
Institute for Program Structures
and Data Organization (IPD)

Lehrstuhl Prof. Dr.-Ing. Snelting

Deriving Restrictions on Value
Types

Research project

Jonas Fietz

at the faculty of Computer Science

Operand A

? 0 ? 1 1 1 ? 0

Operand B

? 1 1 1 0 ? ? 0

And(A,B)

? 0 ? 1 0 ? ? 0

Reviewer: Prof. Dr.-Ing. Gregor Snelting

Advisor: Dipl.-Inform. Sebastian Buchwald

Time: 1st February 2010 – 29th July 2010

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Contents

1 Introduction 1
1.1 Problem Statement . 1

1.2 Outline . 1

2 Fundamentals 3
2.1 Static Single Assignment Form . 3

2.2 Firm . 3

2.3 Mathematical Definitions and Theorems . 5

2.3.1 Partially Ordered Set . 5

2.3.2 Complete Lattice . 6

2.3.3 Ascending Chain Condition . 6

2.3.4 Function Properties . 6

2.3.5 Fixpoint Theorem on Complete Partial Orders 6

2.4 Data Flow Analysis . 6

2.5 Value Range Propagation . 7

3 Design 9
3.1 Walking the Graph . 10

3.2 Creating the Information . 10

3.2.1 Const . 10

3.2.2 And . 11

3.2.3 Shl . 11

3.2.4 Shr . 11

3.2.5 Rotl . 11

3.2.6 Add & Sub . 11

3.2.7 Conv . 12

3.2.8 Eor . 12

3.2.9 Not . 13

3.2.10 Id . 13

3.2.11 Phi . 13

3.3 Complete Partial Order . 13

3.4 Merging With Existing Information . 14

3.5 Examples of Optimizations . 15

3.5.1 Recognizing Constants . 15

3.5.2 Simplify Add If Bits Set Are Disjoint 15

3.5.3 And . 15

3.5.4 Optimizing Jump Tables . 16

4 Implementation 17
4.1 VRP Struct . 17

4.2 Derivation of Information . 17

iii

iv Contents

5 Evaluation 19

6 Conclusion 21
6.1 Summary . 21
6.2 Future Work . 21

Bibliography 23

iv

1. Introduction

Compilers today are computer programs used to translate between human understable
source languages to computer languages. Usually, they translate some kind of program-
ming language into a target language, typically some kind of assembly or machine code.
This enables the development of languages which are easier to grasp for humans by using
higher order abstractions.

But often, these kinds of higher order abstractions come with greater target code com-
plexity. To reduce this complexity, compilers typically try to apply heuristics to optimize
the code being generated.

Optimized code has multiple advantages, depending on the criteria used for optimization.
Typically, it uses less computing power, memory, and runs faster, therefore enabling more
efficient use of the existing hardware.

Compiler structure is usually divided in several phases: Analysis, intermediate code
generation, optimization and synthesis.

During analysis, the compiler reads the source program and converts it into an inter-
mediate representation. Following this, some generic optimizations are applied to this
internal representation. Using this internal representation has the advantage of being tar-
get agnostic. The last phase then translates the intermediate representation into code for
the target machine.

1.1 Problem Statement
The goal of this project is the implementation of value range propagation in libFIRM,

a compiler developed at the Karlsruhe Institute of Technology. Value range propagation
(VRP) is usually implemented to derive just information about possible value ranges for
each variable in a program. This shall be extended to also include information about bits
set or not set for each of the values.
For the optimization to work properly, it needs to terminate, which we will show.
Also, some example optimizations shall be implemented to test the structure used and
provide examples.

1.2 Outline
In chapter 2, we introduce the necessary vocabulary to understand this paper. This

can be skipped safely by those familiar with Firm, data flow analysis and value range
propagation.

In chapter 3, we explain how our implementation of value range propagation has been
designed. We demonstrate how we walk the graph and how the information is created for
each of the node types. After that, we prove that the described algorithm terminates. To

1

2 1. Introduction

achieve this, the VRP-information has to be a partially ordered set(section 3.3), and our
merging (and updating) function has to be monotone on this set (section 3.4). The chapter
is closed with an overlook over a few of the implemented optimizations using VRP.

In chapter 4, we describe the structures created in libFIRM to save the information.
Also, we show how the values are initialized and how the information can be accessed
using accessor functions created for this purpose.

In chapter 5, we try to evaluate possible performance improvements and see how often
our optimizations are actually used.

In chapter 6, we quickly rehash what has been achieved and how one may go about
further extending this work and using the newly created infrastructure and information.

2

2. Fundamentals

This chapter will be used to introduce the terminology needed to explain and show the
process of value range propagation as it was implemented in this thesis. We will begin by
defining the structures we use in libFIRM, namely the static single assignment form and
its derivative Firm.

Then, we will continue to define some mathematical terms, which we will use to proof
termination of our algorithm, and explain its workings. This is followed by some remarks
about data flow analysis, to later put the process of value range propagation in a context
to other analysis tools and optimizations.

2.1 Static Single Assignment Form
Definition: A program is in SSA form, iff every variable is assigned exactly once in the

program. In this context, variable means alias-free, local variable.

The static single assignment form is a representation of intermediate languages for com-
pilers. It has been widely accepted and is implemented in most common compilers. SSA’s
primary characteristic is that each variable is only assigned a value once. For each assign-
ment, a new name is generated for each value. Because of this property, use-def chains are
explicit, using SSA simplifies and improves results of various compiler optimizations, due
to simpler value attributes.

Obviously, in the case of two parallel control-flow paths, in both of which a variable x
is reassigned or defined, one needs a way to deal with the merge point. For this situation,
φ-nodes were introduced. Assuming that the names assigned to the two instances of x
were x1, x2, SSA combines them with the φ-node, x3 = φ(x1, x2). The value x3 represents
depends on the control flow path taken.

