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Abstract. In our previous work, we have proposed a framework which allows
tools that can check standard noninterference properties but a priori cannot deal
with cryptography to establish cryptographic indistinguishability properties, such
as privacy properties, for Java programs. We refer to this framework as the CVJ
framework (Cryptographic Verification of Java Programs) in this paper.

While so far the CVJ framework directly supports public-key encryption
(without corruption and without a public-key infrastructure) only, in this work
we further instantiate the framework to support, among others, public-key encryp-
tion and digital signatures, both with corruption and a public-key infrastructure,
as well as (private) symmetric encryption. Since these cryptographic primitives
are very common in security-critical applications, our extensions make the frame-
work much more widely applicable.

To illustrate the usefulness and applicability of the extensions proposed in this
paper, we apply the framework along with the tool Joana, which allows for the
fully automatic verification of noninterference properties of Java programs, to
establish cryptographic privacy properties of a (non-trivial) cloud storage appli-
cation, where clients can store private information on a remote server.

1 Introduction

In [24], a framework has been proposed which allows tools that can check standard
noninterference properties but cannot deal with cryptography directly, in particular
probabilities and polynomially bounded adversaries, to establish cryptographic indis-
tinguishability properties, such as privacy properties, for Java programs. In this paper,
we refer to this framework as the CVJ framework (Cryptographic Verification of Java
programs). The framework combines techniques from program analysis and cryptogra-
phy, more specifically, universal composability [9,19,27,29], a well-established concept
in cryptography. The idea is to first check noninterference properties for the Java pro-
gram to be analyzed where cryptographic operations (such as encryption) are performed
within so-called ideal functionalities. Such functionalities typically provide guarantees
even in the face of unbounded adversaries and can often be formulated without prob-
abilistic operations. Therefore, such analysis can be carried out by tools that a priori
cannot deal with cryptography (probabilities, polynomially bounded adversaries). The-
orems shown within the framework now imply that the Java program enjoys strong
cryptographic indistinguishability properties when the ideal functionalities are replaced
by their realizations, i.e., the actual cryptographic operations.
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The theorems proved within the CVJ framework are very general in that they guar-
antee that any ideal functionality can be replaced by its realization. In particular, they
are not tailored to specific cryptographic operations. However, to make the framework
directly applicable to a wide range of cryptographic software, i.e., software that uses
cryptographic operations (such as asymmetric and symmetric encryption, digital signa-
tures, MACs, etc.), it is necessary to provide a rich set of ideal functionalities along with
their realizations written in Java. So far, in [24] only an ideal functionality for public-
key encryption has been proposed and it has been shown that this functionality can be
realized by any IND-CCA2-secure public-key encryption scheme, a standard security
notion for such schemes (see, e.g., [4]). This functionality does not support reasoning
about corruption and also it does not support a public-key infrastructure (PKI).

Contribution of This Paper. The main goal and the main contribution of this work is
therefore to instantiate the CVJ framework with further (and more suitable) ideal func-
tionalities which commonly occur in cryptographic applications, and to provide realiza-
tions of such functionalities based on standard cryptographic assumptions. We note that
similar functionalities as the once introduced in this work have been considered in the
cryptographic literature based on Turing machine models (see, e.g., [9,26,29]) before.
The new contribution here is that we provide formulations in Java (more precisely, in a
rich fragment of Java) such that these functionalities can actually be used to analyze Java
programs. Designing such functionalities and carrying out the proofs (w.r.t. program-
ming language semantics) is non-trivial and requires some care since the interaction
between different classes is much more complex than between Turing machines, where
in the former case we have to deal, for example, with exceptions, inheritance, references
to potential complex objects that can be exchanged, and hence, the manipulation of one
object can affect many other objects. Also, since the ideal functionalities we propose
will be part of the (Java) programs to be analyzed, they should be formulated in a “tool
friendly” way. For example, for this reason, in our functionalities corruption is modeled
in a quite different way than it is typically done in the Turing machine models.

More concretely, in this work we propose ideal functionalities, written in Java, for
public-key encryption, digital signatures, (private) symmetric encryption, and nonce
generation.

The functionalities for public-key encryption and digital signatures support static
corruption and a public-key infrastructure. The latter means that parties can register
their public encryption and verification keys using the functionalities. Other parties
can then use the functionalities to encrypt messages and verify signatures by sim-
ply providing the name of the intended recipient of the message/the alleged signer
of the message. The functionality then guarantees that the correct public-key is used
for encryption/verification. As for static corruption, the adversary can register his own
(possibly dishonestly generated) public keys which then can be used by other (honest)
parties just like honestly generated and registered keys. We show that both functionali-
ties, public-key encryption and digital signatures, can be realized using standard crypto-
graphic schemes and assumptions (IND-CCA2-secure public-key encryption schemes
and UF-CMA-secure digital signature schemes).

The functionality for private symmetric encryption allows a user to encrypt messages
(using a symmetric encryption scheme) for herself. She does not share the symmetric
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key with other parties. This is useful, for example, to store confidential information
on an untrusted medium. Again, this functionality is realized using a standard sym-
metric encryption scheme, based on standard cryptographic assumptions (IND-CCA2
security).

Finally, the ideal functionality for nonce generation that we propose guarantees that
nonces are always fresh. That is, this functionality prevents collisions of nonces. It is
realized in the obvious way, by choosing nonces (of the length of the security parameter)
uniformly at random.

We illustrate the usefulness and applicability of these functionalities in a case study.
We apply the CVJ framework, along with the tool Joana [16, 17], which allows for the
fully automatic verification of noninterference properties of Java programs, to estab-
lish cryptographic privacy properties of a non-trivial cloud storage application, where
clients can store private information on a remote server. The cloud storage system makes
use of all cryptographic primitives considered in this paper, and hence, the code of these
functionalities is included in the verified program. We note that, except for a much
simpler Java program analyzed in [24], there has been no other verification effort that
establishes cryptographic security guarantees of Java programs.

