
Optimal Shuffle Code with Permutation Instructions

Sebastian Buchwald, Manuel Mohr, and Ignaz Rutter

Karlsruhe Institute of Technology
{sebastian.buchwald, manuel.mohr, rutter}@kit.edu

Abstract. During compilation of a program, register allocation is the task of
mapping program variables to machine registers. During register allocation, the
compiler may introduce shuffle code, consisting of copy and swap operations,
that transfers data between the registers. Three common sources of shuffle code
are conflicting register mappings at joins in the control flow of the program, e.g,
due to if-statements or loops; the calling convention for procedures, which often
dictates that input arguments or results must be placed in certain registers; and
machine instructions that only allow a subset of registers to occur as operands.
Recently, Mohr et al. [9] proposed to speed up shuffle code with special hardware
instructions that arbitrarily permute the contents of up to five registers and gave a
heuristic for computing such shuffle codes.
In this paper, we give an efficient algorithm for generating optimal shuffle code
in the setting of Mohr et al. An interesting special case occurs when no register
has to be transferred to more than one destination, i.e., it suffices to permute the
contents of the registers. This case is equivalent to factoring a permutation into a
minimal product of permutations, each of which permutes up to five elements.

1 Introduction

One of the most important tasks of a compiler during code generation is register allo-
cation, which is the task of mapping program variables to machine registers. During
this phase, it is frequently necessary to insert so-called shuffle code that transfers values
between registers. Common reasons for the insertion of shuffle code are control flow
joins, procedure calling conventions and constrained machine instructions.

The specification of a shuffle code, i.e., a description which register contents should
be transferred to which registers, can be formulated as a directed graph whose vertices
are the registers and an edge (u, v) means that the content of u before the execution of
the shuffle code must be in v after the execution. Naturally, every vertex must have at
most one incoming edge. Note that vertices may have several outgoing edges, indicating
that their contents must be transferred to several destinations, and even loops (u, u), in-
dicating that the content of register umust be preserved. We call such a graph a Register
Transfer Graph or RTG. Two important special types of RTGs are outdegree-1 RTGs
where the maximum out-degree is 1 and PRTGs where deg−(v) = deg+(v) = 1 for all
vertices v (deg− and deg+ denote the in- and out-degree of a vertex, respectively).

We say that a shuffle code, consisting of a sequence of copy and swap operations on
the registers, implements an RTG if after the execution of the shuffle code every register
whose corresponding vertex has an incoming edge has the correct content. The shuffle
code generation problem asks for a shortest shuffle code that implements a given RTG.

1

2

3

4 5 6 1

2

3

4 5 6

Fig. 1: Two example RTGs where the optimal shuffle code is not obvious.

The amount of shuffle code directly depends on the quality of copy coalescing, a
subtask of register allocation [9]. As copy coalescing is NP-complete [2], reducing the
amount of shuffle code is expensive in terms of compilation time, and thus cannot be
afforded in all contexts, e.g., just-in-time compilation.

Therefore, it has been suggested to allow more complicated operations than simply
copying and swapping to enable more efficient shuffle code. Mohr et al. [9] propose to
allow performing permutations on the contents of small sets of up to five registers. The
processor they develop offers three instructions to implement shuffle code:
copy: copies the content of one register to another one
permi5: cyclically shifts the contents of up to five registers
permi23: swaps the contents of two registers and performs a cyclic shift of the con-

tents of up to three registers; the two sets of registers must be disjoint.
In fact, the two operations permi5 and permi23 together allow to arbitrarily permute
the contents of up to five registers in a single operation. A corresponding hardware and
a modified compiler that employs a greedy approach to generate the shuffle code have
been shown to improve performance in practice [9]. While the greedy heuristic works
well in practice, it does not find an optimal shuffle code in all cases.

It is not obvious how to generate optimal shuffle code using the three instructions
copy, permi5 and permi23 even for small RTGs. In the left RTG from Fig. 1, a
naive solution would implement edges (1, 2) and (1, 3) using copies and the remaining
cycle (4 5 6) using a permi5. However, using one permi23 to implement the cycle
(4 5 6) and swap registers 1 and 2, and then copying register 2 to 3 requires only two
instructions. This is legal because the contents of register 1 can be overwritten. The
same trick is not applicable for the right RTG in Fig. 1 because of the loop (1, 1) and
hence three instructions are necessary to implement that RTG.

A maximum permutation size of 5 may seem arbitrary at first but is a consequence
of instruction encoding constraints. In each permi instruction, the register numbers
and their order must be encoded in the instruction word. Hence, dlog2 (

(
n
k

)
k!)e bits of

an instruction word are needed to be able to encode all permutations of k registers out of
n total registers. As many machine architectures use a fixed size for instruction words,
e.g., 32 or 64 bits, and the operation type must also be encoded in the instruction word,
space is very limited. In fact, for a 32 bit instruction word, 34 is the maximum number
of registers that leave enough space for the operation type.

