
Deduction-Based Software Component RetrievalB. Fischer and M. Kievernagel and G. SneltingTU Braunschweig, Abteilung f�ur SoftwaretechnologieGau�stra�e 17, D-38092 Braunschweig, Germanyffisch,mkiever,sneltingg@ips.cs.tu-bs.deAbstractWe present a retrieval approach which allowspre- and postconditions of software compo-nents to be used as search keys. A com-ponent quali�es, if it has a weaker precon-dition and a stronger postcondition than thesearch key. In contrast to previous work, ourtool NORA/HAMMR allows for con�gurablechains of deduction-based �lters such as signa-ture matchers, model checkers | which willbe our main subject here |, and resolutionprovers; the latter can be run with dynamicallyadjusted axiom sets and inference rules. Hence,instead of feeding the search key and all com-ponents' speci�cations to a theorem prover in abatch-like fashion, NORA/HAMMR allows forincremental narrowing of the search space alongthe �lter chain, and interactive inspection of in-termediate results.Classi�cation: software component retrieval, formalmethods, speci�cation matching, model �nding, theoremproving.1 IntroductionThe basic idea of deduction-based software componentretrieval is very simple:1. for each component C in the library, provide a for-mal speci�cation in form of pre- and postcondition(preC ; postC),2. allow pre- and postconditions (pre; post) as searchkeys,3. a component quali�es, if pre) preC ^ postC)post.This approach has been proposed several times (e.g.[Rollins and Wing, 1991],[Manhart and Meggendorfer,1991]), but without convincing success. First, some peo-ple state that formal speci�cations are too di�cult to use

as search keys for ordinary programmers. Furthermore,the approach turned out to produce proof obligationswhich sometimes cannot be handled even with todaysmost sophisticated theorem provers. Technically, bothweaknesses stem from a batch-oriented view of softwarecomponent retrieval: in previous approaches, a completespeci�cation must be supplied, which will be matchedagainst all components (this includes proving the abovetwo obligations); �nally, the results are presented to theuser.In order to overcome acceptance problems and insu�-cient proving power, we propose a more incremental andinteractive retrieval approach. Instead of feeding thecomplete search key into the retrieval system at once,the user is allowed to incrementally sharpen the post-condition (and weaken the precondition). Furthermore,search keys are not processed by an all-purpose theoremprover, but by a chain of �lters of increasing power.The successive �ltering of components o�ers two mainadvantages. It allows free combination of di�erent re-trieval methods | including text-based or concept-basedmethods [Lindig, 1995]. Moreover, since intermediate re-sults can be inspected at every stage, the overall runningtime is not critical to the performance of the tool. As wewill show, results of acceptable precision are ready forinspection early in the process.A typical �lter chain consists of the following phases:1. signature matching,2. model checking,3. theorem prover.After signature matching (which aims at high recall andnot at high precision) a lot of components has still sur-vived, as the signature alone does not describe the com-ponent precisely enough. The second step checks theproof obligations in some small model (small integersand short lists), which is already a rather sharp �l-ter. Only for the few remaining candidates, a theoremprover (OTTER[McCune, 1994b] or SETHEO[Letz etal., 1992]) is invoked; in order to reduce the search space,NORA/HAMMR tries to select a minimal set of axioms.

In this paper, we describe some details of our ap-proach, especially the application of the model �nderanldp in our model checking �lter. We conclude with ourexperiences with NORA/HAMMR in making �rst exper-iments. Our test library [Lins, 1989] consists of about50 Modula-2-modules implementing several variants ofabstract data types like stacks, queues, graphs, and treesusing generic items. It provides approx. 1000 procedureswith 120 di�erent type signatures. A substantial part ofthese procedures has been speci�ed manually in VDM.2 Search keys and signature matchingThe search keys, through which a user mainly communi-cates with NORA/HAMMR, consist of a type signatureand a VDM part, as the example of a push operation forstacks shows:PROCEDURE x(i:I, s:S) : Spre truepost s = tl x and i = hd xThe type signature encapsulates all language-speci�c as-pects like the kind of the target object (in this exam-ple PROCEDURE) or the names of the basic types such asINTEGER. For convenience, we use a syntax which is ori-ented at the target language. In the case of Modula-2 wehave just extended procedure types by type variables (Iand S) to search for a class of signatures and to abstractnaming of types. The VDM part is written in VDM-SL[Dawes, 1991], but some naming conventions are appliedto refer to parameters and result.In NORA/HAMMR, signature matching acts as the�rst �lter in the chain. Its main characteristic is anequivalence E on types. For functional languages, Etypically includes axioms to handle currying, pairing, ex-tra arguments or di�erent argument orders [Rittri, 1990].Our current implementation | which aims at proceduraltarget languages | applies order-sorted AC1-uni�cationfor parameter lists in order to abstract the order of pa-rameters. We will also add a "result currying" axiomPROCEDURE p(x, VAR y:Y)= PROCEDURE p(x, y:Y) : Yto handle the equivalence of VAR-parameters and returnvalues. Thus, NORA/HAMMR matches the desired pro-cedure even if it is implemented asPROCEDURE StackSBMI.push(VAR st:STACK; it:ITEM)due to an application of the commutativity and resultcurrying axioms. As expected, the intermediate result,a set of components with suitable type, is of poor preci-sion. It not only contains StackSBMI.push but 87 moreprocedures of Lins' library. Precision drops even furtherif the library includes e. g. some mathematical routinessince I and S may be bound to REAL and thus the keymatches all binary operators.