2.2 Firm
Firm is an intermediate representation (IR) used in the compiler library libFIRM. It

is based on the general static single assignment (SSA) form (For further information on
libFIRM and Firm, see [Lin02] and [TLB99]). This has the advantage that the defini-
tion and uses are directly coupled, which in turn simplifies the results of many compiler
optimizations.

When a variable x is assigned a new value, a new version is created for each assignment
(x1, x2, . . .) and each of its users is adjusted accordingly. In some cases, the value of a
variable might depend on the control flow, but each variable can have only one assignment.
For this, the mechanism of Phi-functions was introduced. So if a variable x3 might be
either x1 or x2, then x3 = phi(x1, x2) with a control flow dependent function Φ.

3

4 2. Fundamentals

Firm itself is a low level SSA-form. Its graph-based nodes closely resemble the target
architecture. Therefore, the IR does not contain a representation of objects or local vari-
ables. Also, value numbering can be directly included in the representation. Firm extends
the traditional SSA idea by not only modeling the data flow edges, but also the control
flow and memory dependencies to include memory accesses in the representation.

Firm operates with 17 different modes for values. These are shown in Table 2.1. They
are grouped into several generic modes; these are shown in Table 2.2 (These tables were
taken from [TLB99, p.7/8]).

BB: Blocks X: control flow
F : Floats D: Doubles
E: Exceptions Bs: Byte signed
Bu: Byte unsigned Hs: Half word signed
Hu: Half word unsigned Is: Integer signed
Iu: Integer unsigned Ls: Long signed
Lu: Long unsigned C: Character
P : Pointer b: Boolean
M : Memory

Table 2.1: Firm modes

int ∈ Int
intb ∈ Int ∪ {b}
intu ∈ Int ∧ intu is unsigned.
float ∈ Float
num, numi ∈ Int ∪ Float
numP, numPi ∈ Int ∪ Float ∪Ref
data, datai ∈ Int ∪ Float ∪ Char ∪Ref
datab, databi ∈ Int ∪ Float ∪ Char ∪Ref ∪ {b}
dataM ∈ Int ∪ Float ∪ Char ∪Ref ∪ {M}
dataMX ∈ Int ∪ Float ∪ Char ∪Ref ∪ {M,X}
lh ∈ {BB,M}

Table 2.2: Generic modes of operations in Table 2.3

Possible Firm nodes are displayed in table 2.3.

Operation : Modes of Operands → Modes of Results

Block : Xn → BB
Start : BB → X ×M × P × P ×

data1 × . . .× datan × P
End : BB × lh1 × . . .× lhn →
EndReg : BB × lh1 × . . .× lhn → Xn+1 × . . .×Xn+m

EndExcept : BB → X1 × . . .×Xn

Jmp : BB → X
Break : BB → X
Cond : BB × b → X ×X
Cond : BB × int → Xn

Return : BB ×M × data1 × . . .× datan → X
CallBegin : BB × P → Xn

continued on next page

4

2.3. Mathematical Definitions and Theorems 5

continued from previous page

Operation : Modes of Operands → Modes of Results

Raise : BB ×M × P → X ×M
Const : BB → data
SymConst : BB → int
SymConst : BB → P
Unknown : BB → ANY
Sel : BB ×M × P × intn → P
Call : BB ×M × P × data1 × . . .× datan → M ×X × datan+1×

. . .× datan+m ×M × P
Add : BB × numP × numP → numP
Add : BB × P × int → P
Add : BB × int× P → P
Sub : BB × numP × numP → numP
Sub : BB × P × int → P
Sub : BB × int× P → P
Sub : BB × P × P → int
Minus : BB × float → float
Mul : BB × int1 × int1 → int2
Mul : BB × float× float → float
Quot : BB ×M × float× float → M ×X × float
DivMod : BB ×M × int× int → M ×X × int× int
Div : BB ×M × int× int → M ×X × int
Mod : BB ×M × int× int → M ×X × int
Abs : BB × num → num
And : BB × int× int → int
Or : BB × int× int → int
Eor : BB × int× int → int
Not : BB × int → int
Shl : BB × int× intu → int
Shr : BB × int× intu → int
Shrs : BB × int× intu → int
Rot : BB × int1 × int2 → int1
Cmp : BB × datab× datab → b16

Conv : BB × datab1 → datab2
Phi : BB × dataMn → dataM
Filter : BB × dataMn → dataM
Load : BB ×M × P → M ×X × data
Store : BB ×M × P × data → M ×X
Alloc : BB ×M × intu → M ×X × P
Free : BB ×M × P → M
Sync : BB ×Mn → M

Table 2.3: Syntax of Firm operations. For resolution of generic modes data etc. see Ta-
ble 2.2

2.3 Mathematical Definitions and Theorems
In the following subsections, we define terminology needed for proofs later on.

2.3.1 Partially Ordered Set

Given a set L, a relation v⊆ L× L is called partial order, iff it has the properties

1. Reflexivity: ∀l : l v l

5

6 2. Fundamentals

2. Transitivity: ∀l,m, n : l v m ∧m v n⇒ l v n

3. Anti-Symmetry: ∀l,m : l v m ∧m v l⇒ l = m

Given a subset M ⊂ L, l ∈ L is an upper bound, if ∀l′ ∈ M : l′ v l, and l is a lower
bound, if ∀l′ ∈ M : l v l′. A least upper bound l is an upper bound of M that also
satisfies l v l0, whenever l0 is another upper bound of M . The greatest lower bound is
defined analogously. Subsets M of a partially ordered set do not need to have least upper
or greatest lower bounds, but if they exists, they are unique and are denoted tM and uM
respectively.

