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Zusammenfassung
Registerallokation ist eine wichtige Aufgabe während dem Kompilieren von Program-
men, um den Variablen Register zuzuteilen. Ein häufig genutzter Ansatz für die
Registerallokation ist die Übertragung auf das Problem der Graphfärbung. Arbeitet
die Registerallokation auf einer Zwischenrepräsentation in SSA-Form, ergeben sich
Vereinfachungen für die genutzten Algorithmen.

Die SPARC-Architektur bietet die Möglichkeit, in einem Paar von benachbarten
32-Bit-Registern eine Gleitkommazahl doppelter Genauigkeit zu speichern, die 64 Bit
Speicherplatz benötigt. In dieser Arbeit wird die Auswirkung der Verwendung solcher
Doppelregister auf die Registerallokation in einem SSA-basierten Registerallokator an-
hand der Registerallokation in libFirm untersucht. Die bestehende Implementierung
wird angepasst, um Doppelregister zu unterstützen. Die abschließende Bewertung
zeigt, dass die Laufzeit von mit libFirm für die SPARC-Architektur übersetzten
Programmen, die viele Gleitkommaberechnungen doppelter Genauigkeit durchführen,
dadurch erheblich reduziert wird.
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1. Einführung

Zahlreiche moderne Prozessorarchitekturen nutzen eine Wortbreite von 64 Bit. Je
nach Anwendungsfeld sind aber nach wie vor Prozessoren mit 32-Bit-Architekturen
verbreitet. Eine solche Architektur ist die SPARC-Architektur (Scalable Processor
Architecture). Diese von dem Unternehmen Sun Microsystems entwickelte Architektur
wurde erstmals im Jahr 1986 vorgestellt. Aufgrund der Skalierbarkeit der Architek-
tur kommen SPARC-Prozessoren in unterschiedlichsten Anwendungsgebieten zum
Einsatz, beispielsweise in Supercomputern und in Systemen, die für den Einsatz im
Weltraum konzipiert sind [1]. Eine Gleitkommazahl einfacher Genauigkeit hat auf
der SPARC V8-Architektur eine Breite von 32 Bit. Dennoch ist es wünschenswert,
auch auf einer 32-Bit-Architektur Berechnungen auf Daten von höherer Genauigkeit,
insbesondere Gleitkommazahlen mit doppelter Genauigkeit, durchzuführen. Ein Da-
tenwort für eine Gleitkommazahl doppelter Genauigkeit umfasst 64 Bit. Prozessoren
der SPARC-Architektur bringen bereits die nötigen Voraussetzungen mit, um mit
solchen Datenwörtern umzugehen. Dazu gehört neben den nötigen Prozessorinstruk-
tionen auch der Ansatz, ein 64-Bit-Datenwort in zwei Registern abzuspeichern. Diese
Zusammenfassung zweier 32-Bit-Register zur Speicherung eines 64-Bit-Datenwortes
wird mit dem Begriff Doppelregister bezeichnet.

Die Programmierung von Anwendungen erfolgt meist in höheren Programmierspra-
chen und die Verwaltung der Register des Prozessors wird nicht vom Programmierer
übernommen. Im Maschinencode, der auf dem Prozessor ausgeführt wird, muss
jedoch eine Zuteilung von Daten des Programms auf die Register enthalten sein. Die
Aufgabe, den Variablen im Programm Register zuzuteilen, die Registerallokation,
wird daher vom Compiler übernommen.

Ein Compiler kann in mehrere Phasen unterteilt werden. Das Front-End ist zuständig
für das Einlesen der Quellsprache und der semantischen und syntaktischen Analyse des
Codes. Das Ergebnis wird dem Middle-End übergeben, das zahlreiche Optimierungen
vornimmt. Anschließend übernimmt das Back-End die Aufgabe, prozessorspezifischen
Maschinencode zu generieren, wobei auch weitere der Zielarchitektur angepasste
Optimierungen vorgenommen werden können. Die Registerallokation ist Teil des
Back-Ends. Eine Zwischenrepräsentation stellt das Austauschformat zwischen den
Phasen des Compilers dar. Durch Nutzung einer Zwischenrepräsentation wird der
Einsatz verschiedener Back-Ends für verschiedene Architekturen unter Beibehaltung
der Funktionen des Front- und Middle-Ends vereinfacht.
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libFirm ist eine am Karlsruher Institut für Technologie entwickelte Bibliothek für
die graphbasierte Zwischenrepräsentation Firm. Eine besondere Eigenschaft von
Firm ist die SSA-Form, die verschiedene Optimierungen und Algorithmen erheblich
vereinfacht und beschleunigt.

libFirm beinhaltet bereits die Möglichkeit, aus der Zwischenrepräsentation Maschi-
nencode für die SPARC-Prozessorarchitektur zu erzeugen. Es ist bisher jedoch kein
geeigneter Registerallokator enthalten, der mit Doppelregistern umgehen kann. Pro-
gramme, die für die SPARC-Architektur kompiliert werden sollen und 64 Bit breite
Gleitkommazahlen verwenden, müssen deshalb bisher auf langsamere, in Software
emulierte Gleitkommaarithmetik zurückgreifen.

In der vorliegenden Arbeit wird eine Erweiterung der bestehenden Registerallokation
von libFirm für die Allokation von Doppelregistern unter Ausnutzung der SSA-Form
der Zwischenrepräsentation entwickelt und bewertet.

Die zum Verständnis der Aufgabenstellung und gewählten Implementierung nöti-
gen Grundlagen werden in Kapitel 2 eingeführt. Kapitel 3 erläutert die gewählte
Implementierung der Doppelregisterallokation. Anschließend wird in Kapitel 4 die
Implementierung hinsichtlich korrekter Funktionsweise und Laufzeitverhalten eva-
luiert. Kapitel 5 fasst die Ergebnisse dieser Arbeit kurz zusammen und gibt einen
Ausblick auf mögliche zukünftige Verbesserungen.
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2. Grundlagen und verwandte
Arbeiten

In diesem Kapitel werden einige Grundlagen erklärt, die zum Verständnis der Imple-
mentierung nötig sind. Zu Beginn wird auf Zwischenrepräsentationen in SSA-Form
eingegangen und eine kurze Einführung zu libFirm gegeben. Anschließend werden
die Eigenschaften und Anforderungen der SPARC-Architektur bezüglich der Verwen-
dung von Doppelregistern dargelegt. Nach einer Einführung in die Registerallokation
mittels Graphfärbung werden die Vorteile der SSA-Form auf die Registerallokation
erläutert. Abschließend werden verwandte Arbeiten zur Doppelregisterallokation
genannt.

2.1. SSA-Form

Beim Übersetzen eines Programms in Quellsprache wird der vom Programmierer
geschriebene Code üblicherweise in verschiedenen Phasen in eine Zwischenrepräsenta-
tion, genannt intermediate representation (IR) transformiert. Diese Abstraktionsebe-
ne dient dann als Basis für weitere Anpassungen und Optimierungen, die dadurch
unabhängig von der Quellsprache durchgeführt werden können. Zum Ende hin wird
aus der Zwischenrepräsentation der Code in der gewünschten Maschinensprache
generiert. Die Benutzung einer Zwischenrepräsentation im Compiler erlaubt somit
eine einfache Trennung von Front-End und Back-End des Compilers. Dadurch können
etwa Front-Ends für verschiedene Sprachen mit dem gleichen Back-End eines Compi-
lers kombiniert werden. Optimierungen können einfach im gemeinsamen Middle-End
implementiert werden und stehen den verschiedenen Front- und Back-Ends zur
Verfügung.

Eine besondere Eigenschaft für Zwischenrepräsentationen ist die SSA-Form. SSA
steht für Static Single Assignment und bezeichnet die Eigenschaft, dass jeder Variable
nur einmalig ein Wert zugewiesen wird. Jede weitere Zuweisung an eine Variable hat
zufolge, dass in der SSA-Form eine neue Instanz für diese Variable eingeführt werden
muss. Jede Zuweisung an eine Variable wird als Definition eines neuen Wertes bezeich-
net. In SSA-Form repräsentiert eine Variable somit exakt einen Wert. Operationen
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definieren diese Werte (def ) und hängen von bereits definierten Werten ab. Dies
wird als use bezeichnet. Liegt die Zwischenrepräsentation eines Programms in SSA-
Form vor, sind zahlreiche Optimierungen und Algorithmen, die auf der Zwischenre-
präsentation ausgeführt werden, einfacher zu realisieren [2, 3]. In Abschnitt 2.4 wird
gesondert auf die Auswirkungen und Vorteile der SSA-Form für die Registerallokation
eingegangen.

Listing 2.1: Ein Codeausschnitt,
der sich nicht in SSA-Form befin-
det.

a = some_input ( ) ;
i f ( a < 20) {

b = 1 ;
} else {

b = 0 ;
}
do_stuf f (b ) ;
b = 2 ;

Listing 2.2: Der gleiche Codeaus-
schnitt in SSA-Form.

a = some_input ( ) ;
i f ( a < 20) {

b1 = 1 ;
} else {

b2 = 0 ;
}
b3 = φ( b1 , b2 )
do_stuf f ( b3 ) ;
b4 = 2 ;

Listing 2.1 zeigt ein Programm, bei dem der Inhalt einer Variablen (b) vom Kontroll-
fluss des Programms abhängt: Je nach Inhalt der Variable a wird b ein anderer Wert
zugewiesen. In SSA-Form müssen deshalb weitere Variablen eingeführt werden, sodass
jeder Variable nur einmalig ein Wert zugewiesen wird. Listing 2.2 verdeutlicht dies.
Bei der Zusammenführung des Kontrollflusses nach der if-else-Anweisung muss für
weitere Zugriffe auf die Variable b eine φ-Funktion eingefügt werden. φ-Funktionen
erhalten als Parameter die Variable aus jedem möglichen Kontrollflusspfad. Je nach
tatsächlich eingeschlagenem Pfad gibt die φ-Funktion den Wert der entsprechenden
Variablen zurück [2, 3]. Die φ-Funktion ist keine reale Instruktion und wird nicht im
erzeugten Code in Maschinensprache ausgegeben.

