
NORA/HAMMR: Making Deduction-Based SoftwareComponent Retrieval Practical�yBernd FischerAbt. Softwaretechnologie, TU Braunschweig, D-38092 Braunschweigfisch@ips.cs.tu-bs.deJohann SchumannAutomated Reasoning, Institut f�ur Informatik, TU M�unchen, D-80290 M�unchenschumann@informatik.tu-muenchen.deAbstractDeduction-based software component retrieval uses pre- and postconditions as indexesand search keys and an automated theorem prover (ATP) to check whether a componentmatches. This idea is very simple but the vast number of arising proof tasks makes a practicalimplementation very hard. We thus pass the components through a chain of �lters of increas-ing deductive power. In this chain, rejection �lters based on signature matching and modelchecking techniques are used to rule out non-matches as early as possible and to prevent thesubsequent ATP from \drowning." Hence, intermediate results of reasonable precision areavailable at (almost) any time of the retrieval process. The �nal ATP step then works as acon�rmation �lter to lift the precision of the answer set. We implemented a chain which runsfully automatically and uses MACE for model checking and SETHEO as ATP and evaluatedit over a medium-sized collection of components. The results con�rm the practicality of ourapproach.1 IntroductionReuse of approved software components has been identi�ed as one of the key factors for successfulsoftware engineering projects. Although the reuse process also covers many non-technical aspects[ZS95], retrieving appropriate software components from a reuse library is a central task. This isbest captured by Tracz's First Golden Rule for Software Reuse: \You must �nd it before you canreuse it!"Most earlier software component retrieval (SCR) methods (e.g., [MS89]) grew out of classicalinformation retrieval for unstructured texts. However, since software components are highly struc-tured, more specialized approaches may lead to better results. In this paper we will concentrate ona deduction-based approach where we use pre- and postconditions as the components' indexes andas search keys. A component matches a search key if the involved pre- and postconditions satisfya well-de�ned logical relation, e.g., if the component has a weaker precondition and a strongerpostcondition than the search key. From this matching relation a proof task is constructed and anATP is used to establish (or disprove) the match.This approach has been proposed before (e.g., [KRT87, Per87, RW91, MM91, MMM94, MW95])but without convincing success because essential user requirements have been neglected. In this�NORA is no real acronym, HAMMR is a highly adaptive multi-method retrieval tool.yThis work is supported by the DFG within the Schwerpunkt \Deduktion" (grant Sn11/2-3), the habilitationgrant Schu908-1/5, and the Sonderforschungsbereich SFB 342, Subproject A5 (Parallelization of Inference Systems).Part of the work was done while visiting the ICSI Berkeley.1



paper we follow a more user-oriented approach and describe steps for making deduction-based SCRpractical.2 The User's Point of ViewMost earlier work focussed on the technical aspects of deduction-based SCR. The users had to writecomplete speci�cations in the ATP input language and even had to supply useful lemmata. Theprovers were run in a batch mode, checking the whole library before any results were presented.Runtimes and problems of scale were ignored.This view led to severe acceptance problems as the users are software engineers and no ATPexperts. Their main requirements are that the tool is easy to use, fully automatized, fast, andcustomizable, and hides all evidence of automated theorem proving.1Hiding the ATP has some consequences. The input language must be a fully-
avored speci�-cation language and not pure �rst order logic (FOL). But then the automatic construction of theactual proof tasks becomes itself a major task.Short response times are also essential as the Fourth Reuse Truism demands that \you must�nd it faster than you can rebuild it!"[Kru92]. However, due to the computational complexity ofATP, truly interactive (\sub-second") behavior is still far out of reach. Instead, anytime behavioris acceptable: intermediate results of su�cient precision must be available to the user at (almost)any time during the retrieval process. Retrieval may then be guided further with feedback fromthe user who may for example strengthen the search key incrementally.Ideally, the tool doesn't constrain user feedback to the queries but allows a customization ofthe complete retrieval process. This includes the selection of an appropriate match relation from agiven list of choices as well as some tuning of the deductive mechanism (e.g., time limits or modelsizes). But it is important to ensure that the tool still runs fully automatically and produces usefulresults even without