Related Work. Obtaining cryptographic guarantees for programs written in real-world
programming languages is a challenging and quite recent research field (see also [24]
for a discussion of related work). Many approaches in this field carry out symbolic
(Dolev-Yao style) analysis, without computational/cryptographic guarantees (see, e.g.,
[5,11,15]). Most, of the very few, approaches that aim at cryptographic guarantees fol-
low one of the following approaches: i) They rely on symbolic analysis and then apply
computational soundness results (see, e.g., [1]), ii) they derive formal models from the
source code and analyze these models using specialized tools for cryptographic verifica-
tion, such as the tool CryptoVerif [7] (see, e.g., [2]), or iii) they derive source code from
formal specifications (see, e.g., [8]). The CVJ framework, in contrast, aims at using
existing program analysis tools and techniques to directly obtain cryptographic secu-
rity guarantees. It is the only approach for the cryptographic analysis of Java programs,
other approaches aim at C or F# code. Also, unlike most other approaches, it considers
cryptographic indistinguishability properties, rather than trace properties, such as au-
thentication and weak secrecy. An approach similar to the approach taken in the CVJ
framework is the one by Fournet et al. [6, 12]. However, they consider F# and focus on
the use of refinement types.

Structure of This Paper. In Section 2, we first briefly recall the CVJ framework. In the
four subsequent sections, we present the ideal functionalities for public-key encryption,
digital signatures, private symmetric encryption, and nonce generation, respectively,
including their realizations. In Section 7, we turn to the case study. Further details are
provided in the extended version of this paper [22].

2 The CVJ Framework

We briefly recall the framework from [24]. The definitions and theorems stated here are
somewhat simplified and informal, but should suffice to follow the rest of the paper. We
refer the reader to [24] for full details.
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As already mentioned in the introduction, in order to establish cryptographic indis-
tinguishability properties for a Java program, by the CVJ framework it suffices to prove
that the program enjoys a (standard) noninterference property when the cryptographic
operations are replaced by so-called ideal functionalities, which in our case will model
cryptographic primitives, such as encryption and digital signatures. The CVJ framework
then ensures that the Java program enjoys the desired cryptographic indistinguishabil-
ity properties when the ideal functionalities are replaced by their realizations, i.e., the
actual cryptographic operations. Since ideal functionalities often do not involve proba-
bilistic operations and are secure even for unbounded adversaries, the noninterference
properties can be verified by tools that a priori cannot deal with cryptography (proba-
bilities, polynomially bounded adversaries). Without the ideal functionalities, the tools
would, for example, consider a secret message that is sent encrypted over a network
controlled by the adversary to be an information leakage, because an unbounded adver-
sary can break the encryption.

Jinja+. The CVJ framework is stated and proven for a Java-like language called Jinja+.
Jinja+ is based on Jinja [18] and extends this language with some useful additional fea-
tures, such as arrays and randomness. Jinja+ covers a rich subset of Java, including
classes, inheritance, (static and non-static) fields and methods, the primitive types int,
boolean, and byte (with the usual operators for these types), arrays, exceptions, and
field/method access modifiers, such as public, private, and protected. It also in-
cludes the primitive randomBit() which returns a random bit each time it is called.

A (Jinja+) program/system is a set of class declarations. A class declaration consists
of the name of the class, the name of its direct superclass, a list of field declarations,
and a list of method declarations. A program/system is complete if it uses only class-
es/methods/fields declared in the program itself.

All Java programs considered in this paper, including the systems considered in our
case study as well as the functionalities fall into the Jinja+ fragment. While the syntax
of Jinja+ and Java differ, their is a straightforward translation from Jinja+ to Java, which
is why we use Java syntax throughout this paper.

Indistinguishability. An interface I is defined like a (Jinja+) system but where (i) all
private fields and private methods are dropped and (ii) method bodies as well as static
field initializers are dropped. A system S implements an interface I, written S : I, if I is a
subinterface of the public interface of S, i.e. the interface obtained from S by dropping
method bodies, initializers of static fields, private fields, and private methods. We say
that a system S uses an interface I, written I � S, if, besides its own classes, S uses
at most classes/methods/fields declared in I. We write I0 � S : I1 for I0 � S and S : I1.
We also say that two interfaces are disjoint if the sets of class names declared in these
interfaces are disjoint.

For two systems S and T we denote by S · T the composition of S and T which,
formally, is the union of (declarations in) S and T . Clearly, for the composition to make
sense, we require that there are no name clashes in the declarations of S and T . Of
course, S may use classes/methods/fields provided in the public interface of T , and vice
versa.

A system E is called an environment if it declares a distinct private static variable
result of type boolean with initial value false. Given a system S : I, we call E an
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I-environment for S if there exists an interface IE disjoint from I such that IE � S : I and
I � E : IE . Note that E ·S is a complete program. The value of the variable result at the
end of the run of E ·S is called the output of the program E ·S; the output is false for
infinite runs. If E ·S is a deterministic program, we write E ·S � true if the output of
E ·S is true. If E ·S is a randomized program, we write Prob{E ·S � true} to denote
the probability that the output of E ·S is true.

We assume that all systems have access to a security parameter (modeled as a public
static variable of a class SP). We denote by P(η) a program P running with security
parameter η.

To define computational equivalence and computational indistinguishability between
(probabilistic) systems, we consider systems that run in (probabilistic) polynomial time
in the security parameter. We omit the details of the runtime notions used in the CVJ
framework here, but note that the runtimes of systems and environments are defined in
such a way that their composition results in polynomially bounded programs.

Let P1 and P2 be (complete, possibly probabilistic) programs. We say that P1 and
P2 are computationally equivalent, written P1 ≡comp P2, if |Prob{P1(η) � true}−
Prob{P2(η)� true}| is a negligible function in the security parameter η.1

Let S1 and S2 be probabilistic polynomially bounded systems. Then S1 and S2 are
computationally indistinguishable w.r.t. I, written S1 ≈I

comp S2, if S1 : I, S2 : I, both
systems use the same interface, and for every polynomially bounded I-environment E
for S1 (and hence, S2) we have that E ·S1 ≡comp E ·S2.

Simulatability and Universal Composition. We now define what it means for a sys-
tem to realize another system, in the spirit of universal composability, a well-established
approach in cryptography. Security is defined by an ideal system F (also called an ideal
functionality), which, for instance, models ideal encryption, signatures, MACs, key ex-
change, or secure message transmission. A real system R (also called a real protocol)
realizes F if there exists a simulator S such that no polynomially bounded environment
can distinguish between R and S ·F . The simulator tries to make S ·F look like R for the
environment (see the subsequent sections for examples).

