or [3]. Here, the restrictions

of the type system are circumvented by resorting to untyped
pointers or byte arrays. This results in rather unreadable
programs, which even might produce runtime errors since
the type system has been fooled.

The programming language ADA improves on older
procedural languages by offering a limited kind of polymor-
phism, namelygeneric packagesor procedures. Generic
ADA components are safe and reusable in various con-
texts. The language C++ offers a similar feature, namely
program templates. But not every programmer wants to
use ADA or C++.

In this paper, we show how generic type inference can
be used to obtain polymorphic software components for
monomorphic languages. The source of polymorphism is
the use of free (i.e. undeclared) identifiers in a software
component, such as a Modula-2 module or a list of decla-
rations in C. Despite the free identifiers, type inference can
check consistency of a component, and will compute what
we call asignature scheme. A signature scheme describes
exactly the possible usage contexts of a component. Sig-
nature schemes are stored in the library together with the
components themselves, thus components need not be re-
analyzed in order to check correct usage. Furthermore, sig-
nature schemes can be used for component retrieval based
on usage patterns, and improve configuration management.

Our approach offers the everyday programmer increased
reuse potential, without changing his favourite language
or resorting to other unnatural devices. The method was
already sketched in [15]. Meanwhile, it has been imple-
mented as part of the inference–based software environ-
ment NORA*. This paper gives a detailed account of the
underlying principles and algorithms.

2 An overview of NORA

The experimental software development environment
NORA aims at utilizing inference technology for software
engineering tools. Many new results and algorithms have
been developed in the field of deduction sytems and unifi-
cation theory, but their potential for software development

* NORA is a drama by the Norwegian writer H. IBSEN. Hence,
NORA is no real acronym.

environments is far from being exhausted – on the contrary,
software engineers and inference people often look at each
other with displeasure.

NORA deals with the following aspects of software
development:

interface checking in a library of polymorphic,
reusable software components
unification-based component retrieval, utilizing usage
patterns as search keys
interactive configuration management based on an in-
ference engine for feature logic
reverse engineering support by infering variant / con-
figuration structures from existing source code.

The first aspect is the topic of this paper. In contrast
to existing tools, we aim at interactive tools which are
parameterized with language-specific knowledge and can
handle incomplete or inconsistent information.

The picture below gives a very small example of a com-
ponent libray, as displayed by NORA. The four Modula-2
components constituting this library will be used as exam-
ples later in this paper. The dependency graph is computed
by language-specific rules, hence no specification (e.g. a
makefile) is needed. The graph display is based on the
Sugiyama algorithm [17], but the user can also manipulate
the graph by himself. The whole state of a NORA session
can be stored persistently.

Software components can be available in form of ASCII-
files, abstract syntax trees, or even syntax trees together
with semantic information. Upon selection of a compo-
nent, several tools can be activated by selecting an item in
the “Component Tools” menu (see figure). A component

may be edited (construction and modification of compo-
nents lies outside the scope of NORA, thus everybody may
use his favourite editor). A component may also be syn-
tactically or semantically analysed. The analysis algorithm,
as described in this paper, will not only compute interface
and signature scheme of a component, but will also check
inter-component consistency. Interface information about a
component can be displayed on request. If inconsistencies
inside a component or between components are detected,
the corresponding node resp. edge in the dependency graph
is highlighted; detailed error messages can be displayed as
well.

Other subsystems of NORA are the configuration man-
agement subsystem and the retrieval subsystem, which will
be described elsewhere.

3 The library analysis algorithm

3.1 Software components in NORA
A traditional UNIX technique for reuse of software com-

ponents is the use of the preprocessor. One reuse mecha-
nism is based on the “#include” statement. For example,
use of the regular expression matching package “regexp(3)”
requires that a file is included which not only contains
declarations, but also a lot of C code. Another popular
technique is the use of macros via “#define”, which not
only provide for another reuse mechanism, but – together
with “#ifdef” – also allows quite sophisticated configura-
tion management. The drawbacks of using the C preproces-
sor are however well known: first, arbitrary text may be
included or defined as the body of a macro, which may
lead to syntactically erroneous programs after preprocess-
ing; furthermore, include files or macro bodies cannot be
typechecked in isolation and must be reanalysed upon every
usage; worse, an include file or macro body may contain
free variables, which are incorrectly bound at the usage
site, or a macro body may contain local variables, whose
names clash with actual macro parameters.