A complete partial order is a partially ordered set M , which has a smallest element ⊥
and in which every ascending chain C ⊆M has an upper bound sup(C). (Definition from
[NNH99])

2.3.2 Complete Lattice
A complete lattice is a partially ordered set L, such that all subsets have least upper and

greatest lower bounds, and that ⊥ = tL is the least element and > = uL is the greatest
element. (Definition from [NNH99].)

2.3.3 Ascending Chain Condition
An ascending chain is a sequence of elements a1, a2, a3, . . . of a partially ordered set M ,

so that a1 ≤ a2 ≤ a3 Therefore every two elements in C are comparable. Therefore,
if the chain istaken as a set, it isa completely ordered set.

A partially ordered set satisfies the ascending chain condition (ACC), iff every ascending
chain becomes stationary, i.e. ∃n ∈ N : an = an+1 = an+2 =

2.3.4 Function Properties
A function f : O1 → O2 between two complete partial orders is called monotone, if

x ≤ y ⇒ f(x) ≤ f(y).
A function f between two complete partial orders O1, O2, f : O1 → O2 is called

continuous if it maps a chain C1 ⊆ O1 to a chain C2 ⊆ O2, while preserving their suprema.

f(sup(C)) = sup(f(C)), withf(C) = f([x1, x2, . . .]) = [f(x1), f(x2), . . .]

A continuous function is always monotone. (Definition from [DP02])

2.3.5 Fixpoint Theorem on Complete Partial Orders
For a complete partial order (O,≤) and a monotone function f : O → O, there exists a

least, unique fixpoint X with f(X) = X.
For a complete partial order (O,≤), the smallest element ⊥, and a continuous function

g : O → O, there exists a least, unique fixpoint X = sup{fn(⊥)}, which can be calculated
iteratively.

For the latter there also is the dual theorem: For a complete partial order (O,≥), largest
element >, and a contiuous and falling function f : O → O, there exists a largest, unique
fixpoint X = inf{fn(>)}, and it can be calculated iteratively. (See [DP02] for details)

2.4 Data Flow Analysis
Data-flow analysis (DFA) is a type of program analysis. It is a static analysis at compile

time, which attempts to gather information about the visibility and availability of data at
each point in a computer program and the dependencies resulting thereof. These analy-
ses include for example reaching definition analysis, available expressions analysis or the
detection of dead code. Data flow analyses are usually divided in two categories: forward
analyses, using the control flow graph, and backward analysis, using the reverse control
flow graph.

Commonly, DFA operates on the control flow graph (CFG), as it tries to obtain infor-
mation for each point in a program. The information to be derived is usually defined in

6

2.5. Value Range Propagation 7

an abstract way on a complete lattice. DFA also usually operates on basic blocks in the
CFG. For these, we view the entry and exit states, defined as

exitb = transb(entryb)

entryb = joinp∈predb(exitb)

for a block b. Here, join is the join-Operation in the complete lattice, therefore creating
the entry state for the next block. The more important function is the transfer function
trans, which describes the effect of block b on the entry state. This way, we get a set of
solvable equations. The resulting values for entry and exit may then be used to get the
information desired. Backward analysis is defined analogously.

There are two common solutions for the equation set. The first and simpler one is an
iterative algorithm which initializes all entry values with known good values and then
iteratively applies the transfer function for each block and then the join operation to get
new entry values. (It has to be said that in our case, we do not need the mentioned join
operation due to the structure of Firm.) This process continues until there are no more
changes in these values. This algorithm terminates as long as the combination of transfer
and join function is monotonic with respect to this complete lattice. It can even be shown
that this also applies to complete partial orders, which we will use for the value range
propagation.

The second algorithm for solving the equations is the worklist algorithm. This will also
be the one we use for VRP. The work-list algorithm does not indiscriminately iterate over
all the blocks and uses a worklist instead. The worklist is initialized through one iteration
over the whole graph as in the first algorithm. If the exit state of a block changes, all
successors which have already been visited are added to the worklist, if not already in
there. After the initial iteration is over, we process each block from the worklist. In case
its exit state changes, all successors are added back to the worklist. For performance
reasons, the successors are usually only added if they are not yet in the list.

For further information in this matter, please refer to [NNH99].

2.5 Value Range Propagation
Value Range Propagation (VRP) is, traditionally, a technique to determine bounds on

the ranges of values assumed by variables at specific points in programs. This technique can
be used to eliminate unneccessary tests, verify correct operation, choose more appropriate
data representation, to name just a few examples. It was first described by W.H. Harrison
in [Har77].

The version described by Harrison includes two parts for the analysis, range propagation
and range analysis. Range propagation is used to derive and propagate refinements in the
accuracy of range information due to the structure and data in the program. Range
analysis on the other hand tries to track changes to variables in loops, thereby deriving
stepping information. The latter has the downside of requiring symbolic representation
and calculation, which in most cases will be adequate for proofs, but not for a generic
compiler library. [Pat95] used very simple representations only able to represent basic
arithmetics with one unknown.

Therefore, in contrast to the original paper, we chose to simplify the process by removing
the range analysis part, thereby also avoiding the need for symbolic representation of value
equations. But we extended the original design with two different ideas; for one, we are
not only saving range information, but we also derive anti-ranges, which represent ranges
which can not be assigned to a variable. Anti-ranges are also implemented in GCC and
LLVM, two of the more popular open compilers. The idea for this originally came from
[Pat95].

As a second extension, we also decided to include information about bit patterns for
each value. Analogously to the way ranges are propagated, we also propagate information

7

8 2. Fundamentals

about the state of each bit for a value, meaning if it is known to be true, false or if it is
unknown.