Related Work. As long as only copy and swap operations are allowed, finding an
optimal shuffle code for a given RTG is a straightforward task [7, p. 56–57]. Therefore
work in the area of compiler construction in this context has focused on coalescing
techniques that reduce the number and the size of RTGs [1, 2, 6, 8].

2

From a theoretical point of view, the most closely related work studies the case
where the input RTG consists of a union of disjoint directed cycles, which can be in-
terpreted as a permutation π. Then, no copy operations are necessary for an optimal
shuffle code and hence the problem of finding an optimal shuffle code using permi23
and permi5 is equivalent to writing π as a shortest product of permutations of maxi-
mum size 5, where a permutation of n elements has size k if it fixes n− k elements.

There has been work on writing a permutation as a product of permutations that
satisfy certain restrictions. The factorization problem on permutation groups from com-
putational group theory [10] is the task of writing an element g of a permutation group
as a product of given generators S. Hence, an algorithm for solving the factorization
problem could be applied in our context by using all possible permutations of size 5 or
less as the set S. However, the algorithms do not guarantee minimality of the product.
For the case that S consists of all permutations that reverse a contiguous subsequence of
the elements, known as the pancake sorting problem, it has been shown that computing
a factoring of minimum size is NP-complete [4].

Farnoud and Milenkovic [5] consider a weighted version of factoring a permutation
into transpositions. They present a polynomial constant-factor approximation algorithm
for factoring a given permutation into transpositions where transpositions have arbitrary
non-negative costs. In our problem, we cannot assign costs to an individual transposition
as its cost is context-dependent, e.g., four transpositions whose product is a cycle require
one operation, whereas four arbitrary transpositions may require two.

Contribution and Outline. In this paper, we present an efficient algorithm for gen-
erating optimal shuffle code using the operations copy, permi5, and permi23, or
equivalently, using copy operations and permutations of size at most 5.

We first prove the existence of a special type of optimal shuffle codes whose copy
operations correspond to edges of the input RTG in Section 2. Removing the set of
edges implemented by copy operations from an RTG leaves an outdegree-1 RTG.

We show that the greedy algorithm proposed by Mohr et al. [9] finds optimal shuf-
fle codes for outdegree-1 RTGs and that the size of an optimal shuffle code can be ex-
pressed as a function that depends only on three characteristic numbers of the outdegree-1
RTG rather than on its structure. Since PRTGs are a special case of outdegree-1 RTGs,
this shows that GREEDY is a linear-time algorithm for factoring an arbitrary permuta-
tion into a minimum number of permutations of size at most 5.

Finally, in Section 4, we show how to compute an optimal set of RTG edges that will
be implemented by copy operations such that the remaining outdegree-1 RTG admits
a shortest shuffle code. This is done by several dynamic programs for the cases that
the input RTG is disconnected, is a tree, or is connected and contains a (single) cycle.
Proofs omitted due to space constraints can be found in the full version of this paper [3].

2 Register Transfer Graphs and Optimal Shuffle Codes

In this section, we rephrase the shuffle code generation problem as a graph problem. An
RTG that has only self-loops needs no shuffle-code and is called trivial.

3

It is easy to define the effect of a permutation on an RTG. Let G be an RTG and let
π be an arbitrary permutation that is applied to the contents of the registers. We define
πG = (V, πE), where πE = {(π(u), v) | (u, v) ∈ E}. This models the fact that if
v should receive the data contained in u, then after π moves the data contained in u to
some other register π(u), the data contained in π(u) should end up in v. We observe
that for two permutations π1, π2 of V , it is (π2 ◦ π1)G = π2(π1(G)), i.e., we have
defined a group action of the symmetric group on RTGs. For PRTGs, the shuffle code
generation problem asks for a shortest shuffle code that makes the given PRTG trivial.

Unfortunately, it is not possible to directly express copy operations in RTGs. In-
stead, we rely on the following observation. Consider an arbitrary shuffle code that
contains a copy a → b with source a and target b that is followed by a transposition τ
of the contents of registers c and d. We can replace this sequence by a transposition of
the registers {c, d} and a copy τ(a) → τ(b). Thus, given a sequence of operations, we
can successively move the copy operations to the end of the sequence without increas-
ing its length. Thus, for any RTG there exists a shuffle code that consists of a pair of
sequences ((π1, . . . , πp), (c1, . . . , ct)), where the πi are permutation operations and the
ci are copy operations. We now strengthen our assumption on the copy operations.