More formally, let F and R be probabilistic polynomially bounded systems which
implement the same interface Iout and use the same interface IE , except that in addition
F may use some interface IS provided by a simulator. Then, we say that R realizes F
w.r.t. Iout , written R ≤Iout F or simply R ≤ F , if there exists a probabilistic polynomially
bounded system S (the simulator) such that R ≈Iout

comp S ·F . As shown in [24], ≤ is
reflexive and transitive.

A main advantage of defining security of real systems by the realization relation ≤
is that systems can be analyzed and designed in a modular way: The following theorem
implies that it suffices to prove security for the systems R0 and R1 separately in order to
obtain security of the composed system R0 ·R1.

Theorem 1 (Composition Theorem (simplified) [24]). Let I0 and I1 be disjoint inter-
faces and let R0, F0, R1, and F1 be probabilistic polynomially bounded systems such

1 As usual, a function f from the natural numbers to the real numbers is negligible, if for every
c > 0 there exists η0 such that f (η)≤ 1

ηc for all η > η0.
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that R0 ≤I0 F0 and R1 ≤I1 F1. Then, R0 ·R1 ≤I0∪I1 F0 ·F1, where I0 ∪ I1 is the union of
the class, method and field names declared in I0 and I1.

Noninterference. The (standard) noninterference notion for confidentiality [13] re-
quires the absence of information flow from high to low variables within a program.
Here, we define noninterference for a deterministic (Jinja+) program P with some static
variables�x of primitive types that are labeled as high. Also, some other static variables
of primitive types are labeled as low. We say that P[�x] is a program with high variables
�x (and low variables). By P[�a] we denote the program P where the high variables�x are
initialized with values�a and the low variables are initialized as specified in P.

Now, noninterference for a deterministic program is defined as follows: Let P[�x]
be a program with high variables. Then, P[�x] has the noninterference property if the
following holds: for all �a1 and �a2 (of appropriate type), if P[�a1] and P[�a2] terminate,
then at the end of their runs, the values of the low variables are the same. Note that this
defines termination-insensitive noninterference.

The above notion of noninterference deals with complete programs (closed systems).
This notion is generalized to open systems as follows: Let I be an interface and let S[�x]
be a (not necessarily closed) deterministic system with a security parameter and high
variables �x such that S : I. Then, S[�x] is I-noninterferent if for every deterministic I-
environment E for S[�x] and every security parameter η, noninterference holds for the
system E ·S[�x](η), where the variable result declared in E is considered to be the only
low variable. Note that here neither E nor S are required to be polynomially bounded.

Tools for checking noninterference often consider only a single closed program.
However, I-noninterference is a property of a potentially open system S[�x], which is
composed with an arbitrary I-environment. Therefore, in [24] a technique has been
developed which reduces the problem of checking I-noninterferent to checking nonin-
terference for a single (almost) closed system. More specifically, it was shown that to
prove I-noninterference for a system S[�x] with IE � S : I it suffices to consider a single
environment ẼI,IE

�u (or Ẽ�u, for short) only, which is parameterized by a sequence �u of
values. The output produced by Ẽ�u to S[�x] is determined by �u and is independent of
the input it gets from S[�x]. To keep Ẽ�u simple, the analysis technique assumes some
restrictions on interfaces between S[�x] and E . In particular, S[�x] and E should interact
only through primitive types, arrays, exceptions, and simple objects. Moreover, E is not
allowed to call methods of S directly (formally, we require I to be /0). However, since S
can call methods of E , this is not an essential limitation.

Theorem 2 (simplified, [24]). Let S[�x] be a deterministic program with a restricted
interface to its environment, as mentioned above, and let I = /0. Then, I-noninterference
holds for S[�x] if and only if for all sequences�u noninterference holds for Ẽ�u ·S[�x].
Automatic analysis tools, such as Joana [16, 17], often ignore or can ignore specific
values encoded in a program, such as an input sequence �u. Hence, such an analysis of
E�u · S[�x] implies noninterference for all sequences �u, and by the theorem, this implies
I-noninterference for S[�x].

From I-Noninterference to Computational Indistinguishability. The central theo-
rem that immediately follows from (the more general) results proven within the CVJ
framework is the following.
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Theorem 3 (simplified, [24]). Let I and J be disjoint interfaces. Let F, R, P[�x] be
systems such that R≤J F, P[�x] ·F is deterministic, and P[�x] ·F : I (and hence, P[�x] ·R : I).
Now, if P[�x] ·F is I-noninterferent, then, for all�a1 and�a2 (of appropriate type), we have
that P[�a1] ·R ≈I

comp P[�a2] ·R.
The intuition and the typical use of this theorem is that the cryptographic operations
that P needs to perform are carried out using the system R (e.g., a cryptographic li-
brary). The theorem now says that to prove cryptographic privacy of the secret inputs
(∀ �a1, �a2: P[�a1] ·R ≈J

comp P[�a2] ·R) it suffices to prove I-noninterference for P[�x] ·F ,
i.e., the system where R is replaced by the ideal counterpart F (the ideal cryptographic
library). The ideal functionality F , which in our case will model cryptographic primi-
tives in an ideal way, can typically be formulated without probabilistic operations and
also the ideal primitives specified by F will be secure even in presence of unbounded
adversaries. Therefore, the system P[�x] ·F can be analyzed by standard tools that a priori
cannot deal with cryptography (probabilities and polynomially bounded adversaries).

As mentioned before, F relies on the interface IE ∪ IS (which, for example, might
include an interface to a network library) provided by the environment and the simula-
tor, respectively. This means that when checking noninterference for the system P[�x] ·F
the code implementing this library does not have to be analyzed. Being provided by
the environment/simulator, it is considered completely untrusted and the security of
P[�x] ·F does not depend on it. In other words, P[�x] ·F provides noninterference for all
implementations of the interface. Similarly, R relies on the interface IE provided by the
environment. Hence, P[�x] ·R enjoys computational indistinguishability for all imple-
mentations of IE . This has two advantages: i) one obtains very strong security guaran-
tees and ii) the code to be analyzed in order to establish noninterference/computational
indistinguishability is kept small, considering the fact that libraries tend to be very big.