Zahlreiche moderne Compiler, darunter GCC (GNU Compiler Collection) und LLVM
nutzen zumindest in Teilen interne Zwischenrepräsentationen in SSA-Form [4, 5].

2.2. libFirm

libFirm ist eine C-Bibliothek, welche die am Karlsruher Institut für Technologie
entwickelte Zwischenrepräsentation Firm realisiert. Bei Firm handelt es sich um
eine vollständig graphbasierte Zwischenrepräsentation, die sich während des ge-
samten Übersetzungsvorgangs bis zur Codegenerierung in SSA-Form befindet. Die
Zwischenrepräsentation in Form eines gerichteten Graphen beinhaltet dabei sowohl
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Abbildung 2.1.: Beispielhafte Visualisierung eines Firm-Graphen für eine Funktion
compute, die zwei Gleitkommazahlen doppelter Genauigkeit als
Parameter erhält und die Summe dieser zurückgibt.

Datenabhängigkeiten als auch den Steuerfluss des Programms. Die Knoten des Firm-
Graphen repräsentieren Operationen. Datenabhängigkeiten werden als Kanten zu
den Operationen modelliert, die die benötigten Werte definieren. Anhand der Daten-
abhängigkeiten kann das Scheduling später die Schedule-Reihenfolge festlegen, in der
die Operationen ausgeführt werden. Jede Operation ist zudem Teil eines Grundblocks,
in dieser Arbeit kurz als Block bezeichnet [6, 7]. Abbildung 2.1 zeigt ein einfaches
Beispiel für einen Ausschnitt eines Firm-Graphen.

Es existieren verschiedene Front-Ends, welche die libFirm-Bibliothek nutzen, unter
anderem für die Sprachen Java und C [7]. Das C-Front-End (cparser) diente in dieser
Arbeit als Grundlage um die entwickelte Funktionalität zu testen.
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2.3. SPARC-Architektur

2.3.1. Überblick

Die SPARC-Architektur (SPARC: Scalable Processor Architecture) ist eine ab dem
Jahr 1985 von dem Unternehmen Sun Microsystems entwickelte Architektur für
Mikroprozessoren. Die im Zusammenhang dieser Arbeit betrachtete Version 8 der
Architektur wurde 1990 veröffentlicht. Im Folgenden wird mit der SPARC-Architektur
implizit Version 8 der Architektur bezeichnet.

Die SPARC-Architektur ist eine 32-Bit-Architektur und gehört zu den RISC-Ar-
chitekturen. RISC steht für Reduced Instruction Set Computer und bedeutet, dass
der Befehlssatz der Architektur aus wenigen, einfachen Instruktionen besteht. Des
Weiteren handelt es sich bei der SPARC-Architektur um eine Load-Store-Architektur,
das heißt die Instruktionen arbeiten ausschließlich mit Operanden, die in den Regis-
tern des Prozessors vorliegen. Zum Lesen aus und Schreiben in den Hauptspeicher
existieren zusätzlich eigene Lade- und Speicherinstruktionen. Aufgrund dieses Designs
verfügen SPARC-Prozessoren, wie für RISC-Architekturen üblich, über eine große
Anzahl an Registern im Vergleich zu Architekturen, die komplexere Instruktionen
realisieren, sogenannten CISC-Architekturen (Complex Instruction Set Computer).

Prozessoren, die die SPARC-Architektur implementieren, verfügen über eine Integer
Unit (IU) für Ganzzahlberechnungen und über eine Floating Point Unit (FPU)
für Gleitkommaberechnungen. Je nach Implementierung werden diese noch durch
einen Coprozessor (CP) ergänzt. Dementsprechend existieren die Registerklassen
der General-Purpose-Register und der Floating-Point-Register, zusätzlich sind einige
Statusregister vorhanden. Eine Besonderheit der SPARC-Architektur ist das soge-
nannte Register Window, das aus der großen Menge der General-Purpose-Register
jeder Funktion auf Assemblerebene einen Ausschnitt (32 Register) zur Verfügung
stellt [8].

2.3.2. Floating-Point-Register

Die Floating Point Unit (FPU) der SPARC-Architektur verfügt über 32 Floating-
Point-Register, die von allen Floating-Point-Instruktionen verwendet werden können.
Im Gegensatz zu den General-Purpose-Registern wird hier kein Register Window
verwendet, alle Funktionen greifen auf die gleichen Register zu. Die Floating-Point-
Register müssen daher vom Aufrufer einer Funktion gesichert und danach wiederher-
gestellt werden (caller save). Die Floating-Point-Register tragen Indizes von Null bis
31 und werden dementsprechend mit f0 – f31 bezeichnet [8].
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Eine weitere Besonderheit der SPARC-Architektur ist die Handhabung von Gleit-
kommazahlen höherer Genauigkeit. Neben den 32 Bit breiten single precision Worten
bietet SPARC auch double precision (64 Bit Breite) und quad precision (128 Bit Brei-
te) Worte für Gleitkommazahlen doppelter und vierfacher Genauigkeit. Diese werden
ebenfalls in den Floating-Point-Registern gespeichert. Dabei belegt ein Wort mehrere
Register: ein Wort doppelter Genauigkeit zwei, ein Wort vierfacher Genauigkeit vier
Register [8].

Definition 1. Ein Doppelregister bezeichnet ein Paar aus unmittelbar aufeinan-
derfolgenden Registern, in dem ein Wert gespeichert ist, der die Kapazitäten der
beiden Einzelregister benötigt. In diesem Zusammenhang wird hier auch von der
Registerbreite gesprochen. Diese beträgt für Doppelregister zwei.

64 Bit breite Gleitkommazahlen werden in Doppelregistern gespeichert. Es können
somit bis zu 16 Worte doppelter Genauigkeit und bis zu acht Worte vierfacher
Genauigkeit in den Floating-Point-Registern gespeichert werden. Insbesondere ist
auch eine gemischte Belegung der Register aus Worten einfacher, doppelter und
vierfacher Genauigkeit erlaubt [8]. Aus diesem Grund ist die SPARC-Architektur
zentral für diese Arbeit, da sie die Möglichkeit der Doppelregister bereitstellt. Die
Codegenerierung für SPARC-Prozessoren von Code, der 64 Bit breite Gleitkomma-
zahlen nutzt, musste bisher auf eine softwareseitige Emulation der Floating Point
Unit zurückgreifen.

Die Registerallokation von Vierfachregistern für Worte vierfacher Genauigkeit wurde
im Zusammenhang dieser Arbeit nicht implementiert. Aktuell sind keine SPARC-
Prozessoren verfügbar, die diese Funktionalität in Hardware bereitstellen. In Ab-
schnitt 5.2.3 wird auf diesen Punkt näher eingegangen.

Register Registerinhalt Ausrichtung an
Registerindex

Registerindex

FD-0 s:exp[10:0]:fraction[51:32] 0 mod 2 r
FD-1 fraction[31:0] 1 mod 2 r+1
FQ-0 s:exp[14:0]:fraction[111:96] 0 mod 4 r
FQ-1 fraction[95:64] 1 mod 4 r+1
FQ-2 fraction[63:32] 2 mod 4 r+2
FQ-3 fraction[31:0] 3 mod 4 r+3

Tabelle 2.1.: Platzierung von Gleitkommazahlen doppelter und vierfacher Genauig-
keit in der SPARC V8-Architektur [8].
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2.4. REGISTERALLOKATION

Um ein Doppelregister zu verwenden, genügt es, der jeweiligen Instruktion eines der
Floating-Point-Register zuzuteilen. Die Instruktion geht davon aus, dass in diesem
angegebenen und dem unmittelbar darauffolgenden Register der Wert vorliegt. Dabei
wird gefordert, dass ein Doppelregister immer aus einem Register mit geradem
Index und dem direkt darauffolgenden Register besteht [8]. Tabelle 2.1 gibt für
Doppelregister und Vierfachregister an, wie diese in den Floating-Point-Registern
der SPARC-Architektur platziert werden dürfen.

2.4. Registerallokation

Einer der Schritte, die vom Back-End eines Compilers vorgenommen werden, ist
die Registerallokation. Diese ist für die Zuteilung von Registern des Prozessors an
einzelne Werte in der Zwischenrepräsentation verantwortlich. Da im Allgemeinen
die Menge der Variablen und damit der Werte innerhalb eines Programms größer
ist als die zur Verfügung stehenden Register des Prozessors, müssen einige Werte in
den Hauptspeicher ausgelagert werden. Die Registerallokation versucht eine gültige
Zuteilung von Registern an eine Teilmenge der Werte vorzunehmen. Da der Zugriff
auf Werte im Hauptspeicher erheblich langsamer ist als der Registerzugriff, ist eine
gute Zuteilung von besonderem Interesse.