Lemma 1. Every instance of the shuffle code generation problem has an optimal shuffle
code ((π1, . . . , πp), (c1, . . . , ct)) such that

(i) No register occurs as both a source and a target of copy operations.
(ii) Every register is the target of at most one copy operation.

(iii) There is a bijection between the copy operations ci and the edges of πG that are
not loops, where π = πp ◦ πp−1 ◦ · · · ◦ π1.

(iv) If u is the source of a copy operation, then u is incident to a loop in πG.
(v) The number of copies is

∑
v∈V max{deg+

G(v)− 1, 0}.

We call a shuffle code satisfying the conditions of Lemma 1 normalized. Observe
that the number of copy operations used by a normalized shuffle code is a lower bound
on the number of necessary copy operations since permutations cannot copy values.

Consider now an RTG G together with a normalized optimal shuffle code and one
of its copy operations u→ v. Since the code is normalized, the value transferred to v by
this copy operation is the one that stays there after the shuffle code has been executed.
If v had no incoming edge in G, then we could shorten the shuffle by omitting the copy
operation. Thus, v has an incoming edge (u′, v) in G, and we associate the copy u→ v
with the edge (u′, v) of G. In fact, u′ = π−1(u), where π = πp ◦ · · · ◦ π1. In this way,
we associate every copy operation with an edge of the input RTG. In fact, this is an
injective mapping by Lemma 1 (ii).

Lemma 2. Let ((π1, . . . , πp), (c1, . . . , ct)) be an optimal shuffle code S for an RTG
G = (V,E) and let C ⊆ E be the edges that are associated with copies in S. Then

(i) Every vertex v has max{deg+
G(v)− 1, 0} outgoing edges in C.

(ii) G− C is an outdegree-1 RTG.
(iii) π1, . . . , πp is an optimal shuffle code for G− C.

Lemma 2 shows that an optimal shuffle code for an RTGG can be found by 1) pick-
ing for each vertex one of its outgoing edges (if it has any) and removing the remaining

4

1 2 3 4 5 6

(a) The original RTG G needs one permuta-
tion and one copy operation.

1 2 3 4 5 6

(b) After removing the edge (2, 3), the RTG
needs two permutation operations.

Fig. 2: The RTG G obtains the normalized optimal shuffle code (π1, c1), where π1 =
(23456) and c1 = 3 → 1. However, after removing the edge (2, 3) (instead of (1, 2))
we cannot achieve an optimal solution anymore.

edges from G, 2) finding an optimal shuffle code for the resulting outdegree-1 RTG,
and 3) creating one copy operation for each of the previously removed edges. Fig. 2
shows that the choice of the outgoing edges is crucial to obtain an optimal shuffle code.

In the following, we first show how to compute an optimal shuffle code for an
outdegree-1 RTG in Section 3. Afterwards, in Section 4, we design an algorithm for
efficiently determining a set of edges to be removed such that the resulting outdegree-1
RTG admits a shuffle code with the smallest number of operations.

3 Optimal Shuffle Code for Outdegree-1 RTGs

In this section we prove the optimality of the greedy algorithm proposed by Mohr et
al. [9] for outdegree-1 RTGs. Before we formulate the algorithm, let us look at the
effect of applying a transposition τ = (u v) to contiguous vertices of a k-cycle K =
(VK , EK) in a PRTG G, where k-cycle denotes a cycle of size k. Hence, u, v ∈ VK
and (u, v) ∈ EK . Then, in τG, the cycle K is replaced by a (k − 1)-cycle and a vertex
v with a loop. We say that τ has reduced the size of K by 1. If τK is trivial, we say
that τ resolves K. It is easy to see that permi5 reduces the size of a cycle by up to 4
and permi23 reduces the sizes of two distinct cycles by 1 and up to 2, respectively.
We can now formulate GREEDY as follows.
1. Complete each directed path of the input outdegree-1 RTG into a directed cycle,

thereby turning the input into a PRTG.
2. While there exists a cycle K of size at least 4, apply a permi5 operation to reduce

the size of K as much as possible.
3. While there exist a 2-cycle and a 3-cycle, resolve them with a permi23 operation.
4. Resolve pairs of 2-cycles by permi23 operations.
5. Resolve triples of 3-cycles by pairs of permi23 operations.

We claim that GREEDY computes an optimal shuffle code. Let G be an outdegree-1
RTG and let Q denote the set of paths and cycles of G. For a path or cycle σ ∈ Q,
we denote by size(σ) the number of vertices of σ. Define X =

∑
σ∈Qbsize(σ)/4c and

ai = |{σ ∈ Q | size(σ) = i mod 4}| for i = 2, 3. We call the triple sig(G) =
(X, a2, a3) the signature of G.