3 Public-Key Encryption with a Public Key Infrastructure

We now propose an ideal functionality Ideal-PKIEnc, formulated in Java (Jinja+), for
public-key encryption with a public-key infrastructure (PKI). This functionality is an
extension of a more restricted public-key encryption functionality proposed in [24].
First, the functionality proposed here allows a user to encrypt messages for a given
party based on the identifier of this party. The functionality uses the included public key
infrastructure to obtain the public key of the party registered under the given identifier.
In contrast, to encrypt a message, the user of the functionality in [24] had to provide a
public-key herself, and hence, take care of the correct binding of public keys to parties
herself. Second, in the functionality proposed here, as opposed to the one in [24], we
model static corruption, including dishonestly generated keys. For this, special care was
needed to make sure that the resulting functionality is “tool-friendly”.

We also provide an implementation (realization) of this ideal functionality, denoted
by Real-PKIEnc, in Java (Jinja+) and prove, within the CVJ framework, that this im-
plementation realizes the ideal functionality Ideal-PKIEnc under standard cryptographic
assumptions.

As already mentioned in the introduction, the design of such functionalities and the
realization proofs pose additional challenges compared to the Turing machine based
formulations proposed in the cryptographic literature.
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In the rest of this section, we first provide the interface for Ideal-PKIEnc, and hence,
Real-PKIEnc. Then, the actual ideal functionality and its realization are presented, along
with a realization theorem.

3.1 The Interface for Public-Key Encryption

In this section, we present the interface IPKIEnc of the ideal functionality Ideal-PKIEnc and
its implementation Real-PKIEnc and discuss the intended way of using it. The interface
IPKIEnc is specified as follows:

1 public class Encryptor {

2 public Encryptor(byte[] publicKey);

3 public byte[] encrypt(byte[] message);

4 public byte[] getPublicKey();

5 }

6 public final class Decryptor {

7 public Decryptor();

8 public byte[] decrypt(byte[] message);

9 public Encryptor getEncryptor();

10 }

11 public class RegisterEnc {

12 public static void registerEncryptor(int id, Encryptor encryptor,

13 byte[] pki_domain) throws PKIError, NetworkError;

14 public static Encryptor getEncryptor(int id, byte[] pki_domain)

15 throws PKIError, NetworkError;

16 }

Typical Usage. The intended way for an honest user with identifier ID_A to create and
register her keys is the following:

17 Decryptor decryptor = new Decryptor();

18 Encryptor encryptor = decryptor.getEncryptor();

19 try {

20 RegisterEnc.registerEncryptor(ID_A, encryptor, PKI_DOMAIN);

21 }

22 catch (PKIError e) {} // registration failed: id already claimed

23 catch (NetworkError e) {} // network problems

Intuitively, an object of class Decryptor encapsulates a public/private key pair, generated
when the object is created (line 17 above). This object provides access to the method
decrypt. The owner of this object (that is, the party who has created it) is not supposed
to share it with any other parties. Instead, the owner of the decryptor shares an associ-
ated encryptor (obtained in line 18), which, intuitively, encapsulates only the public key.
More precisely, to make her public key available within a PKI to other parties, the user
registers the encryptor she has obtained (line 20). That is, she registers her encryptor
under her identifier (ID_A) and what we call a PKI domain (which is a publicly known
identifier used to distinguish keys registered for different purposes/applications). This
step may result in an error: i) if some key has been registered already under this identi-
fier and PKI domain (exception PKIError), or ii) if some network failure occurred, e.g.,
the registration server was unavailable (exception NetworkError). We emphasize that we
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do not require the party who wants to register a public key to provide a proof of posses-
sion (PoP) of the private key corresponding to the public key.2 After an encryptor has
been registered, it can be used by other parties as follows:

24 try {

25 Encryptor encryptor = RegisterEnc.getEncryptor(ID_A, PKI_DOMAIN);

26 encryptor.encrypt(message);

27 } catch(PKIError e) {} // id has not been successfully registered

28 catch(NetworkError e) {} // network problems

The encryptor of the party registered under ID_A and PKI_DOMAIN is obtained in line 25
and used in line 26 to encrypt a message. Note that a user can also obtain the public key
encapsulated in the encryptor, using the method getPublicKey.

Corruption. To model (static) corruption, we allow encryptors also to be created di-
rectly, without creating associated decryptors, simply by providing an arbitrary bitstring
pubk as the public key:

29 Encryptor enc = new Encryptor(pubk);

30 try {

31 RegisterEnc.registerEncryptor(ID, enc, PKI_DOMAIN);

32 } catch (PKIError | NetworkError e) {}

By this, a dishonest party (the adversary) can register any bitstring pubk as a public
key, including dishonestly generated keys. This key can then be used by any other party
(honest and dishonest) to encrypt messages for the dishonest party, just like public keys
of honest parties. Note that since we do not require PoPs, a dishonest party can register
any public key of another (possibly honest) party under his identity. (As mentioned
before, the literature on PKIs recommends that applications should not rely on PoPs
being performed [3].)

An encryptor created in the above way is called corrupted. There is no corresponding
(corrupted) decryptor, because the adversary can run the decryption algorithm himself.
For messages encrypted with a corrupted encryptor (public key), no security guaran-
tees are provided. (Jumping ahead to Section 3.2, the functionality will hand the mes-
sage to be encrypted with a corrupted encryptor directly to the environment/adversary/
simulator.)

We note that, as expected, when some party obtains an encryptor by the method
RegisterEnc.getEncryptor, the party does not know a priori whether the obtained
encryptor is corrupted (it has been generated directly) or uncorrupted (it has been gen-
erated via Decryptor).

3.2 The Ideal Functionality for Public-Key Encryption

We now present the ideal functionality for public-key encryption, Ideal-PKIEnc. This
functionality provides the interface IPKIEnc, introduced above, to its users (parties, envi-
ronment) with ideal implementations of the methods declared in IPKIEnc.

