
Visualization of
Lazy Evaluation and Sharing

Bachelor Thesis of

Dennis Felsing

At the Department of Informatics
Institute for Program Structures

and Data Organization (IPD)

Reviewer: Prof. Gregor Snelting
Advisor: Joachim Breitner

Duration: 2012-05-28 – 2012-09-27

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu

I declare that I have developed and written the enclosed thesis completely by my-
self, and have not used sources or means without declaration in the text, and have
followed the rules of the KIT for upholding good scientific practise.

Karlsruhe, 2012-09-27

. .
(Dennis Felsing)

Abstract

This thesis details the motivation, implementation and evalu-
ation of ghc-vis, a tool for visualizing Haskell data structures
inside of GHCi and GHC compiled programs at runtime. The
layout of objects on the GHC heap is used as the basis for two
types of visualizations, which respectively aim to functionally
be supersets of GHCi’s :print and vacuum-cairo. Examples for
using ghc-vis to further the understanding of lazy evaluation
and sharing in Haskell are given.
The visualization of sharing and lazy evaluation in Haskell data
structures can be useful to enhance the comprehension of func-
tional data structures and algorithms and their perfomance in
the environment of education, development and debugging.
A new library for parsing and viewing graphs in Haskell, called
xdot, was created in order to interactively view graphs created
by Graphviz.

Acknowledgements

I am grateful to Joachim Breitner for offering me this topic and advising me through-
out the time I worked on it. His patience, competent answers and remarks have been
very helpful in the creation of this thesis.

My parents receive my deepest gratitude for supporting me throughout my life.

Finally I’m thankful to my friends, maybe one of them will read this.

Contents

1 Introduction 1

2 Background 5
2.1 Haskell . 5
2.2 Lazy Evaluation . 7
2.3 Sharing . 7
2.4 Glasgow Haskell Compiler . 8
2.5 GHC Heap . 8
2.6 Related Work . 11

2.6.1 GHCi Debugger . 11
2.6.2 Vacuum . 12
2.6.3 Hood / GHood . 13

3 ghc-vis 15
3.1 Design . 15

3.1.1 Demonstration . 15
3.1.2 Implementation . 17

3.2 Views . 20
3.2.1 Linear View . 20
3.2.2 Graph View . 21

3.3 Problems and Solutions . 23
3.3.1 Garbage Collector . 23
3.3.2 Changing Pointers . 24
3.3.3 Byte Code Objects . 24
3.3.4 Loading and Reloading Files 24

4 Evaluation 27
4.1 Comparison . 27
4.2 Visualizations . 28

4.2.1 Compiled and Interpreted Code 28
4.2.2 Sharing . 29
4.2.3 Infinite Data Structures . 31
4.2.4 Sieve of Eratosthenes . 31
4.2.5 Unboxed Values . 32
4.2.6 Double Linked List . 33
4.2.7 IntMap . 34
4.2.8 Nexuses and Dynamic Programming 34
4.2.9 Optimal Bracketing . 37

v

vi Contents

4.2.10 Negative Effects of Lazy Evaluation and Sharing 39
4.3 Combination with GHCi’s Debugger 42
4.4 Usage as a Library . 43
4.5 Source Code . 45
4.6 Performance . 46

5 Conclusion 47
5.1 Future Work . 47

Bibliography 49

Appendix 51
A Full Examination of the Sieve of Eratosthenes 51
B Full Example of combining ghc-vis with GHCi’s Debugger 55

vi

CHAPTER 1

Introduction

Functional programming languages like Haskell offer a way to write well-structured
software, which is easy to understand and still performs well. In order to achieve
this one has to be able to consciously use features that result from the paradigm of
functional programming.

This thesis aims to provide a tool for visualizing two features of this kind, namely
lazy evaluation and sharing, in a way that can be used in the (self-)teaching of
Haskell and the development and debugging of Haskell software.

A common example for the power of lazy evaluation are infinite data structures.
They are easy to define and convenient to use in Haskell. We can write

ones = [1, 1 . .]

to construct an infinite list of 1s, which we can now access by the suggestive name
ones . How does this work? Clearly the entire list can’t be stored in memory as we
do not possess the infinite tape of a turing machine.

We can write a function to retrieve the nth member of a list:

at 0 (x : xs) = x
at n (x : xs) = at (n − 1) xs

Evaluating at 2 ones extracts the second member of the list ones , which gives us
the integer 1. In the same manner at 3 ones and at 4 ones give us 1. But what is
happening to the infinite list of ones as we access its members?

Figure 1.1 provides a view of the actual representation of the list in memory. The
solution is that the infinite list of ones gets constructed just as we access it. Thinking
about this leads us to a problem: When we evaluate at (10 ↑ 7) ones a huge list gets
constructed and a lot of memory is used to store it. There must be a way to avoid
this and indeed there is. We define the infinite list of ones in a different way:

ones ′ = 1 : ones ′

The resulting list is the same and we can access it in the same way. But when we
evaluate at (10 ↑ 7) ones ′ memory usage does not seem to increase at all. What is
the reason?

As Figure 1.2 reveals this time no big list is constructed in memory, instead a list is
created that references itself as the rest of the list.

1

2 1. Introduction

:

S# 1 :

S# 1

Thunk

S# 0

ones

(a) After at 2 ones

:

S# 1 :

S# 1 :

S# 1

Thunk

S# 0

ones

(b) After at 3 ones

:

S# 1 :

S# 1 :

S# 1 :

S# 1

Thunk

S# 0

ones

(c) After at 4 ones

Figure 1.1: Infinite list of ones gets lazily evaluated

:

S# 1

ones'

(a) After at 2 ones

:

S# 1

ones'

(b) After at 3 ones

:

S# 1

ones'

(c) After at 4 ones

Figure 1.2: An infinite list of ones that uses constant space

The reader may want to experiment with these and the more complex examples
provided later. All the Haskell code used in this thesis is available at http://

felsin9.de/nnis/ghc-vis/thesis.

The tool developed as part of this thesis, ghc-vis, was made available as an open
source package on Hackage: http://hackage.haskell.org/package/ghc-vis.

ghc-vis can be easily installed from the command line:

$ cabal install ghc-vis

$ echo ":script $HOME/.cabal/share/ghc-vis-0.4/ghci" >> ~/.ghci

Most testing was done on Linux systems. The Haskell Platform, GTK, Cairo and
Pango have to be installed and Cabal’s package list should be updated if any prob-
lems occur during the installation:

$ cabal update

$ cabal install gtk2hs-buildtools

Now ghc-vis can be used inside of GHCi :

2

http://felsin9.de/nnis/ghc-vis/thesis
http://felsin9.de/nnis/ghc-vis/thesis
http://hackage.haskell.org/package/ghc-vis

3

$ ghci

GHCi, version 7.4.2: http://www.haskell.org/ghc/ :? for help

ghci> :vis

ghci> let ones = [1,1..]

ghci> :view ones

An example for using ghc-vis will be presented in Subsection 3.1.1 and further doc-
umentation is available at http://felsin9.de/nnis/ghc-vis.

3

http://felsin9.de/nnis/ghc-vis

CHAPTER 2

Background

2.1 Haskell

In this section the aspects of Haskell that are relevant for this thesis will be out-
lined. For a more thorough introduction to Haskell consult for example Hutton’s
“Programming in Haskell”[1] or Davie’s “introduction to functional programming
systems using Haskell”[2].

Haskell is a functional programming language, which means the basic method of
computation is the application of functions to arguments. In contrast to this the ba-
sic method of computation of imperative programming languages is changing stored
values.[1]

To fully utilize functional programming functions are first class entities in Haskell,
which means they

• can be named,

• can be the value of some expression,

• can be members of a list,

• can be elements of a tuple,

• can be passed to a function as a parameter and

• can be returned from a function as its result.[2]

Consider the following function definiton, taken from Haskell’s base library, as a short
example of Haskell code, highlighting some of the language features and syntax:

-- | ’takeWhile’, applied to a predicate p and a list xs, returns the
-- longest prefix (possibly empty) of xs of elements that satisfy p:
--
-- > takeWhile (< 3) [1,2,3,4,1,2,3,4] == [1,2]
-- > takeWhile (< 9) [1,2,3] == [1,2,3]
-- > takeWhile (< 0) [1,2,3] == []
--

These lines are comments, describing how the function works. Basic comments start
with the characters -- and reach until the end of the line.

5

6 2. Background

takeWhile :: (α→ Bool)→ [α]→ [α]

This line contains the function’s type signature, which tells us that the function we
are defining takes another function of type α → Bool as its first argument, a list
of type [α] as it’s second argument and returns a list of type [α]. takeWhile is
a polymorphic function, as α is a type variable that can be substituted with any
concrete type.

takeWhile [] = []

Here we define the function takeWhile for the case where the second argument,
the list to be passed, is empty. This is done using pattern matching : The second
argument to takeWhile has to fit the pattern [], which denotes the empty list.

takeWhile p (x : xs)
| p x = x : takeWhile p xs
| otherwise = []

This is the second case of the takeWhile function. Here the second argument is
pattern matched to be of the type (x:xs), which means that x is the first member
of the list and xs is the rest of the list. The first argument, p, is a function of
type α → Bool , which means a function that takes a value of type α and returns
a Boolean. p is called with the first list member x as its argument. If the result is
true, a new list x : takeWhile p xs is returned. Otherwise an empty list is returned.

Defining a function that maps a function to the values of a list is very easy in Haskell:

map :: (α→ β)→ [α]→ [β]
map [] = []
map f (x : xs) = f x : map f xs

An expression is said to have side effects when it interacts with the outside world,
for example by reading from a file or modifying a global variable. Haskell is a
pure programming language, which means side effects are prohibited.1 The result
of an expression depends solely on its inputs, which means the evaluation of a pure
function returns the same result every time it is called with the same inputs, which
leads us to the following property:

“[. . .] [I]f we wish to find the value of an expression which contains a
sub-expression, the only thing we need to know about the sub-expression
is its value. Any other features of the sub-expression, such as its internal
structure, the number and nature of its components, the order in which
they are evaluated or the colour of the ink in which they are written, are
irrelevant to the value of the main expression.”[3, page 19]

This property is called referential transparency2, and as a consequence of it expres-
sions do not have to get evaluated in any specific order. Another favourable effect
of referential transparency is that it allows clear equational reasoning.[5]

1There is of course a way to cause side effects in Haskell, the IO Monad.
2The term referential transparency has its origin in philosophy, where it means that replacing a

part of a sentence with another term that refers to the same thing does not change the meaning
of the sentence.[4]

6

2.2. Lazy Evaluation 7

2.2 Lazy Evaluation

Haskell uses referential transparency by deferring evaluations to the latest possible
moment: When they are actually needed. This is called lazy evaluation and is the
default evaluation strategy in Haskell.

