
Institut für Programmstrukturen
und Datenorganisation (IPD)
Lehrstuhl Prof. Dr.-Ing. Snelting

Formal Verification of
Pattern Matching Analyses

Masterarbeit von

Henning Dieterichs

an der Fakultät für Informatik

Erstgutachter: Prof. Dr.-Ing. Gregor Snelting
Zweitgutachter: Prof. Dr. rer. nat. Bernhard Beckert
Betreuende Mitarbeiter: M. Sc. Sebastian Graf

Abgabedatum: 06. 04. 2021

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

Zusammenfassung

Die in Lower Your Guards vorgestellten Algorithmen analysieren Pattern Matching
Definitionen und erkennen nicht abgedeckte Fälle, aber auch unzugängliche und
redundante rechte Seiten.

Ihre Implementierung in GHC entdeckte erfolgreich bisher unbekannte Fehler
in Haskell Quellcode. Während die empirische Validierung über eine große Menge
von Haskell-Code die Behauptung der Korrektheit untermauert, fehlt den Autoren
eine präzise Formalisierung sowie ein Beweis für diese Behauptung.

Diese Arbeit etabliert einen präzisen Begriff von Korrektheit und präsentiert
formale Beweise, dass diese Algorithmen tatsächlich korrekt sind. Diese Beweise
sind in Lean 3 formalisiert.

The algorithms presented in Lower Your Guards analyze pattern matching defi-
nitions and detect uncovered cases, but also inaccessible and redundant right hand
sides.

Their implementation in the GHC spotted previously unknown bugs in real
world code. While empirical validation over a large corpus of Haskell code corrob-
orates the claim of correctness, the authors lack a precise formalization as well as
a proof of that claim.

This thesis establishes a precise notion of correctness and presents formal proofs
that these algorithms are indeed correct. These proofs are formalized in Lean 3.

Contents
1 Introduction 7

2 Background 9
2.1 Lower Your Guards . 9

2.1.1 Inaccessible vs. Redundant RHSs 9
2.1.2 Guard Trees . 9
2.1.3 Refinement Types . 11
2.1.4 Binding Mechanism Of Refinement Types 11
2.1.5 𝒢enerating Inhabitants . 11
2.1.6 𝒰ncovered Analysis . 12
2.1.7 𝒜nnotated Guard Trees . 12
2.1.8 ℛedundant/Inaccessible Analysis 13

2.2 Lean . 16
2.2.1 The Lean Theorem Prover 16
2.2.2 The Lean Mathematical Library 17

3 Formal Definitions 19
3.1 Abstracting LYG: The Guard Module 19
3.2 Guard Trees . 21
3.3 Refinement Types . 23
3.4 Uncovered Analysis . 27
3.5 Redundant / Inaccessible Analysis 28
3.6 Interleaving 𝒰 and 𝒜 . 29

4 Correctness Statements 31
4.1 Correctness of the Uncovered Analysis 31

4.1.1 Comparison to LYGs Notion Of Correctness 31
4.2 Correctness of the Redundant/Inaccessible Analysis 32

4.2.1 Comparison to LYGs Notion Of Correctness 32

5 Formalized Proofs 35
5.1 Simplification 𝐴 of 𝒜 . 35
5.2 Redundant RHSs Can Be Removed Without Changing Semantics . 37

5.2.1 Proof Idea . 37
5.2.2 Generalization of 𝑅(_).red 40
5.2.3 Formal Proof . 42

5.3 Accessible RHSs Must Be Detected as Accessible 43

5

Contents

6 Conclusion 45

6

1 Introduction
In functional programming, pattern matching is a very popular feature. This is
particularly true for Haskell, where you can define algebraic data types and easily
match on them in function definitions. With increasingly complex data types
and function definitions however, pattern matching can be yet another source of
mistakes.

Figure 1.1 showcases common types of mistakes that can arise with pattern
matching.

Most importantly, the function f is not defined on all values: Evaluating f Case4
will cause a runtime error! In other words, the pattern match used to define f is
not exhaustive, as the input Case4 is uncovered. This is usually an oversight by
the programmer and should be brought to their attention with an appropriate
warning.

Also, f will never evaluate to 3 or 4 - replacing these values with any other value
would not change any observable behavior of f. Such right hand sides (RHSs) are
called inaccessible. Inaccessible RHSs indicate a code smell and should be avoided
too. Sometimes, such RHSs can simply be removed from the pattern.

Figure 1.1: A Pattern Matching Example In Haskell

data Case = Case1 | Case2 | Case3 | Case4

f :: Case -> Bool -> Integer
f Case1 _ = 1
f Case2 _ = 2
f x True | Case1 <- x = 3

| Case2 <- x = 4
f Case3 _ = 5

Lower Your Guards (LYG) [1] is a compiler analysis that is able to detect such
mistakes and also can deal with the intricacies of lazy evaluation.

However, LYG is only checked empirically so far: Its implementation in the
Glasgow Haskell Compiler just seems to work.

Obviously, LYG would be incorrect if it marks a RHS as inaccessible even though
it actually is accessible. This could have fatal consequences: A programmer acting
on such misinformation might delete a RHS that is very much in use!

7

As LYG does not give a complete characterization of correctness, we first want
to establish a precise and complete notion of correctness and then check that these
algorithms indeed comply with it. At the very least, a verifying tool should be
verified itself!

The large number of case distinctions made in the algorithms motivates the use
of a theorem prover; a natural proof would not be very trustworthy due to the
high technical demand and risk of missing edge cases.

The main contributions of this thesis are as follows:

• We formalized the uncovered and redundant/inaccessible analysis of LYG in
Lean 3. This formalization is discussed in detail in chapter 3. We noticed
an inaccuracy in how variable scopes are handled in refinement types and
present a counterexample to 𝒰’s correctness in chapter 3.3 by exploiting
shadowing variable bindings. We suggest a more explicit variable scoping
mechanism of refinement types.

• We establish a notion of correctness of LYG. Its formalization in Lean is
discussed in chapter 4. This notion of correctness is more precise and more
complete than the notion of correctness presented in LYG.

• We present formal proofs that the redundant/inaccessible analysis of LYG
satisfies this notion of correctness if our suggestion of a more explicit scoping
operator is applied. Details of this proof are discussed in chapter 5.

8

2 Background

2.1 Lower Your Guards
Lower Your Guards (LYG) [1] describes algorithms that analyze pattern matching
expressions and report uncovered cases, but also redundant and inaccessible right
hand sides.

LYG was designed for use in the Glasgow Haskell Compiler, but the algorithm
and its data structures are so universal that they can be leveraged for other pro-
gramming languages with pattern matching constructs too.

All definitions and some examples of this chapter are taken from LYG [1].

2.1.1 Inaccessible vs. Redundant RHSs
A closer look at figure 1.1 reveals that, while both RHS 3 and 4 are inaccessible,
the semantics of f changes if both are removed. This means that an automated
refactoring cannot just remove all inaccessible leaves!

The reason for this is the term 𝑡 ∶= f Case3 undefined and the fact that Haskell
uses a lazy evaluation strategy. If both RHSs 3 and 4 are removed, 𝑡 evaluates
to 5 - the term undefined is never evaluated as no pattern matches against it.
However, if nothing or only one of the RHSs 3 or 4 is removed, undefined will be
matched with True and thus 𝑡 will throw a runtime error!

To communicate this difference, LYG introduces the concept of redundant and
inaccessible RHSs: A redundant RHS can be removed from its pattern matching
expression without any observable difference. An inaccessible RHS is never eval-
uated, but its removal might lead to observable changes. This definition implies
that redundant RHSs are inaccessible.

As for listing 1.1, LYG will mark RHS 3 as inaccessible and RHS 4 as redundant.
This choice is somewhat arbitrary, as RHS 3 could be marked as redundant and
RHS 4 as inaccessible as well, and will be discussed in more detail in chapter
5.2.2. However, for the reasons mentioned above, not both RHSs can be marked
as redundant.

2.1.2 Guard Trees
For all analyses, LYG first transforms Haskell specific pattern match expressions
to simpler guard trees. This transformation removes a lot of complexity, as many
different Haskell constructs can be desugared to the same guard tree. Guard

9

2.1. LOWER YOUR GUARDS

trees also simplify adapting LYG to other programming languages and they enable
studying LYG mostly independent from Haskell. Their syntax is defined in figure
2.1. Con refers to data constructors, TyCt to type constraints.

Guard trees (Gdts) are made of three elements: Uniquely numbered right hand
sides, branches and guarded trees. Guarded trees refer to Haskell specific guards
(Grd) that control the execution. Let guards can bind a term to a variable in a new
lexical scope. Pattern match guards can destructure a value into variables if the
pattern matches or otherwise prevent the execution from entering the tree behind
the guard. Finally, bang guards can stop the entire execution when the value of a
variable does not reduce to a head normal form (like undefined).

Figure 2.1: Definition of Guard Trees

Guard Syntax

𝑘, 𝑛, 𝑚 ∈ ℕ
𝐾 ∈ Con

𝑥, 𝑦, 𝑎, 𝑏 ∈ Var
𝜏, 𝜎 ∈ Type � 𝑎 ∣ ...

𝑒 ∈ Expr � 𝑥 ∣ 𝐾 𝜏 𝛾 𝑒 ∣ ...

𝛾 ∈ TyCt � 𝜏1 ∼ 𝜏2 ∣ ...
𝑔 ∈ Grd � let 𝑥 ∶ 𝜏 = 𝑒

∣ 𝐾 𝑎 𝛾 𝑦 ∶ 𝜏 ← 𝑥
∣ !𝑥

Guard Tree Syntax

𝑡 ∈ Gdt � 𝑘 ∣ 𝑡1
𝑡2

∣ 𝑔 𝑡

The evaluation of a guard tree selects the first right hand side that execution
reaches. If the execution stops at a bang guard, the evaluation is said to diverge,
otherwise, if execution falls through, the evaluation ends with a no-match. A
formal semantics for guard trees will be defined in chapter 3.2.

The transformation from Haskell pattern matches to guard trees is not of much
interest for this thesis and can be found in LYG [1]. To preserve semantics, it
is important that the transformation inserts bang guards whenever a variable is
matched against a data constructor.