2 In most applications, PoPs are not necessary and as argued in the literature (see, e.g., [3]),
applications should be designed in such a way that their security does not depend on the as-
sumption of such proofs being performed.
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The functionality Ideal-PKIEnc is defined on top of the interface ICryptoLibEnc which
contains methods for key generation, encryption, and decryption:

33 public class CryptoLib {

34 public static KeyPair pke_generateKeyPair();

35 public static byte[] pke_encrypt(byte[] message, byte[] publicKey);

36 public static byte[] pke_decrypt(byte[] ciphertext, byte[] privKey);

37 }

So Ideal-PKIEnc expects the above methods to be implemented outside of Ideal-PKIEnc.
In the analysis of a system P[�x] which uses Ideal-PKIEnc (i.e., in the analysis of the
system P[�x] · Ideal-PKIEnc), such methods have to be provided by the environment, and
thus, are completely untrusted. In particular, in the analysis of P[�x] · Ideal-PKIEnc the
code for CryptoLib, which would typically be very large, does not have to be analyzed.
This tremendously simplifies the analysis of P[�x] · Ideal-PKIEnc (see also the explanation
in Section 2 following Theorem 3).

The basic idea of the implementation of Ideal-PKIEnc is that if a message m is to
be encrypted with an (uncorrupted) public key, then not m but a sequence of zeros of
the same length as m is encrypted instead, using method pke_encrypt of CryptoLib. By
this, it is guaranteed that the resulting ciphertext c does not depend on m, except for
the length of m. The functionality stores the pair (m,c) for later decryption. If some
ciphertext c′ is to be decrypted, the functionality first checks whether there exists a
pair of the form (m′,c′) (the functionality guarantees that there is at most one such
pair). Then, m′ is returned as the plaintext. If no such pair exists (and hence, c′ was not
created using the functionality), c′ is decrypted using method pke_decrypt of CryptoLib,
and the resulting plaintext is returned. More specifically, Ideal-PKIEnc works as follows.

On initialization of an object of the class Decryptor, a public/private key pair is cre-
ated by calling the key generation method of the class CryptoLib. At this point, the
decryptor object also creates an (initially empty) list of message/ciphertext pairs. This
list is used as a look-up table for decryption by the method decrypt of class Decryptor

as sketched above.
Encryptors returned by the method getEncryptor of class Decryptor are objects of the

class UncorruptedEncryptor (which is a subclass of the class Encryptor). An encryptor
object contains the same public-key as the associated decryptor and shares (a reference
to) the list of message/ciphertext pairs with the associated decryptor. When method
encrypt of such an encryptor is called with a message m, the encryption method of class
CryptoLib is called to encrypt a sequence of zeros of the same length as m, resulting in
a ciphertext c (ciphertexts seen before are rejected). Then, the pair (m,c) is stored in the
list and the ciphertext c is returned as the result of the encryption.

In contrast, a corrupted encryptor (i.e., an encryptor object created directly as in line
29 above, rather than being derived from a decryptor) implements encryptions simply
by calling the encryption method of the class CryptoLib using the bitstring (the pub-
lic key) it has been provided with upon creation. Note that in this case, no security
guarantees are provided; the original message instead of zeros is encrypted.

The methods for registering and obtaining encryptors in class RegisterEnc are im-
plemented in a straightforward way by Ideal-PKIEnc, using a list of registered encryptors
along with associated identifiers and domains.
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The most important part of the code of Ideal-PKIEnc is listed in the extended version
of this paper [22]; for the full code see [23].

3.3 The Realization of Ideal-PKIEnc

We now provide the realization Real-PKIEnc of the ideal functionality Ideal-PKIEnc pre-
sented above.

The functionality Real-PKIEnc builds on a public key infrastructure. A public-key
infrastructure is a trusted public key registry, where i) users can register their public
keys under their identifiers and (PKI) domains (in the sense of Section 3.1) and ii) users
can obtain other users’ public keys by providing the identifiers and domains of these
users. The interface IPKI for the public key infrastructure used by Real-PKIEnc is the
following:

38 public class PKI {

39 static void register(int id, byte[] domain, byte[] pubKey)

40 throws PKIError, NetworkError;

41 static byte[] getKey(int id, byte[] domain)

42 throws PKIError, NetworkError;

43 }

The method register is supposed to throw PKIError if the provided user identifier and
domain pair has been claimed already, i.e., some other party has registered a key for the
same identifier and domain pair before. The same exception is supposed to be thrown
by the method getKey if the given identifier id has not been registered. Registering or
fetching a public key typically involves to contact a public-key server. If this fails, the
NetworkError is thrown. When proving that Real-PKIEnc realizes Ideal-PKIEnc we will
assume that IPKI is properly implemented (see Section 3.4 for details).

Now, based on IPKI, the different classes and methods provided by Real-PKIEnc are
implemented as presented next.

The methods registerEncryptor and getEncryptor of the class RegisterEnc work
as follows. When an encryptor is to be registered by the method registerEncryptor, its
public key is registered in the PKI using the method register. The method getEncryptor

uses the method getKey to fetch the corresponding public key and wraps it into an
encryptor which is then returned.

The classes Encryptor and Decryptor of Real-PKIEnc are implemented in a straight-
forward way using an encryption scheme: messages are simply encrypted/decrypted
directly using such a scheme. Note that whether an encryptor was obtained from a de-
cryptor (using the method getEncryptor) or whether it was created directly (as in line
29) leads to the same implementation, namely, invoking the encryption function of the
encryption scheme. The only difference is that in one case the public/private key pair
was created (honestely) within the class Decryptor of Real-PKIEnc and in the other case
the public key was created outside of Real-PKIEnc (possibly in some dishonest way).

The most important part of the code of Real-PKIEnc is listed in [22]; see [23] for the
full code.



Extending and Applying a Framework for the Cryptographic Verification 231

3.4 Realization Result

We now show that Real-PKIEnc realizes Ideal-PKIEnc, provided that i) the encryption
scheme used in the implementation of Real-PKIEnc is IND-CCA2-secure [4] and ii) that
the public-key infrastructure used by Real-PKIEnc works “properly”.

As for i), we note that IND-CCA2-security is a standard and widely used security
notion for public-key encryption schemes. Similarly to ideal functionality for public-
key encryption proposed in the cryptographic literature, it has been shown that IND-
CCA2-security is necessary to realize Ideal-PKIEnc (see, e.g., [9, 26]).