Lazy evaluation automatically avoids unnecessary computations, because they will
never be needed. Consider this example:

squares :: [Integer]
squares = map (↑2) [1 . . 10]

smallSquares :: [Integer]
smallSquares = takeWhile (6 20) squares

The variable squares is defined to be the squares of the numbers 1 to 10, namely
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]. smallSquares is defined to be the list of squares
until the point where they grow greater than 20, namely [1, 4, 9, 16].

Let us think about what has to get evaluated to calculate the value of smallSquares .
As smallSquares stops when it encounters the first square number that is greater
than 20 only the first five list members of squares get evaluated. The fifth member
of squares gets evaluated to 25, which is checked to be greater than 20 and therefore
no further values are evaluated.

Lazy evaluation allows carrying this to an extreme, by defining infinite data struc-
tures. Just as before they get only evaluated as far as they are needed. Consider
the following example:

squares = map (↑2) [1 . .]

smallSquares = takeWhile (6 20) squares

The only difference to the example above is that squares refers to the list of all
squares now. Just as before only the first five list members of squares actually get
evaluated.

Lazy evaluation is important for creating modular Haskell programs. A common
approach is to split a function into two modules: A generator that constructs many
possible solutions and a selector that checks whether those values actually satisfy
the conditions for being a solution.[6]

2.3 Sharing

A consequence of Haskell being a pure programming language is that data is im-
mutable. Values cannot be directly altered. Instead a copy containing the modified
data gets created. Because data never gets altered there is no need to copy un-
modified values. Instead they get shared between data structures. The above code
illustrates this. As the smallSquares contain the first four values of squares they are
not copied, but instead the old values are also used in smallSquares .

Sharing is a vital part of lazy evaluation. Because functions are first class entities
in Haskell they can also be shared.

doubleTotal = total + total
where total = sum [1 . . 100]

7

8 2. Background

Instead of evaluating the value for total every time it is needed it is only calculated
once and when it is requested a second time the old value is returned directly. Thanks
to referential transparency sharing does not influence the result of a computation.

Sharing is useful when designing performant functional algorithms, but is rarely
used consciously as sharing is unobservable in pure Haskell, which makes it hard to
understand and preserve.3[8]

2.4 Glasgow Haskell Compiler

The Glasgow Haskell Compiler (GHC)[9] is a compiler and interactive environment
for Haskell, which is mainly developed by Simon Peyton Jones and Simon Marlow.
GHC is available for several platforms and processor architectures, has extensive
optimizations and is probably the most popular Haskell compiler. It is also the
foundation of the Haskell Platform, which considers itself “the easiest way to get
started with programming Haskell”[10]. This makes it the optimal target for ghc-vis,
which is aimed at Haskell professionals and novices alike.

GHC’s interactive environment, GHCi provides a command line interface, which
gives immediate feedback for Haskell expressions entered. It can be used to interac-
tively evaluate Haskell expressions and interpret programs.

2.5 GHC Heap

In GHC all dynamic objects reside in the heap in the form of a closure.4 Closures
are laid out as shown in Figure 2.1. Static objects, which already exist when the
program is started, reside in the data section of compiled object code.

The header of a closure points to an info table which specifies

• the layout of the payload: How many words does it contain, how many of those
are pointers,

• the type of this particular closure, for example a data constructor, a function
or a thunk,

• the SRT Bitmap, a field used for garbage collection, which is of no further
concern to us.

The relevant types of closures for this work are:[12]

Data Constructors provide basic data storage. This is for example used for Inte-
gers, Chars, the list constructor cons (:), the boolean values True and False
or user defined constructors like Leaf and Node in the following example:

data Tree = Leaf
| Node Tree Int Tree

3Actually the Haskell 2010 Language Report[7] does not mention sharing at all, but it is very
practical. Because of referential transparency results will be the same whether sharing is utilized
or not.

4A commonly used definition of a closure is a block of code together with its free variables. This
is not the definition used in this thesis. Our definition, which is taken from [11], is more general
and includes all dynamic objects.

8

2.5. GHC Heap 9

Pointer to closure Header Payload

Info table

Layout

Closure Type

SRT Bitmap

Entry Code

Figure 2.1: General layout of a closure

t :: Tree
t = Node (Node Leaf 2 Leaf) 1 Leaf

The layout of t’s closure on the heap can be seen in Figure 2.2.

The closure of t contains a header, which tells us that there are 3 pointers
and 0 nonpointers in the closure, that we are dealing with a closure of Type
CONSTR and that the constructor is called main::Interactive.Node.

Function Closures represent Haskell functions, without any arguments, but con-
taining pointers to the function’s free variables.

Partial Applications represent functions with some arguments applied to them, but
less than they take in total.

Thunks represent suspended computations, which can be evaluated further.

When a thunk gets evaluated it is replaced with the result of its evaluation.

Generic Applications are like partial applications, but all arguments are given.
Therefore they are thunks and can be evaluated. Generic Applications are
mainly used in interpreted code.

Selector Thunks perform simple selections. They are necessary in order to prevent
space leaks, that would happen when a part of a data structure is selected,
but another part of it is not needed anymore.[13]

Indirections simply point to other closures. They are introduced when a thunk
gets evaluated to point to its value and are necessary because it might not be
possible to simply replace a thunk with its result when the resulting closure is
too big.

Byte Code Objects (BCOs) contain byte code that can be executed by the inter-
preter.

9

10 2. Background

Header Pointer Pointer Pointer

Info table

main::Interac-
tive.Node

3 pointers
0 nonpointers

CONSTR

1

return

Constructor Description

Layout

Closure Type

Constructor Tag

Code

Int ClosureNode Closure Leaf Closure

Figure 2.2: Layout of Tree t’s closure on the heap

Blackhole Closures appear when an evaluation is happening and later get replaced
by the result. They are used to avoid space leaks that would happen when
the closure which is getting evaluated points to closures that are not actually
needed anymore. Blackhole closures prevent the garbage collector from dis-
covering other pointers in the closure, which can then be made available for
recycling.[14]

The library ghc-heap-view[15] by Joachim Breitner makes it possible to investigate
closures on the GHC heap directly in Haskell.

Closures may be moved around or evaluated at any moment by the garbage collector,
which only uses the information available on the heap. GHC uses a two-space stop-
and-copy collector, that divides the heap memory into two spaces. To perform a
garbage collection all currently used closures are copied from one space to the the
other. To realize which closures to copy the garbage collector follows the pointers of
closures.[11]

When a closure is evaluated it gets updated with its weak-head normal form (WHNF),
which means the outermost part of the expression is evaluated. Note that this does
not imply that the expression is in normal form, for which the expression would have
to be fully evaluated. Data constructors, function closures and partial applications
are always in WHNF, because when they are the top level closure they cannot be fur-
ther evaluated. Thunks, selector thunks and generic applications are not necessarily
in WHNF and therefore it is only those that can get evaluated.

There are two typical evaluation models that could be used in GHC:

10

2.6. Related Work 11

Push/Enter : The caller pushes the function arguments on the stack and calls the
function. The function itself figures out how many arguments it has been
passed.

Eval/Apply : The caller examines the function closure and calls the function with
the right number of arguments. Three cases may occur:

1. If there are not enough arguments the function gets turned into a partial
application.

2. If the right number of arguments are given the function is simply called.

3. If there are too many arguments, the function is applied to the argu-
ments it can take and then the resulting function is examined in the same
way.[16]

GHC uses the Eval/Apply evaluation model. We will look at GHC’s behavior con-
cerning closures on the heap later, using the developed tool, ghc-vis.

2.6 Related Work

There have been some projects with regards to visualizing data structures in Haskell.
Some are to be used in a similar way as ghc-vis, in a live environment, whereas others
allow debugging code after it has been run.

2.6.1 GHCi Debugger

GHCi comes with its own debugger, which has been developed in 2006 under the
Google Summer of Code intiative by José Iborra.[17] The debugger provides the
:print command. It inspects data structures at runtime without forcing evaluation
of them.

$ ghci

GHCi, version 7.4.2: http://www.haskell.org/ghc/ :? for help

ghci> let a = [1..3]

ghci> :print a

a = (_t1::[Integer])

We can see that a currently is completely unevaluated, it simply consists of a thunk.

ghci> head a

1

ghci> :print a

a = 1 : (_t2::[Integer])

Now that we have peeked inside of a it has been partially evaluated.

ghci> head $ tail a

2

ghci> :print a

a = 1 : 2 : (_t3::[Integer])

ghci> a

[1,2,3]

ghci> :print a

a = [1,2,3]

11

12 2. Background

We see that :print enables us to see lazy evaluation in action. Unfortunately sharing
cannot be seen as easily:

ghci> let b = a ++ a

ghci> head b

1

ghci> :print b

b = 1 : (_t3::[Integer])

ghci> b

[1,2,3,1,2,3]

ghci> :print b

b = [1,2,3,1,2,3]

Even though the numbers in b are shared with a and even within b itself :print does
not tell us about this in any way.

2.6.2 Vacuum

Another tool that has been developed to inspect data structures in Haskell is vacuum.[18]
It can tell us how values are shared within b:

ghci> System.Vacuum.Cairo.view b

Figure 2.3: Visualization of a list using vacuum

12

2.6. Related Work 13

This causes the output seen in Figure 2.3 to appear on the screen. From this graph it
is clear how the members of the list are shared instead of being copied. Unfortunately
vacuum-cairo evaluates data structures fully before showing them. To also inspect
lazy evaluation using vacuum we can do the following:

ghci> let a = "foo"

ghci> let b = a ++ a

ghci> head b

’f’

ghci> GHC.Vacuum.GraphViz.graphToDotFile "vacuum2"

Data.GraphViz.Commands.Png $ GHC.Vacuum.nameGraph

(GHC.Vacuum.vacuumLazy (a,b))

(,)|0

:|1

:|2

C#|3

|4

|5

Figure 2.4: Lazy visualization using vacuum

Which leads to the output in Figure 2.4. We can see that the value C#l3 is referenced
both in a and b. That’s the ’f’ which was evaluated by calling head b. What can
not be seen is that the l5 thunk references a and has another value shared with a.