customization.In exchange for these constraints, deduction-based SCR o�ers the unique feature that complete-ness and even soundness are not absolutely vital. Incomplete and unsound deduction methods onlyreduce recall (\do we get all matching components?") and precision (\do we get the right compo-nents?").3 System ArchitectureIn order to meet the user requirements we implemented NORA/HAMMR as a �lter pipeline throughwhich the candidates are fed. This pipeline typically starts with signature matching �lters . Theycheck whether candidate and query have \compatible" calling conventions (i.e., types or signa-tures). The notion of compatibility is speci�ed by an equational theory E; the �lter then appliesE-matching or E-uni�cation of the signature terms. Typical theories include axioms to handle as-sociativity and commutativity of parameter lists and records, currying (for functional languages),pointer types and VAR-parameters (for imperative languages), coercion rules and more (see [Fis97]for a detailed discussion).Then, rejection �lters try to eliminate non-matches as fast as possible. This is a crucial step toprevent the ATP from \drowning" as there are many more non-matching than matching candidates.We currently apply model generation techniques to check the validity of the tasks in suitable �nitemodels. However, both precision and recall may decrease because this approach is neither soundnor complete.Finally, con�rmation �lters check the validity of the remaining proof tasks and thus lift theprecision of the result to 100%. Here, we apply SETHEO, a high-performance prover based on themodel elimination calculus. Both �lter classes will be described below in more detail.1In a real-life setting, a single reuse administrator may be required who knows the applied deduction methodsand \tunes" each component before it is entered into the library (e.g., by giving ATP settings and lemmata).2



Figure 1: Graphical user interfaceThe graphical user interface re
ects the idea of successive �ltering. The pipeline may easilybe customized through an icon pad; each �lter icon also hides a specialized �lter control windowwhich allows some �ne-tuning of the �lters. Additional inspectors display intermediate results andgrant easy access to the components. They also allow to save intermediate results in a �le suchthat they may easily be used as libraries for subsequent retrieval runs. The objective of the GUI isprecisely to hide all evidence of ATP usage. Hence, the knowledge necessary to use NORA/HAMMRas a tool is restricted to VDM-SL [Daw91] which we use as our input language and to the targetlanguage which is required for signature matching.4 Proof Tasks and ReuseThe overall structure of the generated proof tasks depends on the de�nition of the match relationwhich is used in a deduction-based SCR tool. Thus it ultimately depends on the kind of reusewhich the tool aims at.Most often, deduction-based SCR is con�gured to ensure plug-in compatibility of the retrievedcomponents: c matches if it has a weaker precondition and a stronger postcondition than thesearch key q. This is usually (cf. e.g., [MW95]) formalized as (preq ) prec) ^ (postc ) postq)2.However, this is not adequate for partial functions. If q is a partial function (e.g. tail) and c itstotal completion (e.g., c(nil) returns nil) then we want c to match q even if its \completed" resultdoes not �t the original speci�cation. It is thus necessary to restrict the implication between thepostconditions on the domain given by preq . We thus work with proof tasks of the form(preq ) prec) ^ (preq ^ postc ) postq) (1)which are similar to [MW95]'s \guarded plug-in match" except for our use of the stronger (viathe �rst implication) precondition from the query. Plug-in compatibility supports safe reuse. Theretrieved components may be considered as black boxes and may be reused \as is", without furtherproviso or modi�cation of the component.2Actually, the proof tasks are universally closed wrt. the formal input and output parameters of the componentand the query and also contain equations relating the parameters. Likewise, the pre- and postconditions are ofcourse logical functions of the respective parameters. However, to improve the legibility, we use this traditionallyabbreviated formulations. 3