Lemma 3. Let G be an outdegree-1 RTG with sig(G) = (X, a2, a3). The number
GREEDY(G) of operations in the shuffle code produced by the greedy algorithm is
GREEDY(G) = X + max{d(a2 + a3)/2e, d(a2 + 2a3)/3e}.

5

1

2
3

4
5

6

7

8

⇔ 1

2
3

4

5

6
7

8

Fig. 3: The transposition τ = (5 8) acting on PRTGs. Affected edges are drawn thick.
Read from left to right, the transposition is a merge; read from right to left, it is a split.

In particular, the length of the shuffle code computed by GREEDY only depends on
the signature of the input RTG G. In the following, we prove that GREEDY is optimal
for outdegree-1 RTGs and hence GREEDY(G) is the length of an optimal shuffle code.

Lemma 4. Let G,G′ be PRTGs with sig(G) = (X, a2, a3), sig(G′) = (X ′, a′2, a
′
3)

and GREEDY(G) − GREEDY(G′) ≥ c, and let (∆X , ∆2, ∆3) = sig(G) − sig(G′). If
a2 ≥ a3, then 2∆X+∆2+∆3 ≤ −2c+1. If a3 > a2, then 3∆X+∆2+2∆3 ≤ −3c+2.

Proof (sketch). We assume that a2 ≥ a3, the other case is analogous. By Lemma 3
GREEDY(G) ≤ X+(a2 +a3 +1)/2 and GREEDY(G′) ≥ X ′+(a′2 +a′3)/2. Therefore,
GREEDY(G)−GREEDY(G′) ≤ −∆X−(∆2+∆3−1)/2 = −(2∆X+∆2+∆3−1)/2.
By assumption, −(2∆X +∆2 +∆3 − 1)/2 ≥ c; this is equivalent to the claim. ut

Lemma 4 gives us necessary conditions for when the GREEDY solutions of two
RTGs differ by some value c. These necessary conditions depend only on the difference
of the two signatures. To study them more precisely, we define Ψ1(∆X , ∆2, ∆3) =
2∆X +∆2 +∆3 and Ψ2(∆X , ∆2, ∆3) = 3∆X +∆2 + 2∆3. Next, we study the effect
of a single transposition on these two functions.

Let G = (V,E) be a PRTG with sig(G) = (X, a2, a3) and let τ be a transposition
of two elements in V . We distinguish cases based on whether the swapped elements are
in different connected components or not. In the former case, we say that τ is a merge,
in the latter we call it a split; see Fig. 3 for an illustration.

We start with the merge operations. When merging two cycles of size s1 and s2,
respectively, they are replaced by a single cycle of size s1 + s2. Note that removing the
two cycles may decrease the values a2 and a3 of the signature by at most 2 in total.
The new cycle can potentially increase one of these values by 1. The value X never
decreases, and it increases by 1 if and only if s1 mod 4 + s2 mod 4 ≥ 4. Table 1a
shows the possible signature changes (∆X , ∆2, ∆3) resulting from a merge. The entry
in row i and column j shows the result of merging two cycles whose sizes modulo 4
are i and j, respectively. Table 1b shows the corresponding values of Ψ1 and Ψ2. Only
entries with i ≤ j are shown, the remaining cases are symmetric.

Lemma 5. Let G be a PRTG with sig(G) = (X, a2, a3) and let τ be a merge. Then
GREEDY(G) ≤ GREEDY(τG).

Proof. Suppose GREEDY(τG) < GREEDY(G). Then GREEDY(G)−GREEDY(τG) ≥
1 and by Lemma 4 either Ψ1 ≤ −1 or Ψ2 ≤ −1. However, Table 1b shows the values
of Ψ1 and Ψ2 for all possible merges. In all cases it is Ψ1, Ψ2 ≥ 0. A contradiction. ut

6

0 1 2 3

0 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

1 (0, 1, 0) (0,−1, 1) (1, 0,−1)
2 (1,−2, 0) (1,−1,−1)
3 (1, 1,−2)

(a) Signature change (∆X ,∆2,∆3).

0 1 2 3

0 0 0 0 0

1 1 0 1

2 0 0

3 1

0 1 2 3

0 0 0 0 0

1 1 1 1

2 1 0

3 0

(b) Values of Ψ1 (left) and Ψ2 (right).

Table 1: Signature changes and Ψ values for merges. Row and column are the cycle
sizes modulo 4 before the merge.

In particular, the lemma shows that merges never decrease the cost of the greedy
solution, even if they were for free. We now make a similar analysis for splits. It is,
however, obvious that splits indeed may decrease the cost of greedy solutions. In fact,
one can always split cycles in a PRTG until it is trivial.