3 Checking the proof obligationsWe decided not to hard-wire a special proof procedurefor VDM but to integrate the general purpose theo-rem prover OTTER[McCune, 1994b] and the associatedmodel �nder anldp[McCune, 1994a]. This design easesexperimentation with the prover and also allows us toreplace it, either by a more advanced one or even by aspecially tailored proof procedure.The second �lter purges obligations which can easilybe refuted by checking their validity in a small fragmentof the VDM-axiomatization. Its basic idea is to checkwhether all assignments of small integers and small lists,resp., to program variables evaluate the obligations totrue. Obviously, this is a prerequisite for the obligationsto be provable in the full theory. We will show in thenext section how we use anldp in this �lter.The third �lter tries to prove the remaining obligationsusing OTTER and an axiomatization of the full theory.The whole axiomatization mainly covers the �rst-orderproperties of equality, sequences and integer arithmetic;it consists of about 120 axioms and lemmata.The search space for the prover is reduced by splittingindependent parts of a problem into subproblems. Thisis done by transforming the formula into disjunctive nor-mal form and combining every set of disjunctions withcommon variables into one subproblem.A further reduction of the search space is achieved byaxiomatizing each subproblem of an obligation indepen-dently, i.e. linking it dynamically with an appropriate setof axioms. The selection of axioms is based on the sym-bols used in the problem. Axioms de�ning the requireddomains are always given. For additional auxiliary sym-bols the de�nitions in elementary terms and lemmatastating relations between them are added to the axiomset.Some parts of the axiomatization can be used to trans-form respective parts of a problem in a normalized form.For example, all propositions using integer ordering re-lations (<;�; >;�) can also be expressed using only `<'.This normalizing part of the axiom set is always appliedin a preprocessing phase and never given to the prover.Our graphical user interface (see �gure 1) re
ectsthe idea of successive �ltering. Additionally, inspectorsgrant easy access to any intermediate results. This �lter-inspector-chain may easily be customized by the userthrough an icon pad. The con�guration displayed be-low corresponds to the chain of �lters described in thispaper. The left part of the window is used to enter thethree parts of the search key while the right part displaysthe �nal retrieval results.4 Model checkingWe will now give a detailed description of the modelchecking �lter and its use of anldp. To illustrate theideas we use the �rst experiment from Table 1 below,

Figure 1: Graphical user interfacewhich is based on the example search key for the push-operation given in section 2.First we will look at the intermediate result after sig-nature matching. It consists of 25 procedures from 14modules and contains the relevant procedures Push andInsert from the stack resp. singly-linked list modules.Also matched are procedures for head-assignment andtail-insertion in the singly-linked list modules, insertionand head-assignment in the doubly-linked list modules,inclusion and exclusion in the set modules and insertionand item-deletion in several kinds of queue modules.Currently, the procedures from the doubly-linked listmodules and the priority queue modules are regardedas unsuitable to build a proof obligation, because theirspeci�cations use parts of the resp. datatype which haveno counterpart in the key and thus cannot be bound.This removes 6 components, leaving 19 procedures from12 modules. Alternatively, the unbound parts could beincluded in proof obligations as free variables. Then aconstructive proof method is required, but it would en-able NORA/HAMMR to inform the user about correctinstantiations of the unbound parts of a component.For the remaining components the model checking �l-ter checks if the resulting obligations are valid for smallintegers and small lists. The method we use is basedon an axiom set for integers and lists which is restrictedto �nite domains and total functions and predicates. Itde�nes exactly one �nite model. The �lter adds an obli-gation to the model de�nition and then runs the model