Later, in Subsection 4.1, we will come back to these examples and compare ghc-vis
with vacuum and :print to illustrate how ghc-vis solves the issues that were just
shown.

2.6.3 Hood / GHood

Hood [19] observes Haskell data structures in GHC compiled programs. GHood [20]
creates an animation of the evaluation of data structures which can be watched in
a Java program after execution. It is possible to step through the evaluation and
observe how the data structure changes, including the evaluation of internal thunks.
See Figure 2.5 for an example.

Sharing can not be observed in GHood and as an animation first has to be created
before one can visualize it, GHood can not be used in GHCi to visualize live data
structures.

13

14 2. Background

Figure 2.5: Visualization of data structures using GHood

14

CHAPTER 3

ghc-vis

The main part of this thesis was the design and implementation of ghc-vis, a tool
to visualize lazy evaluation and sharing in Haskell. In this chapter the design,
implementation and challenges of ghc-vis will be discussed.

3.1 Design

In order to be useful ghc-vis has to provide two functions:

• Variables defined in GHCi can be supplied to ghc-vis for visualization.

• When a closure is clicked in ghc-vis’ visualization window GHCi evaluates it.

There are multiple possibilities for the high level integration of ghc-vis into GHCi,
which could achieve those functions:

1. Modify the source code of GHCi. This allows for easy bidirectional communi-
cation between ghc-vis and GHCi.

2. Supply commands to GHCi on stdin.

3. Run a thread inside of GHCi.

Because of its simplicity the third approach was chosen. ghc-vis is run directly inside
of GHCi in a seperate thread. The graphical interface is created using the Haskell
library bindings to GTK, Cairo and Pango.[21]

The interface to ghc-vis from GHCi is defined by GHCi commands that map to
simple Haskell functions. The main commands are listed and explained in Table 3.1.

We will now take a quick look at the usage of ghc-vis to illustrate how it works,
before we continue discussing it.

3.1.1 Demonstration

We begin by running ghci and starting ghc-vis inside of it. User input is prepended
by ghci>. All other lines are output by GHCi:

15

16 3. ghc-vis

Command Description

:vis Run the visualization window
:view x Add the Haskell expression x to the visualization window
:eval t Force evaluation to WHNF of the thunk named t
:switch Switch between the visualization type (linear, graph)
:update Update the visualization window, in case an expression has

changed
:clear Remove all visualized expressions
:export file Export the current visualization to a file; SVG, PDF, PS and

PNG supported

Table 3.1: Main commands of ghc-vis

$ ghci

GHCi, version 7.4.2: http://www.haskell.org/ghc/ :? for help

ghci> :vis

[Package loading output cut]

The visualization window, which currently does not show anything. We can add
expressions to the visualization:

ghci> let a = [1..3]

ghci> :view a

ghci> let b = cycle a

ghci> :view b

ghci> :view "foo" ++ "bar"

a: t0

b: t1 (t0)

"foo" ++ "bar": t2

Figure 3.1: Demonstration of ghc-vis

The output in Figure 3.1 appears in the visualization window. What we’re seeing
now is the linear view. It shows values in a linear form, similar to :print, but with
graphical highlighting and deeper inspections. See Table 3.2 for the mapping of
linear view objects to actual heap closures.

In Figure 3.1 we can see that a is referenced by b, because the thunk t0 is linked in
b. Hovering an object highlights all other objects in the visualization window which
link to this object or are linked by it. In order to force evaluation of an object in
the visualization we can click on it or enter the following in GHCi:

ghci> :eval t1

16

3.1. Design 17

Name Object Meaning

Unnamed S# 1 Represents Data Constructors

Thunk t0 Represents Thunks, Generic Applications

Function f0 Represents Functions, Partial Applications

Named S# 1
b0

A named object, so that it can be linked elsewhere

Link b0 Links to an object which is already visualized

Table 3.2: Linear view objects

a: S# 1
b0

: t0 (f0 (S# 3, S# 1
b1

), b0 , b1)

b: b0 : t1 (t0 , b2)

b2

"foo" ++ "bar": t2

Figure 3.2: Demonstration of ghc-vis

We see in Figure 3.2 that the first member of b has been evaluated. It’s called b0
and is a reference to the value that’s also referenced as the head of a, as they share
the same name. S# 1 stands for Integer data constructor for small Integers, which
is called S# in GHC and its argument 1.

The linear view may not always be ideal, especially for bigger data structures. The
heap can be thought of as a graph with closures as vertices and their pointers to
each other as directed edges. This is represented in the graph view of ghc-vis, which
we can switch to like this:

ghci> :switch

The output in Figure 3.3 appears on the screen.

When an object is updated by accessing it :update has to be called to refresh the
visualization window. Alternatively any object can be clicked to perform an update.

ghci> a !! 2

3

ghci> :update

This causes the visualization window to be updated to the view in Figure 3.4.

3.1.2 Implementation

ghc-vis has been implemented to work with the Glasgow Haskell Compiler ver-
sion 7.4.2. More recent versions of the GHC will likely require adjustments in
ghc-vis because of the interaction with GHC internals which are likely to change
in the future.

17

18 3. ghc-vis

:

: AP

S# 1

Thunk

S# 1

Fun

S# 3

Thunk BCO

"foo" ++ "bar"b

a

Figure 3.3: Demonstration of ghc-vis

In order to analyze the representation of data structures on the heap we represent
closures on the heap as a HeapEntry tuple and the part of the heap we are interested
in as a HeapMap:

data Box = Box Any

type HeapEntry = (Maybe String ,Closure)
type HeapMap = [(Box ,HeapEntry)]

The first element of a HeapEntry identifies the entry on the heap. It is used to denote
top-level closures and closures we have already visited in order to prevent infinite
recursions. The second element is the closure, containing the parsed information of
the raw heap closure we actually are interested in.

The HeapMap is a simple list, identifying raw Haskell expressions with their corre-
sponding closure information. We want to use the HeapMap to look up the corre-
sponding HeapEntries of Boxes, which is only possible in O(n) in a list of length
n:

lookup :: Eq a ⇒ a → [(a, b)]→ Maybe b
lookup [] = Nothing
lookup key ((x , y) : xys)
| key ≡ x = Just y
| otherwise = lookup key xys

Let us investigate why we are using a List and equality (type class Eq) based com-
parisons instead of a totally ordered (type class Ord) Map, which performs lookups
in O(logn) on a balanced binary tree:

data Map k a = Tip
| Bin {-# UNPACK #-} ! Size ! k a ! (Map k a) ! (Map k a)

lookup :: Ord k ⇒ k → Map k a → Maybe a
lookup k t = case t of

Tip → Nothing
Bin kx x l r

18

3.1. Design 19

: : AP

S# 1

:

S# 2 :

S# 3

Thunk

S# 1

Fun

S# 3

Thunk BCO

"foo" ++ "bar"ba

Figure 3.4: Demonstration of ghc-vis

→ case compare k kx of
LT → lookup k l
GT → lookup k r
EQ → Just x

As the type signature of Map’s lookup tells us, we need to provide an instance of
Ord for the Box data type, thereby defining a total order of Boxes.

ghci> let x = asBox 3 :: Box

ghci> let y = asBox 4 :: Box

ghci> x

0x00007f8ee7f796b8

ghci> y

0x00007f8ee7f5a6b8

ghci> System.Mem.performGC

ghci> x

0x00007f8ed0ffb090

ghci> y

0x00007f8ed105eaa0

First we defined two new Boxes. Then we print their actual memory locations. After
we perform a garbage collection (performGC) we print their memory locations again.
The garbage collector run switched the values’ order in the memory around. As we
have seen in Section 2.5 the garbage collector is allowed to do that at any time.
Therefore comparing the values’ memory locations does not help us in establishing
any consistent order between them. There is no other information about the stored
value available except its memory location.

StableName[22] is a data type that is supposed to provide stable ordering of pointers

19

20 3. ghc-vis

according to the paper in which they are introduced, but unfortunately the current
implementation of them does not instantiate the Ord type class. If the naive list
implementation turned out as a performance bottle neck a hash table with Stable-
Names could be used instead of it.

Creating the HeapMap at first seems like the problem already solved by reify-
Graph[23], a function to observe sharing in Haskell. It works by instantiating the
MuRef type class for the data type one wants to observe, thereby defining how to
traverse the data structure. The vertex and edge labels in the graph created are also
user defined.

A closer look reveals that we have to deal with a number of problems that do not
exist when using reifyGraph, which mostly stem from these differences:

• We want more than observing sharing, namely keep unevaluated data struc-
tures unevaluated to visualize lazy evaluation.

• We operate on a lower level, looking inside the heap.

• We do not want the user to supply any information about what he is going to
visualize.

Some of the resulting problems are described in Section 3.3.

Our function for creating the HeapMap from the actual heap, called walkHeap, works
as follows:

1. Add a dummy node to the HeapMap that links to all expressions to be visu-
alized

2. Add the expressions to the HeapMap

3. Start a recursive heap walk along the pointers of the heap representations of
the supplied expressions:

a) If we have already added this closure to the HeapMap, return

b) Add the closure to the HeapMap

c) Visit all relevant pointers the closure has

3.2 Views

3.2.1 Linear View

The linear view is similar to :print. In order to create it a linear list of VisObjects
is generated from the HeapMap.

data VisObject = Unnamed String
| Named String [VisObject]
| Link String
| Thunk String
| Function String

deriving Eq

20

3.2. Views 21

VisObject Visualization

Unnamed "S# 1" S# 1

Named "b0" [Unnamed "S# 1"] S# 1
b0

Link "b0" b0

Thunk "t0" t0

Function "f0" f0

Table 3.3: VisObjects

The VisObjects directly correspond to the objects drawn in the visualization, as
can be seen in Table 3.3.