First, we study again the effect of splits on the signature change (∆X , ∆2, ∆3).
Since a split is an inverse of a merge, we can essentially reuse Table 1a. If merging two
cycles whose sizes modulo 4 are i and j, respectively, results in a signature change of
(∆X , ∆2, ∆3), then, conversely, we can split a cycle whose size modulo 4 is i+ j into
two cycles whose sizes modulo 4 are i and j, respectively, such that the signature change
is (−∆X ,−∆2,−∆3), and vice versa. Note that given a cycle whose size modulo 4 is
s one has to look at all cells (i, j) with i + j ≡ s (mod 4) to consider all the possible
signature changes. Since Ψ1, Ψ2 are linear, negating the signature change also negates
the corresponding value. Thus, we can reuse Table 1b for splits by negating each entry.

Lemma 6. Let G = (V,E) be a PRTG and let π be a cyclic shift of c vertices in V . Let
further (∆X , ∆2, ∆3) be the signature change affected by π. Then Ψ1(∆X , ∆2, ∆3) ≥
−d(c− 1)/2e and Ψ2(∆X , ∆2, ∆3) ≥ −d(3c− 3)/4e.

Proof. We can write π = τc−1◦· · ·◦τ1 as a product of c−1 transpositions such that any
two consecutive transpositions τi and τi+1 affect a common element for i = 1, . . . , c−1.

Each transposition decreases Ψ1 (or Ψ2) by at most 1, but a decrease happens only
for certain split operations. However, it is not possible to reduce Ψ1 (or Ψ2) with every
single transposition since for two consecutive splits the second has to split one of the
connected components resulting from the previous splits. To get an overview of the
sequences of splits that reduce the value of Ψ1 (or of Ψ2) by 1 for each split, we consider
the following transition graphs Tk for Ψk (k = 1, 2) on the vertex set S = {0, 1, 2, 3}.
In the graph Tk there is an edge from i to j if there is a split that splits a component
of size i mod 4 such that one of the resulting components has size j mod 4 and this
split decreases Ψk by 1. The transition graphs T1 and T2 are shown in Fig. 4.

For Ψ1 the longest path in the transition graph has length 1. Thus, the value of Ψ1 can
be reduced at most every second transposition and Ψ1(∆X , ∆2, ∆3) ≥ −d(c− 1)/2e.

For Ψ2 the longest path has length 3 (vertex 1 has out-degree 0). Therefore, after at
most three consecutive steps that decrease Ψ2, there is one that does not. It follows that
at least b(c−1)/4c operations do not decrease Ψ2, and consequently at most d(3c−3)/4e
operations decrease Ψ2 by 1. Thus, Ψ2(∆X , ∆2, ∆3) ≥ −d(3c− 3)/4e. ut

7

0 1

23

0 1

23

Fig. 4: Transition graphs for Ψ1 (left) and Ψ2 (right).

Since permi5 performs a single cyclic shift and permi23 is the concatenation
of two cyclic shifts, Lemmas 6 and 4 can be used to show that no such operation may
decrease the number of operations GREEDY has to perform by more than 1.

Corollary 1. Let G be a PRTG and let π be an operation, i.e., either a permi23 or a
permi5. Then GREEDY(G) ≤ GREEDY(πG) + 1.

Using this corollary and an induction on the length of an optimal shuffle code, we
show that GREEDY is optimal for PRTGs; if no operation reduces the number of opera-
tions GREEDY needs by more than 1, why not use the operation suggested by GREEDY?

Theorem 1. Let G be a PRTG. An optimal shuffle code for G takes GREEDY(G) oper-
ations. Algorithm GREEDY computes an optimal shuffle code in linear time.

Moreover, since merge operations may not decrease the cost of GREEDY and any
PRTG that can be formed from the original outdegree-1 RTG G by inserting edges can
be obtained from the PRTGG′ formed by GREEDY and a sequence of merge operations,
it follows that the length of an optimal shuffle for G is GREEDY(G′). Thus, GREEDY is
optimal for outdegree-1 RTGs.

Theorem 2. LetG be an outdegree-1 RTG. Then an optimal shuffle code forG requires
GREEDY(G) operations. GREEDY computes such a shuffle code in linear time.