Figure 2.2 presents the transformation of figure 1.1 into a guard tree.

It is usually straightforward to define a transformation from pattern matching
expressions to guard trees that also preserves uncovered cases and inaccessible and
redundant RHSs. This makes guard trees an ideal abstraction for the following
analysis steps.

10

2.1. LOWER YOUR GUARDS

Figure 2.2: Desugaring Example

data Case = Case1 | Case2 | Case3 | Case4

f :: Case -> Bool -> Integer
f Case1 _ = 1
f Case2 _ = 2
f x True | Case1 <- x = 3

| Case2 <- x = 4
f Case3 _ = 5

⇓
!𝑥1, Case1 ← 𝑥1 1

!𝑥1, Case2 ← 𝑥1 2
let 𝑥=𝑥1, !𝑥2, True ← 𝑥2 !𝑥, Case1 ← 𝑥 3

!𝑥, Case2 ← 𝑥 4
!𝑥1, Case3 ← 𝑥1 5

2.1.3 Refinement Types
Refinement types [2] describe vectors of values 𝑥1, ..., 𝑥𝑛 that satisfy a given pred-
icate Φ. Their syntax is defined in figure 2.3.

Refinement predicates are built from literals 𝜙 and closed under conjunction and
disjunction. The literal � refers to “true”, while × refers to “false”. For example:

⟨ 𝑥∶Bool ∣ � ⟩ denotes {⊥,True,False}
⟨ 𝑥∶Bool ∣ 𝑥 ≉ ⊥ ⟩ denotes {True,False}

⟨ 𝑥∶Bool ∣ 𝑥 ≉ ⊥ ∧ True ← 𝑥 ⟩ denotes {True}
⟨ 𝑚𝑥∶Maybe Bool ∣ 𝑚𝑥 ≉ ⊥ ∧ Just x ← 𝑚𝑥 ⟩ denotes Just {⊥,True,False}

2.1.4 Binding Mechanism Of Refinement Types
Refinement type literals, such as the let-literal or the pattern-match-literal, can
bind one or more variables. Unconventionally however, a binding is in scope of a
literal if and only if the binding literal is the left operand of a parent conjunction.

Thus, (let 𝑥= 𝑦 ∧ 𝑥 ≉ ⊥) ∧ 𝑥 ≉ ⊥ is semantically equivalent to 𝑦 ≉ ⊥ ∧ 𝑥 ≉ ⊥.
Clearly, ∧ is not associative!

To utilize this behavior, the operator ∧̇ replaces the rightmost operand of the
top conjunction tree of the left argument (figure 2.3).

2.1.5 𝒢enerating Inhabitants
LYG also describes a partial function 𝒢 with 𝒢(Θ) = ∅ ⇒ (Θ denotes ∅) for all
refinement types Θ. 𝒢 is used to 𝒢enerate inhabitants of a refinement type to

11

2.1. LOWER YOUR GUARDS

Figure 2.3: Definition of Refinement Types

Γ � ∅ ∣ Γ, 𝑥 ∶ 𝜏 ∣ Γ, 𝑎 Context
𝜑 � � ∣ × ∣ 𝐾 𝑎 𝛾 𝑦 ∶ 𝜏 ← 𝑥 ∣ 𝑥 ≉ 𝐾

∣ 𝑥 ≈ ⊥ ∣ 𝑥 ≉ ⊥ ∣ let 𝑥= 𝑒 Literals
Φ � 𝜑 ∣ Φ ∧ Φ ∣ Φ ∨ Φ Formula
Θ � ⟨ Γ ∣ Φ ⟩ Refinement type

Operations on Θ

Φ ∧̇ 𝜑 = {Φ1 ∧ (Φ2 ∧̇ 𝜑) if Φ = Φ1 ∧ Φ2
Φ ∧ 𝜑 otherwise

⟨ Γ ∣ Φ ⟩ ∧̇ 𝜑 = ⟨ Γ ∣ Φ ∧̇ 𝜑 ⟩
⟨ Γ ∣ Φ1 ⟩ ∪ ⟨ Γ ∣ Φ2 ⟩ = ⟨ Γ ∣ Φ1 ∨ Φ2 ⟩

build elaborate error messages, or, more importantly, to get a guarantee that a
refinement type is empty. A total correct function 𝒢 is uncomputable, as there are
expressions (making use of recursively defined functions) that match a certain data
constructor if and only if a given turing machine halts! This thesis just assumes
that “interesting” computable and correct functions 𝒢 exist, so the details of 𝒢 as
proposed by LYG do not matter. In general, all proposed correctness statements
should allow for an empty function 𝒢.

2.1.6 𝒰ncovered Analysis
The goal of the uncovered analysis is to detect all cases that are not handled by a
given guard tree. Refinement types are used to capture the result of this analysis.

The function 𝒰(⟨ Γ ∣ � ⟩, ⋅) in figure 2.4 computes a refinement type that captures
all uncovered values for a given guard tree. This refinement type is empty if and
only if there are no uncovered cases. If 𝒢 is used to test for emptiness, this
already yields an algorithm to test for uncovered cases. It can be verified that
the uncovered refinement type of the guard tree in figure 2.2 “semantically” equals
⟨ 𝑥1∶Case, 𝑥2∶Bool ∣ 𝑥1 ≉ ⊥ ∧̇ 𝑥1 ≉ Case1 ∧̇ 𝑥1 ≉ Case2 ∧̇ 𝑥1 ≉ Case3 ⟩ and denotes
𝑥1 = Case4.

2.1.7 𝒜nnotated Guard Trees
Annotated guard trees represent simplified guard trees that have been annotated
with refinement types Θ. They are made of RHSs, branches and bang nodes. Their
syntax is defined in figure 2.5. Annotated guard trees are the result of the function
𝒜, which is discussed in the next chapter.

12

2.1. LOWER YOUR GUARDS

Figure 2.4: Definition of 𝒰

𝒰(Θ, 𝑡) = Θ
𝒰(⟨ Γ ∣ Φ ⟩, 𝑛) = ⟨ Γ ∣ × ⟩
𝒰(Θ, 𝑡1

𝑡2
) = 𝒰(𝒰(Θ, 𝑡1), 𝑡2)

𝒰(Θ, !𝑥 𝑡) = 𝒰(Θ ∧̇ (𝑥 ≉ ⊥), 𝑡)
𝒰(Θ, let 𝑥= 𝑒 𝑡) = 𝒰(Θ ∧̇ (let 𝑥= 𝑒), 𝑡)
𝒰(Θ, 𝐾 𝑎 𝛾 𝑦 ∶ 𝜏 ← 𝑥 𝑡) = Θ ∧̇ (𝑥 ≉ 𝐾) ∪ 𝒰(Θ ∧̇ (𝐾 𝑎 𝛾 𝑦 ∶ 𝜏 ← 𝑥), 𝑡)

Figure 2.5: Definition of Annotated Guard Trees

𝑢 ∈ Ant � Θ 𝑘 ∣ 𝑢1
𝑢2

∣ Θ � 𝑢

2.1.8 ℛedundant/Inaccessible Analysis
The goal of the redundant/inaccessible analysis is to report as many RHSs as
possible that are redundant or inaccessible. This is done by annotating a guard
tree with refinement types and then checking these refinement types for emptiness.
If a RHS is associated with an empty refinement type, the RHS is inaccessible
and in some circumstances even redundant. The refinement type of a bang node
describes all values under which an evaluation will diverge. Figure 2.6 defines a
function 𝒜 that computes such an annotation for a given guard tree. Figure 2.7
shows the annotated tree of the introductory example in figure 1.1 with abbreviated
refinement types.

Such an annotated guard tree is then passed to a function ℛ as defined in figure
2.8. ℛ uses 𝒢 to compute redundant and inaccessible RHSs. All other RHSs are
assumed to be accessible, even though, due to 𝒢 being a partial function, not all
of them actually are accessible.

Figure 2.9 computes inaccessible and redundant leaves for an annotated tree that
is (𝒢 = ∅)-equivalent to the annotated tree from figure 2.7 for sensible functions
𝒢. It states that RHS 4 in 1.1 is redundant and can be removed, while RHS 3 is
just inaccessible.

13

2.1. LOWER YOUR GUARDS

Figure 2.6: Definition of 𝒜

𝒜(Θ, 𝑡) = 𝑢
𝒜(Θ, 𝑛) = Θ 𝑛
𝒜(Θ, 𝑡1

𝑡2
) = 𝒜(Θ, 𝑡1)

𝒜(𝒰(Θ, 𝑡1), 𝑡2)
𝒜(Θ, !𝑥 𝑡) = Θ ∧̇ (𝑥 ≈ ⊥) � 𝒜(Θ ∧̇ (𝑥 ≉ ⊥), 𝑡)
𝒜(Θ, let 𝑥= 𝑒 𝑡) = 𝒜(Θ ∧̇ (let 𝑥= 𝑒), 𝑡)
𝒜(Θ, 𝐾 𝑎 𝛾 𝑦 ∶ 𝜏 ← 𝑥 𝑡) = 𝒜(Θ ∧̇ (𝐾 𝑎 𝛾 𝑦 ∶ 𝜏 ← 𝑥), 𝑡)

Figure 2.7: Examplary Evaluation of 𝒜

𝒜(�,

!𝑥1, Case1 ← 𝑥1 1
!𝑥1, Case2 ← 𝑥1 2

let 𝑥=𝑥1, !𝑥2, True ← 𝑥2 !𝑥, Case1 ← 𝑥 3
!𝑥, Case2 ← 𝑥 4

!𝑥1, Case3 ← 𝑥1 5

) =

⟨ Γ ∣ 𝑥1 ≈ ⊥ ⟩ � ⟨ Γ ∣ 𝑥1 ≉ ⊥, 𝑥1 ≈ Case1 ⟩ 1
⟨ Γ ∣ 𝑥1 ≉ ⊥, 𝑥1 ≈ ⊥ ⟩ � ⟨ Γ ∣ ..., 𝑥1 ≉ Case1, 𝑥1 ≈ Case2 ⟩ 2

⟨ Γ ∣ 𝑥2 ≈ ⊥ ⟩ � ⟨ Γ ∣ × ⟩ � ⟨ Γ ∣ ..., 𝑥1 ≉ Case1, ..., 𝑥1 ≈ Case1 ⟩ 3
⟨ Γ ∣ × ⟩ � ⟨ Γ ∣ ..., 𝑥1 ≉ Case2, ..., 𝑥1 ≈ Case2 ⟩ 4

⟨ Γ ∣ × ⟩ � ⟨ Γ ∣ ..., 𝑥1 ≈ Case3 ⟩ 5

Figure 2.8: Definition of ℛ. ℛ partitions all RHSs into could-be-accessible (𝑘),
inaccessible (𝑛) and ℛedundant (𝑚) RHSs.