The list of VisObjects gets created in this way:

1. Create a HeapMap

2. Recursively walk the HeapMap for every expression to be visualized:

a) If the current closure already has a name, return a link to the name

b) Create a corresponding VisObject for the closure

c) Append the result of recursively walking the pointers of the closure to the
VisObject we already have

d) If the VisObject has multiple pointers pointing to it and is not already
named, create a Named VisObject to surround the entire list of VisOb-
jects

e) Return the resulting list of VisObjects

3.2.2 Graph View

The graph view is similar to vacuum-cairo. If ghc-vis used a non-interactive graph
view the process of creating the graph would look like this:

1. Convert HeapMap to DotGraph

2. Use graphviz[24] to convert DotGraph to SVG

3. Draw resulting SVG

But in order to support interactivity we had to take another course:

1. Convert HeapMap to DotGraph

2. Use graphviz to convert DotGraph to XDotGraph

3. Parse drawing operations of XDotGraph

4. Execute drawing operations, allowing for manipulation by user input (hovering,
clicking)

21

22 3. ghc-vis

Steps 3 and 4 have been externalized into a seperate library called xdot. It uses
the Haskell graphviz library bindings[25] to convert a regular graph to a DotGraph,
supply it to the dot program and finally parse the resulting XDot file in again.

As the Haskell graphviz library does not support parsing XDot operations[26], this
functionality was added to xdot. The relevant data type used for this is Operation,
which translates all XDot operations into a Haskell data type:

data Operation =
Ellipse {xy :: Point

, w :: Double
, h :: Double
, filled :: Bool
} |

Polygon {points :: [Point]
, filled :: Bool
} |

Polyline {points :: [Point]
} |

BSpline {points :: [Point]
, filled :: Bool
} |

Text {baseline :: Point
, alignment :: Alignment
, width :: Double
, text :: String
} |

Color {rgba :: (Double,Double,Double,Double)
, filled :: Bool
} |

Font {size :: Double
, name :: String
} |

Style {style :: String
} |

Image {xy :: Point
, w :: Double
, h :: Double
, name :: String
}

deriving Show

All of the operations except for Image, which integrates an external image into the
graph, but was not needed for ghc-vis, are supported for viewing inside a GTK
window using Cairo and Pango.[21]

22

3.3. Problems and Solutions 23

3.3 Problems and Solutions

3.3.1 Garbage Collector

When we have stored the layout of the heap into our representation of it, the
HeapMap, the garbage collector may cause the HeapMap to become corrupted. Let
us look at an example, for reasons of brevity some members of the heap map are
omitted:

ghci> let x = [1..2]

ghci> hm <- walkHeap [(asBox x,"x")]

ghci> hm

[(0x00007f732dac52f0,(Nothing,BCOClosure {info = StgInfotable

{ptrs = 4, nptrs = 0, tipe = BCO, srtlen = 0},

instrs = 0x00007f732dac55a0, literals = 0x00007f732dac55e8,

bcoptrs = 0x00007f732dac5618, arity = 0, size = 6, bitmap = 0}))

,(0x00007f732dac5380,(Just "x",APClosure {info = StgInfotable

{ptrs = 0, nptrs = 0, tipe = AP, srtlen = 0}, arity = 116,

n_args = 0, fun = 0x00007f732dac52f0, payload = []}))

,...]

ghci> x

[1,2]

ghci> hm2 <- walkHeap [(asBox x, "x")]

ghci> hm2

[...

,(0x00007f732e8dbc40/2,(Nothing,ConsClosure {info = StgInfotable

{ptrs = 2, nptrs = 0, tipe = CONSTR_2_0, srtlen = 1},

ptrArgs = [0x00007f732e8dbce0,0x00007f732e8dbcc8/2],

dataArgs = [], pkg = "ghc-prim", modl = "GHC.Types", name = ":"}))

,(0x00007f732dac5380,(Just "x",BlackholeClosure {info = StgInfotable

{ptrs = 1, nptrs = 0, tipe = BLACKHOLE, srtlen = 0},

indirectee = 0x00007f732e8dbc40/2}))

,...]

We see that the APClosure at memory address 0x00007f732dac5380 was replaced
with a BlackholeClosure which points to the ConsClosure that resulted from evalu-
ating the generic application. After waiting for a few seconds another look at hm2
reveals a surprising result:

ghci> hm2

[...

,(0x00007f732dcad4b0/2,(Nothing,ConsClosure {info = StgInfotable

{ptrs = 2, nptrs = 0, tipe = CONSTR_2_0, srtlen = 1},

ptrArgs = [0x00007f732dcad890,0x00007f732dcad878/2],

dataArgs = [], pkg = "ghc-prim", modl = "GHC.Types", name = ":"}))

,(0x00007f732dcad4b0/2,(Just "x",BlackholeClosure {info = StgInfotable

{ptrs = 1, nptrs = 0, tipe = BLACKHOLE, srtlen = 0},

indirectee = 0x00007f732dcad4b0/2}))

,...]

Suddenly the ConsClosure and the BlackholeClosure have the same memory location:
0x00007f732dcad4b0/2. How did this occur?

23

24 3. ghc-vis

The BlackholeClosure was only created while the evaluation was happening to pre-
vent space leaks. When the garbage collector ran in the few seconds we waited it
replaced the BlackholeClosure, which has become useless now that the evaluation
has finished, with the resulting ConsClosure. That means the BlackholeClosure isn’t
actually on the heap anymore, but our HeapMap wasn’t updated.

To deal with problems introduced by the garbage collector running in the time
between creating a HeapMap and visualizing it, a garbage collection is performed
right before creating a HeapMap.

3.3.2 Changing Pointers

When the garbage collector runs not after we have created a HeapMap, but during
the creation, even bigger problems may appear. The same problems can occur when
a user evaluates data structures while the HeapMap gets created.

An example for this problem works as follows:

1. We start parsing a closure from the heap into a Haskell data structure

2. Closure gets evaluated by the garbage collector or a user

3. The closure on the heap gets replaced by another closure

4. We continue parsing the closure, now reading wrong values and pointers be-
cause we assume the closure to be of the old type

In order to deal with problems of this kind failures in walkHeap are not fatal, but
instead trigger a rerun.

3.3.3 Byte Code Objects

Byte Code Objects (BCOs) on the heap may link to rather complex data structures,
as in Figure 3.5a, which we are not interested in:

• List of instructions to be executed

• List of pointers that are used in the instructions (often including type class
information)

Therefore we cannot just show all information of the heap. Simply hiding them
doesn’t work either because they may help in understanding sharing, as we can see
in Figure 3.5b, where sum x is referencing x through its BCO. Instead we traverse
the BCO’s pointers to see whether they point to an object we would visualize anyway,
and only connect it in that case, as can be seen in Figure 3.5c.

3.3.4 Loading and Reloading Files

When a file gets :loaded or :reloaded in GHCi all defined variables get removed.
It also causes the global communication channel ghc-vis uses to be reinitialized.
The thread listening to it would not receive any further commands. Therefore the
listening thread has a timeout that handles this by resetting our global variables and
listening to the new signal channel:

24

3.3. Problems and Solutions 25

AP

AP

BCO

0x1c000000000000,
0x2100010000000d,
0x2000d00010001,
0x1000300210001,
0x5000000010003,
0x1000500150000,
0x2e00020005001a

0x3,
0x40cf3948,

0x1,
0x40cf3948

MutArr

D:Enum

Fun Fun Fun Fun Fun Fun Fun Fun

Fun

BCO

0xc000000000000,
0x1000500000005,
0x2e000200050014

MutArr

D:Num

Fun Fun Fun Fun Fun Fun Fun

Fun

sum x

x

(a) All BCO information

AP AP

BCO BCO

x sum x

(b) No BCO in-
formation

AP

AP

BCO

BCO

x

sum x

(c) Selective BCO
information

Figure 3.5: Sharing through BCO pointers

react canvas window = do
mbSignal ← timeout signalTimeout (takeMVar visSignal)
case mbSignal of

Nothing → do
running ← readMVar visRunning
if running

then react canvas window
else do -- :r caused visRunning to be reset

swapMVar visRunning True
timeout signalTimeout (putMVar visSignal UpdateSignal)
react canvas window

Just signal → do
-- Normal signal handling

25

CHAPTER 4

Evaluation

4.1 Comparison

Let us return to the example we used in Section 2.6.1 to illustrate the shortcomings
of :print and vacuum in visualizing lazy evaluation and sharing and compare those
results to ghc-vis :

ghci> let a = "foo"

ghci> let b = a ++ a

ghci> head b

’f’

ghci> :print a

a = ’f’ : (_t1::[Char])

ghci> :print b

b = ’f’ : (_t2::[Char])

(a) :print

a: 'f'
b1

: t0 (f0 [53329136])[0]

b0

b: b1 : t1 (t0 , b0)

(b) ghc-vis: Linear view

Figure 4.1: Comparing visualization of lists in :print and the linear view of ghc-vis

In Figure 4.1 we see the output of :print and the linear view of ghc-vis. The linear
view contains the following information which is missing from :print :

• The first character of a and b, ’f’, is shared.

• The thunk for the remaining list in b references a and a function that is also
refrenced in a.

:print can not be used to analyze cyclic data structures, like repeat 1. It keeps
recursing on the data structure to build the textual representation of it until it runs
out of memory. They pose no problem for ghc-vis, as can be seen in Figure 4.2,
which shows how ghc-vis visualizes repeat 1.

In Figure 4.3 we see the output of vacuum and the graph view of ghc-vis. While the
sharing of ’f’ is visible in vacuum as well, it is missing the referencing of a and a

27

28 4. Evaluation

repeat 1: (S# 1): b0

b0

Figure 4.2: Visualizing repeat 1 using ghc-vis

(,)|0

:|1

:|2

C#|3

|4

|5

(a) vacuum

:

:

'f' Thunk

Fun

Thunk

b

a

(b) ghc-vis:
Graph view

Figure 4.3: Comparing visualization of lists in vacuum and the graph view of ghc-vis

function inside of a in b’s thunk. The reason for this is that vacuum does not inspect
the insides of thunks. Vacuum does not support any interactivity, while ghc-vis can
evaluate thunks interactively and more data structures can easily be added to its
visualization.

4.2 Visualizations

As the main focus of ghc-vis is visualizing Haskell data structures and furthering the
understanding of lazy evaluation and sharing we will now look at examples using
ghc-vis and evaluate what we can learn from them. No new results will be presented
in this section, instead we look at well known phenomenons.

4.2.1 Compiled and Interpreted Code

Compiled and interpreted code may lead to different representations on the heap.
Consider the following example:

bigSquares :: [Integer]
bigSquares = filter (>10) squares

squares :: [Integer]
squares = map (↑2) [1 . .]