�nding program anldp on it to see whether it can still�nd the designated model. anldp is based on a �rst-order variant of the Davis-Putnam procedure (i.e. ex-haustive enumeration of all �nite models.) If anldp failsthe component is rejected, because the correspondingproof obligation contradicts the model de�nition. Oth-erwise, the component matches, but the validity in thefull theory still has to be tested.The domain sizes of the model in
uence the precisionof the method. The larger they are, the more the �lterbehaves like a prover for the full theory. We have ex-perimented with di�erent sizes and have obtained goodresults using a fragment of the full theory containingonly the objects nul and suc(nul) as integers, nil andcons(nul,nil) as lists and inc denoting illegal terms.We will show now some parts of the model de�nition.These �rst two parts de�ne the objects of the sorts natand seq and restrict the domains by introducing �x-points in the constructor functions:nat(nul).nat(suc(nul)).suc(nul) != nul.suc(suc(nul)) = suc(nul).seq(nil).seq(cons(nul,nil)).cons(nul,nil) != nil.cons(nul,cons(nul,nil))

= cons(nul,nil).Other functions are de�ned as usual except that thedomain limitations have to be taken into account:hd(cons(nul,nil)) = nul.tl(cons(nul,nil)) = nil.len(nil) = nul.len(cons(nul,nil)) = suc(nul).concat(nil,nil) = nil.concat(nil,cons(nul,nil))= cons(nul,nil).concat(cons(nul,nil),nil)= cons(nul,nil).concat(cons(nul,nil),cons(nul,nil))= cons(nul,nil).In order to remove any incomplete de�nitions an ob-ject inc (inconsistent) is introduced. It is used to turnpartial functions into total functions. The following def-initions are necessary to make the cons-function total:cons(nil,x) = inc.cons(cons(x,y),z) = inc.cons(suc(nul),y) = inc.-nat(x) | cons(y,x) = inc.cons(inc,x) = inc.cons(x,inc) = inc.The computation of a basic model by anldp which issu�cient for many obligations needs 0.50 sec. The com-plete model for lists and basic integer arithmetic needs1.56 sec to be computed.The result of the computation is the obvious model.anldp uses internal object names which can be assignedto constants (here: 0 = nul, 1 = nil and 2 = inc.) Theother objects are assigned by anldp while the model isconstructed. In the following part of the model anldphas assigned 3 to suc(nul) and 4 to cons(nul,nil):nat: 0 1 2 3 4 seq: 0 1 2 3 4--------------- ---------------T F F T F F T F F Tsuc: 0 1 2 3 4 len: 0 1 2 3 4--------------- ---------------3 2 2 3 2 2 0 2 2 3Returning to our retrieval example there are e�ectivelythree possible results for an obligation:� It is valid and the model is found.� It is not valid but the model is found.� It is not valid and the model is not found.

Considering the list domain (nil and cons(nul,nil))you can expect that model checking will be able to dis-tinguish sequence insertions from deletions or changesbut not the location where an insertion takes place.An example for a component which is �ltered outby model checking is an assignment to the head of alist. The following proof obligation (Otter format) forListSBM/SUM.SetItem is checked in less than 2 secs(with no model found):formula_list(usable).(all st1 all it all st2((seq(st1) & nat(it) & seq(st2)) ->((st2 = cons(it,tl(st1)))->((tl(st2) = st1) & (hd(st2) = it))))).end_of_list.For the next two examples a model was found alsowithin two seconds. The �rst is a valid obligation whilethe second is not valid in the full theory (giving only thecomponent speci�cation):StackSBMI/SUMI.Push:(st2 = cons(it,st1)).QueueSBMI/SUMI.Arrive:(st2 = concat(st1,cons(it,st1))).The complete list of the seven matched componentsis found in picture 1 in the second inspector window.Thus model checking has eliminated most of the irrele-vant components in this experiment.5 Preliminary experiencesThe experiments reported here are based on about halfof Lins' library. For e�ciency reasons, the informationsnecessary for NORA/HAMMR are compiled from thelibrary and stored in a database. Each entry containsthe type signature and pre- and postconditions for thematching process and references to the di�erent de�ni-tions of a component. Also, some retrieval relevant inter-mediate results like the binding of names generated bythe type matcher are stored there. The retrieval processis considerably sped-up by an indexing scheme which isbased on the principal operators in the type signature.This means that a large part of the components withincompatible type is not even accessed.Table 1 displays the �ltering e�ect of the three phasesof NORA/HAMMR. The left column gives a short de-scription of the search key. The columns for the typematcher and the model checker give counts for the suc-cessfully matched procedures and the modules in whichthese are contained. The last column gives the results ofthe respective OTTER runs which are either a successfulproof (runtime in seconds1) or there was no proof within1All times were measured on a SPARC ELC-10.