ℛ(𝑢) = (𝑘, 𝑛, 𝑚)

ℛ(Θ 𝑛) = {(𝜖, 𝜖, 𝑛), if 𝒢(Θ) = ∅
(𝑛, 𝜖, 𝜖), otherwise

ℛ(𝑡
𝑢) = (𝑘 𝑘′, 𝑛 𝑛′, 𝑚 𝑚′) where (𝑘, 𝑛, 𝑚) = ℛ(𝑡)

(𝑘′, 𝑛′, 𝑚′) = ℛ(𝑢)

ℛ(Θ � 𝑡) = {(𝜖, 𝑚, 𝑚′), if 𝒢(Θ) ≠ ∅ and ℛ(𝑡) = (𝜖, 𝜖, 𝑚 𝑚′)
ℛ(𝑡), otherwise

14

2.1. LOWER YOUR GUARDS

Figure 2.9: Examplary Evaluation of ℛ

ℛ(

⟨ Γ ∣ � ⟩ � ⟨ Γ ∣ � ⟩ 1
⟨ Γ ∣ × ⟩ � ⟨ Γ ∣ � ⟩ 2

⟨ Γ ∣ � ⟩ � ⟨ Γ ∣ × ⟩ � ⟨ Γ ∣ × ⟩ 3
⟨ Γ ∣ × ⟩ � ⟨ Γ ∣ × ⟩ 4

⟨ Γ ∣ × ⟩ � ⟨ Γ ∣ � ⟩ 5

) = (125, 3, 4)

15

2.2. LEAN

2.2 Lean
2.2.1 The Lean Theorem Prover
Lean is an interactive theorem prover that is based on the calculus of inductive
constructions [3] [4] and is developed by Microsoft Research. It features depen-
dent types, offers a high degree of automation through tactics and can also be
used as a programming language. Due to the Curry-Howard isomorphism, writ-
ing function definitions intended to be used in proofs, writing proofs and writing
proof-generating custom tactics is very similar.

We use Lean 3 for this thesis and want to give a brief overview of its syntax.
See [5] for a detailed documentation.

Inductive data types can be defined with the keyword inductive. The #check
instruction can be used to type-check terms:

inductive my_nat : Type
| zero : my_nat
| succ : my_nat → my_nat

#check my_nat.succ my_nat.zero
#check my_nat.zero.succ -- equivalent term, using dot notation

The keyword def can be used to bind terms and define recursive functions:

def my_nat.add : my_nat → my_nat → my_nat
-- Patterns can be used in definitions
| my_nat.zero b := b
| (my_nat.succ a) b := (a.add b).succ

Likewise, def can be used to bind proof terms to propositions. Propositions are
stated as type and proved by constructing a term of that type. Π-types are used
to introduce generalized type variables:

-- This type states that for all a, a + zero = a
def my_nat.add_zero_eq : Π a: my_nat, a.add my_nat.zero = a :=

-- Proof by induction
@my_nat.rec

-- Induction Hypothesis
(λ a, a.add my_nat.zero = a)
-- Case Zero
(my_nat.add.equations._eqn_1 my_nat.zero)
-- Case Succ
(λ a h,

@eq.subst my_nat
(λ x, (my_nat.succ a).add my_nat.zero = x.succ)
(a.add my_nat.zero)

16

2.2. LEAN

a
h
(my_nat.add.equations._eqn_2 a my_nat.zero)

)

Proofs are usually much shorter when using Leans tactic mode. Also, definitions
can be parametrized (which generalizes the parameter) and the keywords lemma
and theorem can be used instead of def:

lemma my_nat.add_zero' (a: my_nat): a.add my_nat.zero = a :=
begin

induction a,
{ refl, },
{ simp [my_nat.add, *], },

end

2.2.2 The Lean Mathematical Library
Mathlib [6] is a community project that offers a rich mathematical foundation
for many theories in Lean 3. Its theories of finite sets, lists, boolean logic and
permutations have been very useful for this thesis.

Mathlib also offers many advanced tactics like finish, tauto or linarith.
These tactics help significantly in proving trivial lemmas.

17

3 Formal Definitions
Before any property of LYG can be proven or even stated in Lean, all relevant
definitions must be formalized. Since nothing can be left vague in Lean, a lof of
decisions had to be made to back up LYG by a fully defined model. This chapter
discusses these decisions.

3.1 Abstracting LYG: The Guard Module
LYG does not specify an exact guard or expression syntax. Instead, the nota-
tion “...” is often used to indicate a sensible continuation to make guards powerful
enough to model all Haskell constructs. This is rather problematic for a precise
formalization and presented the first big challenge of this thesis. As we wanted to
avoid formalizing Haskell and its semantics, we had to carefully design an abstrac-
tion that is as close as possible to LYG while pinning down guards to a closed but
extendable theory.

The Result Monad
First, we defined a generic Result monad to capture the result of an evaluation.
Due to laziness, evaluation of guard trees can either end with a specific right hand
side, not match any guard or diverge:

inductive Result (α: Type)
| value: α → Result
| diverged: Result
| no_match: Result

A bind operation can be easily defined on Result to make it a proper monad
with Result.value as unit function:

def Result.bind { α β: Type } (f: α → Result β): Result α → Result β
| (Result.value val) := f val
| Result.diverged := Result.diverged
| Result.no_match := Result.no_match

Denotational Semantics for Guards
For some abstract environment type Env, we would like to have a denotational
semantics Grd.eval for guards Grd:

19

3.1. ABSTRACTING LYG: THE GUARD MODULE

Grd.eval : Grd → Env → Result Env
Abstracting Grd.eval would unify all guard constructs available in Haskell and

those used by LYG. However, LYG needs to recognize all guards that can lead to
a diverged evaluation: Removing all RHSs behind such a guard would inevitably
remove the guard itself. As this might change the semantics of the guard tree,
LYG cannot mark all such RHSs as redundant unless there is a proof that the
guard will never diverge. As a consequence, Grd.eval cannot be abstracted away.

Instead, we explicitly distinguish between non-diverging (total) tgrds and pos-
sibly diverging bang guards:
inductive Grd
| tgrd (tgrd: TGrd)
| bang (var: Var)

While TGrds classically represent guards and Grds represent guards with side
effects (introduced by bang guards) in this context, we decided to follow the naming
conventions of LYG and chose the name TGrd for side-effect free (non-diverging)
guards rather than renaming Grd.

In order to define a denotational semantics on Grd, we postulated the functions
tgrd_eval ∶ TGrd → Env → option Env and is_bottom ∶ Var → Env → bool
as well as a type Var that represents variables. While tgrds can change the
environment, bang guards cannot:

def Grd.eval : Grd → Env → Result Env
| (Grd.tgrd grd) env :=

match tgrd_eval grd env with
| none := Result.no_match
| some env' := Result.value env'
end

| (Grd.bang var) env :=
if is_bottom var env
then Result.diverged
else Result.value env

Alternatively, we could have set Var ∶= Env → bool and TGrd ∶= Env →
option Env and replaced is_bottom and tgrd_eval with id, yielding the follow-
ing definition:
inductive Grd'
| tgrd (grd: Env → option Env)
| bang (test: Env → bool)
However, this could make the set of guard trees and refinement types uncountable.
While this is not problematic for aspects explored by this thesis, it could make
implementing a correct function 𝒢 impossible, as it cannot reason anymore about
guards in a computable way if Env is instantiated with a non-finite type.

20

3.2. GUARD TREES

The Guard Module
In Lean, type classes provide an ideal mechanism to define such ambient abstrac-
tions. They can be opened so that all members of the type class become implicitly
available in all definitions and theorems. Every implicit usage pulls the type class
into its signature so that consumers can provide a concrete implementation of the
type class.

We defined and opened a type class GuardModule that describes the presented
abstraction:

class GuardModule :=
(Rhs : Type)
[rhs_decidable: decidable_eq Rhs]
(Env : Type)
(TGrd : Type)
(tgrd_eval : TGrd → Env → option Env)
(Var : Type)
(is_bottom : Var → Env → bool)

variable [GuardModule]
open GuardModule

We also postulated a type Rhs to refer to right hand sides. For technical reasons,
equality on this type must be decidable. This abstracts from the numbers that
are used in LYG to distinguish right hand sides. We also require most types to be
inhabited so that we can construct module-independent examples.

All following definitions and theorems implicitly make use of this abstraction.

3.2 Guard Trees
Syntax of Guard Trees
With the definition of Grd, guard trees are defined as inductive data type:

inductive Gdt
| rhs (rhs: Rhs)
| branch (tr1: Gdt) (tr2: Gdt)
| grd (grd: Grd) (tr: Gdt)

Semantics of Guard Trees
Gdt.eval defines a denotational semantics on guard trees, using the semantics of
guards. It returns the first RHS that matches a given environment. If a guard
diverges, the entire evaluation diverges. Otherwise, if no RHSs matches, no-match
is returned.