By default all code is interpreted in GHCi. Using :set -fobject-code GHCi can

28

4.2. Visualizations 29

Ind

:

S# 16 Thunk

Fun

S# 10

Thunk

Fun

S# 2

Thunk

S# 4 S# 1

bigSquares

(a) Compiled code (-fobject-code)

:

S# 16 Thunk

PAP

BCO S# 10

Thunk

PAP

BCO S# 2

Thunk

S# 4 S# 1

bigSquares

(b) Interpreted code (-fbyte-code)

Figure 4.4: Squares

be instructed to compile :loaded files instead. In Figure 4.4 we see that the compiled
version created special functions, whereas the interpreted version uses more general
functions, to which some arguments were already supplied.

In the following examples the visualization is mostly the same for compiled and in-
terpreted code. A notable exception is the Sieve of Eratosthenes in Subsection 4.2.4
which is visualized in compiled form because the type class information in the inter-
preted data structures causes the graph to be significantly bigger.

Another notable difference between compiled and interpreted code is the represen-
tation of data constructors with no arguments:

data Maybe a = Just a | Nothing

The data constructor for Just looks the same in compiled and interpreted code.
But data constructors without arguments, like Nothing in this example, get a bogus
argument in interpreted code, while in compiled code they have no such argument.

The reason for this is that all closures on the heap have a minimum size of two
words, so that they can be replaced by pointers that temporarily get created during
garbage collection.[12] All interpreted data constructors are allocated on the heap,
and therefore those without arguments are filled with a dummy argument to reach
the minimum size.

Compiled data constructers are not allocated on the heap, but instead reside in the
data section of the compiled object code. They can not be replaced and therefore
they can be smaller than the minimum size for heap objects and no bogus argument
is added.

4.2.2 Sharing

This simple example shows how sharing may be used:

29

30 4. Evaluation

complexOperation :: Double → Double
complexOperation x = x + 1

f :: Double → Int → [Double]
f x 0 = []
f x y = complexOperation x : f x (y − 1)

g :: Int → [Double]
g y = f 235 y

f ′ :: Double → Int → [Double]
f ′ x = go (complexOperation x) y

where go x ′ 0 = []
go x ′ y = x ′ : go x ′ (y − 1)

g ′ :: Int → [Double]
g ′ y = f ′ 235 y

Whereas g does not use sharing g’ only calculates the complexOperation once and

g 3: (D# 236.00000):(D# 236.00000):(D# 236.00000): []
b0

g' 3: D# 236.00000
b1

: b1 : b1 : b0

(a) Linear view

: :

D# 236.00000 :

D# 236.00000:

D# 236.00000 [] D# 236.00000

:

:

g' 3g 3

(b) Graph view

Figure 4.5: Sharing

then shares the resulting value across the entire list. This can be seen in Figure 4.5:
g 3 consists of three seperate list members, while g’ 3 only uses a single one three
times.

Expression Time spent Memory used

sum (g 1000000) 5.39 s 1367.92 MiB
sum (g ′ 1000000) 1.55 s 429.46 MiB

Table 4.1: Effect of sharing on performance

Table 4.1 shows how time and memory performance are influenced in this case by the

30

4.2. Visualizations 31

use of sharing. Note that for the performance measurements the following definition
of complexOperation was used instead:

complexOperation x = x ∗∗ 9− sqrt (x ∗∗ 5) + sqrt (sqrt (x ∗∗ 3))

A more complex operation increases the effect of sharing.

4.2.3 Infinite Data Structures

We already looked at two definitions of the infinite list of ones in the Introduction.
Now we look at the following definition for the infinite list of Fibonacci numbers:

fib :: [Integer]
fib = 1 : 1 : [a + b | (a, b)← zip fib (tail fib)]

The state of fib after evaluating the first three members can be seen in Figure 4.6.

fib: (S# 1): (S# 1): (S# 2): t0 (t1 (b1 , b0))

b1

b0

(a) Linear view

:

S# 1 :

S# 1 Ind

:

S# 2 Thunk

Thunk

fib

(b) Graph view

Figure 4.6: Fibonacci numbers

It becomes apparent how the function that constructs member n references members
n− 1 and n− 2.

4.2.4 Sieve of Eratosthenes

The sieve of Eratosthenes is a simple algorithm to calculate all prime numbers. It
is often used as an example of lazy evaluation.

primes :: [Integer]
primes = sieve [2 . .]

sieve :: [Integer]→ [Integer]
sieve (p : xs) = p : sieve [x | x ← xs , x ‘mod ‘ p > 0]

What happens in the sieve of Eratosthenes in Figure 4.7 is that once a number is

31

32 4. Evaluation

Ind

:

I# 2

Thunk

Thunk

Fun

primes

(a) Early state

Ind

:

I# 2

:

I# 3

:

I# 5

:

I# 7

:

I# 11

Thunk

Thunk

Fun Thunk

Fun Thunk

Fun Thunk

Fun Thunk

Fun

primes

(b) Later state

Figure 4.7: Sieve of Eratosthenes, see Appendix A for a larger example

visited by the top thunk, it is declared a prime, added to the final list of primes and
a thunk is created for it. This thunk traverses down the infinite list of numbers and
filters out all multiples of itself. Likewise the top thunk wanders down the resulting
list, spawning new thunks for all numbers it encounters. Because the numbers have
been filtered by the thunks spawned before they must be primes.

4.2.5 Unboxed Values

Some basic Haskell data types are defined as follows in GHC:

data Int = I # Int #

data Integer = S # Int #
| J # Int # ByteArray #

data Word = W # Word #

data Float = F # Float #

data Double = D # Double #

We have already seen S#, which is used to define small integers and D# for double
precision floating point numbers.

32

4.2. Visualizations 33

The difference between Int and Int# is that the first is a boxed value, the second is
unboxed. We can easily visualize what that means:

ghci> data Point = Point Int Int

ghci> :view Point 2 3

ghci> data PointU = PointU Int# Int#

ghci> :view PointU 2# 3#

Point PointU 2 3

I# 2 I# 3

Point 2 3 PointU 2# 3#

Figure 4.8: Boxed and unboxed values

In Figure 4.8 we see that boxed values are not actually stored in the data constructor,
but instead are seperate closures which the data constructor points to. Unboxed
values are stored inside of the data constructor directly. This makes them interesting
for performant code as the overhead of an indirection and the space for another
closure are saved.

4.2.6 Double Linked List

A nice example of the power of lazy evaluation is using it to create a double linked
list[27]:

data DList α = DLNode (DList α) α (DList α) deriving Show

mkDList :: [α]→ DList α
mkDList [] = error "must have at least one member"

mkDList xs = let (first , last) = go last xs first
in first

where go :: DList α→ [α]→ DList α→ (DList α,DList α)
go prev [] next = (next , prev)
go prev (x : xs) next = let this = DLNode prev x rest

(rest , last) = go this xs next
in (this , last)

The real work is done in the go function: A DLNode is created using prev , which is
the previous list member, and rest , which is only defined in the next line and is the
result of calling go for the next node. Thanks to lazy evaluation we can supply this
to go and at the same time define this using the result of the exact same call to go.

Connecting the last and the first members of the double linked list also makes heavy
use of lazy evaluation: In mkDList last is defined as the second tuple element of a
call to go, which takes last as a parameter. This technique is called tying the knot.

Trying to print the created double linked list using the show function does not work,
because it is cyclic and show does not know when to stop. The structure of the final
list can be seen using ghc-vis, as is shown in Figure 4.9.

33

34 4. Evaluation

mkDList [1..4]: DLNode DLNode DLNode DLNode b0 (S# 2) b2

b3

(S# 3) b1

b2

(S# 4) b0

b1

(S# 1) b3

b0

(a) Linear view

DLNode

DLNode

DLNode

DLNode

S# 2

S# 3

S# 4

S# 1

mkDList [1..4]

(b) Graph view

Figure 4.9: Double linked list

4.2.7 IntMap

Sharing is used in many Haskell libraries to achieve high performance. Consider for
example IntMaps:

ghci> let x = Data.IntMap.fromList $ zip [1..5] [1..]

ghci> x

fromList [(1,1),(2,2),(3,3),(4,4),(5,5)]

ghci> let y = Data.IntMap.fromList $ zip [6..10] [6..]

ghci> y

fromList [(6,6),(7,7),(8,8),(9,9),(10,10)]

ghci> :view x

ghci> :view y

ghci> :view Data.IntMap.union x y

The resulting graph is shown in Figure 4.10. Only some internal nodes get newly
created for the union of x and y, most of the original data structures are reused.

4.2.8 Nexuses and Dynamic Programming

This and the next subsection contain examples from [8]. In dynamic programming
a memo table is usually used to avoid recomputing solutions to subproblems. In
Haskell one can use another approach to achieve the same: Nexus trees, which are
trees with shared nodes.

We define a data type Tree for binary trees:

34

4.2. Visualizations 35

Bin 0 4

Bin 0 8Bin 0 8

Bin 0 2

Tip 1

S# 1

Bin 2 1

Tip 2

S# 2

Tip 3

S# 3

Bin 4 1

Tip 4

S# 4

Tip 5

S# 5

Bin 6 1

Tip 6

S# 6

Tip 7

S# 7

Bin 8 2

Bin 8 1

Tip 8

S# 8

Tip 9

S# 9

Tip 10

S# 10

Bin 0 4

Bin 4 2

Bin 6 1

Data.IntMap.union x y y

x

Figure 4.10: Sharing in IntMaps

data Tree a = Empty
| Node { left :: Tree a, info :: a, right :: Tree a }

deriving (Eq , Show)

leaf :: ∀α.α→ Tree α
leaf x = Node Empty x Empty

The definition of insertion into a binary tree:

insert :: ∀α.Ord α⇒ α→ Tree α→ Tree α
insert x Empty = leaf x
insert x (Node l k r)
| x 6 k = Node (insert x l) k r
| otherwise = Node l k (insert x r)

Now we can create a full binary tree of depth n containing the value x using the
function full :

full :: ∀α.Integer → α→ Tree α
full 0 x = leaf x
full n x = Node t x t

where t = full (n − 1) x

Figure 4.11 shows how sharing is used in the evaluation of full 4 2.0: The child
node t is created once and then shared as the left and right child, which makes the
resulting tree a nexus. Because of this a full binary tree can be created in O(log n)
time and stored in O(log n) space, where n is the number of nodes.