Ein verbreiteter Ansatz um die Registerallokation durchzuführen ist die Übertragung
auf das Problem der Graphfärbung. Diese Transformation wurde bereits 1981 von
Chaitin gezeigt [9]. Bei der Graphfärbung wird jedem Knoten in einem Graph eine
Farbe zugeteilt. Zwei adjazente Knoten dürfen dabei nicht dieselbe Farbe haben. Die
minimale Anzahl Farben die zum korrekten Färben eines Graphen G benötigt wird,
heißt chromatische Zahl χ(G). Kann ein Graph mit k Farben korrekt gefärbt werden,
heißt er k-färbbar [10].

Setzt man bei der Registerallokation Graphfärbung ein, wird ein sogenannter Inter-
ferenzgraph genutzt. Jeder Wert im Programm entspricht einem Knoten in diesem
ungerichteten Graphen. Können zwei Werte nicht das gleiche Register nutzen, wird
eine Kante zwischen diesen im Interferenzgraphen eingefügt. Diese Interferenz tritt
immer dann auf, wenn zwei Werte gleichzeitig lebendig sind. Ein Wert wird an einem
Punkt im Programm als lebendig bezeichnet, wenn er bereits definiert wurde und zu
einem späteren Zeitpunkt auf diesen Wert zugegriffen wird. Die chromatische Zahl
des Interferenzgraphen gibt somit an, wie viele Register benötigt werden, um alle
gleichzeitig lebendigen Werte abzuspeichern. Die Anzahl an benötigten Registern
zu einem Zeitpunkt wird als Registerdruck bezeichnet. Ist dieser größer als die zur
Verfügung stehenden Register, müssen einige Werte in den Hauptspeicher geschrieben
werden. Dies wird als Spilling bezeichnet [9, 11].
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2.4. REGISTERALLOKATION

Die Registerallokation mittels Graphfärbung kann im Allgemeinen in mehrere Phasen
eingeteilt werden. Nach dem Aufbau des Interferenzgraphen wird eine Coalescing-
Phase durchgeführt. Diese versucht unnötige Kopien von Registern zu entfernen und
somit den Registerdruck zu senken. Daraufhin wird die eigentliche Graphfärbung
vorgenommen, welche denWerten Register zuweist. In dieser Arbeit wird dieser Schritt
als Registerzuteilung bezeichnet, wohingegen mit dem Begriff Registerallokation der
gesamte mehrschrittige Prozess bezeichnet wird. Stellt sich bei der Färbung heraus,
dass die Anzahl an Registern nicht ausreicht, der Graph also nicht k-färbbar ist
mit k der Registeranzahl, muss die Spilling-Phase ausgeführt werden. Danach kann
wieder mit dem Erstellen des Interferenzgraphen begonnen werden. Dieser Ablauf ist
in Abbildung 2.2 schematisch dargestellt.

build coalesce color

spill

nicht k-färbbar

Abbildung 2.2.: Klassischer iterativer Ablauf von Registerallokation unter Anwen-
dung von Graphfärbung [11].

Ist die Zwischenrepräsentation in SSA-Form, hat der Interferenzgraph nützliche Eigen-
schaften, welche die Registerallokation vereinfachen. Ein solcher Interferenzgraph ist
chordal. Ein Graph G heißt chordal, wenn die Länge jedes Kreises in G maximal drei
beträgt. Chordale Graphen besitzen ein sogenanntes Perfektes Eliminationsschema
(PES). Durch ein perfektes Eliminationsschema wird eine Reihenfolge vorgegeben, in
der Knoten aus dem Graph entfernt werden müssen, sodass gilt: für jeden entfernten
Knoten bilden die Nachbarn des Knoten eine Clique. Des Weiteren ist in chordalen
Graphen die Größe der größten Clique gleich der chromatischen Zahl χ(G). Werte im
Programm, die gleichzeitig lebendig sind, entsprechen Cliquen im Interferenzgraphen.
Die Anzahl an zur Verfügung stehenden Registern n ist bekannt und durch Spilling
kann sichergestellt werden, dass an jedem Punkt im Programm maximal n Werte
gleichzeitig lebendig sind. Ist dies gegeben, ist die chromatische Zahl des Interferenz-
graphen G beschränkt: χ(G) ≤ n. Der Graph ist somit n-färbbar. Nach dem Färben
ist daher kein weiteres Spilling nötig und es genügt, das Spilling einmalig durchzufüh-
ren [11]. Coalescing zur Entfernung überflüssiger Kopien kann durch Neufärbung des
Graphen so ausgeführt werden, dass die chordale Eigenschaft des Graphen erhalten
bleibt und kein weiteres Spilling vonnöten ist [12]. Die Registerallokation lässt sich
daher zu dem in Abbildung 2.3 gezeigten Ablauf vereinfachen [11].
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spill color coalesce

Abbildung 2.3.: Ablauf von Registerallokation unter Anwendung von Graphfärbung
für Zwischenrepräsentationen in SSA-Form. Der Interferenzgraph
ist hierbei chordal [11].

2.5. Verwandte Arbeiten

Die Arbeit von Sebastian Hack, Daniel Grund und Gerhard Goos [11] zeigt die hier
beschriebenen Eigenschaften für Interferenzgraphen von Zwischenrepräsentationen in
SSA-Form und führt den in Abbildung 2.3 gezeigten Ablauf der Registerallokation
ein.

Der Schritt der Kopienminimierung, der einen Teil der Coalescing-Phase bildet, wird
in [12] von Sebastian Hack und Gerhard Goos eingeführt und die Algorithmen, die
dazu in libFirm zum Tragen kommen, vorgestellt.

Andere Autoren untersuchten bereits die Registerallokation für Architekturen, die
besondere Strukturen wie Doppelregister bereitstellen. So stellen Briggs, Cooper
und Torczon den Ansatz vor, mehrere Kanten im Interferenzgraphen einzufügen, um
Doppelregister und darüber hinausgehende Bedingungen zu modellieren [13]. Auch
Brian Nickerson behandelt Anpassungen an die Interferenz zwischen Variablen um
Bedingungen wie Doppelregister im Interferenzgraph modellieren zu können [14]. Ein
weiterer Ansatz besteht darin, die Knoten im Interferenzgraphen je nach Breite des
benötigten Registers unterschiedlich zu gewichten, wie von Michael Smith und Glenn
Holloway untersucht wurde [15].

Allen diesen Ansätzen ist gemein, dass sie auf dem nicht-SSA-basierten, iterativen
Modell wie in Abbildung 2.2 gezeigt aufsetzen. Die im letzten Abschnitt genann-
ten Vorteile der SSA-basierten Registerallokation entfallen somit, insbesondere die
Möglichkeit, das Spilling einmalig durchzuführen und anschließend die Färbung
vorzunehmen. Dies stellt für die vorliegende Arbeit eine Grundvoraussetzung dar.
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3. Entwurf und Implementierung

In diesem Kapitel werden anhand der bestehenden Implementierung in libFirm die
Anpassungen erklärt, die eine Verwendung von Doppelregistern in der Registeral-
lokation ermöglichen. Zunächst wird auf die Repräsentation von Doppelregistern
eingegangen, anschließend werden die Implementierungen in den einzelnen Schritten
der Registerallokation beschrieben. Sowohl das Spilling als auch die Registerzuteilung
erfordern Anpassungen für Doppelregister. Der an die Registerzuteilung anschließen-
de Schritt der Kopienminimierung wurde in dieser Arbeit nicht bearbeitet. Da die
Kopienminimierung in libFirm optional ist und eine Optimierung darstellt, liefert die
Registerallokation auch ohne diesen Schritt korrekte Ergebnisse. In Abschnitt 5.2.2
wird dieser Umstand näher betrachtet. Zuletzt wird darauf eingegangen, welche
Anpassungen an die Auflösung von Permutationsknoten nötig waren. Diese Auflö-
sung ist nötig, da Permutationsknoten keine Instruktionen der Prozessorarchitektur
darstellen.

3.1. Ausgangssituation in libFIRM

Das libFirm-Back-End verfügt bereits über eine funktionsfähige Registerallokation.
Da libFirm wie bereits erwähnt eine Zwischenrepräsentation in SSA-Form nutzt,
folgt die Registerallokation dem in Abschnitt 2.4 beschriebenen Ablauf.

Auch enthält libFirm ein Back-End für die SPARC-Architektur. Die Codegenerierung
für SPARC ist darin vollständig implementiert. Das schließt auch die Funktionali-
tät der Doppelregister mit ein: SPARC-Instruktionen, die auf Gleitkommazahlen
doppelter Genauigkeit operieren, beispielsweise faddd zur Addition zweier 64-Bit-
Gleitkommazahlen, können vom Back-End in Maschinensprache ausgegeben wer-
den.

Die Funktionalität der Registerallokation und die Implementierungen der zugehörigen
Algorithmen sind bisher jedoch nicht fähig, mit Doppelregistern umzugehen. Im
Folgenden wird erläutert, welche Anpassungen und Erweiterungen implementiert
werden mussten, um die Registerallokation auch für Doppelregister zu ermöglichen.

17



3.2. REPRÄSENTATION VON DOPPELREGISTERN

3.2. Repräsentation von Doppelregistern

In libFirm existieren verschiedene Datentypen, um Register und spezielle Anforde-
rungen an Register einer Operation abzubilden.