4 The General Case

In this section we study the general case. A copy set of an RTG G = (V,E) is a
set C ⊆ E such that G − C = (V,E − C) is an outdegree-1 RTG and |C| =∑
v∈V max{deg+(v) − 1, 0}. We denote by C(G) the set of all copy sets of G. Ac-

cording to Lemma 2 an optimal shuffle code for G can be found by finding a copy set
C ∈ C(G) such that the outdegree-1 RTG G − C admits a shortest shuffle code. By
Theorem 2 an optimal shuffle code for G − C can be computed with the greedy algo-
rithm and its length can be computed according to Lemma 3. We thus seek a copy set
C ∈ C(G) that minimizes the cost function GREEDY(G − C) = X + max{d(a2 +
a3)/2e, d(a2 + 2a3)/3e}, where (X, a2, a3) is the signature of G−C. Such a copy set
is called optimal. Clearly, this is equivalent to minimizing the function

GREEDY′(G−C) = X + max{a2 + a3

2
,
a2 + 2a3

3
} =

{
X + a2

2 + a3
2 if a2 ≥ a3

X + a2
3 + 2a3

3 if a2 < a3

8

To keep track of which case is used for evaluating GREEDY′, we define diff(G−C) =
a2 − a3 and compute for each of the two function parts and every possible value d a
copy set Cd with diff(G − Cd) = d that minimizes that function. More formally, we
define cost1(G − C) = X + 1

2a2 + 1
2a3 and cost2(G − C) = X + 1

3a2 + 2
3a3 and

we seek two tables T 1
G[·], T 2

G[·], such that T iG[d] is the smallest cost costi(G − C) that
can be achieved with a copy set C ∈ C(G) with diff(G − C) = d. We observe that
T iG[d] = ∞ for d < −n and for d > n. The following lemma shows that the length of
an optimal shuffle code can be computed from these two tables.

Lemma 7. Let G = (V,E) be an RTG. The length of an optimal shuffle code for G is∑
v∈V max{deg+(v)− 1, 0}+ min{mind≥0dT 1

G[d]e,mind<0dT 2
G[d]e}.

In the following, we show how to compute for an RTG G a table TG[·] with

TG[d] = min
C∈C(G)

diff(G−C)=d

cost(G− C)

for an arbitrary cost function cost(G−C) = c(sig(G−C)), where c is a linear function.
This is done in several steps depending on whether G is disconnected, is a tree, or is
connected and contains a cycle. Before we continue, we introduce several preliminaries
to simplify the following calculations. We denote by Ps a directed path on s vertices.

Definition 1. A map f that assigns a value to an outdegree-1 RTG is signature-linear
if there exists a linear function g : R3 → R such that f(G) = g(sig(G)) for every
outdegree-1 RTG G. For a signature-linear function f , ∆f (s) = f(Ps+1) − f(Ps) is
the correction term.

Note that both cost = c ◦ sig and diff = d ◦ sig with d(X, a2, a3) = a2 − a3 are
signature-linear. The correction term ∆f (s) describes the change of f when the size of
one connected component is increased from s to s+ 1.

Lemma 8. Let f be a signature-linear function. Then the following hold:
(i) f(G1 ∪G2) = f(G1) + f(G2) for disjoint outdegree-1 RTGs G1, G2,

(ii) LetG = (V,E) be an outdegree-1 RTG and let v ∈ V with in-degree 0. Denote by
s the size of the connected component containing v and let G+ = (V ∪ {u}, E ∪
{(u, v)}) where u is a new vertex. Then f(G+) = f(G) +∆f (s).

Note that ∆f (s) = ∆f (s+ 4) for all values of s and hence it suffices to know the size
of the enlarged component modulo 4.

The main idea for computing table TG[·] by dynamic programming is to decompose
G into smaller edge-disjoint subgraphs G = G1 ∪ · · · ∪ Gk such that the copy sets of
G can be constructed from copy sets for each of the Gi. We call such a decomposition
proper partition if for every vertex v of G there exists an index i such that Gi contains
all outgoing edges of v. Let G1, . . . , Gk be a proper partition of G and let Ci ⊆ C(Gi)
for i = 1, . . . , k. We define C1 ⊗ · · · ⊗ Ck = {C1 ∪ · · · ∪ Ck | Ci ∈ Ci, i = 1, . . . , k}.
It is not hard to see that C(G1 ∪ · · · ∪Gk) = C(G1)⊗ · · · ⊗ C(Gk).

9

Disconnected RTGs. We start with the case that G is disconnected and consists of
connected componentsG1, . . . , Gk, which form a proper partition ofG. The main issue
is to keep track of diff and cost. For an RTG G, we define C(G; d) = {C ∈ C(G) |
diff(G−C) = d}. By Lemma 8(i) and the signature-linearity of diff , if Ci ∈ C(Gi; di)
for i = 1, 2, then C1 ∪ C2 ∈ C(G1 ∪G2; d1 + d2). This leads to the following lemma.

Lemma 9. Let G be an RTG and let G1, G2 be vertex-disjoint RTGs. Then
(i) C(G) =

⋃
d C(G; d) and (ii) C(G1 ∪G2; d) =

⋃
d′ (C(G1; d′)⊗ C(G2; d− d′)).