Once we change a seemingly slight detail of the definition of full, as we did in full’
by typing out the identical left and right child of the created node, the sharing
disappears:

full ′ :: ∀α.Integer → α→ Tree α
full ′ 0 x = leaf x
full ′ n x = Node (full ′ (n − 1) x) x (full ′ (n − 1) x)

Because of referential transparency this refactoring is allowed and does not change

35

36 4. Evaluation

Node

Node

Node

Node

Node

Empty D# 2.00000

full 4 2.0

Figure 4.11: Visualization of full : Nodes are shared

Node

Node

Node

Node

Node

Empty D# 2.00000

Node

Node

Node Node

Node

Node

Node Node

Node

Node Node

Node

Node

Node

Node Node

Node

Node Node

Node

Node

Node Node

Node

Node Node

full' 4 2.0

Figure 4.12: Visualization of full’ : Nodes are not shared

the semantics of the function. Figure 4.12 reveals the effect the missing sharing
has: We’re not getting a nexus anymore. Space and time used are now linear, even
though we are clearly expressing the same graph, as full 4 2.0 ≡ full ′ 4 2.0 evaluates
to True.

Nexuses provide an alternative way to the list based one for calculating Fibonacci
numbers we visualized in Subsection 4.2.3:

memofib :: Integer → Tree Integer
memofib 0 = leaf 0
memofib 1 = Node (leaf 0) 1 Empty
memofib n = node t (left t)

where t = memofib (n − 1)

node :: Tree Integer → Tree Integer → Tree Integer
node l r = Node l (info l + info r) r

The n-th Fibonacci number can be obtained using info (memofib 8). In Figure 4.13
the sharing used in memofib can be seen.

36

4.2. Visualizations 37

Node

Node

Node

Node

Node

Node

Node

Node

Node

Empty S# 0

S# 1

S# 1

S# 2

S# 3

S# 5

S# 8

S# 13

S# 21

memofib 8

Figure 4.13: Fibonacci numbers using a nexus

4.2.9 Optimal Bracketing

Let us consider the problem of optimal bracketing : We want to bracket an expression
of the form x1 ⊕ x2 ⊕ . . .⊕ xn, where ⊕ is an associative operator. That means the
result will be the same, no matter how we bracket the expression. But computational
costs can differ, for example in a chain matrix multiplication.

data Expr α = Const α
| Expr α⊕ Expr α

deriving Show

We can solve the problem using the recursive function opt :

opt :: [α]→ Expr α
opt [x] = Const x
opt xs = best [opt s1 ⊕ opt s2 | (s1, s2)← uncat xs]

uncat :: ∀α.[α]→ [([α], [α])]
uncat [x1, x2] = [([x1], [x2])]
uncat (x : xs) = ([x], xs) : map (λ(l , r)→ (x : l , r)) (uncat xs)

In this example we consider the expression with the lowest bracketing depth the best
one, as could be desirable for parallel execution:

best :: [Expr α]→ Expr α
best xs = snd $ go xs

where go [y] = (size y , y)
go (y : ys)
| sizeY < sys = (sizeY , y)

37

38 4. Evaluation

| otherwise = gys
where gys@(sys ,) = go ys

sizeY = size y

size :: Expr a → Integer
size ((l ⊕ r)) = 1 + max (size l) (size r)
size (Const) = 1

The possible bracketings of Const1⊕ Const2⊕ Const3⊕ Const4 are:

1. ((Const1⊕ Const2)⊕ Const3)⊕ Const4

2. (Const1⊕ Const2)⊕ (Const3⊕ Const4)

3. Const1(⊕Const2⊕ (Const3⊕ Const4))

The second bracketing is the optimal one by our definiton of best , as is verified by
opt [1 . . 4] evaluating to (Const 1⊕ Const 2)⊕ (Const 3⊕ Const 4).

But this function takes exponentional time, which is why we are now going to con-
sider a solution using a nexus:

leaf :: α→ Tree (Expr α)
leaf x = Node Empty (Const x) Empty

leaf x creates a Leaf node storing the value x .

lspine, rspine :: ∀α.Tree α→ [α]
lspine (Empty) = []
lspine (Node l x r) = lspine l ++ [x]

rspine (Empty) = []
rspine (Node l x r) = [x] ++ rspine r

The functions lspine and rspine traverse the left and right side of the tree respec-
tively, returning the nodes visited.

combine :: [(Expr α,Expr α)]→ Expr α
combine = best ◦map (uncurry (⊕))

node :: Tree (Expr α)→ Tree (Expr α)→ Tree (Expr α)
node l r = Node l (combine (zip (lspine l) (rspine r))) r

The function node constructs a new node for our nexus.

step :: [Tree (Expr α)]→ [Tree (Expr α)]
step [t] = []
step (t1 : t2 : ts) = node t1 t2 : step (t2 : ts)

step creates the next layer of nodes in our nexus. Sharing is introduced in the last
line by t2 appearing twice.

build :: [Tree (Expr α)]→ Tree (Expr α)
build [t] = t
build ts = build (step ts)

bottomup :: [α]→ Tree (Expr α)
bottomup = build ◦map leaf

Finally bottomup builds the entire nexus using the funtions defined above.

38

4.2. Visualizations 39

Node

Node

Node

Node

EmptyConst

S# 1

:+:

Const

S# 2

Node

:+:

Const

S# 3

Node

:+: Node

:+:

:+:

Const

S# 4

Node

:+: Node

Node

bottomup [1..4]

Figure 4.14: Solving the optimal bracketing problem using a nexus

When we now evaluate bottomup [1 . . 4] the data structure seen in Figure 4.14 gets
created. The resulting tree uses extensive sharing to construct the optimal solution
of the problem from optimal solutions to subproblems. The solution is obtained by
info (bottomup [1 . . 4]).

Further examples of consciously using sharing in the form of nexuses are available
in [28].

4.2.10 Negative Effects of Lazy Evaluation and Sharing

Unfortunately the effects of lazy evaluation and sharing are not always beneficial.
Consider the follwing example:

ghci> let x = let n = [1..5] in (last n, head n)

ghci> :view x

As we can see in Figure 4.15 when the first element of the tuple x gets evaluated
the whole list n gets evaluated to determine its last member and thereby stored on
the heap. As n is shared between the tuple elements, head n now refences the entire
list n and forces the garbage collector to leave it on the heap. This would not be
necessary, as head n can be obtained from the first list member of n, whereas the rest
of the list is not needed anymore. A space leak has occured. While the space leak in
this example is negligibly small, much larger ones can occur in practice. When we
avoid sharing this problem does not occur in our example:

ghci> let y = (last [1..5], head [1..5])

ghci> :vis y

The resulting data structure can be seen in Figure 4.16. This would not work
anymore when we get passed a list instead. A more general approach that explicitly
un-shares data structures is provided by the experimental dup[29] operation.

39

40 4. Evaluation

(,)

AP

BCO AP

BCO

AP

BCO

x

(a) Tuple elements are un-
evaluated

(,)

S# 5

AP

BCO :

S# 1 :

S# 2 :

S# 3 :

S# 4 :

[]

x

(b) First tuple element was
evaluated (fst x)

(,)

S# 5 S# 1

x

(c) Second tuple element
was evaluated (snd x)

Figure 4.15: Space leak

(,)

AP

BCO

AP

BCO

y

(a) Tuple elements are un-
evaluated

(,)

S# 5 AP

BCO

y

(b) First tuple element was
evaluated (fst x)

(,)

S# 5 S# 1

y

(c) Second tuple element
was evaluated (snd x)

Figure 4.16: No more space leak by avoiding sharing

40

4.2. Visualizations 41

Another cause for space leaks is lazy evaluation:

sum :: (Num a)⇒ [a]→ a
sum l = sum ′ l 0
where

sum ′ [] a = a
sum ′ (x : xs) a = sum ′ xs (a + x)

This is the definition of sum from Haskell’s base library. When we evaluate sum [1 . . 10↑
7] in GHCi the memory usage quickly grows to hundreds of Megabytes.

What is happening? We can use ghc-vis in combination with GHCi’s debugger to
find out:1

ghci> :l sum

[1 of 1] Compiling Main (sum.hs, interpreted)

Ok, modules loaded: Main.

ghci> :vis

ghci> :break 6

ghci> sum [1..10^7]

Stopped at sum.hs:6:20-32

_result :: Integer = _

a :: Integer = _

x :: Integer = 1

xs :: [Integer] = _

ghci> :view a

ghci> :clear

ghci> :continue

Stopped at sum.hs:6:20-32

_result :: Integer = _

a :: Integer = _

x :: Integer = 2

xs :: [Integer] = _

ghci> :view a

ghci> :clear

ghci> :continue

Stopped at sum.hs:6:20-32

_result :: Integer = _

a :: Integer = _

x :: Integer = 3

xs :: [Integer] = _

ghci> :view a

The status of a at every recursion step can be seen in Figure 4.17. The path of
unevaluated closures to calculate a keeps growing. In the last line of the definition
of sum ′ (a + x) is not evaluated and instead the unevaluated thunk gets passed to
the next call to sum ′. This builds up a big amount of thunks, even though it could
be reduced to a single value.

1Note that the debugger of GHCi can only use breakpoints and single-stepping in interpreted
code, so we have to load our own file containing the code to be debugged instead of using the
sum function from the base library.

41

42 4. Evaluation

AP

BCO D:Num

Fun Fun Fun Fun Fun Fun Fun

a

(a) First stop

AP

BCO S# 1

D:Num

Fun Fun Fun Fun Fun Fun Fun

AP

BCO

a

(b) Second stop

AP

BCO

S# 2

D:Num

Fun Fun Fun Fun Fun Fun Fun

AP

S# 1AP

BCO

a

(c) Third stop

Figure 4.17: Space leak caused by lazy evaluation in sum

To fix this we apply the last argument in the call to sum ′ strictly using the $!
operator:

sum2 :: (Num a)⇒ [a]→ a
sum2 l = sum ′ l 0
where

sum ′ [] a = a
sum ′ (x : xs) a = sum ′ xs $! (a + x)

This strict evaluation causes a +x to be evaluated to weak-head normal form, which

S# 0

a

(a) First stop

S# 1

a

(b) Second stop

S# 3

a

(c) Third stop

Figure 4.18: Avoiding space leak by strict evaluation in sum2

means only the actual value gets passed. Old values can then be removed by the
garbage collector. Memory usage is constant with sum2 , and the correct behavior
can be seen in Figure 4.18, which has been recorded in the same way as we just did
for sum.