Sometimes plug-in compatibility is not applicable because the users don't want to specify anyprecondition but are willing to accept whatever comes, as long as their postconditions are met. Inthat case, (1) simpli�es to prec ^ postc ) postq (2)or conditional compatibility . However, reuse now becomes potentially unsafe because any clientstill has to satisfy the open obligation preq .Sometimes (2) might be too strong, and retrieves no components, although the library con-tains \almost" matches, e.g., partial functions. To additionally retrieve such components, partialcompatibility may be used: prec ^ preq ^ postc ) postq (3)Thus, a component is retrieved if it computes the right results on the common domain. If, however,the domains of c and q are disjoint, prec and preq are never true at the same time and thus (3) willbecome vacuously true. But usually q and c then also work on di�erent types and c should alreadybe rejected by signature matching. If c has an empty domain or is not implementable (i.e., postcnever becomes true), (3) will again become vacuously true and c will be retrieved for any query.However, this should not happen in a well-designed library.Obviously, reuse based on partial compatibility is unsafe because the retrieved components arenot guaranteed to work on the entire required domain. But they might be good starting pointsfor desired more general implementations. Hence, the components must be considered as \whiteboxes"|their code needs a closer inspection.As an example, let us consider the following VDM-SL speci�cations:3rotate(l : List) l0 : List shu�e(x : X) x0 : Xpre true pre truepost (l = []) l0 = [])^ post 8i : Item � (9x1; x2 : X � x = x1^[i]^x2 ,(l 6= []) l0 = (tl l)^[hd l]) 9x1; x2 : X � x0 = x1^[i]^x2)Let us further assume that we use plug-in-compatibility as match relation, rotate as candidate cand shu�e as query q. Then several steps are necessary to construct a sorted FOL proof task. First,the formal parameters must be identi�ed, in this case l = x and l0 = x0.4 Then, VDM's underlyingthree-valued logic LPF must be translated into FOL. This essentially requires the explicit insertionof additional preconditions into the proof task to prevent reasoning from unde�ned terms as wellas a translation of the connectives which takes care of the missing law of the excluded middle[JM94, Mid93]. In our example, this results in the proof task8l; l0; x; x0 : List � (l = x ^ l0 = x0 ^ true ) true)^ (l = x ^ l0 = x0 ^ (l = []) l0 = []) ^ (l 6= []) (l 6= []) l0 = (tl l)^[hd l]))) (8i : Item � (9x1; x2 : X � x = x1^[i]^x2 , 9x1; x2 : X � x0 = x1^[i]^x2)))5 Rejecting Non-MatchesDetecting and rejecting non-matching components as fast and early as possible is probably the mostimportant single step in making deduction-based SCR practical|there are simply many more non-matching than matching components. Unfortunately, most ATPs are not suited for this task. Theyexhaustively search for a proof (or refutation) of a conjecture but are practically unable to concludethat it is not valid (or contradictory). Therefore, other techniques have to be used to implementrejection �lters.Generally, we may reject a component c if we �nd a \counterexample" for its associated prooftask Tc because it then cannot be valid. Model generators for FOL like Finder [Sla94] or MACE3Here, ^ means the concatenation of lists, [] the empty list, [i] a singleton list with item i, and hd and tl thefunctions head and tail, respectively.4This identi�cation is, however, not always a simple renaming substitution as VDM-SL allows pattern matchingand complex data types. 4



[McC94] try to �nd such counterexamples (which are simply interpretations under which Tc eval-uates to false) by systematically checking all possible interpretations. This obviously terminatesonly if all involved domains are �nite, as for example in �nite group theory or hardware veri�ca-tion problems. On the other hand, their highly e�cient implementation (usually using BDD-basedDavis-Putnam decision procedures) would make model generators ideal candidates for fast rejection�lters,However, most domains in our application are not �nite but unbounded, e.g., numbers or lists.If we want to use model generation techniques for our purpose, we must map these in�nite domainsonto �nite representations, either by abstraction or by approximation.5.1 Mapping by AbstractionOne approach to establish this mapping uses techniques from abstract interpretation [CC77] wherethe in�nite domain is partioned into a small �nite number of sets which are called abstract domains.For each function f an abstract counterpart �f is constructed such that f and �f commute with theabstraction function � between original and abstract domains, i.e., �(f(x)) = �f(�(x)). E.g., wemay partition the domain of integers into three abstract domains f0g, fx j x > 0g and fx j x < 0g,called zero, pos and neg . Then, all operations for integers must be abstracted accordingly. Forexample, for the multiplication �, we get the abstract multiplication �� which actually mirrors the\sign rule": neg ��pos = pos ��neg = neg .Abstract model checking [Jac94] then represents the abstract domains by single model elementsand tries to �nd an abstract countermodel, using an axiomatization of the abstract functions andpredicates with a standard FOL model generator. There is, however, a problem. While abstractinterpretation may escape to a larger \abstract" domain of truth values in order to make thepredicates commute with the abstraction function, standard FOL model generators require theexact concrete domain of true and false and thus a consistent abstraction may become impossible.E.g., when we try to abstract the ordering on the numbers, less(zero, pos) is valid but we cannotassign a single truth value to less(pos, pos) because two arbitrary positive numbers may be orderedeither way.So, while there are some predicates which allow exact abstractions, we have to approximateothers. Since we want to use abstract model checking as a rejection �lter, we have to make ourchoices such that the �lter produces as few false counterexamples as possible: spurious matches arehandled by the subsequent con�rmation �lter but improperly rejected components are lost forever.5.2 Mapping by ApproximationThe second approach to map an in�nite domain onto a �nite one is done by approximation. Fromthe in�nite domain, we select a number of values which seem to be \crucial" for the module'sbehavior. E.g., for lists, one usually picks the empty list [] and small lists with one or two elements(e.g., [a]; [a; b]). Then, we search for a model. This approach mimicks the manual checking formatches: if one has to �nd a matching component, one �rst make checks with the empty list andone or two small lists. If this does not succeed, the component cannot be selected. Otherwise,additional checks have to be applied. This approach, however, is neither sound nor complete.There exist invalid formulas for which a model can be found in a �nitely approximated domain(e.g., 8X : List �9i : Item �X = i^X), and vice versa (e.g., 9X;Y; Z : List �X 6= Y ^Y 6= Z^Z 6= Xwhich has a model only in domains with at least three distinct elements).While the second case is not too harmful for our application|the performance of the �lter justdecreases (i.e., more proof tasks can pass), the �rst one is dangerous: proof tasks describing validmatches might be lost.The experiments we describe in this paper are based on this approach. For our prototypeimplementation we used the model generator MACE [McC94]. The proof task (already convertedinto sorted clausal normal form) and the descriptions of the approximated domains (for an examplesee Section 7.2 below) are fed into MACE. It reports whether a counterexample could be found or5



not, or if the formula itself is already invalid. Only if no counterexample has been found, the prooftask passes this �lter.6 SETHEO as Con�rmation FilterFor the �nal stage of our �lter chain the high-performance theorem prover SETHEO is used.SETHEO is a complete and sound prover for unsorted �rst-order logic based on the Model Elim-ination calculus. It accepts formulas in clausal normal form and tries to refute the formula byconstructing a closed tableau (a tree of clauses). Completeness is accomplished by limiting thedepth of the search space (e.g., with a bound on the size or depth of the tableau) and performingiterative deepening over this bound. In the context of this paper, SETHEO can be seen as a blackbox which returns \proof found" or \failed to �nd proof" after the given time-limit. Hence, nofurther details about SETHEO are given in this paper. For a description of the system and itsfeatures see e.g. [LS+92, LMG94, GL+94, MI+97].With SETHEO's soundness, we obtain a con�rmation �lter which guarantees that proof taskswhich pass it successfully actually select matching components. Due to our hard time constraints,however, means must be taken not to decrease the recall in an unacceptable way. In the following,we describe how SETHEO has to be adapted in order to be integrated into NORA/HAMMR. Wediscuss important issues like handling of inductive problems, sorts and equality, and the selectionof axioms and parameter settings.6.1 Inductive ProblemsWhenever recursive speci�cations are given or recursively de�ned data structures are used (e.g.,lists) many of the proof tasks can be solved by induction only. SETHEO itself cannot handleinduction and our severe time-constraints don't allow us to use an inductive theorem prover (e.g.,[BvH+90]). Therefore, we approximate induction by splitting up the problem into several cases.For example, for a query and candidate with the signature l : List, and the corresponding prooftask of the form 8l : List�F(l) we obtain the following cases: l = []) F(l), 8i : Item�l = [i]) F(l),and 8i : Item; l0 : List � F(l0) ^ l = [i]^l0 ) F(l).5 After rewriting the formula accordingly, we getthree independent �rst order proof tasks which then must be processed by SETHEO. This approachcan be implemented e�ciently. However, we cannot solve every inductive problem.6.2 EqualityAll proof tasks heavily rely upon equations. This is due to the VDM-SL speci�cation style and theconstruction of the proof tasks. While some equations just equate the formal parameters of thequery and the library module, others carry information about the modules' behavior. Therefore,e�cient means for handling equalities must be provided.We currently provide two variants: the na��ve approach by adding the corresponding axiomsof equality (re