21

3.2. GUARD TREES

def Gdt.eval : Gdt → Env → Result Rhs
| (Gdt.rhs rhs) env := Result.value rhs
| (Gdt.branch tr1 tr2) env :=

match tr1.eval env with
| Result.no_match := tr2.eval env
| r := r
end

| (Gdt.grd grd tr) env := (grd.eval env).bind tr.eval

RHSs in Guard Trees

Every guard tree contains a (non-empty) finite set of right hand sides:

def Gdt.rhss: Gdt → finset Rhs
| (Gdt.rhs rhs) := { rhs }
| (Gdt.branch tr1 tr2) := tr1.rhss ∪ tr2.rhss
| (Gdt.grd grd tr) := tr.rhss

In LYG, it is implicitly assumed that the right hand sides of a guard tree are
numbered unambiguously. This has to be stated explicitly in Lean with the fol-
lowing recursive predicate:

def Gdt.disjoint_rhss: Gdt → Prop
| (Gdt.rhs rhs) := true
| (Gdt.branch tr1 tr2) :=

disjoint tr1.rhss tr2.rhss
∧ tr1.disjoint_rhss ∧ tr2.disjoint_rhss

| (Gdt.grd grd tr) := tr.disjoint_rhss

Removing RHSs in Guard Trees

Gdt.remove_rhss defines how a set of RHSs can be removed from a guard tree.
This definition is required to state that all redundant RHSs can be removed without
changing semantics. Note that the resulting guard tree might be empty when all
RHSs are removed!

def Gdt.branch_option : option Gdt → option Gdt → option Gdt
| (some tr1) (some tr2) := some (Gdt.branch tr1 tr2)
| (some tr1) none := some tr1
| none (some tr2) := some tr2
| none none := none

def Gdt.grd_option : Grd → option Gdt → option Gdt
| grd (some tr) := some (Gdt.grd grd tr)
| _ none := none

22

3.3. REFINEMENT TYPES

def Gdt.remove_rhss : finset Rhs → Gdt → option Gdt
| rhss (Gdt.rhs rhs) := if rhs ∊ rhss then none else some (Gdt.rhs rhs)
| rhss (Gdt.branch tr1 tr2) :=

Gdt.branch_option
(tr1.remove_rhss rhss)
(tr2.remove_rhss rhss)

| rhss (Gdt.grd grd tr) := Gdt.grd_option grd (tr.remove_rhss rhss)

Finally, to deal with the semantics of empty guard trees, Gdt.eval_option lifts
Gdt.eval to option Gdt:

def Gdt.eval_option : option Gdt → Env → Result
| (some gdt) env := gdt.eval env
| none env := Result.no_match

3.3 Refinement Types
Refinement types presented another challenge. Defining refinement types through
a proper type system would have required to model Haskell types. Instead, we
tried to rely on the same abstractions used to define guard trees in hope that
guard trees and refinement types can be related.

In this formalization, a refinement type Φ denotes a predicate on environments:

def Φ.eval: Φ → Env → bool

With a proper GuardModule instantiation, the environment can be used to not
only carry runtime values, but also their type! A (well) typed environment can
assist in proving a refinement type to be empty.

Variable Scoping Rules / Incorrectness of 𝒰
Another problem that had to be solved was the formalization of the unconventional
binding mechanism of refinement types through conjunctions, as described in chap-
ter 2.1.4. In particular, this causes 𝒰 to be incorrect (for some intuitive notion
of correctness) with regards to the guard tree semantics we defined in chapter 3.2.
While the following guard tree 𝑔𝑑𝑡 does not match for 𝑥 = False, its uncovered
refinement type Θ computed by 𝒰 is empty due to the constraints 𝑥 ≉ False and
𝑥 ≉ True that refer to the same variable and thus represent a contradiction!

gdt ∶= let 𝑥= True, False ← 𝑥 1
True ← 𝑥 2

Θ ∶= 𝒰(�, gdt) =⟨ 𝑥∶Bool ∣ ((let 𝑥=True ∧̇ 𝑥 ≉ False) ∧̇ 𝑥 ≉ True ⟩
=⟨ 𝑥∶Bool ∣ let 𝑥=True ∧ (𝑥 ≉ False ∧ 𝑥 ≉ True) ⟩

23

3.3. REFINEMENT TYPES

In the example, the let binding brings a variable 𝑥 into scope that shadows an
outer variable. Due to the definition of 𝒰 and the scoping rules of refinement types,
this shadowing binding of 𝑥 overrides the outer variable 𝑥 in contexts where it is
incorrect to do so.

In particular, the term 𝒰(𝒰(Θ, 𝑡1), 𝑡2) in the branch case of 𝒰 is problematic:
All bindings introduced in Θ should still be exposed by 𝒰(Θ, 𝑡1) so that variables
in 𝑡2 are resolved correctly. However, variable definitions introduced in 𝑡1 must
not be visible to 𝑡2 and thus must not be exposed by 𝒰(Θ, 𝑡1)! This is clearly
violated by the term 𝒰(Θ ∧̇ (let 𝑥= 𝑒), 𝑡) that defines the let-case in 𝒰 - it exposes
both all bindings from Θ and the new binding let 𝑥= 𝑒.

Shadowing is unproblematic for the presented semantics of guard trees though:
If the first guard tree of a branch fails to match, its environment just before the
failing guard is discarded and with it possible shadowing bindings. The second
branch is always evaluated with the same environment that the first guard tree has
been evaluated with. This is consistent with Haskells semantics of pattern match
expressions.

There are several ways of how this problem can be addressed.

• Replace the term 𝒰(𝒰(Θ, 𝑡1), 𝑡2) in the definition of 𝒰 with 𝒰((𝒰(Θ, 𝑡1) ∪
×) ∧̇ Θ, 𝑡2).
“ ∧̇ ” stops at “∪”, so the ∪-operator acts as scope boundary. To bring the
variables defined by Θ into scope again, Θ is joined a second time, potentially
causing a refinement type of exponential size. While we believe that 𝒰 is
correct with this updated definition, we decided against this solution as the
construction to limit the scope feels like a band aid and is unnecessarily
complex.

• Adjust the semantics of guard trees so that variables defined in a branch
override shadowed variables in all later branches.
We managed to prove correctness of 𝒰 as stated in LYG with this updated
semantics of guard trees. However, this semantics is not only very unconven-
tional, but also dramatically increases the complexity when reasoning about
the effect of removing an inaccessible RHS.
Since variable bindings introduced by guards that guard only inaccessible
RHSs stay visible until the evaluation ends (and are not only relevant for the
inaccessible RHSs), removing such guards almost always causes a different
final environment. In this sense, almost no inaccessible RHSs are redundant
- which is not the intention of the analysis and clearly not the case for the
GHC implementation of LYG. To make the analysis more meaningful, we
could require each variable name to be unique. With this assumption, such
environment modification should have no impact on the evaluation result.
Due to the high complexity of this approach, we decided against it too.

• Limit the scope of variables in refinement types.

24

3.3. REFINEMENT TYPES

A data constructor Φ.tgrd_in ∶ TGrd → Φ → Φ is introduced that limits the
scope of the guard to the nested refinement type and any scoping behavior
of the ∧-operator is removed. This simplifies the scoping mechanism, but
requires to adapt 𝒰, as done in chapter 3.4. We chose this approach due to
its clear modeling, in hope to reduce the complexity of the formal proofs.

This problem does not arise in the GHC implementation of LYG as it uses a
different encoding for refinement types.

Syntax of Refinement Types
Finally, this is our formalized syntax of refinement types:

inductive Φ
| false
| true
| tgrd_in (tgrd: TGrd) (ty: Φ)
| not_tgrd (tgrd: TGrd)
| var_is_bottom (var: Var)
| var_is_not_bottom (var: Var)
| or (ty1: Φ) (ty2: Φ)
| and (ty1: Φ) (ty2: Φ)

Since the negation of a guard cannot bind variables, it does not need to have
a nested refinement type that would see bound variables. The same applies to
var_is_bottom and its negation.

Semantics of Refinement Types
The semantics of refinement types is easily defined and implicitly uses the guard
module:

def Φ.eval: Φ → Env → bool
| Φ.false env := ff
| Φ.true env := tt
| (Φ.tgrd_in grd ty) env := match tgrd_eval grd env with

| some env := ty.eval env
| none := ff
end

| (Φ.not_tgrd grd) env :=
match tgrd_eval grd env with
| some env := ff
| none := tt
end

| (Φ.var_is_bottom var) env := is_bottom var env

25

3.3. REFINEMENT TYPES

| (Φ.var_is_not_bottom var) env := !is_bottom var env
| (Φ.or t1 t2) env := t1.eval env || t2.eval env
| (Φ.and t1 t2) env := t1.eval env && t2.eval env

With this definition the evaluation of the second operand of a conjunction is
obviously independent of any environment effects applied in the evaluation of the
first operand!

Definition of is_empty
A refinement type Φ is called empty if it does not match any environment. This
is formalized by the predicate Φ.is_empty:

def Φ.is_empty (ty: Φ): Prop := ∀ env: Env, ¬(ty.eval env)

Definition of can_prove_empty
Instead of a partial function 𝒢 with 𝒢(Φ) = ∅ if and only if Φ is empty, we define
a total function can_prove_empty and a predicate correct_can_prove_empty
that ensures its correctness. This abstracts from the generation of inhabitants
which are superfluous in this context. It also avoids dealing with partial functions,
which are not directly supported by Lean.

variable can_prove_empty: Φ → bool
def correct_can_prove_empty : Prop :=

∀ ty: Φ, can_prove_empty ty = tt → ty.is_empty

The subtype CorrectCanProveEmpty bundles a correct can_prove_empty func-
tion:

def CorrectCanProveEmpty := {
can_prove_empty : Φ → bool
// correct_can_prove_empty can_prove_empty

}

26

3.4. UNCOVERED ANALYSIS

3.4 Uncovered Analysis
As discussed in chapter 3.3, LYG’s definition of 𝒰 has problems with guard trees
that define shadowing bindings. LYG defined 𝒰 as follows (see chapter 2.1.6 for
the discussion of this definition):

𝒰(⟨ Γ ∣ Φ ⟩, 𝑛) = ⟨ Γ ∣ × ⟩
𝒰(Θ, 𝑡1

𝑡2
) = 𝒰(𝒰(Θ, 𝑡1), 𝑡2)

𝒰(Θ, !𝑥 𝑡) = 𝒰(Θ ∧̇ (𝑥 ≉ ⊥), 𝑡)
𝒰(Θ, let 𝑥= 𝑒 𝑡) = 𝒰(Θ ∧̇ (let 𝑥= 𝑒), 𝑡)
𝒰(Θ, 𝐾 𝑎 𝛾 𝑦 ∶ 𝜏 ← 𝑥 𝑡) = Θ ∧̇ (𝑥 ≉ 𝐾) ∪ 𝒰(Θ ∧̇ (𝐾 𝑎 𝛾 𝑦 ∶ 𝜏 ← 𝑥), 𝑡)

Equipped with the data constructor Φ.tgrd_in, we can fix the shadowing prob-
lem and formalize 𝒰 now. Instead of using Φ as accumulator type, our formaliza-
tion uses a function Φ → Φ: The new accumulator explicitly applies a context to
a refinement type. This happens implicitly in LYG’s definition through the use of
Θ ∧̇ ⋅.