In order to overcome the drawbacks of naive prepro-
cessing, Kohlbecker et al. developed what they call “hy-
gienic macros” [8]. An efficient implementation of hy-
gienic macros was later presented in [4]. Clinger’s algo-
rithm uses a clever technique of automatic variable renam-
ing in order to avoid unwanted bindings.

Aware of these developments, and motivated by the
popularity of “#include”-d software, we decided that an
improved “#include” mechanism may serve very well as
the basis for reusable software components written in
monomorphic languages. As an example, consider the fol-
lowing component, which is a generic stack module written
in Modula-2 (although our method is language independent,
we will use Modula-2 as a focus of our investigations):

MODULE boundedStack;
IMPORT elemType, stackSize;
EXPORT initStack, push, pop, isEmpty, isFull;
TYPE

fixedStack = ARRAY [1 .. stackSize] OF elemType;
VAR

theStack: fixedStack;
topOfStack: INTEGER;

PROCEDURE initStack;
BEGIN

topOfStack := 0
END initStack;

PROCEDURE push(elem: elemType);
BEGIN

topOfStack := topOfStack + 1;
theStack[topOfStack] := elem;

END push;

PROCEDURE pop(): elemType;
BEGIN

topOfStack := topOfStack - 1
RETURN theStack[topOfStack + 1];

END pop;

PROCEDURE isEmpty(): BOOLEAN;
BEGIN

RETURN topOfStack = 0
END isEmpty;

PROCEDURE isFull(): BOOLEAN;
BEGIN

RETURN topOfStack = stackSize
END isFull;

END boundedStack;

This local module is “out of context”, hence the two
identifiers “elemType” and “stackSize” are undeclared –
they are the source of polymorphism and reusability, since
the code is valid forany “elemType” and “stackSize”.

A compiler would not be able to process such a module
in isolation. NORA however allows to store this module as
a reusable component, let’s say with the name “bounded-
Stack.comp”. After syntactic analysis, type inference will
compute a signature scheme for the module. In particular
(as explained in detail below), analysis infers that “elem-
Type” must be a non-structured type and that “stackSize”
must be of type “INTEGER or CARDINAL”. This infor-
mation is stored together with the component and can later
be used to check for correct component use, to display the
possible usage contexts and other information, or to search
functions by type schemes.

NORA’s include mechanism will allow to reuse the
module at different sites:
#include boundedStack.comp

This looks like classical preprocessing; in particular,
name clashes or unwanted bindings as described above
might occur. In order to avoid such binding problems, all

free identifiers in the component are consideredcomponent
parametersand may be explicitely bound at the point of
inclusion (in Modula-2, not only the free identifiers are
implicit component parameters, but all identifiers which
are visible in the in the scope surrounding the component):
#include boundedStack.comp (stackSize = maxStack,

elemType = CARDINAL)

If such explicit parameter binding is omitted, the usage
context is used for binding of component parameters; this
is called the default parameter mechanism.

Summarizing our discourse, we define:
A NORA component is a piece of program text which

is stored as an ASCII file, perhaps with syntax tree
and semantic information attached
constitutes a syntactic unit
may contain free variables, which are the source of
polymorphism
has the free variables as implicit parameters
can be reused by “#include”
can be instantiated with actual parameters upon inclu-
sion
can be semantically analysed via generic type infer-
ence
has a persistent signature scheme attached in order
to check correct usage, avoid reanalysis for every
use, and allow for retrieval based on type schemes
as search keys.

3.2 Library dependencies
Before any semantic analysis is possible, the dependen-

cies between components have to be computed. We are
able to distinguish two sorts of library components, namely
polymorphic components which are based on the lan-
guage independent include-mechanism and — as Modula-2
serves as example language — definition and implementa-
tion modules which represent the Modula-2–specific soft-
ware components. Although the focus of this paper lies
on the language-independent polymorphic components, we
also want to sketch the interplay with language-specific,
monomorphic components.