description sig. match model check OTTER runs1 Insert at head of seq. 25=14 7=4 4� 2s=3� np-2 Seq. split at element 1=1 | np+ (48s)3 Seq. split at position 1=1 1=1 1s4 Member?-predicate 3=3 3=3 3� np+5 Position of element in seq. 9=9 9=9 9� 1s6 Remove from front of seq. 51=20 6=3 6� 2s7 Remove from back of seq. 51=20 6=3 6� np-Table 1: Experimental resultsa short time limit for a valid proof obligation (np+) resp.an invalid one (np-).Most search keys only produce easy proof obligationswhich OTTER proves in a few seconds each. Experi-ment 4 creates obligations for which it fails to �nd aproof but at least the model checker successfully showstheir validity in the small theory. Another search keythat caused some problems for OTTER and the modelchecker is the "element-split" of experiment 2. anldpfails here, because it cannot handle skolem functions ofarity larger than four. OTTER is able to �nd a proofof the resulting obligation but clearly exceeds the giventime limit. Interestingly, we got the best results whenOTTER was allowed to choose its parameters itself (OT-TER's so-called automode).For the above experiments, overall recall was 0:49 andoverall precision was 0:86. As expected, precision isvery high. The rather poor recall comes from signaturematching: at the moment, the equivalence E on signa-tures is too restrictive, excluding some relevant compo-nents. Additional axioms for E will increase recall anddecrease precision of signature matching | but overallprecision is maintained by the model checker and theo-rem prover.6 ConclusionsDue to the concept of successive �lters, our retrieval sys-tem NORA/HAMMR is able to present acceptable inter-mediate results in short time. A specialized replacementof anldp will even lead to better results. We will alsoexperiment with other �lters based on unsound provingmethods. The replacement of OTTER by other theo-rem provers is another possibility for improvement. Re-cent experiments with the SETHEO prover showed thatSETHEO is at least as suitable as OTTER.AcknowledgementsNORA/HAMMR is part of the inference-based soft-ware evelopment environment NORA2. Ch. Lindig devel-oped the graphical user interface for NORA/HAMMR.2NORA is a play by the Norwegian writer H. IBSEN,hence NORA is no real acronym. HAMMR stands for \higlyadaptive multi-method retrieval"

M. Kievernagel and B. Fischer were supported by DFG,grants Sn11/1-2, Sn11/2-2, Sn11/3-1 and Sn11/4-1.References[Dawes, 1991] John Dawes. The VDM-SL ReferenceGuide. Pitman, London, 1991.[Letz et al., 1992] R. Letz, J. Schumann, S. Bayerl, andW. Bibel. Setheo: A high performance theoremprover. Journal of Automated Reasoning, 2(8):183{212, 1992.[Lindig, 1995] C. Lindig. Concept-based component re-trieval. In Proc. IJCAI Workshop on Reuse of Proofs,Plans and Programs, 1995. to appear.[Lins, 1989] Charles Lins. The Modula-2 Software Com-ponent Library. Springer Compass International.Springer Verlag, New York Berlin Heidelberg, 1989.[Manhart and Meggendorfer, 1991] P. Manhart and S.Meggendorfer. A knowledge and deduction based soft-ware retrieval tool. In Proc. 4th International Sympo-sium on Arti�cial Intelligence, pages 29{36, 1991.[McCune, 1994a] W. W. McCune. A Davis-Putnam pro-gram and its application to �nite �rst-order modelsearch: Quasigroup existence problems. Technical re-port, Argonne National Laboratory, 1994. Draft.[McCune, 1994b] W. W. McCune. Otter 3.0 user'sguide. Argonne National Laboratory Report ANL-94/6, 1994.[Rittri, 1990] Mikael Rittri. Retrieving library identi-�ers via equational matching of types. In Mark E.Stickel, editor, Proc. 10th International Conference onAutomated Deduction, volume 449 of Lecture Notes inComputer Science. Springer-Verlag, July 1990.[Rollins and Wing, 1991] Eugene J. Rollins and Jean-nette M. Wing. Speci�cations as search keys for soft-ware libraries. In Koichi Furukawa, editor, Proc. of theEighth International Conference and Symposium onLogic Programming, pages 173{187, Paris, June 24-281991. MIT Press.