Note that all occuring accumulator functions are homomorphisms modulo the se-
mantics of refinement types, i.e. Gdt.eval (𝑓 (𝑎.and 𝑏)) = Gdt.eval ((𝑓 𝑎).and (𝑓 𝑏)).
We carefully make use of this to get formalized definitions of 𝒰 and 𝒜 that can be
interleaved, as done in LYG.

def 𝒰_acc : (Φ → Φ) → Gdt → Φ
| acc (Gdt.rhs _) := Φ.false
| acc (Gdt.branch tr1 tr2) := (𝒰_acc ((𝒰_acc acc tr1).and ∘ acc) tr2)
| acc (Gdt.grd (Grd.bang var) tr) :=

𝒰_acc (acc ∘ (Φ.var_is_not_bottom var).and) tr
| acc (Gdt.grd (Grd.tgrd grd) tr) :=

(acc (Φ.not_tgrd grd))
.or (𝒰_acc (acc ∘ (Φ.tgrd_in grd)) tr)

def 𝒰 : Gdt → Φ := 𝒰_acc id

27

3.5. REDUNDANT / INACCESSIBLE ANALYSIS

3.5 Redundant / Inaccessible Analysis
Formalization of Annotated Trees
The formalization of annotated trees is straightforward. However, we allow arbi-
trary annotations rather than only accepting refinement types. This will become
useful in formal proofs when we no longer care about the specific refinement types,
but only whether they are empty.
inductive Ant (α: Type)
| rhs (a: α) (rhs: Rhs): Ant
| branch (tr1: Ant) (tr2: Ant): Ant
| diverge (a: α) (tr: Ant): Ant

Formalization of 𝒜
Similar to the formalization of 𝒰 in chapter 3.4, we also need to address the
shadowing problem when formalizing 𝒜. This is LYG’s definition of 𝒜 as stated
in chapter 2.1.8:

𝒜(Θ, 𝑛) = Θ 𝑛
𝒜(Θ, 𝑡1

𝑡2
) = 𝒜(Θ, 𝑡1)

𝒜(𝒰(Θ, 𝑡1), 𝑡2)
𝒜(Θ, !𝑥 𝑡) = Θ ∧̇ (𝑥 ≈ ⊥) � 𝒜(Θ ∧̇ (𝑥 ≉ ⊥), 𝑡)
𝒜(Θ, let 𝑥= 𝑒 𝑡) = 𝒜(Θ ∧̇ (let 𝑥= 𝑒), 𝑡)
𝒜(Θ, 𝐾 𝑎 𝛾 𝑦 ∶ 𝜏 ← 𝑥 𝑡) = 𝒜(Θ ∧̇ (𝐾 𝑎 𝛾 𝑦 ∶ 𝜏 ← 𝑥), 𝑡)
Our formalization in Lean follows. Analogous to our formalization of 𝒰, in-

stead of contextualizing refinement types by combining them with the accumulator
through ∧̇ , we model the accumulator as an explicit function that contextualizes
its argument:
def 𝒜_acc : (Φ → Φ) → Gdt → Ant Φ
| acc (Gdt.rhs rhs) := Ant.rhs (acc Φ.true) rhs
| acc (Gdt.branch tr1 tr2) :=

Ant.branch
(𝒜_acc acc tr1)
(𝒜_acc ((𝒰_acc acc tr1).and ∘ acc) tr2)

| acc (Gdt.grd (Grd.bang var) tr) :=
Ant.diverge

(acc (Φ.var_is_bottom var))
(𝒜_acc (acc ∘ ((Φ.var_is_not_bottom var).and)) tr)

| acc (Gdt.grd (Grd.tgrd grd) tr) :=
(𝒜_acc (acc ∘ (Φ.tgrd_in grd)) tr)

def 𝒜 : Gdt → Ant Φ := 𝒜_acc id

28

3.6. INTERLEAVING 𝒰 AND 𝒜

Note that in the branch case, 𝒜_acc and 𝒰_acc are called with the same
arguments. Even more, both functions have the same recursion structure, which
makes it possible to interleave both functions. This is done in chapter 3.6.

Formalization of ℛ
It remains to formalize the function ℛ that partitions all right hand sides of an
annotated guard tree into accessible, inaccessible and redundant right hand sides,
by using the function can_prove_empty.

This is ℛ as presented in LYG and chapter 2.1.8:

ℛ(Θ 𝑛) = {(𝜖, 𝜖, 𝑛), if 𝒢(Θ) = ∅
(𝑛, 𝜖, 𝜖), otherwise

ℛ(𝑡
𝑢) = (𝑘 𝑘′, 𝑛 𝑛′, 𝑚 𝑚′) where (𝑘, 𝑛, 𝑚) = ℛ(𝑡)

(𝑘′, 𝑛′, 𝑚′) = ℛ(𝑢)

ℛ(Θ � 𝑡) = {(𝜖, 𝑚, 𝑚′), if 𝒢(Θ) ≠ ∅ and ℛ(𝑡) = (𝜖, 𝜖, 𝑚 𝑚′)
ℛ(𝑡), otherwise

This definition has a surprisingly direct representation in Lean:

def ℛ : Ant Φ → list Rhs × list Rhs × list Rhs
| (Ant.rhs ty n) :=

if can_prove_empty ty
then ([], [], [n])
else ([n], [], [])

| (Ant.branch tr1 tr2) :=
match (ℛ tr1, ℛ tr2) with
| ((k, n, m), (k', n', m')) := (k ++ k', n ++ n', m ++ m')
end

| (Ant.diverge ty tr) :=
match ℛ tr, can_prove_empty ty with
| ([], [], m :: ms), ff := ([], [m], ms)
| r, _ := r
end

3.6 Interleaving 𝒰 and 𝒜
Since 𝒜_acc and 𝒰_acc have the same recursion structure, they can be combined
into a single function that shares the recursive invocations. The following function
𝒰𝒜_acc computes the uncovered refinement type and the annotated guard tree
for a given guard tree at the same time. This improves performance if a lazy
evaluation strategy is used in combination with sharing as the accumulator can be
fully shared.

29

3.6. INTERLEAVING 𝒰 AND 𝒜

def 𝒰𝒜_acc : (Φ → Φ) → Gdt → Φ × Ant Φ
| acc (Gdt.rhs rhs) := (Φ.false, Ant.rhs (acc Φ.true) rhs)
| acc (Gdt.branch tr1 tr2) :=

let (U1, A1) := 𝒰𝒜_acc acc tr1,
(U2, A2) := 𝒰𝒜_acc (U1.and ∘ acc) tr2

in (U2, Ant.branch A1 A2)
| acc (Gdt.grd (Grd.bang var) tr) :=

let (U, A) := 𝒰𝒜_acc (acc ∘ (Φ.var_is_not_bottom var).and) tr
in (U, Ant.diverge (acc (Φ.var_is_bottom var)) A)

| acc (Gdt.grd (Grd.tgrd grd) tr) :=
let (U, A) := 𝒰𝒜_acc (acc ∘ (Φ.tgrd_in grd)) tr
in ((acc (Φ.not_tgrd grd)).or U, A)

It is surprisingly easy to show that this function is really interleaving 𝒜_acc
and 𝒰_acc:

theorem 𝒰𝒜_acc_eq (acc: Φ → Φ) (gdt: Gdt):
𝒰𝒜_acc acc gdt = (𝒰_acc acc gdt, 𝒜_acc acc gdt) :=

by induction gdt generalizing acc;
try { cases gdt_grd }; simp [𝒰𝒜_acc, 𝒰_acc, 𝒜_acc, *]

30

4 Correctness Statements
As we have all the required definitions at this point, we can state and formalize
what we expect of the presented pattern match analyses to be considered correct.
We provide proofs for all correctness propositions on GitHub [7]. Chapter 5 will
discuss parts of these proofs in more detail.

4.1 Correctness of the Uncovered Analysis
𝒰 should compute a refinement type that denotes exactly all values that are not
covered by a given guard tree. This does not include values under which the
execution diverges!

The following theorem states correctness of 𝒰 in Lean:

theorem 𝒰_semantic: ∀ gdt: Gdt, ∀ env: Env,
(𝒰 gdt).eval env ↔ (gdt.eval env = Result.no_match)

As an obvious consequence, a guard tree always matches (or diverges) if and
only if the refinement type computed by 𝒰 is empty. If a correct function 𝒢 or
can_prove_empty proves emptiness of such a computed refinement type, there are
no uncovered cases by this theorem. Otherwise, a warning of potential uncovered
cases should be issued!

Hence, this theorem implies correctness of the uncovered analysis: The uncov-
ered analysis should rather report a false positive than not detect an uncovered
case.

Note that this theorem carries over to all semantically equivalent definitions of
𝒰.

4.1.1 Comparison to LYGs Notion Of Correctness
LYG states that “[...] LYG will never fail to report uncovered clauses (no false
negatives), but it may report false positives” [1]. Our statement of 𝒰s correctness
is stronger: The function 𝒰 computes a refinement type that covers exactly all
environments that are not covered by the guard tree. If 𝒢 is assumed to be correct
and used to semi-decide whether the refinement type computed by 𝒰 is empty,
LYGs claim follows.