8

3. Design

There are several ways to go about designing value range propagation, but all are based
on the same principles. Most of these principles also apply to constant propagation,
which is a very well-understood principle in the field of compiler optimizations. It is
based on the knowledge of certain values at compile time and therefore, some expressions
can be evaluated at compile time rather than as runtime through propagation the values
through the graph. This may save a lot of processing later during program runs. Constant
propagation itself is a simple forward data flow problem, and the principles behind value
range propagation are, as mentioned, fairly similar.

What VRP tries to achieve is that instead of propagating exact values, we try to propa-
gate, as the name implies, ranges for the variables. We extend this idea by trying to derive
information about the bits of each value. So for each variable, we try to find lower and
upper limits for its range as well as the information which bits are definitely set or not set.

An extension to this idea would be not deriving only value ranges, but all possible
values. If one were to extend the data structures used so that all possible subsets of
V were representable, one could operate on a complete lattice. This approach gives the
additional value that one would find the minimal fixpoint possible. But as this would
require a data structure able to save every combination of values, it would possibly have
to use huge amounts of memory and is therefore not feasible in a real-world compiler.

Mathematically, we try to derive some knowledge about the variable as a point in a
partially ordered set = (V ;⊆), where the ∅ is defined as non-derivable. To achieve this
goal, we save three pieces of information for each node.

• Value Range R(U,L, T): The range itself is defined as an upper (U) and a lower
(L) bound. There are two possible types (T) the range may have, referred to as
range and anti-range. Range has the expected meaning; anti-range means that the
value can not be within the range defined by the boundaries. The range type can
also be undefined, implying that no information is yet known, or varying, indicating
no meaningful information can be derived, or the information is not representable
with our limited data types.

• Bits Set (B): These are the bits that are definitely set, e.g. through an or-operation.
A 1 refers to a bit that is set, a 0 might be set.

• Bits Not Set (B): These are the bits that are definitely not set, analogous to
“Bits Set”, such that 1 refers to a bit that might be set, and 0 refers to a bit that is
definitely not set.

9

10 3. Design

If we thing about the information saved in the bit vectors for each variable, we actually
have ternary values: bit is certainly set, bit might be set, bit is certainly not set. To
represent this, we used two bit vectors in our implementation. Two bit vectors bring some
redundancy with them, but we chose this path because of the ease of implementation and
later usage.

The semantics of the bit vectors were defined this way, because writing several op-
timizations and derivations for information hinted in the direction that this definition
would result in easier expressions. One easy example is trying to test for a constant value:
If the bit sets are equal, we know the exact value. But this decision is based on only a
small subset of possible expressions, so other definitions might be better.

To improve the readability, we will assume that the operations and (∧) and or (∨) on bit
vectors are all bitwise, having their semantics from boolean logic. So with Bi(x) referring
to the i-th bit in the bit vector B(x), we define B(a) = B(b) ∧ B(c) as ∀i : Bi(a) =
Bi(b) ∧Bi(c).

In the following subsections, we will detail the specific steps needed to walk the graph,
determine the value ranges through the operands of the node, merge new values with ones
already existing and prove the termination of the algorithm.

3.1 Walking the Graph
Value range propagation is a typical forward data-flow problem. There are lots of ways

to walk a graph, but for this kind of problem, one uses a reverse postorder iteration on
the graph. It walks the nodes in a topological order, and is the most efficient order, as
each node is visited before its successors, the only exception being those having backedges,
which is exactly the direction of the data-flow.

Due to the existence of circles, caused by loops, jumps, or other control flow operations,
not all information can be derived in a single walk, no matter which order. So in the
case that a successor node has already been visited during the initial graph walk (this is
only the case, if there is some kind of circle in the graph), then we add it to a work list
for later reconsideration. This is necessary, as one of its predecessors has more accurate
information now, so we might be able to derive more accurate information for this node
as well.

Afterwards, we just continue using the typical work list algorithm for data-flow prob-
lems from section 2.4. For every node in the work list, we calculate the results from its
predecessors. In the case that its VRP information changes, we add all its successors back
to the work list. Because we know that the VRP problem has a fixpoint, the algorithm
will terminate (See section 3.3).

3.2 Creating the Information
The creation of new range information can be understood on a fairly intuitional base.

To guarantee correctness, all nodes are initialized so that they allow all possible values.
This means, that the range-type is initialized to UNDEFINED. B is set to all zeroes, B is
set to all ones.

The correctness of the implemented types is now shown exemplary for a few of these
types. Also, we include a few sample graphs to explain the process. For all examples, we
assume that no prior VRP information existed, and that the data type has 16 bits. When
talking about the information derived, any information not mentioned is left at the default
values.

3.2.1 Const
We begin with the simplest case: The Const-node. It should be immediately obvious

how to set all the values:
With V being the value of the const, the range R = (V, V,RANGE), the bit vectors are

B = B = V .

10

3.2. Creating the Information 11

Operand A

bits set: 0xFF0A

bits not set: 0xFFCB

Operand B

bits set: 0xF12E

bits not set: 0xF32F

Result (And)

bits set: 0xF10A

bits not set: 0xF30B

Figure 3.1: Example: Creating the information for an And -node.

3.2.2 And
Deducing range information for And -nodes is only possible in a few, very specific cases.

Therefore, we did not consider these. But of course, as with all the bit operations, it is
fairly easy to derive the bit vectors.

Suppose we have the two operands a and b of the node n, with B(x), B(x) as defined
in chapter 3. From this follows that B(n) = B(a) ∧ B(b) and B(n) = B(a) ∧ B(b) (Also
see example Figure 3.1).