As the whole analysis is more or less syntax di-
rected, we define a simplified syntax for the essential parts
needed within the algorithms. The language-independent
parts are integrated into the syntax, these are “polymor-
phic_component” which is constrained to be a file of “dec-
larations” or “statements” and “include” for the use of poly-
morphic components. The restriction of polymorphic com-
ponents to “declarations” or “statements” is rather arbitrary
and can be changed as needed, since the analysis is param-
eterized with a formal definition of syntax and inference
rules.

library component::= polymorpiccomponentj module

polymorphiccomponent::= declarationsj statements

module ::= Definition Module Id imports declarationsj
Implementation Module Id imports bodyj

Module Id imports body

imports ::= Import Id j Import Id; imports

body ::= declarations Begin statements End;

declarations::= declaration declarationsj declaration

declaration ::= include j :::

statements::= statement statementsj statement

statement::= include j :::

include ::= #Include Id (parameters)

parameters::= formal name= actual name j
formal name= actual name; parameters

We now present the dependency analysis “D” in a de-
notational style. Called with one library component as the
first parameter, the dependencies originating from this com-
ponent are computed. The parameters of the algorithm are:
syntax tree, actual component “c” and a list of directed de-
pendencies “l”. It is mainly a recursive descend over the
dependencies indicated within the components. Remem-
ber that language-specific and language-independent depen-
dency rules are mixed. The function “getSyntaxTree” loads
the syntax tree from the appropriate file. There are three
kinds of dependencies: inclusion of polymorphic compo-
nents, import of definition modules, and the dependency
between an implementation module and its definition mod-
ule.

D [[Definition Module Id imports body]] c l =
D [[body]] Id (D[[imports]] Id l)

D [[Implementation Module Id imports body]] c l =
LET l1 = D [[getSyntaxTree Id]] Id l
IN (c implements Id)
^(D [[body]] Id (D [[imports]] Id l1))

D [[Module Id imports body]] c l =
D [[body]] Id (D [[imports]] Id l)

D [[declarations Begin statements End]] c l =
D [[statements]] c (D [[declarations]] c l)

D [[#Include Id(parameters)]] c l =
(c includes Id)^(D [[getSyntaxTree Id]] Id l)

D [[Import Id imports]] c l =
LET l1 = D [[getSyntaxTree Id]] Id l
IN (c imports Id)^(D [[imports]] c l1)

D [[Import Id]] c l =
LET l1 = D [[getSyntaxTree Id]] Id l
IN (c imports Id)^l1

... for other nodes descend recursively; terminals
simply return the accumulated dependency list

3.3 Context Relations
For the generic type inference of a single library compo-

nent, we usecontext relations. Originally context relations
have been developed for semantic analysis of incomplete
program fragments; they have successfully been used for
several languages. Context relations are described in detail
in [1] and [14]. Here we only want to give an intuition
how relational analysis works.

Relational analysis is similar in spirit to type inference
in functional languages. It associates sets of attributes
with nodes of a given abstract syntax tree. Attributes
are terms of a free term algebra with variables, functors
and constants. In contrast to Damas-Milner type inference
where only one sort of variables is used, all variables in
relational analysis aresorted in order to express context
contraints. A syntax-directed inference system determines
the computation of attributes. Again there is a difference
to classical type inference: while type inference allows
only one inference rule per node in the abstract syntax
tree, relational analysis allows several rules per node. The
main operation for infering semantic information is (sorted)
unification of attributes.

Relational analysis isgeneric, i. e. the structure of the
attributes, the sort hierarchy and the inference rules serve
as language-specific parameters for the analysis algorithm.
The language definer specifies the type constructors accord-
ing to the language of interest. He also defines the sort
hierarchy, which allows to express constraints like “the ex-
pression has a non-structured type” or “the variable must
not be a control variable”. Two terms are unifiable if their
sorts have a common subsort. To guarantee uniqueness the
sort hierarchy must be a semilattice. Typically a few syn-
tactic constructs of procedural languages allow more than
one correct typing, they are calledoverloaded. Therefore
it is possible to define more than one inference rule per
construct.