As for ii), the behavior of a “proper public-key infrastructure” is formalized by an
ideal functionality Ideal-PKI, which operates in the obvious way: It maintains a list of
registration records, each consisting of an identifier, a domain, and a key (the code is
given in [22]). The adversary (simulator) is informed about registration requests and re-
quests for obtaining public-keys and can schedule when these requests are answered by
Ideal-PKI (because in a realization such requests typically involve communication over a
network controlled by the adversary). We assume the existence of some public-key in-
frastructure Real-PKI that realizes Ideal-PKI. Note that there are various ways of realizing
Ideal-PKI and that all of them will require certain trust assumptions. For example, one
could assume the existence of one or more honest certificate authorities and that parties
are provided with the (authentic) public keys of these authorities. Typically, one would
use some existing public-key infrastructure (with appropriate assumptions) to realize
Ideal-PKI. However, this is not the focus of this work. (In fact, proving the security of
a full-fledged PKI would be a challenging task by itself.). In our case study (see Sec-
tion 7), we consider a simple realization which involves a single certificate authority,
the assumption being that it in fact realizes Ideal-PKI.

With this, we can now state our main theorem for public-key encryption.

Theorem 4. If Real-PKIEnc uses an IND-CCA2-secure public-key encryption scheme
and Real-PKI ≤IPKI Ideal-PKI, then Real-PKIEnc ·Real-PKI ≤IPKIEnc Ideal-PKIEnc.

The proof of Theorem 4 is given in [22]. The proof is highly modular and leverages
such properties of the realization relation as the composition theorem, reflexivity, and
transitivity. In the proof, we split Ideal-PKIEnc and Real-PKIEnc into two parts: one pro-
viding encryption and decryption and one providing key registration and retrieving. For
the former part, we generalize the result of [24] for public-key functionality without
corruption and without PKI to the case with corruption.

4 Digital Signatures with a Public Key Infrastructure

In this section, we propose an ideal functionality Ideal-Sig, formulated in Java (Jinja+),
for digital signatures with a public key infrastructure, where, again, we model cor-
ruption. We also provide a real implementation Real-Sig of this functionality in Java
(Jinja+) and prove, in the CVJ framework, that it realizes Ideal-Sig. Just as for public
key encryption, similar functionalities for digital signatures have been proposed in the
cryptographic literature before (see, e.g., [10,26]). But again, the new contribution here
is that we provide a formulation in Java, instead of the (simpler) Turing machine mod-
els, such that these functionalities can actually be used to analyze Java programs. This
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is non-trivial and needs some care. We first present the public interface of Ideal-Sig and
Real-Sig.

4.1 The Interface for Digital Signatures

The public interface IPKISig of Ideal-Sig and Real-Sig (both have the same public interface)
is as follows:

1 public final class Signer {

2 public Signer();

3 public byte[] sign(byte[] message);

4 public Verifier getVerifier();

5 }

6 public class Verifier {

7 public Verifier(byte[] verifKey);

8 public boolean verify(byte[] signature, byte[] message);

9 public byte[] getVerifKey();

10 }

11 public class RegisterSig {

12 public static void registerVerifier(int id, Verifier verifier,

13 byte[] pki_domain) throws PKIError, NetworkError;

14 public static Verifier getVerifier(int id, byte[] pki_domain)

15 throws PKIError, NetworkError;

16 }

Typical Usage. Similarly to public-key encryption, the intended way for an honest user
with identifier ID_A to create and register her keys is the following:

17 Signer sig = new Signer();

18 Verifier ver = sig.getVerifier();

19 try {

20 SigEnc.registerVerifier(ID_A, ver, PKI_DOMAIN);

21 } catch (PKIError e) {} // registration failed: id already claimed

22 catch (NetworkError e) {} // network problems

Intuitively, an object of the class Signer encapsulates a verification/signing key pair,
which is generated when the object is created (line 17). It allows a party who owns such
an object to sign messages (this requires the signing key), using the method sign (of the
class Signer). This party can also obtain a Verifier object (line 18), which encapsulates
the related verification key and can be used (by other parties) to verify signatures via
the method verify. Similarly to the case of public-key encryption, such a verifier can
be registered in the public-key infrastructure (line 20) in order to make the verification
key available to other parties. Again, we do not require a proof of possession of the
corresponding signing key.

After a verifier has been registered, it can be used by other parties to check whether
a signature signature is valid for a message message w.r.t. the verification key of (ID_A,
PKI_DOMAIN) encapsulated in verifier:
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23 try {

24 Verifier verifier = RegisterSig.getVerifier(ID_A, PKI_DOMAIN);

25 verifier.verify(signature, message);

26 } catch(PKIError e) {} // id has not been successfully registered

27 catch(NetworkError e) {} // network problems

Corruption. To model (static) corruption, analogously to the case of public-key encyrp-
tion we allow verifiers to be created directly, without creating associated signers, simply
by providing an arbitrary bitstring verif_key as the public key:

28 Verifier ver = new Verifier(verif_key);

29 try {

30 RegisterSig.registerVerifier(ID, ver, PKI_DOMAIN);

31 } catch (PKIError | NetworkError e) {}

By this, a dishonest party (the adversary) can register any bitstring verif_key he wants
as a verification key, including dishonestly generated keys. This key can then be used by
any other party (honest and dishonest) to verify messages signed by the dishonest party,
just like with verification keys of honest parties. Note that since we do not require PoPs,
a dishonest party can register any verification key of another (possibly honest) party
under his identity. A verifier created in such a way is called corrupted. A corresponding
signing object is not necessary as the adversary can directly sign messages by himself
using the matching signing key (if this key is known to the adversary). Note that, given
a verifier object, other parties cannot tell a priori whether this verifier object is corrupted
or not.

4.2 The Ideal Functionality for Digital Signatures

We now present the ideal functionality for digital signatures, Ideal-Sig. This function-
ality provides the interface IPKISig , introduced above, to its users (parties, environment)
with ideal implementations of the methods declared in IPKISig .