exivity, symmetry, transitivity, and substitution axioms), and the compilation ap-proach used within E-SETHEO [MI+97].6.3 SortsAll proof tasks are sorted. The sorts are imposed from the VDM-SL speci�cations of the modulesand are structured in a hierarchical way. All sorts are static and there is only limited overloadingof function symbols. Therefore, the approach to compile the sort information into the terms of theformula can be used. Then, the determination of the sort of a term and checking, if the sorts of5Although it would be su�cient to have cases 1 and 3 only, we also generate case 2, since many speci�cationsare valid for non-empty lists only. For those speci�cations, case 1 would be a trivial proof task which does notcontribute to �ltering. 6



two terms are compatible is handled by the usual uni�cation. Thus there is no need to modify theprover (here SETHEO) and the overall loss of e�ciency is minimal.6 Our current prototype usesthe tool ProSpec (developed within Protein [BF94]).6.4 Selection of AxiomsEach proof task has to contain|besides the theorem and the hypotheses|the features of eachdata type (e.g., List, nat) as a set of axioms. Automated theorem provers, however, are extremelysensitive w.r.t. the number and structure of the axioms added to the formula. Adding a single(unnecessary) axiom can increase the run-time of the prover by magnitudes, thus decreasing recallin an unacceptable way. In general, selecting the optimal subset of axioms is a very hard problemand has not been solved in a satisfactory way yet. Our hard time-constraints furthermore won'tallow us to use time-consuming selection techniques. In our prototype, we therefore use a simplestrategy:1. select only theories for the data types (e.g., list, nat, boolean) occurring in the proof task,2. within such theories, only select clauses which have function symbols in common with theproof task, and3. leave out particular clauses and axioms which are known to increase the search space sub-stantially (e.g., long clauses, Non-Horn clauses).Although this approach is not complete, we use it, since our aim is to solve as many obviousand simple proof tasks (i.e., those which don't use many axioms or have a complex proof) withinshort limits of run-time.6.5 ControlOnce started, the theorem prover has only a few seconds of run time to search for a proof. Thisrequires that the parameters which control and in
uence the search (e.g., way of iterative deepening,subgoal reordering) are set in an optimal way for the given proof task. However, such a globalsetting does not exist for our application domain. In order to obtain optimal e�ciency combinedwith short answer times, parallel competition over parameters is used. The basic ideas has beendeveloped for SiCoTHEO [Sch96] and could be adapted easily: on all available processors (e.g.,a network of workstations), a copy of SETHEO is started to process the entire given proof task.On each processor, a di�erent setting of parameters is used. The process which �rst �nds a proof\wins" and aborts the other processors.7 Experimental ResultsAll experiments were carried out over a database of 55 list speci�cations which were modi�edto have the type list ! list in order to please our still very simple signature matching �lter.Approximately 40 of these speci�cations describe actual list processing functions (e.g., tail orrotate) while the rest simulates queries. We thus included underdetermined speci�cations (e.g., theresult is an arbitrary front segment of the argument list) as well as speci�cations which don't referto the arguments (e.g., the result is not empty). For simplicity, we formulated the speci�cationssuch that all preconditions were true and the postconditions only used VDM-SL's built-in sequences.In order to simulate a realistic number of queries we then cross-matched each speci�cationagainst the entire library, using plug-in compatibility as match relation. This yielded a total of3025 proof tasks where 375 or 12.4% were valid.6If the sort hierarchy is a tree (which it is in our case), the number of uni�cation steps increase linearly with thedepth of the sort hierarchy. In principle, any DAG structured sort hierarchy can be compiled into the terms, but inthe general case, exponentially many variables might have to be used.7