Der Datentyp struct arch_register_t repräsentiert ein einzelnes Register der
Prozessorarchitektur. In diesem Datentyp ist unter anderem die Registerklasse und
der Index des Registers innerhalb der Registerklasse gespeichert. Neben den Registern
gibt es auch Registeranforderungen. Diese werden durch den Datentyp struct
arch_register_req_t modelliert. Listing 3.1 zeigt die Definition dieses Datentyps.
Eine Registeranforderung umfasst ebenfalls die Registerklasse und kann beispielsweise
eine Einschränkung auf bestimmte Register beschreiben. Dies ist zum Beispiel für
Prozessorinstruktionen nötig, welche die Operanden immer in bestimmten Registern
erwarten oder das Ergebnis der Operation immer in ein festgelegtes Register schreiben.
In der Registeranforderung wird auch die benötigte Breite des Registers gespeichert.
Für Doppelregister muss dieser Wert auf zwei gesetzt werden. Die Codegenerierung des
SPARC-Back-Ends unterscheidet anhand dieses Parameters, ob Gleitkommazahlen
einfacher oder doppelter Genauigkeit verwendet werden sollen und wählt auf diese
Weise die korrekten Prozessorinstruktionen aus. Eine Instanz des Knoten-Datentyps
(struct ir_node) für Knoten im Firm-Graphen enthält Registeranforderungen aller
Werte, die aus den Registern gelesen oder in Register geschrieben werden. Für Werte,
die von einem Knoten definiert und demzufolge in Register geschrieben werden,
werden zusätzlich die zugewiesenen Register im Knoten gespeichert.

Im Normalfall wird bereits bei der Erstellung des Knotens die Registeranforderung
gesetzt, die Information über die benötigte Registerbreite ist also vor der Registerallo-
kation im Knoten gegeben. Es bietet sich daher an, diese bestehende Repräsentation
auch bei der Implementierung der Registerallokation für Doppelregister einzusetzen.
Die Registerallokation von libFirm wurde deshalb dahingehend angepasst, anhand
dieser bestehenden Repräsentation Doppelregister zu identifizieren. Einem Wert wird
dazu nach wie vor eine einzelne Instanz des Register-Datentyps zugeteilt. Durch die
in der Registeranforderung angegebene Breite wird für Doppelregister implizit auch
die zweite Hälfte an den Wert zugewiesen.

Listing 3.1: Der Datentyp für Registeranforderungen im libFirm-Quellcode [16].
Über den Parameter width kann die Breite des erforderlichen Registers
gesetzt werden.

typedef struct arch_register_req_t arch_register_req_t ;
struct arch_register_req_t {

/∗∗ The r e g i s t e r c l a s s t h i s c on s t r a i n t b e l ong s to . ∗/
const arch_reg i s t e r_c la s s_t ∗ c l s ;
/∗∗ a l l owed r e g i s t e r b i t s e t

∗ ( in case o f wide−va l u e s t h i s i s on ly about the f i r s t

18



3.3. SPILLING

∗ r e g i s t e r ) . NULL i f a l l r e g i s t e r s are a l l owed . ∗/
const unsigned ∗ l im i t ed ;
/∗∗ Bitmask o f in s which shou ld use the same r e g i s t e r . ∗/
unsigned should_be_same ;
/∗∗ Bitmask o f in s which s h a l l use a d i f f e r e n t r e g i s t e r ∗/
unsigned must_be_dif ferent ;
/∗∗ S p e c i f i e s how many s e q u en t i a l r e g i s t e r s are r e qu i r ed ∗/
unsigned char width ;
/∗∗ i gnore t h i s input / output wh i l e a l l o c a t i n g r e g i s t e r s ∗/
bool i gno r e : 1 ;
/∗∗ The i n s t r u c t i o n s mod i f i e s the va lue in the r e g i s t e r in

∗ an unknown way , the va lue has to be copied i f
∗ i t i s needed a f t e rwards . ∗/

bool k i l l s_va l u e : 1 ;
} ;

Eine Prozessorarchitektur verfügt meist über mehrere Registerklassen. Bei der
SPARC-Architektur sind dies hauptsächlich die Klasse der General-Purpose-Register
und die Klasse der Floating-Point-Register. Um zu bestimmen ob eine Registerklasse
Doppelregister unterstützt wurde der Datentyp arch_register_class_t, der im
libFirm-Back-End eine Registerklasse repräsentiert, erweitert. Der Datentyp wurde
dazu um das Feld bool double_registers_allowed ergänzt. Dieses Feld kann dann
in der Definition der jeweiligen Zielarchitektur gesetzt werden.

3.3. Spilling

Der erste Schritt des in libFirm implementierten SSA-basierten Registerallokators
ist das Spilling. Ziel dieser Phase ist es, wie in Abschnitt 2.4 kurz beschrieben, dafür
zu sorgen, dass zu jedem Zeitpunkt in einem Programm die Menge der gleichzeitig
lebendigen Werte maximal der in einer Registerklasse vorhandenen Registeranzahl
entspricht. Dies wird durch Einfügen von spills und reloads erreicht, wodurch Werte
in den Speicher geschrieben werden und zu einem späteren Zeitpunkt wieder aus
dem Speicher geladen werden. Dadurch kann der Registerdruck verkleinert werden,
da weniger Werte gleichzeitig lebendig sind.

Die Implementierung in libFirm nutzt hierfür den Algorithmus von Bélády. Sind
mehr Werte lebendig als Register vorhanden sind, muss entschieden werden, welche
der Werte in den Speicher ausgelagert werden. Béládys Algorithmus wählt hierzu die
Werte, deren nächste Benutzung am weitesten von der aktuellen Position entfernt
ist. Die Entfernung wird von der Anzahl Instruktionen zwischen den beiden Punkten
im Programm bestimmt.
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3.3.1. Workset

Der Datentyp struct workset_t bildet eine zentrale Datenstruktur im Spilling-Algo-
rithmus. Listing 3.2 enthält die Definition des Datentyps. Innerhalb eines Worksets
wird eine Liste von Knoten mit dem Zeitpunkt der nächsten Benutzung des von
ihnen definierten Wertes mithilfe des Datentyps struct loc_t gespeichert. Diese Liste
repräsentiert die Menge der zu einem Zeitpunkt lebendigen Werte.

Listing 3.2: Für Worksets genutzte Datentypen [16].
typedef struct loc_t {

ir_node ∗node ;
/∗∗ A use time ( see beuses . h ) . ∗/
unsigned time ;
/∗∗ va lue was a l r eady s p i l l e d on t h i s path ∗/
bool s p i l l e d ;

} loc_t ;

typedef struct workset_t {
/∗∗ curren t l e n g t h ∗/
unsigned l en ;
/∗∗ array o f the va l u e s / d i s t anc e s in t h i s working s e t ∗/
loc_t va l s [ ] ;

} workset_t ;

Um gemäß dem Algorithmus von Bélády die Werte, deren Distanz zur nächsten
Benutzung am größten ist, einfach zu erhalten, können die Knoten in einem Workset
mittels workset_sort(workset) nach dieser Distanz sortiert werden.

3.3.2. Ablauf

Der Spilling-Algorithmus in libFirm geht blockweise vor. Für jeden Block im Graph
wird dazu die Funktion process_block aufgerufen, die das Spilling für diesen Block
durchführt. Dabei erfolgt die Traversierung des Kontrollflussgraphen in reverse post-
order. Wenn ein Block besucht wird, ist dadurch sichergestellt, dass die Blöcke, welche
im Kontrollfluss vor dem aktuell betrachteten Block liegen, bereits besucht wurden.
Zu einem Block werden darüber hinaus je ein Workset für den Anfang des Blocks
(Start-Workset) und das Ende des Blocks (Ende-Workset) abgespeichert. Hat ein
Block keine Vorgänger, wird als Start-Workset ein leeres Workset gewählt. Hat ein
Block exakt einen Vorgängerblock, wird dessen Ende-Workset als Start-Workset des
aktuellen Blocks gesetzt. Wenn ein Block mehrere Vorgänger besitzt, wird versucht,
aus den Ende-Worksets der Vorgängerblöcke gemäß Bélády die besten Werte in das

20



3.3. SPILLING

Start-Workset zu übernehmen. Für Schleifen wird zusätzlich bestimmt, welche Werte
im Schleifenrumpf benötigt werden. Wird ein Wert innerhalb einer Schleife aus dem
Hauptspeicher geladen, muss dies im schlechtesten Falle in jedem Durchlauf erfolgen.
Dies verschlechtert die Performanz des Programms erheblich, daher wird an dieser
Stelle versucht, innerhalb der Schleife möglichst wenige Werte zu laden.

Nachdem das Start-Workset festgelegt wurde, wird anhand der bereits vor dem
Spilling festgelegten Schedule-Reihenfolge über die Knoten im Block iteriert. Jeder
Zugriff auf einen Wert (use) durch den Knoten und jeder Wert, welchen der Knoten
definiert, wird gespeichert. Zum Ausführungszeitpunkt der Instruktion, die durch
diesen Knoten repräsentiert wird, müssen die Operanden der Instruktion in Registern
vorliegen. Werte, die von der Instruktion definiert werden, dürfen keine anderen,
noch lebendigen Werte in den Registern überschreiben.

Das Spilling stellt zum einen sicher, dass Werte, die von einer Instruktion gelesen
werden, vor der Ausführung der Instruktion in den Registern vorliegen. Ist dies
nicht der Fall und Werte wurden zuvor ausgelagert, müssen entsprechende reload-
Knoten eingefügt werden, wodurch die Werte aus dem Speicher wieder in die Register
geschrieben werden. Da im Allgemeinen nicht genug Register frei sind, um die
geladenen Werte aufzunehmen, müssen gegebenenfalls andere Werte zuvor ausgelagert
werden. Schreibt die Instruktion Werte in Register und es sind nicht ausreichend
Register unbelegt, müssen zudem weitere Werte vor Ausführung der Instruktion
ausgelagert werden. Dadurch wird verhindert, dass Werte ungewollt überschrieben
werden, die lebendig sind, das heißt zu einem späteren Zeitpunkt noch benötigt
werden.