The functionality is defined on top of the interface ICryptoLibSig which contains methods
for key generation, signing, and verification. Analogously to the interface ICryptoLibEnc for
public-key encryption, these methods are supposed to be provided by the environment,
and hence, are completely untrusted. In particular, in the analysis of a system that uses
Ideal-Sig, they do not have to be analyzed, which, again, greatly simplifies the analysis
task.

Now, Ideal-Sig works as follows. On initialization of an object of class Signer, a ver-
ification/signing key pair is created by calling the key generation operation of the inter-
face ICryptoLibSig. A signer object also creates an (initially empty) list of signed messages;
this list will be shared with all associated verifiers (objects returned by getVerifier).
When the method sign is called to sign a message m, the signing procedure of ICryptoLibSig

is called to sign m using the encapsulated signing key. Before this signature is returned,
the signed message m is added to the list of signed messages.

A verifier object returned by the method getVerifier belongs to the class Uncor-
ruptedVerifier (a subclass of the class Verifier) and it implements ideal verification as
follows: the method verify when called to verify a signature s on a message m first uses
the verification procedure of ICryptoLibSig to check if s is a valid signature on m w.r.t. the
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verification key encapsulated in the verifier object. If this is the case, it additionally
checks if m is in the list of signed messages (this list, as mentioned before, is shared
with the associated signer object). If this is true as well, the method returns ‘true’. The
idea behind this procedure is that, independently of how the signing and verification
algorithms work, the verification of a signature on some message succeeds only if this
message has been signed before (and hence, logged) using Ideal-Sig.

A (corrupted) verifier object created directly implements the verification procedure
simply by calling the verification method of ICryptoLibSig.

The methods for registering and obtaining verifiers in class RegisterSig are imple-
mented in a straightforward way by Ideal-PKIEnc, using a list of registered verifiers along
with associated identifiers and domains.

The most important part of the code of Ideal-Sig is listed in [22]; see [23] for the full
code.

4.3 The Realization of Ideal-Sig

The classes Verifier and Signer of the realization Real-Sig of the ideal functionality
Ideal-Sig are implemented in a straightforward way using a digital signature scheme:
messages are simply signed/verified directly using such a scheme. Analogously to the
methods in EncPKI, the methods registerVerifier and getVerifier of the class Reg-
isterSig are based on the interface IPKI introduced in Section 3.3.

The most important part of the code of Real-Sig is listed in [22]; see [23] for the full
code.

4.4 Realization Result

We prove that Real-PKISig realizes Ideal-PKISig, provided that i) the signature scheme
used in the implementation of Real-PKISig is UF-CMA-secure [14] and ii) that, anal-
ogously to the case of public-key encryption, the public-key infrastructure used by
Real-PKISig realizes the ideal functionality Ideal-PKI (see Section 3.4). Again, it has
been shown that UF-CMA-security is necessary to realize Ideal-PKIEnc (see, e.g., [26]).

Theorem 5. If Real-PKISig uses an UF-CMA-secure signature scheme and
Real-PKI≤IPKI Ideal-PKI, then Real-PKISig ·Real-PKI ≤IPKIEnc Ideal-PKISig.

The proof of this theorem is again highly modular and leverages such properties of
the realization relation as the composition theorem, reflexivity, and transitivity. The ba-
sic structure of the proof is analogous to the one for public-key encryption. We split
Ideal-PKISig and Real-PKISig into two parts: i) signing and verification and ii) key reg-
istration and retrieving of verification keys. The most involved part is to show that the
real component for signing and verification realizes the corresponding ideal compo-
nent. Here we make use of an existing results in the cryptographic literature, in partic-
ular [26], and reduce the statement to a corresponding statement in the Turing machine
model. We refer to the extended version of this paper [22] for details.

5 Private Symmetric Encryption

In this section, we present an ideal functionality for what we call private symmetric
encryption and a realization of this functionality. Private symmetric encryption allows
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a user to encrypt messages (using a symmetric encryption scheme) just for herself. She
does not share the symmetric key with other parties. This is useful, for example, to store
confidential information on an untrusted medium. Since keys do not have to be shared
between parties, the functionality can be kept quite simple.

The public interface ISymEnc of this functionality and its realization consists of only
one class SymEnc with two methods: encrypt and decrypt. These methods use a sym-
metric key generated when an object of this class is created.

In the ideal functionality Ideal-SymEnc for private symmetric encryption, encryption
and decryption work analogously to the case of public-key encryption: a sequence of
zeros is encrypted instead of the given plaintext and the ciphertext obtained in this way
is logged along with the plaintext, which enables the functionality to recover this plain-
text when the ciphertext is to be decrypted. The realization Real-SymEnc simply uses
the encapsulated key to encrypt and decrypt messages using a symmetric encryption
scheme. Clearly, there is no need to model (static) corruption here: a dishonest party
can simply perform private symmetric encryption by himself. We refer the reader to the
extended version of this paper [22], as well as [23] for the full code of Ideal-SymEnc and
Real-SymEnc.

We obtain the following result. We omit the proof here because it closely follows the
one for public-key encryption only that it is much simpler now, as we neither need to
consider a public-key infrastructure nor corruption (see [21] for a corresponding result
in a Turing machine model).

Theorem 6. If Real-SymEnc uses an IND-CCA2-secure symmetric encryption scheme,
then Real-SymEnc ≤IPKIEnc Ideal-SymEnc.

6 Nonce Generation

In this section, we propose an ideal functionality and its realization for nonce genera-
tion, formulated in Java (Jinja+). The property that the ideal functionality is supposed
to provide is nonce freshness, i.e., nonces returned by the functionality should always
be different to the nonce that have been returned so far (no collisions); unguessability
of nonces is not intended to be modeled by this functionality.

The public interface INonce for this functionality consists of one class NonceGen with
one method newNonce only, which is supposed to return a fresh nonce.

The ideal functionality Ideal-Nonce for nonce generation works as follows. The func-
tionality maintains an, initially empty, collection (formally, a static list) of nonces that
have been returned so far. When the method newNonce is called, the environment/simu-
lator is asked to provide a bitstring; more precisely, the method CryptoLib.newNonce(),
which is supposed to be provided by the environment is called. Then, the method
newNonce checks whether the returned bitstring is fresh, i.e., whether it does not already
belong to the collection of returned nonces. If the nonce is indeed fresh, the nonce is
added to the collection and returned to the caller of the method. Otherwise, the above
process is repeated until a fresh nonce is returned by the environment/simulator. This
guarantees that Ideal-Nonce always outputs a fresh nonce.