By further exploiting the signature-linearity of cost, we also get cost((G1 ∪G2)−
(C1 ∪ C2)) = cost(G1 − C1) + cost(G2 − C2), allowing us to compute the cost of
copy sets formed by the union of copy sets of vertex-disjoint graphs.

Lemma 10. Let G1, G2 be two vertex-disjoint RTGs and let G = G1 ∪ G2. Then
TG[d] = mind′{TG1

[d′] + TG2
[d− d′]}.

Proof. Applying the definition of TG[·] as well as Lemma 9 (ii) and Lemma 8 (i) yields

TG[d] = min
C∈C(G;d)

cost(G− C) = min
C∈

⋃
d′ (C(G1;d′)⊗C(G2;d−d′))

cost(G− C)

= min
d′

{
min

C∈C(G1;d′)⊗C(G2;d−d′)
cost(G− C)

}
= min

d′

{
min

C1∈C(G1;d′)
cost(G1 − C1) + min

C2∈C(G2;d−d′)
cost(G2 − C2)

}
= min

d′
{TG1

[d′] + TG2
[d− d′]}. ut

By iteratively applying Lemma 10, we compute TG[·] for a disconnected RTG G
with an arbitrary number of connected components.

Lemma 11. Let G be an RTG with n vertices and connected components G1, . . . , Gk.
Given the tables TGi [·] for i = 1, . . . , k, the table TG[·] can be computed inO(n2) time.

Tree RTGs. For a tree RTGG, we compute TG[·] in a bottom-up fashion. The direction
of the edges naturally defines a unique root vertex r that has no incoming edges and we
considerG as a rooted tree. For a vertex v, we denote byG(v) the subtree ofGwith root
v. Let v be a vertex with children v1, . . . , vk. How does a copy set C of G(v) look like?
Clearly, G(v)− C contains precisely one of the outgoing edges of v, say (v, vj). Then
Zj = {(v, vi) | i 6= j} ⊆ C. GraphG(v)−Zj has connected componentsG(vi) for i 6=
j, whose union we denote G¬j , and one additional connected component G+(vj) that
is obtained from G(vj) by adding the vertex v and the edge (v, vj). This forms a proper
partition ofG(v)−Zj . As above, we decompose the copy setC−Zj further into a union
of a copy set C¬j of G¬j and a copy set Cj of G+(vj). Graph G¬j is disconnected and
can be handled as above. Note that the only child of the root of G+(vj) is vj and hence
Cj is a copy set of G(vj). For expressing the cost and difference measures for copy sets
of G+(vj) in terms of copy sets of G(vj), we use the correction terms ∆cost and ∆diff .

10

By Lemma 8 (ii), diff(G+(vj) − Cj) = diff(G(vj) − Cj) + ∆diff(s), where s is the
size of the root path P (vj , Cj) ofG(vj)−Cj , i.e., the size of the connected component
of G(vj)−Cj containing vj . An analogous statement holds for cost. More precisely, it
suffices to know smodulo 4. Therefore, we further decompose our copy sets as follows,
which allows us to formalize our discussion.

Definition 2. For a tree RTG G with root v and children v1, . . . , vk, we define
C(G; d, s) = {C ∈ C(G; d) | |P (v, C)| ≡ s (mod 4)}. We further decompose these by
C(G; d, s, j) = {C ∈ C(G; d, s) | (v, vj) 6∈ C}, according to which outgoing edge of
the root is not in the copy set.

Lemma 12. Let G be a tree RTG with root v and children v1, . . . , vk and for a fixed
vertex vj , 1 ≤ j ≤ k, let G+(vj) be the subgraph ofG induced by the vertices inG(vj)

together with v. Let further G¬j =
⋃k
i=1,i6=j G(vi) and Zj = {(v, vi) | i 6= j}. Then

(i) C(G; d) =
⋃3
s=0 C(G; d, s) and C(G; d, s) =

⋃k
j=1 C(G; d, s, j).

(ii) C(G+(vj); d, s) = C(G(vj); d−∆diff(s), s− 1).
(iii) C(G; d, s, j) =

⋃
d′ (C(G¬j ; d′)⊗ C(G+(vj); d− d′, s)⊗ {Zj}).

To make use of this decomposition of copy sets, we extend our table T with an
additional parameter s to keep track of the size of the root path modulo 4. We call the
resulting table T̃ . More formally, T̃v[d, s] = minC∈C(G(v);d,s) cost(G(v)−C). It is not
hard to see that TG[·] can be computed from T̃r[·, ·] for the root r of a tree RTG G.

Lemma 13. Let G be a tree RTG with root r. Then TG[d] = mins T̃r[d, s].