7.1 Evaluation of FiltersInformation retrieval methods are evaluated [SM83] by the two criteria precision and recall. Bothare calculated from the set REL of relevant components which satisfy the given match relationwrt. to the query and RET , the set of retrieved components which actually pass the �lter. Theprecision p = j REL \ RET jj RET jis de�ned as the relative number of hits in the response while the recallr = j REL \ RET jj REL jmeasures the system's relative ability to retrieve relevant components. Ideally, both numberswould be 1 (i.e. the system retrieves all and only matching components) but in practice they areantagonistic: a higher precision is usually paid for with a lower recall.We also need some metrics to evaluate the �ltering e�ect. To this end we de�ne the falloutf = j RETnREL jj LnREL j(where L is the entire library) as the fraction of non-matching components which pass the �lter aswell as the reduction which is just the relative number of refuted components. Finally, we de�nethe relative defect ratio by dr = j RELnRET jj LnREL j � j L jj REL jas the relative number of rejected matching components in relation to the precision of the �lter'sinput. Thus, a relative defect ratio greater than 1 indicates that the �lter's ability to reject onlyirrelevant components is even worse than a purely random choice.7.2 Rejecting Tasks with Model GenerationFor the rejection �lter, we currently use three di�erent models as shown in Table 1. They arede�ned by giving the (�nite) domains for all data types (in our case List, Item), and the de�nitiontables for all functions. Places marked by y represent arbitrary choices for the function de�nitions.These had to be introduced to ensure the �niteness of the model and since MACE cannot handlepartial functions. These models also di�er slightly in the number of their elements but due to thelarge number of variables in the proof tasks we are generally con�ned to very small models.Our experiments with MACE, however, revealed that the restrictions and peculiarities are nottoo serious. As shown in Table 2, the model checking �lter (with a time-limit of 20 seconds) isable to recover at least 75% of the relevant components, regardless of the particular model. Thelarge standard deviation, however, indicates that the �lter's behavior is far from uniform and thatit may perform poor for some queries.Unfortunately, the �lter is still too coarse. While each model increases the precision of itsanswer (compared to the the original 12.4% \precision" of the library) signi�cantly, it still lets toomany non-matches pass. The values for fallout indicate that the results in average contain up to55% of the original non-matching components. Similarly, the overall reduction of approx. 40-50% isat the lower end of our expectations. However, the relative defect ratios show that model checkingwith any model is at least twice as good as blind guessing.7.3 SETHEO as the Con�rmation FilterAll experiments with SETHEO have been carried out on a sun Ultra-SPARC-2. We used parallelcompetition with 4 processes exploring di�erent ways of handling equality. As the basis for experi-ments, we used the library mentioned above. Due to technical reasons, however, we had to restrict8



Model AList: [], l � [i]Item: ifunction [] lcons(i; ) l lytail( ) [] []head( ) i iapp([]; ) [] lapp(l; ) l ly
Model BList: [], l1 � [i],l2 � [i]^l1Item: ifunction [] l1 l2cons(i; ) l1 l2 ly2tail( ) [] [] l1head( ) i i iapp([]; ) [] l1 l2app(l1; ) l1 l2 ly2app(l2; ) l2 ly2 ly2

Model CList: [], l1 � [i1],l2 � [i2]Item: i1; i2function [] l1 l2cons(i1; ) l1 ly1 ly1cons(i2; ) l2 ly2 ly2tail( ) [] [] l2head( ) iy1 i1 i2app([]; ) [] l1 l2app(l1; ) l1 ly1 ly1app(l2; ) l2 ly2 ly2Table 1: Models used for the experimentsModel A B CjList j+ jItemj 2+1 3+1 3+2recall r 74.7% 76.5% 81.3%�r 0.25 0.26 0.25precision p 18.5% 19.6% 16.5%�p 0.21 0.19 0.16precision increase 1.5 1.6 1.3fallout 42.8% 41.0% 55.5%reduction 50.1% 51.7% 39.0%defect ratio dr 0.51 0.45 0.48Table 2: Results of model checkingthe number of modules to 49. This resulted in a total of 2401 proof tasks where 204 or 8.5% weresolvable and thus represent matches.In our �rst set of experiments we tried to retrieve identical modules from the library (i.e., c � q).The resulting 49 proof tasks are relatively simple and no induction or axioms are needed to provethem. As expected, SETHEO could show all of them within a time-limit of 20 seconds CPU-time.Whereas the mean run-time was less than 1s, several proof tasks needed up to 13 seconds.Then we tried to retrieve matching, but non-identical components. Our experimental basiscontains 155 such cases. First, these proof tasks were tried without induction. Here, SETHEO wasable to solve 46 proof tasks with a standard set of axioms. The rate of recall could be increaseddrastically, when our approximation of induction was used. With the same set of axioms, 70proof tasks could be solved. Due to the increased size of the formulas (esp. in the step case), moreover