In the realization Real-Nonce of Ideal-Nonce, if the method newNonce is called, a bit-
string of the length of the security parameter is picked uniformly at random and then
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returned to the caller. More precisely, we assume the method CryptoLib.newNonce()

called by Real-Nonce to work in this way.
We refer the reader to the extended version [22] for the most important part of the

code of Ideal-Nonce and Real-Nonce; see [23] for the full code. Now, it is easy to prove
that Real-Nonce realizes Ideal-Nonce.

Theorem 7. Real-Nonce ≤INonce Ideal-Nonce.

To prove this theorem, we let the simulator S work just like Real-Nonce, i.e., when
asked to provide a new nonce by Ideal-Nonce, it picks a bitstring of the length of the
security parameter uniformly at random and returns this bitstring to Ideal-Nonce. Now,
Real-Nonce cannot be distinguished by any (polynomial bounded) environment from
S · Ideal-Nonce unless Real-Nonce produces a collision, which, however, happens with
negligible probability only.

7 The Case Study

As a case study of the results obtained in this paper, we now describe the verification
of a cloud storage system implemented in Java. This system illustrates how the ideal
functionalities we have developed and presented in this paper can be used to analyze
an interesting and non-trivial Java program. As already mentioned in the introduction,
except for the work in [24], where only a much simpler Java program has been consid-
ered, there has been no other work on establishing cryptographic (indistinguishability)
properties for Java programs.

In what follows, we first provide a brief description of the cloud storage system pro-
gram. Then we state the (cryptographic) security property that we verify and, finally,
report on the verification process carried out using the tool Joana [16, 17], which, as
already mentioned, allows for the fully automatic verification of noninterference prop-
erties of Java programs.

Description of the Cloud Storage System. We have implemented a cloud storage
system that allows a user (through her client application) to store data on a remote
server such that confidentiality of the data stored on the server is guaranteed even if the
server is untrusted: data stored on the server is encrypted using a symmetric key known
only to the client.

More specifically, data is stored (encrypted with the symmetric key of a user) on the
server along with a label and a counter (a version number). When data is to be stored
under some label, a new (higher) counter is chosen and the data is stored under the
label and the new counter; old data is still preserved (under smaller counters). Different
users can have data repositories on one server. These repositories are strictly separated.
The system can be used to securely store any kind of data. A user may use our cloud
storage system, for example, to store her passwords remotely on a server such that she
has access to them on different devices.

Communication between a client and a server is secured and authenticated using
functionalities for public-key encryption and digital signatures. Moreover, the function-
ality for nonce generation is essential to prevent replay attacks (when the client and
the server run a sub-protocol to synchronize counter values for labels). The extended
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version of this paper [22] gives a more detailed description of our application; see [23]
for the full code of the system.

The Security Property. As mentioned, the most fundamental security property of the
cloud storage system is confidentiality of the stored data. This property is supposed to
be guaranteed even if the server and all clients of other users may be dishonest and
cooperate with an active adversary.

To formulate this confidentiality property, we provide (besides the code of the client
and the server) a setup class with the method main, which gets a secret bit secret_bit

as input. This method models the interaction between the program of an honest client
and the active adversary (the environment). The adversary has full control over the net-
work and subsumes the server and all dishonest clients. The adversary also controls the
actions taken by the honest client. In particular, he determines the label and data items
the honest client is supposed to store on the server. More precisely, in every request, the
adversary provides a pair of data items. The secret bit secret_bit determines which of
the two items the client actually asks the server to store (see [22] for a more detailed
explanation of the setup class and [23] for the full code).

The security property now requires that no (probabilistic polynomial-time) adversary
should be able to determine the secret bit secret_bit, and hence, whether the data items
in the first or in the second component of the item pairs provided by the adversary are
sent by the client. This specifies a strong cryptographic privacy property, common in
cryptography. Formally, this indistinguishability property is state as follows:

CSR[false] ≈ /0
comp CSR[true] (1)

where CSR[b] denotes the described system, consisting of the setup class and the client
class, with secret_bit set to b. The index R indicates that in this system the crypto-
graphic operations are carried out using the real cryptographic schemes (rather than
ideal functionalities).

We note that the computational indistinguishability relation in (1) uses the empty in-
terface I = /0. This means that the adversary (environment) cannot directly call methods
of the client object. As explained before, by the definition of the setup class, the envi-
ronment can nonetheless determine which actions are taken and when. We also point
out that CSR is an open system which uses some classes not defined within CSR, such
as a network library. These classes are provided by the environment and, therefore, are
untrusted. Thus, property (1) implies confidentiality of the stored messages no matter
how such untrusted libraries are implemented.

Verification of the Security Property. In order to prove (1), by Theorem 3 it suffices
to show that

CSI[b] is I-noninterferent, (2)

where CSI denotes the system which coincides with CSR except that the real cryp-
tographic schemes are replaced by their ideal counterparts (ideal functionalities), i.e.,
Ideal-PKEnc, Ideal-Sig, Ideal-SymEnc, and Ideal-Nonce. Since, as can easily been seen,
CSI[b] satisfies the conditions of Theorem 2, we can further reduce checking (2) to
checking the following property:

Ẽ�u ·CSI [b] is noninterferent for all �u, (3)
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where the family of systems Ẽ�u, parameterized by a finite sequence of integers �u, is as
described in Section 2. This system can be automatically generated from CSI[b]. Also
note that by “noninterference” we mean standard termination-insensitive noninterfer-
ence (see Section 2). Altogether it suffices to prove (3) in order to obtain (1).

Joana was easily able to establish property (3). It took about 17 seconds on a standard
PC (Core i5 2.3GHz, 8GB RAM) to finish the analysis of the program (with a size of
950 LoC). Note that the actual running code of the distributed system is much bigger
than what Joana needed to analyze, because the code of the distributed system includes
untrusted libraries, such as the standard Java library for networking, which do not need
to be analyzed, as already mentioned above.
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