Before relational analysis actually starts, aname resolu-
tion process uniquely renames all occurrences of identifiers
that denote the same object. This is necessary since we
want to cope with incomplete components and undeclared
identifiers. Type inference “collects” type assumptions by
unifying type terms belonging to the same syntactic objects.
The type assumptions are represented as a map from identi-
fiers to type terms. In relational analysis, different attribu-
tations have to be considered due to overloading, therefore
a context relation which is similar to a relation in relational
data bases is used to represent possible attributations – one
row represents one attributation. Inference rules are also
represented as relations, so-calledbasic relations, where
the columns are named by the nodes of the abstract syn-
tax tree. Relational analysis “collects” attributes byjoining
relations. The termjoin is used due to the fact that this
operation is similar to the natural join known from rela-

tional data base theory; all possible row combinations are
built and the attributes in common columns are unified. If
a unification fails, the corresponding attributation is wrong
and the whole row is deleted. A component is semantically
correct, if one or more rows survive in the result relation.

In order to describe the extension of relational analy-
sis from single components to a whole library with poly-
morphic components we have to recapitulate some notions
from [14].

Definition.
1. r u s is called thejoin of two context relations r

and s.
2.

��
is the generalization ofu to a set of context

relations.

The context relation associated to a terminalT of the
abstract syntax is simply a basic relation. The context
relation cr [[t :: t1; :::tn]] of a syntactically correct piece of
program with root nodet in the abstract syntax tree and
children t1:::tn is given by the following simple formula:

cr [[t :: t1; :::tn]] = basicrelation[[t]] u ��n
i=1

cr [[ti]]

cr [[T]] = basicrelation[[T]]

3.4 Library analysis
Now we are going to describe how the library analy-

sis works. As explained above, the result of the analysis
of one library component is a context relation represent-
ing its interface orsignature. Since we are able to analyse
incomplete components, even signatures of monomorphic
components may contain non-ground attributes. Signatures
of monomorphic components contain those objects which
are not local to the analysed component. Every occurrence
of such an object refines its attributation, i. e. variables in
the attributation get instantiated. Objects from monomor-
phic components exactly have one final attributation.

The analysis of a polymorphic component results in a
relation where the columns are named by those identifiers
that are visible in a surrounding scope. Such a compo-
nent is polymorphic, if more than one attributation is still
possible, or attributes are not ground, i. e. still contain
variables. This signature is turned into asignature scheme
by universally quantifying over all variables. There are
no type assumptions for polymorphic components, there-
fore universal quantification of all variables in the result
signature is allowed (note that according to Damas-Milner,
variables occuring free in the type assumptions may not be
universally quantified). The analysis of “boundedStack”
(see section 3.1) results in the following signature scheme.
Attributes are written in a Prolog-like term notation; vari-
ables are sorted:

8 � : non structuredtype;

� : expression;

 : integeror cardinal:
[elemType: object(type; �);
stackSize: object(�;
);
push: object(procedure;

proc([valueparameter(�)]));
pop: object(procedure; func([]; �));
initStack: object(procedure; proc([]));
isFull: object(procedure; func([]; bool));
isEmpty: object(procedure; func([]; bool))]

If a polymorphic component is included in another com-
ponent, the analysis has to instantiate its signature scheme.
This instantiation has two aspects. First, the name resolu-
tion uniquely renames the objects in the signature scheme
according to scope rules in the context. If a component is
included more than once, in general different bindings will
result. Second, the library analysis generically instantiates
the signature scheme in order to allow different instanti-
ations of the attributes in different contexts. This latter
process is done by the function “instantiate”, and can be
defined as a transformation of a signature scheme in three
steps:
– replace8-bound variables by new variables of the

same sort, thereby removing the quantifiers
– rename object names that are formal parameters by

the actual parameter names
– rename all objects according to the results of name

resolution.
The resulting signature is used as a context relation for the
analysis of an include, as shown below.

Simple analysis as described in the previous section is
only performed for library components that do not depend
on others. These are definition modules, program modules
or polymorphic components that do not import other mod-
ules and that do not include polymorphic components. For
other components, the signatures resp. signature schemes
for the components they depend on first have to be com-
puted. This is a recursive process along the dependency
graph, which only makes sense if the library does not con-
tain cycles. After that, library analysis is started which
guarantees local consistency between the analysed com-
ponent and the components it depends on. The resulting
context relation of a component that depends on other com-
ponents is computed as follows:

cr [[t :: t1; :::tn]] = basicrelation[[t]] u ��n
i=1

cr [[ti]];

cr [[T]] = basicrelation[[T]];

cr [[#Include Id(parameters)]] =

instantiate(signaturescheme[[Id]]; parameters)

As mentioned above, there exist other, language-specific
dependencies; these are not mirrored in the above formulas.