Nachdem das Spilling innerhalb eines Blocks beendet wurde, wird das letzte Workset
als Ende-Workset des Blocks abgespeichert, um für im Kontrollfluss nachfolgende
Blöcke bei der Erstellung des Start-Worksets zur Verfügung zu stehen.

Nachdem alle Blöcke auf diese Weise abgearbeitet wurden, müssen in einem letzten
Schritt noch die Blockgrenzen zwischen Blöcken angepasst werden, da durch die
blockweise Durchführung des Spilling nicht immer das Start- und Ende-Workset
korrekt zueinander passen und weitere Auslagerungen oder reload-Vorgänge eingefügt
werden müssen.

3.3.3. Anpassung für Doppelregister

Der beschriebene Algorithmus muss angepasst werden, um Doppelregisterallokation
korrekt zu implementieren. Zentrale Anpassung hierfür ist die Entkopplung der Anzahl
Knoten in einem Workset und der von diesen Knoten benötigten Registeranzahl. In
der bisherigen Implementierung wurde die Anzahl der Knoten in einem Workset mit
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der durch die Registerklasse zur Verfügung gestellten Registeranzahl verglichen, um
die Anzahl an benötigten Auslagerungen zu bestimmen. Von dieser bereits definierten
Länge eines Worksets wird nun die genutzte Länge unterschieden, welche sich durch
Summieren aller benötigten Registerbreiten der im Workset enthaltenen Knoten
ergibt. Erlaubt eine Registerklasse sowohl Einzel- als auch Doppelregister, entspricht
nicht die Anzahl der gleichzeitig lebendigen Werte, sondern die genutzte Länge eines
Worksets dem Registerdruck. Für Registerklassen, die nur Einzelregister unterstützen,
entspricht die genutzte Länge immer der Länge des Worksets.

Wenn Operanden einer Instruktion ausgelagert wurden und vor der Instruktion wieder
in die Register geladen werden, müssen, sofern keine Register unbelegt sind, an deren
Stelle andere Werte ausgelagert werden. Werden alle Register als Einzelregister
genutzt, bedingt das Laden eines Wertes aus dem Speicher somit höchstens das
Auslagern eines anderen Wertes in den Speicher. Wenn eine Registerklasse Register
mit einer maximalen Breite von w erlaubt, können durch das Laden eines Wertes,
der eine Registerbreite von w benötigt, bis zu w Auslagerungen anderer Werte nötig
sein. Die tatsächliche Anzahl hängt im Einzelnen davon ab, welche Registerbreiten
diejenigen Werte benötigen, die zuerst ausgelagert werden. Nach dem Algorithmus
von Bélády sind dies die Werte, deren nächste Benutzung am weitesten entfernt
liegt. Um Werte in Doppelregister (w = 2) zu laden müssen somit bis zu zwei Werte
ausgelagert werden.

Beispiel 1. Ein Workset liege sortiert vor, das heißt die Knoten, deren Werte die
größte Distanz zur nächsten Benutzung besitzen, befinden sich am Ende der Liste.
Alle aktuell lebendigen Werte, also genau diejenigen, welche im Workset enthalten
sind, belegen Einzelregister. Das Workset enthalte außerdem die maximal mögliche
Anzahl Knoten, alle Register sind somit belegt. Die aktuell betrachtete Instruktion
liest zwei Werte aus je einem Doppelregister. Beide Werte sind aktuell nicht lebendig
und müssen daher aus dem Speicher geladen werden.

Da keine Register frei sind, müssen andere Werte ausgelagert werden. Dazu werden
aus dem Workset solange Knoten entfernt, bis der Platz ausreicht, um die zu ladenden
Werte aufzunehmen. Im diesem Beispiel müssen also vier Werte ausgelagert werden,
bevor die zwei angeforderten Werte in die Register geschrieben werden können.

Die Anpassungen am Quelltext des Spilling unterstützen generell Register, die aus
mehreren einzelnen Registern bestehen. Die Register sind nicht auf Einzel- und Dop-
pelregister beschränkt, das Spilling funktioniert für beliebige Registerbreiten. Durch
das Spilling wird lediglich sichergestellt, dass zu jedem Zeitpunkt alle momentan
lebendigen Werte in den Registern Platz finden. Die zusätzliche Bedingung für Dop-
pelregister, das Ausrichten an geraden Indizes, wird hier nicht beachtet sondern muss
von der nachfolgenden Registerzuteilung vorgenommen werden. In Abschnitt 3.4.1
wird auf diesen Umstand näher eingegangen.
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3.4. Registerzuteilung

Das vorangegangene Spilling hat an den erforderlichen Stellen einen Teil der Werte
ausgelagert. Dadurch wurde sichergestellt, dass an jedem Punkt im Programm alle
zu diesem Zeitpunkt lebendigen Werte in die Register passen. Im nächsten Schritt
können nun die Register an die Knoten zugeteilt werden. Dabei wird der Graph
der Zwischenrepräsentation in mehreren Iterationen traversiert und die nachfolgend
beschriebenen Schritte jeweils für jeden Block durchgeführt.

3.4.1. Registereinschränkungen verarbeiten

Zunächst müssen für Knoten, die Einschränkungen an die Register stellen, Vorar-
beiten durchgeführt werden. Solche Einschränkungen sind beispielsweise ein festes
Ausgaberegister einer Instruktion. Im betrachteten Block wird entsprechend der
Schedule-Reihenfolge für jeden Knoten geprüft, ob dieser Einschränkungen an die
Register stellt. Ist dies nicht der Fall, kann der nächste Knoten betrachtet werden.

Andernfalls wird vor dem betrachteten Knoten ein sogenannter Permutationsknoten
eingefügt. Durch den Permutationsknoten können die Register aller zu diesem Zeit-
punkt lebendigen Werte getauscht werden. Eine Instruktion, die Einschränkungen
auf bestimmte Register trifft, kann die benötigten Register somit auf jeden Fall
nutzen. Sollten beispielsweise Register, in die eine solche Instruktion schreibt, bereits
durch andere Werte belegt sein, können mithilfe des Permutationsknotens die bereits
enthaltenen Werte in andere Register verschoben werden.

Neben Instruktionen, die bestimmte Ein- oder Ausgaberegister erwarten, wird jede
Instruktion, die in Doppelregister schreibt, als Instruktion mit Einschränkungen an-
gesehen. Dies ist nötig, da ab einem bestimmten Registerdruck Situationen auftreten
können, die eine Permutation erforderlich machen. Sobald der Registerdruck mehr
als die Hälfte der insgesamt zur Verfügung stehenden Register beträgt, besteht die
Möglichkeit, dass für eine Instruktion, die in ein Doppelregister schreibt, kein solches
mehr zur Verfügung steht. Das vorangegangene Spilling hat lediglich dafür gesorgt,
dass die Anzahl an unbelegten Registern ausreicht, um den zu schreibenden Wert
unterzubringen. Die unbelegten Register können jedoch so angeordnet sein, dass
keine gültige Position für ein Doppelregister vorhanden ist.

Beispiel 2. Betrachtet wird eine Instruktion, die einen Wert in ein Doppelregister
schreibt. In der zugehörigen Registerklasse seien n Einzelregister enthalten. Während
der Instruktion seien exakt n

2 weitere Werte einfacher Genauigkeit lebendig, die bereits
Register zugeteilt bekommen haben. Dabei sei jedem Wert ein Register mit geradem
Index zugeordnet. Für den neuen von der Instruktion definierten Wert kann kein
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Register gefunden werden, da nur Register mit ungeradem Index unbelegt sind, wie
Abbildung 3.1 verdeutlicht.

f0 f1 f2 f3 f4 f5 f6 f7

f8 f9 f10 f11 f12 f13 f14 f15

f16 f17 f18 f19 f20 f21 f22 f23

f24 f25 f26 f27 f28 f29 f30 f31

Abbildung 3.1.: Situation ohne Permutationsknoten. Die zum Zeitpunkt der Instruk-
tion belegten Register sind grau hinterlegt. Für eine Instruktion,
die einen weiteren Wert in einem Doppelregister definiert, ist hier
kein passendes Register verfügbar, obwohl der Registerdruck nur
die Hälfte der Registeranzahl beträgt.

Durch Einfügen eines Permutationsknotens besitzen die während der Instruktion
lebendigen Werte zunächst wieder kein zugeteiltes Register. Abbildung 3.2 zeigt für
diese Werte zusammen mit dem von der Instruktion definierten Wert eine neu
bestimmte Registerzuteilung.