Or -nodes can be derived accordingly.

3.2.3 Shl
For Shl -nodes and all the other shift operations, we only derive information for constant

shift factors. These should be the most common ones, and come with little implementation
cost. Additionally, we only need to look at correctness for a shift factor of one, as all other
factors can be determined inductively.

To deduce the information, take the bit vectors of the left operand and shift it according
to the constant value of the right operand. This operation shifts in zeros from the right.
This is correct, as with any value being shifted, it neccessarily has zeroes shifted in as well.
Therefore our bit vectors stay correct.

3.2.4 Shr
For all shifting operations, the“old”bits are obviously still true, if they are shifted by the

same amount. Therefore we have to consider the newly introduced bits. For the arithmetic
right shift, the sign-bit is shifted in from the right. In the case that the value for this node
has a one, the corresponding bit in the bits set vector can be either 1 or 0, implying we
already know that there is a one or that there may be a one. If we shift right by one now,
the two left-most bits are either both 1, which is correct, or both 0, implying we do not
know if the bits at the two left-most positions are 1 or 0. This is correct.

For the bits not set vector we only have to view the case where the left-most bit is 1, as
0 would implicate that the left-most bit of the value is 0. If it is 1, and we do a right-shift,
both left-most bits are 1, implying that both left-most bits of the value can be one. This
is correct.

The case for the value being non-negative can be handled analogously.

3.2.5 Rotl
Rotl is a circular shift. As the bits only change their position, applying the same

operation to both bit vectors is correct.

3.2.6 Add & Sub
For Add -nodes, we only handle the obvious cases. E.g. overflows are discarded, giving us

no information. Some implementations, such as GCC’s, also calculate values for overflows,
but this is due to the C-specification defining the results as unknown in several cases, so

11

12 3. Design

Operand A -- int

Range type: RANGE

Range bottom: 200

Range top: 500

Operand B -- int

Range type: RANGE

Range bottom: -2000

Range top: -1000

Result (Add) -- int

Range type: RANGE

Range bottom: -1800

Range top: -500

Figure 3.2: Example: Creating the information for an Add -node, no overflow

Operand A (short)

Range type: RANGE

Range bottom: -16,364

Range top: -400

Operand B (short)

Range type: RANGE

Range bottom: -16,365

Range top: -16,364

Result (short)

Range type: UNDEFINED

Range bottom: MIN

Range top: MAX

Figure 3.3: Example: Creating the information for an Add -node. Negative overflow both
for top and bottom (short int typically has a size of two bytes, thus a range from
-16,384 to 16,383). In this example, one can easily see that even when overflows
were defined, deriving information for all cases would get quite complex.

that optimization is feasible. As LibFIRM has multiple independent front-ends, such a
behavior is neither possible nor desired.

In the case that both operands have a defined VRP range, we just add both top values,
and both bottom values, to get the new values respectively, but only use these values if
no overflow occurred (Also see examples Figure 3.2, Figure 3.2.6). Sub-nodes are handled
accordingly.

3.2.7 Conv
Conv -nodes convert between different value types, i.e. between different possible sizes.

So there are two cases: smaller type to bigger type or bigger type to smaller type. In the
first case, we just embed the bit vectors in new ones of the target size. All newly added
bits are set to their unknown states. As the old ranges still hold true, we just change
their type and keep the information from the operand. In the second case, we cut all bits
from the bit vectors, which are not needed anymore. For the ranges, we check if they are
within the prior borders. If this is the case, we keep them, otherwise they are set to their
respective type limits.

3.2.8 Eor
For Eor -nodes, it follows:

B(n) = (B(a) ∧ ¬B(b)) ∨ (B(b) ∧ ¬B(a))

B(n) = ¬[(B(a) ∧B(b)) ∨ (¬B(a) ∧ ¬B(b))]

12

3.3. Complete Partial Order 13

Operand A

bits set: 0xFF0A

bits not set: 0xFFCB

Range Type: Range

Range Bottom: -1000

Range Top: 1000

Operand B

bits set: 0xF12E

bits not set: 0xF32F

Range Type: Range

Range Bottom: 0

Range Top: 2000

Operand C

bits set: 0xF36B

bits not set: 0xF76F

Range Type: Range

Range Bottom: -1500

Range Top: -500

Result (Phi)

bits set: 0xF10A

bits not set: 0xFFEF

Range Type: Range

Range Bottom: -1500

Range Top: 2000

Figure 3.4: Example: Creating the information for a Phi-node.

3.2.9 Not
For Not-nodes, we invert the bit-vectors of the operand.

3.2.10 Id
For Id -nodes, we use the information from the operand.

3.2.11 Phi
At Phi-nodes, information is combined, so any of the operands information might hold

true. So we have to do the opposite of merging and we can only use the information which
all operands have. We use and for the bits set, or for the bits not set, and, assuming that
all prior nodes have ranges associated, we use the maximal range suggested by all their
limits, because the real value could come from any of the operands.

Examples are shown in Figure 3.4 and Figure 3.5.

3.3 Complete Partial Order
As explained in section 2.4, to show that our algorithm terminates, the information on

which we operate has to be a complete partial order. We also explained that the combi-
nation of the transfer and the join function normally has to be monotonic to guarantee
termination. Our algorithm is somewhat special in that it preserves data over multiple
analysis phases, merging old data with new data. This merge function is also called every
time data is updated.

Normally, one would show that all our transfer functions from section 3.2 are monotone,
but we can skip this step as it suffices to show that the VRP algorithm works on a partially
ordered set with a limited height, and that the function merging the information for each
node is monotone. We prove the latter in section 3.4.