For imported modules, their signature is directly used as a
basic context relation. For implementation modules, the
definition module’s signature is fed into the analysis, but
in contrast to the first case, “opaque” types in the defini-
tion modules must be refineable, which causes some extra
trouble. Also, we would like to have incremental analysis
after a change to a component. These and other Modula-
2–specific topics are not very relevant for the purpose of
this paper, and hence left out.

4 Two reusable components

We now will show a complete example of a very small
Modula-2 library consisting of two reuseable polymor-
phic components, namely a fixed size stack called “bound-
edStack” and an iterative “quicksort” for arrays contain-
ing arbitrary elements. The “quicksort” uses “bounded-
Stack” for bookkeeping of partitions which still have to be
sorted. “quicksort” itself is used by two programs namely
“sortInt.prg” and “sortTree.prg” which sort a list of integers
and an array of trees respectively.

First we show how the polymorphic components “bound-
edStack.comp” and “quicksort.comp” are developed and
how the analysis algorithm supports the development of
such library components.

The analysis of “boundedStack”, whose program text
was shown in section 3.1, results in the following inter-
face, as displayed by NORA. Two warnings are produced,
which signalize that “elemType” and “stackSize” are not
defined within the component – they are the source of
polymorphism, and hence are implicit parameters of the
component.

Interface for component "boundedStack.comp"

In line 4:
WARNING: Undefined Identifier "elemType"
WARNING: Undefined Identifier "stackSize"

elemType: CLASS = TYPE
TYPE = <non-structured type>

stackSize: CLASS = <expression>
TYPE = INTEGER or CARDINAL

push: CLASS = PROCEDURE
TYPE = (VALUE PARAMETER:

<non-structured type>): _
pop: CLASS = PROCEDURE

TYPE = (): <non-structured type>
initStack: CLASS = PROCEDURE

TYPE = (): _
isFull: CLASS = PROCEDURE

TYPE = (): BOOLEAN
isEmpty: CLASS = PROCEDURE

TYPE = (): BOOLEAN

Analysis has inferred that “stacksize” must be an ex-
pression of type “INTEGER or CARDINAL”. Further-
more, the analysis reveals that “boundedStack” does not

have unlimited polymorphism, since – according to the
context conditions of Modula-2 – “elemType” must be a
non–structured type. This demonstrates how NORA can
inform the programmer about the possible usage contexts
of his components. (Changing “pop” to a procedure return-
ing the popped result as an output parameter would allow
“elemType” to be instantiated with any type).

The polymorphic quicksort component uses and instan-
tiates the library component “boundedStack”. In order to
avoid name clashes between the stack and the quicksort
component, explicit parameters are used in the “#include”
statement. In particular, both the stack and quicksort use
“elemtype”, hence the #include explicitely states that CAR-
DINALs should be pushed onto the stack — if one would
rely on the default rule that parameters are bound by the
usage context, a type conflict would result. The source
code looks as follows (this program is used for illustration
purposes only; a more realistic quicksort would push only
the indices of the larger partition):

PROCEDURE quicksort(VAR a: ARRAY OF elemType);
VAR

pivot: elemType;
pivotindex, left, right: CARDINAL;
k: CARDINAL;

CONST
maxStack = 100;

#include boundedStack.comp (stackSize = maxStack,
elemType = CARDINAL)

PROCEDURE findpivot(a: ARRAY OF elemType;
i, j: CARDINAL): CARDINAL;

...
END findpivot;

PROCEDURE partition(VAR a: ARRAY OF elemType;
i, j: CARDINAL;
pivot: elemType): CARDINAL;

...
WHILE greater(a[j], pivot) DO

...
...