GHC uses optimization techniques which can automatically prevent space leaks like
this. When optimization is enabled during compilation the space leak disappears.

4.3 Combination with GHCi’s Debugger

Evaluating a value to weak-head normal form works very well when visualizing the
evaluation of lists or other composite data types. But for elementary data types
like Integers even that may be too much and a smaller evaluation may be more
appropriate. ghc-vis can be combined with GHCi’s debugger using the supplied
:su, :asu and :tsu commands, which allow single-stepping through the evaluation
of expressions and watching the data structures transform during this.

We are going to use a file called test.hs in this example to illustrate this:

f :: [Integer]→ [Integer]
f (x : xs) = (2 ∗ x) : f xs
f [] = []

42

4.4. Usage as a Library 43

ghci> :l test.hs

ghci> :vis

ghci> let x = [1..3]

ghci> let y = f x

ghci> let z = sum y

ghci> :view x

ghci> :view y

ghci> :view z

ghci> :su z

x: S# 1
b0

: S# 2
b1

: t0 (f0 (S# 3, S# 1
b2

), b1 , b2)

y: t1 [b0]: TSO
b3

z: b3

(a) Early state

x: (S# 1):(S# 2): S# 3
b0

:[]

y: (S# 2): TSO
b1

: t0 [b0]:[]

z: b1

(b) Later state

Figure 4.19: Combination with GHCi’s debugger, see Appendix B for a larger ex-
ample

Using :su we can now single-step through the evaluation of z and watch the data
structures changing during it. Two intermediate steps can be seen in Figure 4.19.

The available commands for combining ghc-vis with GHCi’s debugger are described
in Table 4.2.

Command Description

:su x Same as :step x: Single-step through evaluation of x, but the visu-
alization gets updated automatically

:cu Same as :continue: Continue to next breakpoint, but the visualiza-
tion gets updated automatically

:asu x Single-step through evaluation of x on any key pressed, quit with q

:tsu t x Single-step through evaluation of x with one step every t seconds
until a key is pressed

Table 4.2: Debugging commands of ghc-vis

4.4 Usage as a Library

Although ghc-vis is mainly meant to be used in GHCi it can also be used as a
library in regular Haskell programs which are then run or compiled by GHC to
inspect expressions inside of them at runtime2:

2Currently ghc-vis only works correctly in compiled programs when they have been compiled with
the -threaded flag

43

44 4. Evaluation

import GHC .Vis

main = do
let a = "teeest"

let b = [1 . . 3]
let c = b ++ b
let d = [1 . .]
putStrLn $ show $ d !! 1

visualization
view a "a"

view b "b"

view c "c"

view d "d"

getChar
switch

getChar

:

Ind

: Ind

't'

:

'e'

:

:

:

's':

[]

:

S# 1

Thunk

S# 1

Fun

S# 3

Thunk :

S# 1:

S# 2

Thunk

dc

b

a

Figure 4.20: ghc-vis as a library

The output on the screen looks exactly like the one we are used from inside of
GHCi, but some optimizations stand out, which are not performed in GHCi: Notice
for example how letters are shared within a in Figure 4.20.

The GHCi commands of ghc-vis closely resemble the library interface, as is shown
in Table 4.3.

44

4.5. Source Code 45

Method call Type Corresponding GHCi command

visualization IO () :vis

view x "x" a → String → IO () :view x

eval "t0" String → IO () :eval t0

switch IO () :switch

update IO () :update

clear IO () :clear

export "file.pdf" String → IO () :export file.pdf

Table 4.3: Public library interface

4.5 Source Code

Project File Code Comments

ghc-vis Vis.hs 180 70
Vis/Internal.hs 393 184
View/List.hs 276 129
View/Graph.hs 117 53
View/Graph/Parser.hs 79 49
View/Common.hs 43 27
Types.hs 70 29
ghci 11 9

1169 550

xdot Parser.hs 213 46
Viewer.hs 156 56
Types.hs 35 13
Demo.hs 96 36

500 151

Table 4.4: Source code statistics

Statistics of the source code for ghc-vis and xdot are presented in Table 4.4. They
were created using GHC’s count lines.

45

46 4. Evaluation

4.6 Performance

ghc-vis is not written with big data structures in mind, as their visualizations would
become two crowded to understand easily. The measurements of ghc-vis’ perfor-
mance in Table 4.5 indicate that the HeapMap data structure is not restricting the
performance, but instead the complex drawing operations take most of the time.

Operation Evaluated members Runtime [ms]

walkHeap 0 0.02
25 0.13
50 0.36
75 0.70

100 1.19

xDotParse 0 13.46
25 22.82
50 36.52
75 53.11

100 69.70

linear view 0 6.68
25 9.51
50 11.68
75 19.71

100 22.04

graph view 0 36.87
25 125.68
50 239.17
75 353.40

100 472.54

Table 4.5: Runtime of various operations on a partially evaluated list

These measurements were taken using Criterion[30] on a machine with an Intel Core2
processor clocked at 2.5 GHz, running Linux 3.5.3 and GHC 7.4.2 using the x86-64
instruction set.

46

CHAPTER 5

Conclusion

This thesis described the design and implementation of ghc-vis, a tool for visual-
izing Haskell data structures inside of the Glasgow Haskell Compiler’s interactive
environment and compiled programs at runtime.

After introducing the Haskell programming language and two of its features, lazy
evaluation and sharing, we investigated relevant specifics of the Glasgow Haskell
Compiler and considered existing tools, which can be used to visualize lazy evaluation
and sharing. We noticed that not all necessary information is available in existing
tools, thus justifying the creation of ghc-vis to fill these gaps.

The integration of ghc-vis into GHCi and the extraction of information from the
GHC heap were detailled. Problems which were encountered in realizing this had to
be solved.

Finally we showed how ghc-vis can help visualizing simple and more complex data
structures to understand them and how lazy evaluation and sharing affect them.

5.1 Future Work

Some issues remain with ghc-vis:

As we have seen the performance for big data structures is still low. In order to
improve it the graph view’s drawing operations should be improved.

To visualize big data structures another function would have to be implemented:
Zooming into and moving around the view.

Some information, for example type classes, can be overwhelming in some visual-
izations, but desirable in others. Allowing the user to hide certain data structures
dynamically may be a way to solve this problem.

It might be worth investigating how to gather more information in GHCi debugging
sessions to provide better visualizations.

It would be desirable to provide type information about closures in ghc-vis. But
Haskell is statically typed and so types are checked at compile-time. Therefore
no types are stored in GHC heap closures. Instead the type would have to be
reconstructed, as GHCi’s debugger does. This would require a deeper integration of

47

48 5. Conclusion

ghc-vis into GHC, as the necessary functions for type reconstruction are not available
from outside of GHC.

Another feature is making objects from ghc-vis available as variables in GHCi. Type
reconstruction would also be needed for this. There are still some ways to get access
to the internals of visualized objects, but they are not as flexible: You can use a
regular function, if one exists, for example head to access the first element of a list.
Alternatively you can use :print to get access to some thunks. By adding the variable
to ghc-vis you can see that you are accessing the correct one.

Integrating ghc-vis into a web based GHCi interface might be another route of work,
that would help newcomers with understanding Haskell better.

48

Bibliography

[1] G. Hutton, Programming in Haskell. Cambridge University Press, Jan. 2007.

[2] A. J. T. Davie, An introduction to functional programming systems using
Haskell. Cambridge University Press, 1992.

[3] C. Strachey, “Fundamental concepts in programming languages,” Higher Order
and Symbolic Computation, vol. 13, no. 1-2, pp. 11–49, Apr. 2000.

[4] W. Quine, Word and Object. The MIT Press, 1960.

[5] P. Hudak, “Conception, evolution, and application of functional programming
languages,” ACM Computing Surveys, vol. 21, no. 3, pp. 359–411, Sep. 1989.

[6] J. Hughes, “Why functional programming matters,” The Computer Journal,
vol. 32, no. 2, pp. 98–107, Apr. 1989.

[7] S. Marlow, “Haskell 2010 language report.”

[8] R. Bird and R. Hinze, “Trouble shared is trouble halved,” in Haskell Workshop,
2003, pp. 1–6.

[9] “The Glasgow Haskell Compiler,”http://www.haskell.org/ghc/, accessed: 2012-
09-18.

[10] “The Haskell Platform,” http://www.haskell.org/platform/, accessed: 2012-09-
18.

[11] S. Peyton Jones, “Implementing lazy functional languages on stock hardware:
The spineless tagless g-machine,” Journal of Functional Programming, vol. 2,
no. 2, pp. 127–202, 1992.

[12] “GHC Commentary: The layout of Heap Objects,” http://hackage.haskell.org/
trac/ghc/wiki/Commentary/Rts/Storage/HeapObjects, accessed: 2012-09-18.

[13] P. Wadler, “Fixing some space leaks with a garbage collector,” Softw. Pract.
Exper., vol. 17, no. 9, pp. 595–608, Sep. 1987.

[14] R. Jones, “Tail recursion without space leaks,” Journal of Functional Program-
ming, vol. 2, 1991.

[15] J. Breitner, “ghc-heap-view-0.3.0.2: Extract the heap representation of Haskell
values and thunks,” http://hackage.haskell.org/package/ghc-heap-view-0.3.0.2,
accessed: 2012-09-18.

49

http://www.haskell.org/ghc/
http://www.haskell.org/platform/
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Rts/Storage/HeapObjects
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Rts/Storage/HeapObjects
http://hackage.haskell.org/package/ghc-heap-view-0.3.0.2

50 Bibliography

[16] S. Marlow and S. Peyton Jones, “Making a fast curry: push/enter vs. eval/apply
for higher-order languages,” in Proceedings of the ninth ACM SIGPLAN inter-
national conference on Functional programming, vol. 39, no. 9, Sep. 2004, pp.
4–15.

[17] J. Iborra and S. Marlow, “Examine your laziness. A lightweight procedural
debugging technique for Haskell,” Tech. Rep., Apr. 2007.

[18] A. Seipp, “Vacuum: visualising the GHC heap,” http://thoughtpolice.github.
com/vacuum/, accessed: 2012-09-18.