ow errors occurred. Nevertheless, with case splitting we have been able to retrieve 18 matchesmore than without case splitting. Due to the di�erent structure of the search space, 6 tasks couldbe shown only without case splitting, making the simple mode interesting for parallel competition.In order to obtain the overall recall of the SETHEO con�rmation �lter, we have to combine thedata of both sets of experiments. From a total of 204 = 49+155 possible matches, SETHEO couldretrieve 125 (49 identical modules, 70 non-identical with case splitting and 6 without case splitting)modules. This yields an overall recall of 61:2%. However, the standard deviation is relatively high,revealing quite di�erent retrieval results for the various queries. Since SETHEO's proof procedure9



is sound, all solved proof tasks correspond to matches, hence the precision is 100%.The experiments showed that parallel competition with several variants (case splitting, set ofaxioms, handling of equality) is essential to obtain short answer times. In the experiments describedin this paper, we only performed parallel competition on the equality handling (axiomatic approachand E-SETHEO with 2 variants each). It showed that none of the methods is a clear winner. Prooftasks with a rich and complex structure of terms result in large sets of long clauses, if processed byE-SETHEO's preprocessing module. Such huge formulas often just take too long (w.r.t. to our timelimits) to be handled by SETHEO. If additionally, only few equational transformations are neededduring the proof, the na��ve approach certainly needs fewer resources. In many cases, however,complex equational transformations are necessary which clearly favors the use of E-SETHEO.8 Conclusions and Further WorkIn this paper, we have presented NORA/HAMMR, a deduction-based software component retrievaltool. Our goal was to show that such a tool is not only theoretically possible but practical withstate-of-the-art theorem provers. We thus designed it as a user-con�gurable pipeline of di�erent�lters. Rejection �lters are in charge of reducing the number of non-matching query-component-pairs as soon and good as possible. In this paper, we have studied an approach which usesmodel generation techniques for this purpose. Our experiments with MACE showed that thisapproach, although neither sound nor complete, returns reasonable results. The �nal stage of the�lter pipeline is always a con�rmation �lter which ensures that the selected components are reallymatches. Here, we have used the automated theorem prover SETHEO. Even with a short time-limitof 20 seconds, an overall recall of more than 60% was obtained.We have evaluated our approach with a reasonable large number of experiments. The resultsobtained so are very encouraging. Nevertheless, many improvements still have to be made beforeNORA/HAMMR can really be used in industry. Due to the hard time-constraints (\results while-u-wait"), the reduction of proof-tasks, both in complexity and number is of central importance.Here, powerful rejection �lters must ensure that only a few proof tasks remain to be processedby the automated theorem prover. However, our current model-checking �lter rejects too muchvalid matches due to the necessary approximate abstractions. We are thus trying to model exactpredicate abstractions with Belnap's four-valued logic [Bel77] which extends the three-valued LPFconsistently. A translation into FOL which re
ects the explicit falsehood conditions of Belnap'slogic then yields a sound rejection �lter.Future work will include experiments with specialized decision procedures for the di�erenttheories and dis-proving techniques. Additionally, knowledge-based �lters and heuristics will helpto reduce the number of tasks to be handled by the con�rmation �lter. All these �lters will becon�gurable and allow inspection of the behavior of the �lter pipeline during each stage of theretrieval.Current high-performance automated theorem provers are certainly usable as con�rmation�lters. Much work, however, is still necessary to adapt the ATPs for such kinds of proof tasks.In particular, the requirement of full automatization and the strong time-limits must be obeyedcarefully. Key issues in this respect are the handling of inductive proofs, and the selection ofappropriate axioms. Here, powerful heuristics as well as additional information, placed in the database together with the components (e.g., tactics, lemmas, induction schemes) will be helpful.This application of automated theorem proving carries the unique feature that soundness andcompleteness are not absolutely vital|unsound and incomplete methods only reduce the precisionand recall of the retrieval tool. This allows interesting and promising deduction techniques (e.g.,approximating proofs by �lter chains or iteration) to be explored and will help to automate softwareengineering a little further.
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