As our merge function only narrows the ranges, we actually produce a descending chain.
To use the dual theorem from subsection 2.3.5, we have to show that our ranges and bitsets
are a complete partial order with a largest element > and that every descending chain has
an infimum. Because our merge function is defined piecewise for ranges and bit vectors, it
suffices to show this seperately for each.

Our ranges are a subset of (P(V),⊆), which is a partially ordered set. Therefore, they
are a partial order O, which can be defined as

L(I(V);⊆)

13

14 3. Design

Operand A

bits set: 0xFFFF

bits not set: 0xFFFF

Range Type: Range

Range Bottom: -1000

Range Top: 2000

Operand B

bits set: 0x0000

bits not set: 0x0000

Range Type: Anti-Range

Range Bottom: MIN

Range Top: 2000

Operand C

bits set: 0xF36B

bits not set: 0xF76F

Range Type: Range

Range Bottom: -1500

Range Top: -500

Result (Phi)

bits set: 0x0000

bits not set: 0xFFFF

Range Type: Range

Range Bottom: -1500

Range Top: MAX

Figure 3.5: Example Two: Creating the information for a Phi-node.

with
I(V) = {[a, b]|a, b ∈ V } ∪ {M |M = V \ [a, b]; a, b ∈ V }

> is obviously the complete V . For every descending chain, it has an infimum defined as
the intersection, which will be a single value in the best case. One could think that the
minimum were the empty set, but this would mean that the variable could not take any
value, which is impossible in a valid program graph.

Boolean algebras are always complete lattices. The power set of any set S is also a
boolean algebra with the operations union and cut. The bit vectors can be seen as the
characteristic functions of the power set, so the bit vectors are also a complete lattice. As
every complete lattice is also a complete partial order, we have shown what we needed.
The maximum in our case would be B equal to all zeroes, and B equal to all ones, meaning
we have no information yet.

3.4 Merging With Existing Information
As we said earlier, our implementation of value range propagation is special in the

context of libFIRM, because opposed to most analyses it preserves the information over
multiple analysis phases. As changes to the graph structure itself can occur due to different
phases, multiple runs of the analysis might make sense to derive more information from this
new structure. To conserve as much information as possible, the old information has to be
combined with the newly derived by a merge function. The merging process is explained
in the following paragraphs. The merging function also combines the information during
multiple iterations, so as explained in section 3.3, to proof that the algorithm terminates,
we need to show that our merge function is monotone and descending. As explained above,
we will show this piecewise for both bit vectors and the ranges.

The solution for the bit vectors follows intuitively. Both have to hold true, so we use
binery or for the information for the bits set, and we use and for the bits not set. The
reason for two differing operations is immediately obvious if one considers the semantics,
where a 1 in B means known information, while a 1 in B means unknown information.
Beginning with an initialization of B to all zeroes, only setting zeroes to ones, we obviously
have a descending and monotone function. The analog is true for B.

For ranges, we try to use the information which is stricter, i.e. the interval which is
smaller. There are three cases, which we will discuss separately:

14

3.5. Examples of Optimizations 15

• For two ranges, we use the higher minimum bound and lower maximum bound. That
way, our interval can only shrink.

• For two anti-ranges, we use the lower minimum bound and the higher maximum
bound, so our new interval becomes smaller.

• If we have a range and an anti-range, we try to combine these. If the values deemed
possible overlap, we create a new range containing exactly this overlap. In the case
that the anti-range is contained in the range, we cannot use this information due to
the way we represent range information, as this situation would actually imply two
possible ranges. Therefore, one has to decide which information to keep. We chose
to use the information already present.

As the interval can only get smaller than the prior interval, we have a descending, monotone
function. As the merging process as a whole is a descending and monotone function, our
algorithm terminates.

The theoretical complexity of our algorithm depends largely on the height h of our
partial orders. As shown, each node is visited a maximum of h times. Depending on the
view, h can be seen as an, albeit huge, constant. This leads to a theoretical complexity of
O(n), where n is the number of nodes in the Firm graph. Our runtime is usually much
lower than suggested by h. For DFA, there are usually two ways to go about finding a
fixpoint. One would be initializing our ranges to the empty set, and then enumerating
every possible value by iterating over the graph until there are no more changes. This
would require completely unrolling loops, although one could find ways around it. But
these work-arounds imply a loss of precision, exactly what we tried to prevent in the first
place. As explained in section 2.5, these are known problems of the range analysis.

The other way is to initialize the ranges to all possible values and removing values which
cannot be taken. This has a much better runtimes, and was therefore the way chosen.

3.5 Examples of Optimizations
In this section, we will present some of the optimizations we implemented, using the

information derived by VRP, to give the reader an idea of what is possible. As examples,
we implemented some optimizations originally developed for constant values which we can
now also evaluate if we have enough information.

3.5.1 Recognizing Constants
In some situations, we might be able to derive ranges containing only one value, or we

might have B = B, meaning all bits are known. In this case, we have a constant value
and can replace this node by a constant node, enabling further optimizations.

3.5.2 Simplify Add If Bits Set Are Disjoint
If we add two numbers, and both have disjoint bits set (meaning that only one of them

has a bit set at a certain position), then we may replace this And by an Or . This enables
us to apply distributivity, opening the chance for further optimizations.

Example: We have two nodes, a and b. Now have have an Add with them as operands:
c = Add(a, b). If we have Ba = 0xFC08 and Bb = 0x02FF , then we know that their bit
sets are disjoint, meaning that adding them will never result in a carry-bit. Therefore, Or
is semantically equivalent to Add for these two nodes.