31

4.2. CORRECTNESS OF THE REDUNDANT/INACCESSIBLE ANALYSIS

4.2 Correctness of the Redundant/Inaccessible Analysis
For a given guard tree and a given correct function can_prove_empty (which
corresponds to 𝒢 in LYG), ℛ should compute a triple (𝑎, 𝑖, 𝑟) of accessible, inac-
cessible and redundant right hand sides. Whenever the given guard tree evaluates
to a RHS, this RHS must be accessible and neither inaccessible nor redundant.
RHSs that are redundant can be removed from the guard tree without changing
the semantics of the guard tree. This expresses correctness of the redundant and
inaccessible analysis.

theorem ℛ_semantic:
∀ can_prove_empty: CorrectCanProveEmpty,
∀ gdt: Gdt, gdt.disjoint_rhss → (

let ⟨ a, i, r ⟩ := ℛ can_prove_empty.val (𝒜 gdt)
in

(∀ env: Env, ∀ rhs: Rhs,
gdt.eval env = Result.value rhs
→ rhs ∊ a \ (i ++ r)

)
∧

Gdt.eval_option (gdt.remove_rhss r.to_finset)
= gdt.eval

: Prop
)

Note that redundant RHSs could be marked as inaccessible or even accessible
instead without violating this theorem. The opposite is not true: Not all accessible
RHSs can be marked as inaccessible and not all inaccessible RHSs can be marked
as redundant - see chapters 1 and 2 for counterexamples. However, we conjecture
that 𝑎 contains no inaccessible and 𝑖 no redundant RHSs if can_prove_empty is
both correct and complete (even though such a function is usually uncomputable).

4.2.1 Comparison to LYGs Notion Of Correctness
LYG states correctness of the redundant/inaccessible analysis as following: “Sim-
ilarly, LYG will never report accessible clauses as redundant (no false positives),
but it may fail to report clauses which are redundant when the code involved is too
close to undecidable territory.” [1]. Furthermore, LYG also states “A redundant
equation can be removed from a function without changing its semantics, whereas
an inaccessible equation cannot, [...]”.

We both improved the precision of LYGs notion of correctness by formally defin-
ing every involved concept, but also made it more complete by stating that RHSs
identified as redundant by LYG are indeed redundant.

32

4.2. CORRECTNESS OF THE REDUNDANT/INACCESSIBLE ANALYSIS

While the predecessor of LYG, “GADTs Meet Their Match” [8] (in shortGMTM),
gives a formal statement about its correctness in theorem 1, it lacks a proof. Also,
according to our understanding, GMTM’s statement does not explicitly examine
the effect of removing redundant right hand sides as we do.

33

5 Formalized Proofs
This chapter gives an overview of the formal proofs of the correctness statements
from the previous chapter. The full Lean proofs can be found on GitHub [7].

To reduce the complexity of the definitions from chapter 3, we came up with
several internal definitions. They include accumulator-free alternatives U and A for
the functions 𝒰 and 𝒜.

Correctness of U can be shown directly, and this result can be transferred easily to
𝒰 too, as 𝒰’s correctness only depends on the semantic of the computed refinement
type (see chapter 4.1). It is much more difficult to show correctness of ℛ/𝒜 though,
so we will discuss this in more detail.

In chapter 5.2, we show that redundant RHSs can be removed without changing
semantics. Then, in chapter 5.3, we show that if a guard tree evaluates to a
RHS, this RHS must be marked as accessible. Together, these properties form the
correctness statement of the uncovered/redundant analysis as presented in chapter
4.2.

In total, we declared 48 definitions and proved 143 lemmas and theorems, re-
sulting in 2009 lines of Lean code!

5.1 Simplification 𝐴 of 𝒜
It is difficult to reason about 𝒜_𝑎𝑐𝑐 and thus 𝒜, as we are only interested in
certain well behaving accumulator values (in particular homomorphisms) and not
arbitrary functions. Let us have another look at the definition of 𝒜:

def 𝒜_acc : (Φ → Φ) → Gdt → Ant Φ
| acc (Gdt.rhs rhs) := Ant.rhs (acc Φ.true) rhs
| acc (Gdt.branch tr1 tr2) := Ant.branch

(𝒜_acc acc tr1)
(𝒜_acc ((𝒰_acc acc tr1).and ∘ acc) tr2)

| acc (Gdt.grd (Grd.bang var) tr) := Ant.diverge
(acc (Φ.var_is_bottom var))
(𝒜_acc (acc ∘ ((Φ.var_is_not_bottom var).and)) tr)

| acc (Gdt.grd (Grd.tgrd grd) tr) :=
(𝒜_acc (acc ∘ (Φ.tgrd_in grd)) tr)

def 𝒜 : Gdt → Ant Φ := 𝒜_acc id

35

5.1. SIMPLIFICATION 𝐴 OF 𝒜

Since 𝒜 is central to many propositions, we define a much simpler function 𝐴
that does not need an accumulator:

def A : Gdt → Ant Φ
| (Gdt.rhs rhs) := Ant.rhs Φ.true rhs
| (Gdt.branch tr1 tr2) := Ant.branch (A tr1) $ (A tr2).map ((U tr1).and)
| (Gdt.grd (Grd.bang var) tr) := Ant.diverge (Φ.var_is_bottom var)

$ (A tr).map ((Φ.var_is_not_bottom var).and)
| (Gdt.grd (Grd.tgrd grd) tr) := (A tr).map (Φ.tgrd_in grd)

However, 𝒜(gdt) is not syntactically equal to 𝐴(gdt) for every gdt, as the fol-
lowing example shows:

𝑔𝑑𝑡 ∶= True ← 𝑥 3
4

𝐴(𝑔𝑑𝑡) ∶= 𝑥 ≈ True in � 3
𝑥 ≈ True in (× ∧ �) 4

𝒜(𝑔𝑑𝑡) ∶= 𝑥 ≈ True in � 3
𝑥 ≈ True in (×) ∧ 𝑥 ≈ True in (�) 4

This counterexample can easily be verified by Lean:

theorem A_neq_𝒜 (r: Rhs) (g: TGrd): A ≠ 𝒜 :=
begin

intro,
replace a := congr_fun a (Gdt.grd (Grd.tgrd g)

(
(Gdt.rhs r)

.branch (Gdt.rhs r)
)),

finish [A, 𝒜, 𝒜_acc, Ant.map],
end

We are unsure whether the definition of 𝐴 and 𝒜 can be adapted to get syn-
tactical equality while maintaining the simplicity of 𝐴 and aligning the recursion
structure of 𝒜 and 𝒰 (see chapter 3.6).

Instead, we define a semantics on Ant Φ and show that 𝐴 and 𝒜 have the same
semantics:

def Ant.eval_rhss (ant: Ant Φ) (env: Env): Ant bool :=
ant.map (λ ty, ty.eval env)

theorem A_sem_eq_𝒜 (gdt: Gdt):
(A gdt).eval_rhss = (𝒜 gdt).eval_rhss

36

5.2. REDUNDANT RHSS CAN BE REMOVED WITHOUT CHANGING
SEMANTICS

When only relying on semantical equivalence, care has to be taken when getting
insights into 𝒜 by studying 𝐴, as can_prove_empty does not have to be well
defined on refinement types modulo semantical equivalence. If two refinement
types are semantically equal, can_prove_empty could be true for the former, but
false for the latter type. A function can_prove_empty that is correct and has
this well defined property is uncomputable if it returns true for the refinement
type × - it would need to return true for all refinement types that are empty!
Thus, can_prove_empty must operate on the refinement types of 𝒜.

5.2 Redundant RHSs Can Be Removed Without
Changing Semantics

5.2.1 Proof Idea
Given a guard tree 𝑔𝑑𝑡 with disjoint RHSs and an annotated guard tree 𝐴𝑔𝑑𝑡 that
semantically equals A gdt, all redundant leaves reported by ℛ (on 𝐴𝑔𝑑𝑡, using a
correct function can_prove_empty) can be removed from 𝑔𝑑𝑡 without changing its
semantics. We will later instantiate Agdt with 𝒜 gdt. The indirection introduced
by Agdt allows to use the simpler definition of 𝐴 while can_prove_empty still
computes emptiness for refinement types in Agdt (see chapter 5.1 for why this
is important). This internal statement forms the second part of the correctness
property defined in chapter 4.2 and is formalized as follows:

theorem R_red_removable
(can_prove_empty: CorrectCanProveEmpty)
{ gdt: Gdt } (gdt_disjoint: gdt.disjoint_rhss)
{ Agdt: Ant Φ }
(ant_def: Agdt.mark_inactive_rhss = (A gdt).mark_inactive_rhss):

Gdt.eval_option (gdt.remove_rhss (
(R (Agdt.map can_prove_empty.val)).red.to_finset

))
= gdt.eval

The general idea is to focus on a particular but arbitrary environment env:
Reasoning about which RHSs can be removed while preserving semantics is much
simpler when only considering a single environment.

In fact, we can just evaluate the given guard tree on env and safely remove all
RHSs except the one the evaluation ended with. We call RHSs that play no role in
the evaluation on env inactive, the resulting RHS is called active. If the evaluation
diverged however, the diverging bang guard must not be removed; thus, all RHSs
behind the diverging bang operator except one can be removed. In this case, the
bang guard is active and all RHSs are inactive. Clearly, at most one node (RHS
or bang guard) is active.

37

5.2. REDUNDANT RHSS CAN BE REMOVED WITHOUT CHANGING
SEMANTICS

The function Gdt.mark_inactive directly computes a boolean annotated tree
that marks inactive nodes for a given guard tree and environment. The definition
of Gdt.mark_inactive is very similar to the definition of the denotational semantic
of guard trees - this helps proofs that bring these concepts together. This function
equals the negation of the semantic of trees annotated with refinement types!

It remains to relate the set of RHSs 𝑟 ∶= ℛ(𝒜(gdt)).red to the RHSs that can
be removed when focusing on a particular environment.

Figure 5.1 sketches the proof idea. Thin arrows mark the data flow, fat arrows
the flow of reasoning.

Step 1: Defining gdt and 𝒜(gdt)
We start with a guard tree gdt and its annotated tree 𝒜(gdt).