Nun können auch den zu schreibenden Werten der Instruktion Register zugeteilt
werden. Alle anderen während der Instruktion lebendigen Werte werden durch
den Permutationsknoten definiert. Auch diesen Werten wird jeweils ein Register
zugewiesen. Für die Zuteilung der Register wird an dieser Stelle ein bipartites
Matching verwendet. Als bipartites Matching wird eine Menge von Kanten eines
ungerichteten Graphen, dessen Knoten in zwei Partitionen eingeteilt sind, bezeichnet.
Dabei besitzen keine zwei Kanten des Matchings einen gemeinsamen Endknoten [10].
Eine der beiden Partitionen wird durch die erwähnten Werte gebildet, denen Register
zugeteilt werden sollen. Die einzelnen Register der Registerklasse stellen die zweite
Partition dar. Eine Kante zwischen zwei Knoten wird genau dann in den Graphen
eingefügt, wenn der entsprechende Wert in dem entsprechenden Register stehen
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f0 f1 f2 f3 f4 f5 f6 f7

f8 f9 f10 f11 f12 f13 f14 f15

f16 f17 f18 f19 f20 f21 f22 f23

f24 f25 f26 f27 f28 f29 f30 f31

Abbildung 3.2.: Nach Einfügen eines Permutationsknotens vor der betroffenen
Instruktion ist der Registerdruck zum Ausführungszeitpunkt der
Instruktion weiterhin gleich, durch die Neuzuteilung der ersten 16
Register an die Werte kann aber für den neuen Wert ein Doppelre-
gister (hier f16) gefunden werden.

darf. Schreibt die Instruktion den Wert immer in ein festgelegtes Register, wird
dementsprechend nur eine Kante zwischen diesem Wert und den Registern eingefügt.
Werte, die in beliebigen Registern stehen dürfen, beispielsweise die Ausgaben des
Permutationsknotens, sind Endknoten mehrerer Kanten zu Registern. Das gefundene
Matching ist dann eine korrekte Registerzuteilung an die Werte.

Benötigt ein Wert ein Doppelregister, dürfen nur zu Registern mit geradem Index
Kanten im Graph eingefügt werden. Dies missachtet aber die Eigenschaft des Dop-
pelregisters als Paar von aufeinanderfolgenden Einzelregistern. Ein gültiges Matching
kann so gewählt sein, dass ein eigentlich als obere Hälfte eines Doppelregisters ge-
wähltes Register mit ungeradem Index einem anderen Wert zugeteilt wird, wie in
Abbildung 3.3 gezeigt.

Für Registerklassen, die Doppelregister erlauben, wird deshalb kein bipartites Mat-
ching genutzt. Stattdessen werden den Werten die Register zugeteilt indem das
erste unbelegte Register per linearer Suche über die Liste der Register gesucht wird.
Benötigt ein Wert ein Doppelregister, wird entsprechend das erste unbelegte Register
mit geradem Index gesucht, dessen unmittelbar darauffolgendes Register ebenfalls
unbelegt ist. Da auf diese Weise die Register von vorn gefüllt werden und allen
lebendigen Werten durch den Permutationsknoten ebenfalls an dieser Stelle Register
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val 3

val 4

f1

f2

f4

f3

f0

f5

val 2
w: 2

val 1
w: 2

Werte Register

Abbildung 3.3.: Den vier Werten sollen Register zugeordnet werden. Die Werte eins
und zwei benötigen Doppelregister. Die dicker hervorgehobenen
Kanten bilden ein gültiges Matching. Register f1 wird jedoch
implizit sowohl Wert eins als auch Wert vier zugeteilt, da Wert eins
als Doppelregister f0 und f1 erhält. Das Matching bildet daher
keine gültige Registerzuteilung.

zugewiesen werden, wird immer eine Möglichkeit für ein Doppelregister gefunden.

Die Klasse der Floating-Point-Register der SPARC-Architektur ist die einzige Regis-
terklasse in libFirm, die Doppelregister in der hier behandelten Form unterstützt.
Die Instruktionen der SPARC-Architektur, die in Floating-Point-Register schreiben,
stellen in den meisten Fällen keine besonderen Anforderungen an die Register. We-
nige Ausnahmen bilden einzelne Instruktionen, die Werte auf bestimmte Register
einschränken. Da diesen vor den anderen durch den Permutationsknoten lebendigen
Werten Register zugewiesen werden ist die Zuteilung auf diese Weise durchführbar.
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3.4.2. Schreib- und Lesezugriffe speichern

Vor dem eigentlichen Zuteilen von Registern an diejenigen Werte, die nicht bereits
durch den vorherigen Schritt abgedeckt wurden, werden zunächst Informationen über
die Definitionen und Benutzungen der Werte innerhalb eines Blocks erstellt.

Nach dem Betrachten der am Ende des Blocks lebendigen Werte wird die Schedule-
Reihenfolge im Block rückwärts abgelaufen. In einer doppelt verketteten Liste wird je-
der Schreib- und Lesezugriff auf einen Wert als Instanz des Datentyps struct border_t
gespeichert. Zuletzt werden noch die zu Beginn des Blocks lebendigen Werte hinzu-
gefügt. Aufgrund der SSA-Form existiert für jeden Wert genau eine Definition und
somit genau ein Schreibzugriff. Für Werte, die über die Blockgrenze hinweg in den
Block hinein lebendig sind, wird ebenfalls eine Definition in die Liste eingefügt.

3.4.3. Färben

Im abschließenden Schritt der Registerzuteilung können nun Register an die verblei-
benden Werte zugeteilt werden, was dem Färben der einzelnen Knoten im Interfe-
renzgraphen entspricht. Dies wird blockweise durchgeführt, wobei die im vorigen
Schritt für jeden Block bestimmte Liste an Definitionen und Benutzungen der Werte
genutzt wird.

Indirekt enthält diese Liste die Intervalle in denen Werte lebendig sind. Diese werden
durch die Positionen der Definitionen und Benutzungen gebildet. Die Liste gibt
gleichzeitig eine Reihenfolge vor, in welcher den Werten die Register zugeteilt werden
können. Die Liste wird dazu in umgekehrter Reihenfolge als bei der Erstellung
durchlaufen. Somit werden die Definitionen und Benutzungen der Werte von vorne
nach hinten abgelaufen. Dies entspricht der umgekehrten Reihenfolge eines perfekten
Eliminationsschemas des Interferenzgraphen. Somit wird eine korrekte Färbung
erzeugt [11].

Für jede Definition, die betrachtet wird, muss dem Wert ein Register zugeteilt werden.
In einigen Fällen wurde dem Wert bereits ein Register zugeteilt. Dies ist zum einen
dann der Fall, wenn die eigentliche Definition des Wertes in einem Vorgängerblock
stattfand und der Wert über die Blockgrenze hinweg in den aktuell betrachteten Block
hinein lebendig ist. Des Weiteren wurden für Instruktionen, die Registereinschrän-
kungen haben, bereits die Register zugeteilt (siehe Abschnitt 3.4.1). Insbesondere
wurden dabei auch solche Instruktionen eingeschlossen, die Werte in Doppelregis-
tern definieren. Dennoch erfordert auch dieser Schritt der Registerzuteilung eine
Anpassung an Doppelregister, da nicht alle Knoten aus der Zwischenrepräsentati-
on abgedeckt wurden. Knoten, welche die Anwendung einer φ-Funktion darstellen,
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wurden bei der Verarbeitung der Registereinschränkungen nicht mit einbezogen.
Diesen müssen hier noch Register zugeteilt werden. Unabhängig davon, ob bereits
ein Register in einem früheren Schritt zugeteilt wurde oder dies erst jetzt stattfindet,
wird das entsprechende Register als belegt markiert. Für Doppelregister werden beide
Einzelregisterbestandteile markiert.

Jede Benutzung eines Wertes in der Liste entspricht dem Ende des Intervalls, in
welchem dieser Wert lebendig ist. Da anschließend der Wert das Register nicht mehr
belegt, wird es an dieser Stelle wieder freigegeben, indem es als verfügbar markiert
wird. Analog werden auch hier beide Einzelregister eines Doppelregisters als verfügbar
markiert. Werte, die zu einem späteren Zeitpunkt im Block definiert werden, können
die Register dann wieder nutzen.

Bei der Zuteilung eines Registers an einen Wert muss ein passendes unbelegtes
Register gesucht werden. Hierfür wird eine einfache lineare Suche über die Register
durchgeführt, bis ein unbelegtes Register gefunden wird. Dabei beginnt die Suche
immer am Register mit Index Null. Während für Einzelregister immer das erste freie
Register genutzt werden kann, muss für Doppelregister zum einen beachtet werden,
dass das nachfolgende Register, welches den hinteren Teil des Registerpaares bildet,
ebenfalls unbelegt ist. Außerdem darf für Doppelregister nur ein Register mit geradem
Index gewählt werden. Diese Suche wird von der Funktion int get_next_free_reg über-
nommen, die als Parameter die Liste der Register sowie die Breite eines angeforderten
Registers erhält.

f0 f1 f2 f3 f4 f5 f6 f7

f8 f9 f10 f11 f12 f13 f14 f15

f16 f17 f18 f19 f20 f21 f22 f23

f24 f25 f26 f27 f28 f29 f30 f31

Abbildung 3.4.: Ausgangssituation für Beispiel 3. Von lebendigen Werten belegte
Register sind grau eingefärbt.

Beispiel 3. Ein Teil der verfügbaren Register der 32 Register umfassenden Register-
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klasse sei wie in Abbildung 3.4 belegt. Die Suche nach einem freien Einzelregister
liefert die Position fünf zurück, da dies das erste unbelegte Register ist.

Wird ein Doppelregister benötigt, muss ein geeignetes Paar an Einzelregistern ge-
funden werden und der Index des unteren Registers zurückgegeben werden. Im in
Abbildung 3.4 dargestellten Zustand ist die erste Position an der zwei aufeinanderfol-
gende Register unbelegt sind, Position elf. Da aber für das Doppelregister ein gerader
Index benötigt wird, ist das Ergebnis der Suche Position 14. Anschließend stellt sich
die Registerbelegung wie in Abbildung 3.5 dar.

f0 f1 f2 f3 f4 f5 f6 f7

f8 f9 f10 f11 f12 f13 f14 f15

f16 f17 f18 f19 f20 f21 f22 f23

f24 f25 f26 f27 f28 f29 f30 f31

Abbildung 3.5.: Die belegten Register, nachdem zunächst ein Einzel- und anschlie-
ßend ein Doppelregister zugewiesen wurden.