END partition;

BEGIN
left := 0; right := HIGH(a);
initStack(); push(left); push(right);
pivotindex := 0;
REPEAT

IF pivotindex = 0 THEN
right := pop(); left := pop()

END;
pivotindex := findpivot(a, left, right);
IF pivotindex <> 0 THEN

pivot := a[pivotindex];
k := partition(a, left, right, pivot);
push(k); push(right); right := k - 1

END
UNTIL isEmpty()

END quicksort;

The analysis computes the following interface for
“quicksort”. Again the undeclared identifiers “elemType”
and “greater” are the source of polymorphism. NORA
checks that “boundedStack” is correctly used and instanti-
ated within “quicksort”, but “boundedStack” does not in-
fluence the “quicksort” interface.

Interface for component "quicksort.comp"

In line 2:
WARNING: Undefined Identifier "elemType"

In line 24:
WARNING: Undefined Identifier "greater"

elemType: CLASS = TYPE
TYPE = type

quicksort: CLASS = PROCEDURE
TYPE = (REF PARAMETER:

ARRAY [<ordinal type>]
OF <type>): _

greater: CLASS = PROCEDURE Object
TYPE = (<parameter description>:

<type>;
<parameter description>:

<type>): BOOLEAN
arraySize: CLASS = <expression>

TYPE = INTEGER or CARDINAL

Our library by now consists of two reuseable polymor-
phic components, where one already uses the other. Next
we will show how “quicksort” can be used in two com-
pletely different contexts. The first example is an appli-
cation of “quicksort” to a list of integers, in the second
example an array of trees will be sorted.

MODULE sortInt;
TYPE

elemType = INTEGER;
VAR

a: ARRAY [1 .. 117] OF elemType;
PROCEDURE greater(VAR res: BOOLEAN;

x, y: elemType);
BEGIN

res := x > y;
END greater;

#include quicksort.comp

BEGIN ...
quicksort(a); ...

END sortInt.

The program module “sortInt” uses “quicksort” in or-
der to sort an array of integers. The interface shows that
“quicksort” is appropriatly instantiated. Note that the de-
fault parameter mechanism for “#include” is appropriate
here, since accidentially (!) the free identifiers of the
quicksort component are correctly bound at the usage site.
NORA detects an error anyhow: “quicksort” expects a
boolean function comparing two elements, but “greater” is
defined as a procedure with a boolean reference parameter
returning the result.

Interface for component "sortInt.prg"

In line 24:
WARNING: Undefined Identifier "print"

In line 22:
WARNING: Undefined Identifier "fill"

In line 19
ERROR: "greater" has incompatible attributes
expected attribute:

CLASS = PROCEDURE
TYPE = (REF PARAMETER: BOOLEAN;

VALUE PARAMETER: INTEGER;
VALUE PARAMETER: INTEGER): _

actual attribute:
CLASS = PROCEDURE Object
TYPE = (<parameter description>: <type>;

<parameter description>: <type>):
BOOLEAN

Different number of parameters
elemType: CLASS = TYPE

TYPE = INTEGER
greater: CLASS = PROCEDURE

TYPE = (REF PARAMETER: BOOLEAN;
VALUE PARAMETER: INTEGER;
VALUE PARAMETER: INTEGER): _

arraySize: CLASS = CONSTANT
TYPE = INTEGER or CARDINAL

quicksort: CLASS = PROCEDURE
TYPE = (REF PARAMETER:

ARRAY [INTEGER or CARDINAL]

OF INTEGER): _

The second program module uses “qicksort” for sorting
a forest. The user did not yet decide about the implemen-
tation of trees, hence the type ”treeElem” is still missing.
The missing program text is represented by a placeholder
(printed as a comment), which is a standard technique in
language-based editors. Furthermore, “greater” is only par-
tially defined.

MODULE sorttrees;
TYPE

elemType = POINTER TO treeElem;
treeElem = (*type*);

VAR
forest: ARRAY [0 .. 44] OF elemType;

PROCEDURE greater(tree1, tree2: elemType): BOOLEAN;
PROCEDURE findlargestkey(tree: elemType): CARDINAL;

...
END findlargestkey;

BEGIN
RETURN

findlargestkey(tree1) > findlargestkey(tree2);
END greater;

#include quicksort.comp

BEGIN
...
quicksort(forest);
...

END sorttrees.

Since the representation of trees is still undefined,
“quicksort” gets only partially instantiated, as shown in
the interface.