As a detail in the formal proof, we actually use Agdt instead of 𝒜(gdt), but
since ant2 ∶= 𝒜(gdt).map(¬ ∘ Φ.evalenv) only depends on the semantic of 𝒜(gdt)
and Agdt has the same semantic, this does not change the proof idea.

Step 2: Decomposing ℛ into 𝑅 and Ant.map(can_prove_empty), Defining ant1

To better understand ℛ, we decompose ℛ, which takes an Ant Φ and needs a
function can_prove_empty, into a function 𝑅 that takes an Ant bool and a
function 𝑓 ∶= map(can_prove_empty) that computes an Ant bool from an Ant Φ
so that ℛ = 𝑅 ∘ 𝑓 .

In figure 5.1, ant1 ∶= 𝑓(𝒜(gdt)) represents the object that 𝑅 works on. Clearly,
ℛ(𝒜(gdt)).red = 𝑅(ant1).red. In this particular example, only the refinement
type associated with RHS 1 is recognized as empty and we have ℛ(𝒜(gdt)).red =
{RHS 1}, as indicated by the ellipsis.

Step 3: Defining ant3 and ant2

ant3 in figure 5.1 is a boolean annotated tree whose nodes indicate inactivity under
env (true if they are inactive, otherwise false). It is much easier to reason about the
effect of removing selected RHSs from this tree due to the closely related definitions
of Gdt.mark_inactive and Gdt.eval, especially if the selection of RHSs is done
by only looking at ant3.

It is easy to relate ant1 with ant3 if we define ant2 ∶= 𝒜(gdt).map(¬ ∘ Φ.evalenv)
as the negation of the evaluation of each refinement type under env.

Step 4: Relating ant1, ant2 and ant3

We can show that each boolean annotation in ant1 implies (“⇒”) the corresponding
boolean annotation in ant2 pointwise (P1): If a refinement type is empty, it must
not match any environment.

We can also show ant2 = ant3 (P3), since a node is active under env if and only
if the corresponding refinement type matches env.

38

5.2. REDUNDANT RHSS CAN BE REMOVED WITHOUT CHANGING
SEMANTICS

Figure 5.1: Proof Overview: Redundant RHSs can be removed without changing
semantics.

x = 1? RHS 1

RHS 2bang y

x = 2?

𝒜

ant1 ∶= 𝒜(gdt).map(can_prove_empty)

env
𝑥 = 1
𝑦 = ⊥

ant3 ∶= gdt.mark_inactiveenv

RHS 1

RHS 2diverge
𝑦 = ⊥

𝑥 = 1 ∧ 𝑥 = 2

¬false ∧ 𝑦 ≠ ⊥
ant2 ∶= 𝒜(gdt).map(¬ ∘ Φ.evalenv)

gdt

ℛ(𝒜(gdt)).red =

𝒜(gdt)

is_redundantant1 (⋅)

P2: removableant1 (𝑅(ant).red)

RHS 1

RHS 2diverge
active

inactive

inactive

ant3

RHS 1

RHS 2diverge
false

true

false

ant1

RHS 1

RHS 2diverge
false

true

true

ant2

is_redundantant2 (⋅)

is_redundantant3 (⋅)

P5: Can be removed from gdt without side-effects!

P3: “⇒” preserves removable sets

P1: ant1 ⇒ ant2 (pointwise)

P4: (trees are equal)

P3: ant2 = ant3

𝑅(ant1).red

39

5.2. REDUNDANT RHSS CAN BE REMOVED WITHOUT CHANGING
SEMANTICS

Step 5: Exploiting the Relationship
It is easy to show that any subset of RHSs 𝑅(ant3).red can be removed from 𝑔𝑑𝑡
without changing its semantic on env. We have to show the same for R(ant1).red.
We hoped that R(ant1).red would be a subset of R(ant2).red (due to ant1 ⇒ ant2)
to complete the proof. However, this is not the case! See chapter 5.2.2 for a
counterexample.

To repair the proof idea, we defined a predicate is_redundant_set (for brevity
called is_redundant in figure 5.1) on sets of RHSs for a given boolean annotated
tree. This predicate has the property that 𝑅(ant1).red is a redundant set (P2,
hence {RHS 1} is a redundant set) and that if 𝑟 is a redundant set in ant1 and if
ant1 ⇒ ant2, then 𝑟 is also a redundant set in ant2 (P3).

Finally, we show that RHSs that are redundant in gdt.mark_inactiveenv can
be removed from guard trees without changing their semantic under env (P5).
This finishes the proof!

5.2.2 Generalization of 𝑅(_).red
Given two boolean annotated trees anta and antb with anta ⇒ antb, we would like
to transfer insights into redundant sets in anta to antb as stated in the previous
chapter.

𝑅 is not suitable
We cannot use R directly: R(anta).red does not need to be a subset of R(antb).red!
In fact, they can be disjoint, as the following counterexample shows.

anta ∶= false � true 1
false 2

antb ∶= false � true 1
true 2

Clearly, it is ant𝑎 ⇒ ant𝑏, but R(anta) = {1} and R(antb) = {2}. This coun-
terexample can easily be verified with Lean, a proof is included in [7].

This issue is caused by the freedom of how critical sets of RHSs can be avoided
and that 𝑅 does not always consider this freedom. A set of RHSs is critical if
removing all its RHSs necessarily also removes a bang guard associated with a
non-empty refinement type. Clearly, a set of redundant right hand sides must not
contain a critical set - otherwise, a possibly active bang guard might be removed.
This could be observable and would contradict the definition of a redundant set
to not cause observable side effects on removal!

Hence, if all RHSs behind a possibly active bang guard are inaccessible (as in
ant𝑏 in the counterexample), not all of them can be marked as redundant. In such
cases, 𝑅 marks all RHSs as redundant except the first. However, 𝑅 could have
also excluded any other RHS instead (i.e. the second one in the example), which

40

5.2. REDUNDANT RHSS CAN BE REMOVED WITHOUT CHANGING
SEMANTICS

would equally avoid the critical set caused by the bang guard! If such a RHS is not
inaccessible (as in ant𝑎 in the counterexample), 𝑅 does not have to exclude any
inaccessible RHS from being redundant (and thus marks the first as redundant in
the example). In this case, 𝑅 makes use of the freedom of how critical sets can be
avoided by cleverly using an active RHS instead of just the first RHS as witness.

Definition of is_redundant_set

To overcome this issue, we generalize 𝑅(_).red to a predicate is_redundant_set
as follows:

def Ant.critical_rhs_sets : Ant bool → finset (finset Rhs)
| (Ant.rhs inactive n) := ∅
| (Ant.diverge inactive tr) := tr.critical_rhs_sets ∪ if inactive

then ∅
else { tr.rhss }

| (Ant.branch tr1 tr2) := tr1.critical_rhs_sets ∪ tr2.critical_rhs_sets

def Ant.inactive_rhss : Ant bool → finset Rhs
| (Ant.rhs inactive n) := if inactive then { n } else ∅
| (Ant.diverge inactive tr) := tr.inactive_rhss
| (Ant.branch tr1 tr2) := tr1.inactive_rhss ∪ tr2.inactive_rhss

def Ant.is_redundant_set (a: Ant bool) (rhss: finset Rhs) :=
rhss ∩ a.rhss ⊆ a.inactive_rhss
∧ ∀ c ∊ a.critical_rhs_sets, ∃ l ∊ c, l ∉ rhss

A redundant set consists of RHSs that are annotated with false and avoid
critical sets. If a diverge node is annotated with true, all its RHSs form a critical
set. Each critical set must have one RHS that is not contained in a given redundant
set. The purpose of critical sets is to ensure that active diverge nodes do not
disappear when a redundant set is removed from a guard tree.

We show that all RHSs marked as redundant by ℛ indeed form a redundant set:
Clearly, 𝑅 avoids all critical sets and only marks inactive RHSs as redundant.

We believe that ℛ(_).red actually computes a largest redundant set given a
boolean annotated tree. However, a largest redundant set does not need to be
unique! If 𝑅 would exclude the last inaccessible RHS instead of the first from
being redundant, 𝑅 would compute a different redundant set of equal size.

It is also simple to show that the predicate becomes less strict the more nodes
are marked as inactive, as the amount of critical sets decreases and the amount of
inactive RHSs increases.

41

5.2. REDUNDANT RHSS CAN BE REMOVED WITHOUT CHANGING
SEMANTICS

5.2.3 Formal Proof
The complete formal proof follows. All used lemmas and their proofs can be found
at [7].
theorem R_red_removable

(can_prove_empty: CorrectCanProveEmpty)
{ gdt: Gdt } (gdt_disjoint: gdt.disjoint_rhss)
{ Agdt: Ant Φ }
(ant_def: Agdt.mark_inactive_rhss = (A gdt).mark_inactive_rhss):

Gdt.eval_option
(gdt.remove_rhss

(R (Agdt.map can_prove_empty.val)).red.to_finset
)

= gdt.eval :=
begin

ext env:1,

-- `can_prove_empty` approximates emptiness for a
-- single refinement type.
-- `ant_empt` approximates emptiness of the
-- refinement types in `Agdt` for every `env`.
-- It also approximates inactive rhss of `gdt` in
-- context of `env` (ant_empt_imp_gdt).
let ant_empt := Agdt.map can_prove_empty.val,
have ant_empt_imp_gdt := calc

ant_empt ⇒ Agdt.mark_inactive_rhss env
: can_prove_empty_implies_inactive can_prove_empty Agdt env

... ⇒ (A gdt).mark_inactive_rhss env
: by simp [Ant.implies_refl, ant_def]

... ⇒ gdt.mark_inactive_rhss env
: by simp [Ant.implies_refl, A_mark_inactive_rhss gdt env],

-- Since `gdt` has disjoint rhss, `ant_empt` has disjoint rhss too.
have ant_empt_disjoint : ant_empt.disjoint_rhss

:= by simp [Ant.disjoint_rhss_of_gdt_disjoint_rhss gdt_disjoint,
Ant.disjoint_rhss_iff_of_mark_inactive_rhss_eq

(function.funext_iff.1 ant_def env)],

-- The set of rhss `R_red` is redundant in `ant_empt` (red_in_ant_empt).
-- This means that these rhss are inactive and
-- not all rhss of possibly active diverge nodes are redundant.
let R_red := (R ant_empt).red.to_finset,
have red_in_ant_empt: ant_empt.is_redundant_set R_red

42

5.3. ACCESSIBLE RHSS MUST BE DETECTED AS ACCESSIBLE

:= R_red_redundant ant_empt_disjoint,

-- Since `redundant_in` is monotone and `ant_empt`
-- approximates inactive rhss on `gdt`,
-- `R_red` is also redundant in `gdt` (red_in_gdt).
have red_in_gdt: (gdt.mark_inactive_rhss env).is_redundant_set R_red

:= is_redundant_set_monotone _ ant_empt_imp_gdt red_in_ant_empt,

-- Since `R_red` is a redundant set, it can be removed from `gdt` without
-- changing the semantics. Note that `R_red` is independent of env.
show Gdt.eval_option (Gdt.remove_rhss R_red gdt) env = gdt.eval env,
from redundant_rhss_removable gdt gdt_disjoint env _ red_in_gdt,

end

5.3 Accessible RHSs Must Be Detected as Accessible
For the correctness of the inaccessible/redundant analysis, it remains to show that
the analysis correctly identifies all potentially accessible RHSs.