Im Normalfall ist die Registerbelegung allerdings nicht so verteilt, wie Abbildung 3.4
vermuten lässt. Durch das Einfügen der Permutationsknoten zuvor für Instruktionen,
die Werte in Doppelregistern definieren, werden allen zu diesem Zeitpunkt lebendigen
Werten aus der gleichen Registerklasse die Register neu zugewiesen. Dabei werden
diese von vorne der Reihe nach ausgewählt und es kommen nicht mehrere Lücken
zustande, sondern die Belegung stellt sich wie in Abbildung 3.2 dar. Somit kann
auch in diesem Schritt eine Position für ein Doppelregister gefunden werden, wenn
der Registerdruck hoch ist.
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3.5. Auflösung von Permutationsknoten

3.5.1. Permutationsknoten

Permutationsknoten sind ein Konstrukt in der graphbasierten Zwischenrepräsenta-
tion, um die Register einer Menge von Werten neu zuzuordnen. Sie werden unter
anderem im in Abschnitt 3.4.1 geschilderten Verarbeiten von Registereinschränkun-
gen eingefügt. Da ein Permutationsknoten keiner existierenden Instruktion einer
Prozessorarchitektur entspricht, muss dieser in eine Folge von Kopien umgewandelt
werden. Mit welchen Prozessorinstruktionen die Registerkopien realisiert werden,
hängt von der Zielarchitektur ab.

Abbildung 3.6 zeigt ein Beispiel eines Permutationsknotens.

Abbildung 3.6.: Ein Permutationsknoten, welcher die Register für vier Werte tauscht.
Die Proj-Knoten dienen dazu, auf einen einzelnen Wert aus dem
Ergebnistupel eines Knotens zuzugreifen. Die Buchstaben F und
D hinter dem Knotentyp geben an, ob es sich um einen Wert
einfacher (float) oder doppelter Genauigkeit (double) handelt.
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3.5.2. Umwandlung in Kopien

Um die Permutationsknoten zu entfernen wird der Graph der Zwischenrepräsentation
einmal komplett abgelaufen und die Transformation für jeden Permutationsknoten
durchgeführt. Im Folgenden wird zunächst die Auflösung für Permutationsknoten
ohne Berücksichtigung von Doppelregistern erklärt. Anschließend wird begründet,
warum für Doppelregister eine Anpassung nötig ist und diese vorgestellt.

Zu Beginn werden die Ein- und Ausgaberegister des Permutationsknotens betrachtet
und daraus eine Liste der Registerpaare erstellt. Ein Registerpaar bezeichnet in
diesem Kontext nicht ein Doppelregister, sondern ein Paar aus dem Ein- und dem
Ausgaberegister für einen Wert am Permutationsknoten. Da bei der Erstellung der
Permutationsknoten nicht darauf geachtet wurde, welche Register als Ausgaberegister
gewählt werden, besteht ein Teil dieser Registerpaare unter Umständen aus demselben
Ein- und Ausgaberegister. Solche Paare erfordern keine Kopie des Wertes und werden
daher im weiteren Verlauf der Transformation nicht mehr beachtet. Für den speziellen
Fall, dass dies für alle Registerpaare eines Permutationsknotens zutrifft, wird der
gesamte Permutationsknoten aus dem Graphen entfernt. Um im nächsten Schritt
die Paare in der richtigen Reihenfolge bearbeiten zu können, werden außerdem alle
Eingaberegister in einer Liste abgelegt und eine Zuordnung von Ausgaberegister zu
dem jeweiligen Registerpaar mit diesem Ausgaberegister abgespeichert.

Um die Permutationsknoten korrekt auflösen zu können müssen die Abhängigkeiten
zwischen den Registerpaaren beachtet werden. Wird ein Register sowohl als Eingabe-
register für einen Wert, als auch Ausgaberegister für einen anderen Wert genutzt,
muss zuerst für das Registerpaar mit dem betroffenen Register als Eingaberegister
eine Kopie erstellt werden. Anschließend kann die Kopie für das andere Registerpaar
eingefügt werden. Die Abhängigkeiten zwischen den Registerpaaren bedingen also
eine Reihenfolge der Kopien. Abbildung 3.7 zeigt eine Visualisierung der Abhängig-
keiten für einen Permutationsknoten in Form eines gerichteten Graphen. Ein Knoten
repräsentiert eine Kopie, eine Kante von Knoten v zu Knoten u bedeutet, dass die
Kopie v von u abhängt, und u somit vor v ausgeführt werden muss. Jedes Register
kann Teil von maximal zwei Kopien sein: einmal als Quell- und einmal als Zielregister.
Eine Kopie kann daher nur Teil von höchstens zwei Abhängigkeiten sein. Der Abhän-
gigkeitsgraph hat also maximal Eingangsgrad eins und maximalen Ausgangsgrad eins.
Der Graph kann somit nur aus einfachen Ketten und Zyklen bestehen. Bilden die
Abhängigkeiten innerhalb eines Permutationsknotens mehrere Ketten oder Kreise,
liegen diese in unterschiedlichen schwachen Zusammenhangskomponenten.

Bei der in libFirm implementierten Auflösung in Kopien werden zunächst die Ketten
in Kopien transformiert. Anhand der anfangs erstellten Listen wird das Ende der
Kette identifiziert und für jedes Registerpaar in der Kette eine Kopie eingefügt. Um
einen Zyklus aufzulösen, muss erst ein beliebiges Register, welches als Eingaberegister
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f3 f4

f4 f10

f9 f11

f11 f13

f13 f15

f5 f6

f6 f7

f8 f5

f7 f8

f1 f2

f0 f1

f2 f0

Abbildung 3.7.: Abhängigkeiten innerhalb eines Permutationsknotens, der die Re-
gister für zwölf Werte tauscht. Die Abhängigkeiten zwischen den
Kopien bilden zwei Zyklen und zwei Ketten. In den Knoten ist das
Quell- und Zielregister der Kopie angegeben.

im Zyklus enthalten ist, temporär in ein weiteres, freies Register kopiert werden.
Anschließend können die verbleibenden Elemente des Zyklus analog zu den Ketten
in Kopien umgewandelt werden. Im letzten Schritt kann dann der in ein temporäres
Register kopierte Wert in das eigentliche Zielregister kopiert werden. Wurde vor dem
Zyklus bereits eine Kette abgearbeitet, kann das erste Eingaberegister der Kette
direkt als freies Register bei der Zyklusauflösung genutzt werden. Andernfalls muss
ein freies Register in der Registerklasse gesucht werden. Ist kein Register frei, kann der
Zyklus nicht in Kopien aufgelöst werden. In diesem Fall wird der Permutationsknoten
in mehrere kleine Permutationsknoten umgewandelt, die jeweils Transpositionen
zweier Register darstellen. Solche Transpositionen werden für die SPARC-Architektur
dann über ein reserviertes Register umgesetzt.

Werden Werte doppelter Genauigkeit genutzt, können zum einen Permutationsknoten
entstehen, deren Register alle Doppelregister sind. In diesem Fall kann die beste-
hende Implementierung genutzt werden. Zum anderen können Permutationsknoten
auftreten, die sowohl Werte in Einzelregistern, als auch Werte in Doppelregistern
tauschen. Dabei ist es möglich, dass sich die Menge der Einzel- und die der Doppelre-
gister überschneiden: Da bei der Erstellung des Permutationsknotens den betroffenen
Werten komplett neue Register zugeteilt werden, können Register, die vor dem
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Permutationsknoten Bestandteil eines Doppelregisters waren, nach der Ausführung
als Einzelregister fungieren und umgekehrt. Dadurch ergeben sich komplexere Ab-
hängigkeiten für die Reihenfolge der Kopien. Ein einzelnes Register ist zwar nach
wie vor Teil maximal zweier Kopien, da aber Kopien von Doppelregistern zwei Ein-
zelregister kopieren, kann eine Kopie Teil von bis zu vier Abhängigkeiten sein. Für
den Abhängigkeitsgraphen ergeben sich so komplexere Möglichkeiten, wie Abbil-
dung 3.8 veranschaulicht. Die Auflösung mit dem bisherigen Algorithmus funktioniert
in solchen Fällen nicht mehr.

f10:2 f2:2

f2:2 f6:2

f7 f8

f8:2 f10:2

f10 f4 f11 f5

f4:2 f22:2

f6 f3
f20:2 f18:2

f18 f12

f12:2 f16:2

f16 f20

f17 f15 f21 f13

f15 f21

Abbildung 3.8.: Abhängigkeiten innerhalb eines Permutationsknotens, der sowohl
Werte in Einzel- als auch in Doppelregistern tauscht. Der Ein- und
Ausgangsgrad der Knoten kann hier je maximal zwei betragen. So
sind auch komplexere Abhängigkeitsgraphen möglich.

Um für Permutationsknoten mit gemischten Registerbreiten eine korrekte Auflösung
in Kopien zu erzielen, wurde der im folgenden Abschnitt beschriebene Ansatz der
Aufteilung von Doppelregistern in Einzelregister umgesetzt.

3.5.3. Aufteilung in Einzelregister

Ein Permutationsknoten, welcher sowohl Doppel- als auch Einzelregister enthält,
wird zunächst durch einen neuen Permutationsknoten ersetzt, der nur Werte in
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Einzelregistern permutiert. Zu jedem Wert in einem Doppelregister erhält der neue
Knoten zwei getrennte Werte mit den entsprechenden Ein- und Ausgaberegistern
als Einzelregister. Für die beiden Hälften des Doppelregisters ist je ein Registerpaar
im neuen Permutationsknoten enthalten. Jedes der beiden Einzelregister kann nur
Teil von maximal zwei Abhängigkeiten zwischen den Kopien sein. Dadurch besteht
der Abhängigkeitsgraph nur aus einfachen Ketten und Zyklen und die Auflösung des
Permutationsknotens erfolgt wie oben beschrieben.