3.5.3 And
Suppose that we have an And on two operands a, b, where a is constant. If we know that

b is zero everywhere where a is zero or unknown, then we know that c = And(a, b) = b,
because c can only be 1 where a is one, and is certainly zero where a is zero. As b is
zero where a is zero, all other zeroes are solely dependent on b, as a is one at those places
anyway. So we can safely replace the And by b.

Example: a =??111?01, b = 000?100?, And(a, b) = 000?100?.

15

16 3. Design

3.5.4 Optimizing Jump Tables
Especially in automatically generated jump tables, there might be a lot of cases which

can never be taken. To enable this optimization, we use the VRP information for the
selector of the Cond -node. If it has any range information, we test if our projection value
falls within this range. The same goes for the bit patterns. In case that the selector has
bits set which are not set in our projection value, or vice versa, we can assume that this
projection will never occur and can therefore remove it and replace this Proj -node with a
Bad -node.

16

4. Implementation

This chapter describes the concrete implementation as created for this project and imple-
mented in libFIRM.

4.1 VRP Struct
VRP-information for each node is saved in a struct vrp attr.

typedef struct {
int v a l i d ; /∗∗< This node has v a l i d vrp in format ion ∗/
t a r v a l ∗ b i t s s e t ; /∗∗< The b i t s which by a n a l y s i s are

d e f i n i t e l y s e t .
0 : may be not se t , 1 : d e f i n i t e l y s e t ∗/

t a r v a l ∗ b i t s n o t s e t ; /∗∗< The b i t s which by a n a l y s i s are
d e f i n i t e l y not s e t .
1 : may be se t , 0 : d e f i n i t e l y not s e t ∗/

/∗∗< The range type r e p r e s e n t e d by range top , range bottom ∗/
enum range types range type ;

t a r v a l ∗ range bottom , ∗ range top ;
} v r p a t t r ;

Our range type is an enum, defined as follows:

enum range types {
VRP UNDEFINED, /∗∗< No informat ion cou ld be d e r i v e d so f a r ∗/
VRP RANGE, /∗∗< bottom and top form a range ,

i n c l u d i n g both v a l u e s ∗/
VRP ANTIRANGE, /∗∗< range from bottom to top can not be

ass igned , but borders might be ∗/
VRP VARYING /∗∗< in format ion can not be d e r i v e d ∗/

} ;

4.2 Derivation of Information
To save our information, we use the above struct, which is saved in the phase utilities

provided by libFIRM. This approach allows us to automatically execute initialization code
for each node upon first access to the relevant VRP information.

We initialize the nodes with valid data, B set to all zeroes, B set to all ones, and the
range type to UNDEFINED. Range top and range bottom are both set to the maximum
of their respective type, but as the range type is always checked first, this does not carry

17

18 4. Implementation

any meaning yet. vrp->valid is used as a safety measure against accessing uninitialized
memory in the case of undiscovered bugs.

LibFIRM has an abstraction called tarvals, which provides an abstraction from the
concrete implementation of calculations and sizes of variables for the target architecture.
We use the tarval functions to get adequately sized variables for each value type, as well
as to do calculations on the values.

vrp−>range type = VRP UNDEFINED;
vrp−>v a l i d = 1 ;
vrp−>b i t s s e t = get mode nul l (mode) ;
vrp−>b i t s n o t s e t = get mode a l l one (mode) ;
vrp−>range bottom = g e t t a r v a l t o p () ;
vrp−>range top = g e t t a r v a l t o p () ;

For safety, if a node for which VRP-information cannot be derived is accessed, we set all
its values to get tarval bad().

We also implemented an accessor function for the VRP information, for e.g. the various
optimizations using the information.

v r p a t t r ∗ v r p g e t i n f o (const i r node ∗n) ;

This function returns a pointer to the information for the node n, or it returns NULL if
an error occured and no information exists yet. This way, to access information, we can
use this syntax:

v r p a t t r ∗vrp = v r p g e t i n f o (n) ;
i f (vrp && INSERT CONDITIONS TO CHECK)

18

5. Evaluation

In this section, we evaluate the performance of the VRP-implementation presented. This
work focused more on the implementation of the analysis rather than implementing a lot of
optimizations using the VRP information. Therefore, we did not expect great performance
improvements in any benchmark.

We did measure our performance comparing it to the performance of libFIRM without
the VRP information. As those numbers mostly do not show a measurable difference,
we also counted how often our optimizations were applied for each of the programs com-
piled. To get numerical data on how good our current optimizations perform, we chose to
use the test programs from the SPEC CINT2000 collection (see [Sta]), part of CPU2000.
Originally, CPU2000 was used for performance measurement for a wide range on hard-
ware. Due to its nature, it can also be used as a compiler test platform, when comparing
programs—compiled with different versions—on the same platform. In our case, we tested
on a Core2Duo E5300@2.6Ghz and 4GB of RAM, running Debian Linux with Kernel
Version 2.6.31-17, with enabled Physical Address Extension.

To achieve meaningful results, the tests were run four times each, once with VRP acti-
vated and once without it. The results are shown in Table 5.1.

Test novrp vrp Relative Runtime # optimizations

164 gzip 103 103 99.4% 14
175 vpr 94 94 99.9% 8
176 gcc 49 49 99.8% 619
181 mcf 98 97 99.3% 0
186 crafty 52 53 100.6% 9
197 parser 124 124 99.8% 8
253 perlbmk 82 83 100.5% 0
254 gap 60 58 97.4% 385
255 vortex 110 110 99.6% 12
256 bzip2 97 97 99.5% 5
300 twolf 116 114 98.8% 10

Average performance 99.5%

Table 5.1: Performance measurements comparing libFIRM with and without VRP
activated

As one can see, although there are variations in the runtime, a small improvement is
measurable. To see whether the improvements were measurement inaccuracies or caused
by the optimizations, we also counted the optimiziations using the VRP information.