...
elemType: CLASS = TYPE

TYPE = POINTER TO <type>
greater: CLASS = PROCEDURE

TYPE = (VALUE PARAMETER:
POINTER TO <type>;

VALUE PARAMETER:
POINTER TO <type>): BOOLEAN

arraySize: CLASS = CONSTANT
TYPE = INTEGER or CARDINAL

quicksort: CLASS = PROCEDURE
TYPE = (REF PARAMETER:

ARRAY [INTEGER or CARDINAL]

OF POINTER TO <type>): _

This last example demonstrates that the analysis also
works for partially incomplete components.

5 Implementation issues

The original inference engine for relational analysis was
implemented in Pascal as part of the PSG system [1]. It was
very sophisticated and could analyse 1000 lines of Modula-
2 in less than 5 seconds on a SUN 3/60. In the scope of
the PSG project, relational definitions of context conditions
were developed not only for Modula-2, but also for Pascal,
ADA [7], Fortran77 [16], and a number of experimental
languages.

Unfortunately, this implementation was unable to ana-
lyse a whole library, it could only analyse isolated com-
ponents. Furthermore, it suffered from increasing unintel-
ligibility, since the implementation evolved over a period
of seven years. We therefore decided to reimplement the
inference engine in the functional languageSAMP�E. The
new implementation now handles complete libraries and
is integrated into NORA. But it is an order of magnitude
slower than the original system, and the maximum compo-
nent size is limited. In order to make our approach usable
for large-scale libraries, another reimplementation is per-
haps necessary.

6 Future work

Component retrieval: Polymorphic components as de-
scribed in this paper are the basis for unification-based com-
ponent retrieval. NORA’s retrieval subsystem allows to
search components by type schemes or signature schemes.
The user can for example click at an identifier and find out
whether there are objects in the library with equal or similar

type characteristics. The method is based on order-sorted
unification and AC1–unification of signature schemes. It
is currently under implementation, and we hope to be able
to report in the near future.

Fully hygienic components: Our parameterized compo-
nents are only 50% hygienic in the sense of Kohlbecker.
Although component parameters prevent unwanted bind-
ings of free component variables at usage site, it may still
happen that actual parameters are erroneously bound to lo-
cal variables inside the component. Hence, in rare cases
incorrect component uses can go undetected (and will show
up later when the program is actually compiled). We plan
to incorporate Clinger’s algorithm in order to solve this
problem.

Arbitrary program fragments as component parame-
ters: At the moment it is not possible to use arbitrary
program text as actual component parameter. This exten-
sion could however be very useful, provided that actual
parameters constitute syntactic units (e.g. expressions). It
implies that parameter substitution can no longer be done
by changing some bindings in the component’s interface;
instead, actual parameters must be syntactically and seman-
tically analysed, and consistency of the component with
parameters substituted must be checked.

Configuration management: We expect that NORA’s
configuration management is improved by the techniques
described in this paper: in addition to consistency of a con-
figuration thread as specified by the configuration rules, a
particular thread must of course be consistent with respect
to component interfaces as well. Hence, NORA can de-
tect that certain configuration threads are impossible due to
interface constraints. Configuration management and se-
mantic analysis are however not yet integrated.

Polymorphic components for polymorphic languages:
What happens if we want to apply our concept to a language
which already employs polymorphism, such as ML? It has
been shown in [14] that relational analysis will compute
correct typings for such languages. But unfortunately, type
inference interferes with the component parameter mech-
anism: imagine that an actual component parameter is it-
self a polymorphic object. Correct typing then requires to
allow different instantiation of the type of this actual pa-
rameter. But inside the component, type inference treats
component parameters as monomorphic, unifying all lo-
cally derived types. This is incorrect, but in accordance
with the Damas-Milner type system, where Lambda-bound
variables cannot be polymorphic. It is a long–standing open
problem whether a decideable type system can be devised
which allows Lambda-bound variables to be polymorphic
[2].

7 Conclusion

We have shown how polymorphic type inference, as intro-
duced by Milner, can be utilized in “ordinary” monomor-
phic programming languages, in order to improve compo-
nent reuse. Our approach gives the programmer more type
safety and better retrieval possibilities. In particular, it

• guarantees library consistency without the
need to reanalyse all uses of components

• provides signature schemes, which tell the
programmer the possible usage contexts of
a component

• allows to retrieve components by signature
unification.