This is formalized by the following lemma:

lemma R_acc_mem_of_reachable
{ gdt: Gdt } { env: Env } { rhs: Rhs } { ant: Ant Φ }
(gdt_disjoint: gdt.disjoint_rhss)
(can_prove_empty: CorrectCanProveEmpty)
(Agdt: ant.mark_inactive_rhss env = (A gdt).mark_inactive_rhss env)
(h: gdt.eval env = Result.value rhs)
{ r: RhsPartition }
(r_def: r = R (ant.map can_prove_empty.val)):
rhs ∊ r.acc \ (r.inacc ++ r.red)

As in chapter 5.2, Agdt abstracts from the syntactical structure of the refinement
types in A 𝑔𝑑𝑡. Given that gdt evaluates to rhs under env, we want to show that
𝑅 marks rhs as accessible and not as inaccessible or redundant.

This proof is very technical, so we concentrate on the key insights.
First, we show that the accessible, inaccessible and redundant RHSs as identified

by 𝑅 form a partition of all RHSs. This is simple to prove and expressed by the
following lemma (𝑎 ∼ 𝑏 denotes that the list 𝑎 is a permutation of 𝑏):
lemma R_rhss_perm { ant: Ant bool }:

((R ant).acc ++ (R ant).inacc ++ (R ant).red) ~ ant.rhss_list

Clearly, rhs is a RHS in gdt and thus ant and ant.map can_prove_empty.val.
Since 𝑅 computes a partition of all RHSs, it remains to show that rhs is neither
contained in r.inacc nor in r.red.

43

5.3. ACCESSIBLE RHSS MUST BE DETECTED AS ACCESSIBLE

With the following lemma we only need to show that rhs is not an inactive RHS
in ant.map can_prove_empty.val:

lemma R_inacc_unon_R_red_subseteq_inactive (ant: Ant bool):
(R ant).inacc.to_finset ∪ (R ant).red.to_finset
⊆ ant.inactive_rhss

In fact, rhs is the only active RHS in gdt.mark_inactive_rhss env, as the
following lemma shows:

lemma gdt_mark_inactive_rhss_inactive_rhss_of_rhs_match
{ gdt: Gdt } { env: Env } { rhs: Rhs }
(gdt_disjoint: gdt.disjoint_rhss):
gdt.rhss \ (gdt.mark_inactive_rhss env).inactive_rhss = { rhs }
↔ gdt.eval env = Result.value rhs

From chapter 5.2, we know that (ant.map can_prove_empty.val) pointwise
implies (gdt.mark_inactive_rhss env): empty refinement types imply inactiv-
ity. When we proved that ant𝑏 is a redundant set if ant𝑎 is a redundant set and
ant𝑎 ⇒ ant𝑏 (as discussed in chapter 5.2.2), we first showed a stronger result that
we can reuse now to relate inactive RHSs of ant.map can_prove_empty.val and
gdt.mark_inactive_rhss env:

lemma is_redundant_set_monotone' { a b: Ant bool } (h: a ⇒ b):
a.inactive_rhss ⊆ b.inactive_rhss
∧ b.critical_rhs_sets ⊆ a.critical_rhs_sets

We can use this fact and the previous lemmas to show that rhs must be an active
RHS in ant.map can_prove_empty.val. This completes the proof.

44

6 Conclusion
We refined and formalized several correctness properties of LYG and successfully
proved them in Lean. However, we parametrized these correctness properties over
a correct function 𝒢 that semi-decides emptiness of refinement types. While LYG
defines such a function, we did not prove that it indeed is such a correct function
𝒢.

Even though these correctness properties look seemingly easy to prove, it turned
out to be a very involved undertaking. After all, it took us 48 definitions and 143
lemmas and theorems to formalize these proofs in Lean!

We believe that this complexity is caused by the amount of details required to
describe LYG and the rigorousness of Lean. In fact, we discovered a minor flaw in
LYG’s definition of 𝒰, buried in the details of the let binding semantics. Luckily,
this flaw has no impact on the GHC implementation of LYG, as the implementation
uses a different encoding of refinement types. Still, this flaw was not discovered in
peer reviews of the LYG paper, showing that LYG’s correctness is not obvious at
all and making a strong point for verification, yet formal verification.

As our proofs are formally verified by Lean, it is highly unlikely that LYG as
formalized by this thesis has any other flaws, except in the definition of the pre-
sented function 𝒢 that we did not check. Nonetheless, our formally verified proofs
alone cannot guarantee that our formalization correctly reflects LYG and that our
chosen abstractions are general enough, as this is subject to human interpretation.
We hope that our informal clarifications support our claim that they do.

We can strongly recommend to use Lean for formal verification and suggest to
formally verify the correctness of 𝒢 too!

45

Bibliography
[1] S. Graf, S. Peyton Jones, and R. G. Scott, “Lower your guards: A compo-

sitional pattern-match coverage checker,” Proc. ACM Program. Lang., vol. 4,
Aug. 2020.

[2] T. Freeman and F. Pfenning, “Refinement types for ml,” in Proceedings of
the ACM SIGPLAN 1991 Conference on Programming Language Design and
Implementation, PLDI ’91, (New York, NY, USA), p. 268–277, Association for
Computing Machinery, 1991.

[3] “The lean theorem prover (community fork).” https://github.com/
leanprover-community/lean. Retrieved: 20 Jan. 2021.

[4] L. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von Raumer, “The lean
theorem prover (system description),” in Automated Deduction - CADE-25
(A. P. Felty and A. Middeldorp, eds.), (Cham), pp. 378–388, Springer Interna-
tional Publishing, 2015.

[5] J. Avigad, L. de Moura, and S. Kong, “Theorem proving in lean.”
https://leanprover.github.io/theorem_proving_in_lean/theorem_
proving_in_lean.pdf. Retrieved: 20 Jan. 2021.

[6] “A mathlib overview.” https://leanprover-community.github.io/
mathlib-overview.html. Retrieved: 20 Jan. 2021.

[7] H. Dieterichs, “Lean proof.” https://github.com/hediet/masters-thesis/
tree/9524e79f09771a6d9d74f75556a3adbff683ed35/code. Retrieved: 20
Jan. 2021.

[8] G. Karachalias, T. Schrijvers, D. Vytiniotis, and S. P. Jones, “Gadts meet
their match: Pattern-matching warnings that account for gadts, guards, and
laziness,” SIGPLAN Not., vol. 50, p. 424–436, Aug. 2015.

47

https://github.com/leanprover-community/lean
https://github.com/leanprover-community/lean
https://leanprover.github.io/theorem_proving_in_lean/theorem_proving_in_lean.pdf
https://leanprover.github.io/theorem_proving_in_lean/theorem_proving_in_lean.pdf
https://leanprover-community.github.io/mathlib-overview.html
https://leanprover-community.github.io/mathlib-overview.html
https://github.com/hediet/masters-thesis/tree/9524e79f09771a6d9d74f75556a3adbff683ed35/code
https://github.com/hediet/masters-thesis/tree/9524e79f09771a6d9d74f75556a3adbff683ed35/code

Erklärung

Hiermit erkläre ich, Henning Dieterichs, dass ich die vorliegende Masterarbeit
selbstständig verfasst habe und keine anderen als die angegebenen Quellen und
Hilfsmittel benutzt habe, die wörtlich oder inhaltlich übernommenen Stellen als
solche kenntlich gemacht und die Satzung des KIT zur Sicherung guter wissen-
schaftlicher Praxis beachtet habe.

Ort, Datum Unterschrift

49

Danke
Ich danke meinen Betreuern Sebastian Graf und Sebastian Ullrich, die mich in
jeglicher Hinsicht unterstützt haben. Außerdem will ich mich bei der Lean Com-
munity bedanken, die mir bei Fragen zu Lean viel geholfen hat.

51

	Introduction
	Background
	Lower Your Guards
	Inaccessible vs. Redundant RHSs
	Guard Trees
	Refinement Types
	Binding Mechanism Of Refinement Types
	Generating Inhabitants
	Uncovered Analysis
	Annotated Guard Trees
	Redundant/Inaccessible Analysis

	Lean
	The Lean Theorem Prover
	The Lean Mathematical Library

	Formal Definitions
	Abstracting LYG: The Guard Module
	Guard Trees
	Refinement Types
	Uncovered Analysis
	Redundant / Inaccessible Analysis
	Interleaving U and A

	Correctness Statements
	Correctness of the Uncovered Analysis
	Comparison to LYGs Notion Of Correctness

	Correctness of the Redundant/Inaccessible Analysis
	Comparison to LYGs Notion Of Correctness

	Formalized Proofs
	Simplification A of A
	Redundant RHSs Can Be Removed Without Changing Semantics
	Proof Idea
	Generalization of R(_).red
	Formal Proof

	Accessible RHSs Must Be Detected as Accessible

	Conclusion