19

20 5. Evaluation

The high number of applied optimizations for the GCC test case are caused by the huge
code base, but it seems like most of that code is not actually used in the test case. The
results for GAP show that we had at least some success. GAP is an acronym for groups,
algorithms and programming, and is a test case in the SPEC suite that heavily depends
on integer calculations for combinatorics, so it is exactly the kind of program for which we
would expect performance increases.

20

6. Conclusion

6.1 Summary
With this thesis, we created the basic architecture and structures neccessary in libFIRM

to support value range propagation. Based on this, we implemented derivations to get
information from the existing SSA graphs and nodes. We extended on the idea of value
range propagation as it is usually implemented by extending the normal range information
for each value to also include bit patterns representing further known information. At last,
we implemented a few basic optimizations on this, showing how to use this newly created
information.

6.2 Future Work
Based on this work, there are lots of features and improvements which can be made.

The gained VRP information can be used in many other optimization and analysis parts
of the compiler. Some examples, such as loop optimization, come to mind. Using this
example, one can show some of those possibilities: Within loops, one may know due to
VRP that a loop may only be executed once, or maybe that the iterator is always even,
that the iterator does not exceed a certain number x, or many other things.

Another great field of optimizations certainly lies in the optimizations of pointers. Es-
pecially for languages with automated array bounds checking, this could bring huge per-
formance improvements as suggested by [BvEG04].

We implemented a few basic optimizations already, as shown in section 3.5. As one can
see, a lot of these optimizations are fairly trivial, but their number will probably greatly
improve their success.

Also, the analysis part could be further improved through more complex derivations, or
more fine tuned analysis. Loosing some of the genericity, one could for example implement
an adder for two’s complement. Although libFIRM supports target architectures using
different binary representations, this would bring additional benefit on this prevalent ar-
chitecture. Additionally, one could find ways to use more of the node types as we currently
do.

Finally, as suggested in section 3.4, we currently do not save multiple derived ranges, so
it might make sense to extend our structures in this regard (as done in [Pat95]), although
other major implementations, such as GCC or LLVM, also do not do this.

21

Bibliography

[BvEG04] J. Birch, R. van Engelen, and K. Gallivan, “Value Range Analysis
of Conditionally Updated Variables and Pointers,” in Proceedings of
Compilers for Parallel Computing, 2004, pp. 265–276. [Online]. Available:
http://www.cs.fsu.edu/˜engelen/cpcpaper.pdf

[DP02] B. A. Davey and H. A. Priestley, Introduction to lattices and order / B.A.
Davey, H.A. Priestley. Cambridge University Press, Cambridge [England] ;
New York :, 2002.

[Har77] W. Harrison, “Compiler analysis of the value ranges for variables,” IEEE Trans-
actions on Software Engineering, vol. 3, pp. 243–250, 1977.

[Lin02] G. Lindenmaier, “libFIRM – A Library for Compiler Optimization Research
Implementing FIRM,” Tech. Rep. 2002-5, September 2002. [Online]. Available:
http://www.info.uni-karlsruhe.de/papers/Lind 02-firm tutorial.ps

[NNH99] F. Nielson, H. R. Nielson, and C. L. Hankin, Principles of Program Analysis.
Springer, 1999, second printing, 2005.

[Pat95] J. R. C. Patterson, “Accurate static branch prediction by value range propaga-
tion,” 1995.

[Sta] Standard Performance Evaluation Corporation, “CINT2000, part of CPU2000
test by SPEC,” http://www.spec.org/cpu2000/CINT2000/.

[TLB99] M. Trapp, G. Lindenmaier, and B. Boesler, “Documentation of the
intermediate representation firm,” Universität Karlsruhe, Fakultät für
Informatik, Tech. Rep. 1999-14, Dec 1999. [Online]. Available: http:
//www.info.uni-karlsruhe.de/papers/firmdoc.ps.gz

23

http://www.cs.fsu.edu/~engelen/cpcpaper.pdf
http://www.info.uni-karlsruhe.de/papers/Lind_02-firm_tutorial.ps
http://www.spec.org/cpu2000/CINT2000/
http://www.info.uni-karlsruhe.de/papers/firmdoc.ps.gz
http://www.info.uni-karlsruhe.de/papers/firmdoc.ps.gz

	Contents
	1 Introduction
	1.1 Problem Statement
	1.2 Outline

	2 Fundamentals
	2.1 Static Single Assignment Form
	2.2 Firm
	2.3 Mathematical Definitions and Theorems
	2.3.1 Partially Ordered Set
	2.3.2 Complete Lattice
	2.3.3 Ascending Chain Condition
	2.3.4 Function Properties
	2.3.5 Fixpoint Theorem on Complete Partial Orders

	2.4 Data Flow Analysis
	2.5 Value Range Propagation

	3 Design
	3.1 Walking the Graph
	3.2 Creating the Information
	3.2.1 Const
	3.2.2 And
	3.2.3 Shl
	3.2.4 Shr
	3.2.5 Rotl
	3.2.6 Add & Sub
	3.2.7 Conv
	3.2.8 Eor
	3.2.9 Not
	3.2.10 Id
	3.2.11 Phi

	3.3 Complete Partial Order
	3.4 Merging With Existing Information
	3.5 Examples of Optimizations
	3.5.1 Recognizing Constants
	3.5.2 Simplify Add If Bits Set Are Disjoint
	3.5.3 And
	3.5.4 Optimizing Jump Tables

	4 Implementation
	4.1 VRP Struct
	4.2 Derivation of Information

	5 Evaluation
	6 Conclusion
	6.1 Summary
	6.2 Future Work

	Bibliography