However, it does not avoid the need for object code du-
plication – NORA components can be preanalysed, but
not precompiled as in “real” polymorphic languages. This
slight, but inevitable disadvantage of our approach is com-
pensated by the observation that polymorphic languages
need more expensive runtime environments.

Acknowledgements. Matthias Kievernagel implemented
the name resolution, and Andreas Zeller implemented the
NORA kernel. Bernd Fischer contributed valuable discus-
sions.

The work described in this paper is funded by the
Deutsche Forschungsgemeinschaft, grant He1170/4–1.

8 References

[1] Bahlke, R., Snelting, G.: The PSG System: From Formal
Language Definitions to Inter-active Programming Environ-
ments. ACM TOPLAS 8, 4 (October 1986), pp. 547 – 576.

[2] Barendregt, H., Hemerik, K.: Types in Lambda Calculi and
Programming Languages, Proc. 3rd European Symposium
on Programming, LNCS 432, pp. 1 – 35.

[3] Beidler, J., Jackowitz, P.: Consistent Generics in Modula-2.
ACM SIGPLAN Notices 21, 4 (April 1986), pp. 32 – 41.

[4] Clinger, W., Rees, J.: Macros That Work. Proc. 18th
Principles of Programming Languages, ACM 1991, pp. 155
– 162.

[5] Czyzowics, J., Iglewski, M.: Implementing Generic Types
in Modula-2. ACM SIGPLAN Notices 20, 12 (December
1985), pp. 26 – 32.

[6] Damas, L., Milner, R.: Principal Type Schemes for Func-
tional Programs. Proc. 9th Principles of Programming Lan-
guages, ACM 1982, pp. 207 – 217.

[7] Grosch, F.-J., Snelting, G.: Inference-Based Overloading
Resolution for ADA. Proc. Programming Language Imple-
mentation and Logic Programming, Linkøping 1990, LNCS
456, pp. 30 – 44.

[8] Kohlbecker, E., Friedman, D., Felleisen, M., Duba, B.:
Hygienic Macro Expansion. Proc. Lisp and Functional
Programming, ACM 1986, pp. 151 – 159.

[9] Milner, R.: A Theory of Type Polymorphism in Program-
ming. Journal of Computer and System Sciences, 17, 3
(1978), pp. 348 – 375.

[10] Rittri, M.: Using Types as Search Keys in Function Li-
braries. Proc. Functional Languages and Computer Archi-
tecture, ACM 1989, pp. 174 – 183.

[11] Rittri, M.: Retrieving Library Identifiers via Equational
Matching of Types. Proc. 10th Conference on Automated
Deduction, LNCS 449, pp. 603 – 617.

[12] Rollins, E., Wing, J.: Specifications as Search Keys for
Software Libraries. Proc. International Conference on
Logic Programming, Paris 1991.

[13] Runciman, C., Toyn, I.: Retrieving Re-Usable Software
Components by Polymorphic Type. Proc. Functional Lan-
guages and Computer Architecture, ACM 1989, pp. 166 –
173.

[14] Snelting, G.: The Calculus of Context Relations. Acta
Informatica Vol. 28 (Mai 1991), pp. 411 – 445.

[15] Snelting, G., Grosch, F.-J., Schroeder, U.: Inference-Based
Support for Programming in the Large. Proc. 3rd European
Software Engineering Conference, Milano 1991. Springer
Verlag, LNCS 550, pp. 396 – 408.

[16] Snelting, G., Thies, C.: Programming Tools for the
Suprenum Supercomputer. Proc. 3rd International Work-
shop on Software Engineering & its Applications, Toulouse
1990, pp. 951 – 964.

[17] Sugiyama, K., Tagawa, S., Toda, M.: Methods for Visual
Understanding of Hierarchical System Structures. IEEE
Transaction on Systems, Man and Cybernetics 11, 2 (1981),
S. 109 – 125.

[18] Wiener, R., Sincovec, R.: Two Approaches to Implement-
ing Generic Data Structures in Modula-2. ACM SIGPLAN
Notices 20, 12 (June 1985).