[19] A. Gill, “Debugging Haskell by observing intermediate data structures,” in Pro-
ceedings of the 2000 ACM SIGPLAN Workshop on Haskell, 2000.

[20] C. Reinke, “GHood – Graphical Visualisation and Animation of Haskell Ob-
ject Observations,” in Proceedings of the 2001 ACM SIGPLAN Workshop on
Haskell, September 2001.

[21] “Gtk2Hs: A GUI Library for Haskell based on Gtk,” http://projects.haskell.
org/gtk2hs/, accessed: 2012-09-18.

[22] S. Peyton Jones, S. Marlow, and C. Elliot, “Stretching the storage manager:
weak pointers and stable names in Haskell,” in Proceedings of the 11th Inter-
national Workshop on the Implementation of Functional Languages, September
1999.

[23] A. Gill, “Type-safe observable sharing in Haskell,” in Proceedings of the 2009
ACM SIGPLAN Haskell Symposium, Sep 2009.

[24] “Graphviz - Graph Visualization Software,” http://www.graphviz.org/, ac-
cessed: 2012-09-18.

[25] I. L. Miljenovic, “graphviz - graph visualisation library for Haskell,” http://
projects.haskell.org/graphviz/, accessed: 2012-09-18.

[26] “Graphviz Output Formats: xdot,” http://www.graphviz.org/doc/info/output.
html#d:xdot, accessed: 2012-09-18.

[27] “Tying the Knot,” http://www.haskell.org/haskellwiki/Tying the Knot, ac-
cessed: 2012-09-18.

[28] R. Bird, “Hylomorphisms and nexuses,” in Pearls of Functional Algorithm De-
sign. Cambridge University Press, 2010, ch. 21, pp. 168–179.

[29] J. Breitner, “dup – explicit un-sharing in haskell,” CoRR, vol. abs/1207.2017,
2012.

[30] B. O’Sullivan, “Criterion: robust, reliable performance measurement,” https:
//github.com/bos/criterion, accessed: 2012-09-18.

50

http://thoughtpolice.github.com/vacuum/
http://thoughtpolice.github.com/vacuum/
http://projects.haskell.org/gtk2hs/
http://projects.haskell.org/gtk2hs/
http://www.graphviz.org/
http://projects.haskell.org/graphviz/
http://projects.haskell.org/graphviz/
http://www.graphviz.org/doc/info/output.html#d:xdot
http://www.graphviz.org/doc/info/output.html#d:xdot
http://www.haskell.org/haskellwiki/Tying_the_Knot
https://github.com/bos/criterion
https://github.com/bos/criterion

Appendix

A Full Examination of the Sieve of Eratosthenes

Thunk

primes

Ind

:

I# 2

Thunk

Thunk

Fun

primes

Ind

:

I# 2

Thunk

:

I# 3 :

I# 4 :

I# 5 :

I# 6 :

I# 7 :

I# 8 :

I# 9 Thunk

Fun

primes

51

52 Appendix

Ind

:

I# 2

:

I# 3

Thunk

Thunk

Fun :

I# 4 :

I# 5 :

I# 6 :

I# 7 :

I# 8 :

I# 9 Thunk

Fun

primes

Ind

:

I# 2

:

I# 3

Thunk

:

I# 5 Thunk

Fun :

I# 6 :

I# 7 :

I# 8 :

I# 9 Thunk

Fun

primes

52

A. Full Examination of the Sieve of Eratosthenes 53

Ind

:

I# 2

:

I# 3

Thunk

:

I# 5 :

I# 7 Thunk

Fun :

I# 8 :

I# 9 Thunk

Fun

primes

Ind

:

I# 2

:

I# 3

:

I# 5

Thunk

Thunk

Fun :

I# 7 Thunk

Fun :

I# 8 :

I# 9 Thunk

Fun

primes

53

54 Appendix

Ind

:

I# 2

:

I# 3

:

I# 5

:

I# 7

Thunk

Thunk

Fun Thunk

Fun Thunk

Fun :

I# 8 :

I# 9 Thunk

Fun

primes

Ind

:

I# 2

:

I# 3

:

I# 5

:

I# 7

:

I# 11

Thunk

Thunk

Fun Thunk

Fun Thunk

Fun Thunk

Fun Thunk

Fun

primes

54

B. Full Example of combining ghc-vis with GHCi’s Debugger 55

B Full Example of combining ghc-vis with GHCi’s

Debugger

We are going to use a file called test.hs with the following content in this example:

f :: [Integer]→ [Integer]
f (x : xs) = (2 ∗ x) : f xs
f [] = []

ghci> :l test.hs

ghci> :vis

ghci> let x = [1..3]

ghci> let y = f x

ghci> let z = sum y

ghci> :view x

ghci> :view y

ghci> :view z

x: t0

y: t1 (t0)

z: t2 (t1) AP

AP

AP

BCO

BCO

BCO

y

z

x

ghci> :su z

55

56 Appendix

x: t0

y: TSO
b0

z: b0

AP Blackhole Blackhole

BCO TSO

yx z

ghci> :su

From here on only :su is called so it will be omitted.

x: S# 1
b0

: t0 (f0 (S# 3, S# 1
b1

), b0 , b1)

y: TSO
b2

z: b2

: Blackhole Blackhole

S# 1

Thunk

S# 1

Fun

S# 3

TSO

zyx

x: S# 1
b0

: t0 (f0 (S# 3, S# 1
b1

), b0 , b1)

y: t1 [b0]: TSO
b2

z: b2

: :

Blackhole

S# 1

Thunk

S# 1

Fun

S# 3

AP

BCO

Blackhole

TSO

zyx

56

B. Full Example of combining ghc-vis with GHCi’s Debugger 57

x: S# 1
b0

: S# 2
b1

: t0 (f0 (S# 3, S# 1
b2

), b1 , b2)

y: t1 [b0]: TSO
b3

z: b3

: :

Blackhole

S# 1

:

S# 2

Thunk

S# 1

Fun

S# 3

AP

BCO

Blackhole

TSO

z yx

x: S# 1
b0

: S# 2
b1

: t0 (f0 (S# 3, S# 1
b2

), b1 , b2)

y: t1 BCO
b3

[b0]: t2 b3 [b1]: TSO
b4

z: b4

: :

Blackhole

S# 1

:

S# 2

Thunk

S# 1

Fun

S# 3

AP

BCO

:

AP Blackhole

TSO

zyx

x: S# 1
b0

: S# 2
b1

: S# 3
b2

: t0 (f0 (S# 3, S# 1
b3

), b2 , b3)

y: t1 BCO
b4

[b0]: t2 b4 [b1]: TSO
b5

z: b5

:

:

Blackhole

S# 1:

S# 2:

S# 3

Thunk

S# 1

Fun

S# 3

AP

BCO

:

AP Blackhole

TSO

zy

x

57

58 Appendix

x: S# 1
b0

: S# 2
b1

: S# 3
b2

: t0 (f0 (S# 3, S# 1
b3

), b2 , b3)

y: t1 BCO
b4

[b0]: t2 b4 [b1]: t3 b4 [b2]: TSO
b5

z: b5

: :

Blackhole

S# 1

:

S# 2

:

S# 3

Thunk

S# 1

Fun

S# 3

AP

BCO

:

AP :

AP Blackhole

TSO

zyx

x: S# 1
b0

: S# 2
b1

: S# 3
b2

:[]

y: t0 BCO
b3

[b0]: t1 b3 [b1]: t2 b3 [b2]: TSO
b4

z: b4

:

:

Blackhole

S# 1:

S# 2:

S# 3[]

AP

BCO

:

AP :

AP Blackhole

TSO

zy

x

x: (S# 1): S# 2
b0

: S# 3
b1

:[]

y: TSO
b2

: t0 BCO
b3

[b0]: t1 b3 [b1]:[]

z: b2

:

:

Blackhole

S# 1 :

S# 2:

S# 3[]

Blackhole

TSO

:

AP

BCO

:

AP []

z y

x

58

B. Full Example of combining ghc-vis with GHCi’s Debugger 59

x: (S# 1):(S# 2): S# 3
b0

:[]

y: (S# 2): TSO
b1

: t0 [b0]:[]

z: b1

: :

Blackhole

S# 1:

S# 2:

S# 3

[]

S# 2:

Blackhole

TSO

:

AP

BCO

[]

zyx

x: (S# 1):(S# 2):(S# 3):[]

y: (S# 2):(S# 4): TSO
b0

:[]

z: b0

: :

Blackhole

S# 1 :

S# 2 :

S# 3 []

S# 2 :

S# 4 :

Blackhole

TSO

[]

zyx

x: (S# 1):(S# 2):(S# 3):[]

y: (S# 2):(S# 4):(S# 6):[]

z: S# 12

: : S# 12

S# 1 :

S# 2 :

S# 3 []

S# 2 :

S# 4 :

S# 6 []

zyx

59

	Contents
	1 Introduction
	2 Background
	2.1 Haskell
	2.2 Lazy Evaluation
	2.3 Sharing
	2.4 Glasgow Haskell Compiler
	2.5 GHC Heap
	2.6 Related Work
	2.6.1 GHCi Debugger
	2.6.2 Vacuum
	2.6.3 Hood / GHood

	3 ghc-vis
	3.1 Design
	3.1.1 Demonstration
	3.1.2 Implementation

	3.2 Views
	3.2.1 Linear View
	3.2.2 Graph View

	3.3 Problems and Solutions
	3.3.1 Garbage Collector
	3.3.2 Changing Pointers
	3.3.3 Byte Code Objects
	3.3.4 Loading and Reloading Files

	4 Evaluation
	4.1 Comparison
	4.2 Visualizations
	4.2.1 Compiled and Interpreted Code
	4.2.2 Sharing
	4.2.3 Infinite Data Structures
	4.2.4 Sieve of Eratosthenes
	4.2.5 Unboxed Values
	4.2.6 Double Linked List
	4.2.7 IntMap
	4.2.8 Nexuses and Dynamic Programming
	4.2.9 Optimal Bracketing
	4.2.10 Negative Effects of Lazy Evaluation and Sharing

	4.3 Combination with GHCi's Debugger
	4.4 Usage as a Library
	4.5 Source Code
	4.6 Performance

	5 Conclusion
	5.1 Future Work

	Bibliography
	Appendix
	A Full Examination of the Sieve of Eratosthenes
	B Full Example of combining ghc-vis with GHCi's Debugger