To compute T̃v[·, ·] in a bottom-up fashion, we exploit the decompositions from
Lemma 12 and the fact that we can update the cost function from G(vj) − Cj to
G+(vj)−Cj using the correction term ∆cost. The proof is similar to that of Lemma 10
but more technical.

Lemma 14. Let G be a tree RTG, let v be a vertex of G with children v1, . . . , vk, and
let G(vi) = (Vi, Ei) for i = 1, . . . , k. Then with G¬j = (V¬j , E¬j) =

⋃k
i=1,i6=j G(vi)

T̃v[d, s] = min
j∈{1,...,k}

min
d′

TG¬j [d′] + T̃vj [d− d′−∆diff(s), (s− 1) mod 4] +∆cost(s).

For leaves v of a tree RTG G, T̃v[0, 1] = 0 and all other entries are∞. We compute
TG[·] by iteratively applying Lemma 14 in a bottom-up fashion, using Lemma 13 to
compute T [·] from T̃ [·, ·] in linear time when needed.

Lemma 15. Let G = (V,E) be a tree RTG with n vertices and root r. The tables
T̃r[·, ·] and TG[·] can be computed in O(n3) time.

Connected RTGs Containing a Cycle. We only give a sketch. The idea is that such
an RTG contains a single directed cycle. Every copy set contains either an edge of that
cycle or it contains all edges that have their source on the cycle but do not belong to the
cycle. This leads to a linear number of tree instances, which we solve using Lemma 15.

Lemma 16. Let G be a connected RTG containing a directed cycle. The table TG[·]
can be computed in O(n4) time.

11

Putting Things Together. To compute TG[·] for an arbitrary RTG G, we first compute
TK [·] for each connected component K of G using Lemmas 15 and 16. Then, we com-
pute TG[·] using Lemma 11 and the length of an optimal shuffle code using Lemma 7.
To actually compute the shuffle code, we augment the dynamic program computing
TG[·] such that an optimal copy set C can be found by backtracking in the tables. An
optimal shuffle code is then found by applying GREEDY to G−C and adding one copy
operation for each edge in C.

Theorem 3. Given an RTGG, an optimal shuffle code can be computed inO(n4) time.

Conclusion. We have presented an efficient algorithm for generating optimal shuffle
code using copy instructions and permutation instructions, which allow to arbitrarily
permute the contents of up to five registers. As an intermediate result, we have proven
the optimality of the greedy algorithm for factoring a permutation into a minimal prod-
uct of permutations, each of which permutes up to five elements. It would be interesting
to allow permutations of larger size.
Acknowledgments. This work was partly supported by the German Research Founda-
tion (DFG) as part of the Transregional Collaborative Research Center “Invasive Com-
puting” (SFB/TR 89).

References

1. Blazy, S., Robillard, B.: Live-range unsplitting for faster optimal coalescing. In: Languages,
Compilers, and Tools for Embedded Systems (LCTES ’09). pp. 70–79. ACM (2009)

2. Bouchez, F., Darte, A., Rastello, F.: On the complexity of register coalescing. In: Code Gen-
eration and Optimization (CGO ’07). pp. 102–114. IEEE (2007)

3. Buchwald, S., Mohr, M., Rutter, I.: Optimal shuffle code with permutation instructions.
CoRR abs/1504.07073 (2015), http://arxiv.org/abs/1504.07073

4. Caprara, A.: Sorting by reversals is difficult. In: Computational Molecular Biology (RE-
COMB’97). pp. 75–83. ACM (1997)

5. Farnoud, F., Milenkovic, O.: Sorting of permutations by cost-constrained transpositions.
IEEE Transactions on Information Theory 58(1), 3–23 (2012)

6. Grund, D., Hack, S.: A fast cutting-plane algorithm for optimal coalescing. In: Krishna-
murthi, S., Odersky, M. (eds.) Compiler Construction, Lecture Notes in Computer Science,
vol. 4420, pp. 111–125. Springer Berlin Heidelberg (2007)

7. Hack, S.: Register Allocation for Programs in SSA Form. Ph.D. thesis, Universität Karlsruhe
(2007), http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/6532

8. Hack, S., Goos, G.: Copy coalescing by graph recoloring. SIGPLAN Notices 43(6), 227–237
(2008)

9. Mohr, M., Grudnitsky, A., Modschiedler, T., Bauer, L., Hack, S., Henkel, J.: Hardware accel-
eration for programs in SSA form. In: Compilers, Architecture and Synthesis for Embedded
Systems (CASES ’13). ACM (2013)

10. Seress, Á.: Permutation Group Algorithms, vol. 152. Cambridge University Press (2003)

12

http://arxiv.org/abs/1504.07073
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/6532

	Optimal Shuffle Code with Permutation Instructions