Für jeden Wert, der eigentlich in einem Doppelregister gespeichert ist, werden zwei
Kopien eingefügt. Die zwei Hälften werden getrennt kopiert. Möglich ist dies, da eine
Kopie eines Doppelregisters zu einem späteren Zeitpunkt ohnehin als zwei Kopien der
beteiligten Einzelregister realisiert wird. Der Grund hierfür ist, dass auf der SPARC-
Architektur die Kopie eines Doppelregisters durch zwei fmovs-Maschinenbefehle
realisiert werden muss, wodurch die beiden Hälften eines Doppelregisters getrennt
kopiert werden [8].

3.5.4. RegSplit- und RegJoin-Knoten

Um die Aufteilung eines Doppelregisters in zwei Einzelregister im Kontext eines
Permutationsknotens zu modellieren und gleichzeitig vor und nach dem Permu-
tationsknoten die Werte korrekt in Doppelregistern zu halten, werden die neuen
Knotentypen RegSplit und RegJoin eingeführt. Da sie erst zum Zeitpunkt der Auflö-
sung des Permutationsknotens in den Firm-Graphen eingefügt werden, stehen die
aufzuteilenden Register bereits fest. Der RegSplit-Knoten wird unmittelbar vor dem
Permutationsknoten eingefügt. Er erhält als Eingabe einen Wert in einem Doppelre-
gister und generiert als Ausgabe zwei Werte in den Hälften dieses Doppelregisters.
Diese dienen dann als Werte, die durch den Permutationsknoten neue Register er-
halten. Unmittelbar nach dem Permutationsknoten wird entsprechend ein RegJoin-
Knoten eingefügt, der diese beiden Werte als Eingabe erhält und wieder als einen
Wert im entsprechenden Doppelregister bereitstellt. Abbildung 3.9 zeigt RegSplit-
und RegJoin-Knoten anhand eines Beispiels im Firm-Graphen.

Da die RegSplit- und RegJoin-Knoten nur dazu dienen, die korrekte Transformation
der Permutationsknoten in Kopien zu ermöglichen, werden diese bei der späteren
Codegenerierung der Maschinensprache nicht berücksichtigt.
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Abbildung 3.9.: Der hier gezeigte Permutationsknoten wurde für den in Abbil-
dung 3.6 abgebildeten Permutationsknoten eingesetzt, durch wel-
chen ursprünglich die Register von vier Werten getauscht wer-
den. Zwei der Werte benötigen Doppelregister, für diese wurden
RegSplit- und RegJoin-Knoten eingefügt. Der neue Permutations-
knoten tauscht so die Register von sechs Werten in Einzelregistern.
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4. Evaluation

4.1. Testumgebung

Während und nach der Entwicklung der vorgestellten Implementierung wurde diese
durch Testen auf korrekte Funktionsweise hin evaluiert. Um die Funktionalität der
Doppelregister zu testen, müssen Programme für die SPARC V8-Architektur kompi-
liert werden. Kompiliert wurden zu diesem Zweck verschiedene C-Programme mit
cparser, dem C-Front-End von libFirm. Anschließend können die Programme mit
dem Emulator QEMU ausgeführt werden, ohne einen physischen SPARC-Prozessor
zu benötigen.

Da die Kopienminimerung nicht für Doppelregister angepasst wurde, muss diese
ausgeschaltet werden, wenn Programme für SPARC kompiliert werden sollen und
diese Variablen doppelter Genauigkeit (Variablen des Typs double in C) enthalten.
Ein beispielhafter Aufruf von cparser für das Programm test.c sieht damit wie folgt
aus:
Listing 4.1: Beispielhafter Aufruf von cparser um das Programm test.c für

SPARC zu kompilieren
cpa r s e r −−t a r g e t=sparc−leon−l inux−gnu −m32 \

−mra−chordal−co−a lgo=none −s t a t i c t e s t . c

Betriebssystem Ubuntu 17.10
Linux-Kernel 4.13
cparser 1.22.1
QEMU 2.10.1

Tabelle 4.1.: Umgebung unter der Testprogramme kompiliert und ausgeführt wurden
um die Funktionalität zu testen.

Um die Performanz der Implementierung zu testen wurde für mehrere Programme
jeweils die Laufzeit unter Benutzung von Doppelregistern (hard-float) mit der Laufzeit
einer Emulation der Gleitkommaarithmetik in Ganzzahlarithmetik (soft-float) vergli-
chen. Da Laufzeitmessungen in Emulationslösungen wie QEMU keine belastbaren
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Ergebnisse liefern, wurde für diesen Teil der Evaluation eine Hardware-Implementie-
rung der SPARC-Architektur genutzt. Eingesetzt wurde dazu ein LEON3-Prozessor,
der auf einem Virtex-7 FPGA implementiert ist. LEON3 ist ein Prozessor der LEON-
Familie, die ursprünglich von der Europäischen Weltraumorganisation ESA und
später von Gaisler Research entwickelt wurde und die SPARC-Architektur in Version
8 implementiert [1].

FPGA ProDesign FM-XC7V2000T-R2 (Virtex-7)
Prozessor LEON3
Taktrate 100 MHz
Betriebssystem OctoPOS

Tabelle 4.2.: Eckdaten der Testumgebung für die Performanztests.

4.2. Korrektheit

Die firm-testsuite ist eine Sammlung von zahlreichen, meist kleinen Testprogrammen
für das libFirm-Projekt. Diese wurde genutzt, um die Funktionsweise der Imple-
mentierung zu testen. Der Großteil der Testfälle lieferte das erwartete, eine geringe
Anzahl von zwölf Testprogrammen jedoch ein abweichendes Ergebnis. Die Hälfte
der Fälle mit abweichendem Ergebnis ist auf die Verwendung der Emulation mit
QEMU zurückzuführen. Wenn das entsprechende Testprogramm in der soft-float-
Variante kompiliert wurde, trat das gleiche Fehlerbild auf. Die verbleibenden von
der Erwartung abweichenden Fälle lieferten leicht falsche1 Werte für die Ergebnisse
der in den Programmen durchgeführten Gleitkommaberechnungen. Hier konnte die
Fehlerursache nicht geklärt werden. In libFirm wird nach verschiedenen Phasen im
Back-End ein verify-Schritt ausgeführt, um Fehler zu erkennen. In keinem Fall wies
dieser Schritt auf Fehler in der Registerallokation hin. Eine Fehlerursache wurde
aufgrund der komplexen Firm-Graphen nicht gefunden.

Damit die korrekte Funktionsweise der Registerallokation auch unter hohem Re-
gisterdruck überprüft werden kann, wurde ein sehr einfaches Testprogramm (siehe
Listing A.1) geschrieben. Das Programm verwendet eine hohe Zahl an geschachtelten
Schleifen, wobei die Schleifenvariablen im innersten Schleifenrumpf verwendet werden.
Die Berechnung im innersten Schleifenrumpf erfordert das Vorliegen aller Schleifen-
variablen in den Registern. Zusätzlich wird durch die Mischung der Datentypen float
und double für die Schleifenvariablen die Erstellung von Permutationsknoten mit

1Im Falle des fbench-Programms beispielsweise ergibt sich im schlechtesten Falle eine Abweichung
an der vierten Nachkommastelle.
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gemischten Registerbreiten provoziert. Dadurch konnte die korrekte Auflösung der
Permutationsknoten wie in Abschnitt 3.5 erläutert überprüft werden.

4.3. Performanz

Für vier Programme wurden Laufzeitmessungen auf der in Abschnitt 4.1 beschriebe-
nen SPARC-Plattform durchgeführt. Alle Testprogramme wurden zunächst als hard-
float-Variante und anschließend in der soft-float-Variante kompiliert und ausgeführt.
Die soft-float-Variante wurde dabei mit aktivierter Kopienminimerung kompiliert.
Dabei wurde jedes Programm in beiden Varianten 20 mal ausgeführt und jeweils die
Laufzeit gemessen. Die erste Messung wurde jeweils nicht mit in die Auswertung
einbezogen um den Einfluss von „kalten“ Caches zu Beginn zu verringern.

Drei der Testprogramme (n-body.c, spectral-norm.c und partial-sums.c) sind aus
dem Computer Language Benchmarks Game [17]. Als vierten Benchmark wurde das
Programm fbench.c ausgewählt [18]. Alle diese Programme sind auch Bestandteil
der firm-testsuite und führen zum Großteil Gleitkommaberechnungen durch. Die
Programme wurden leicht angepasst, indem etwaige Ausgaben auf die Konsole entfernt
wurden, da diese die Laufzeit aufgrund der langsamen FPGA-Konsole verfälschen.
Tabelle 4.3 zeigt eine statistische Auswertung der Messergebnisse.

Benchmark x̄ [µs] s2
x [µs2] sx [µs]

n-body.c (hard-float) 1 276 781,395 46 344,794 215,278
n-body.c (soft-float) 4 038 255,658 222,446 14,915
spectral-norm.c (hard-float) 1 364 589,395 0,322 0,567
spectral-norm.c (soft-float) 16 269 401,342 75,113 8,667
partial-sums.c (hard-float) 1 018 823,421 1,146 1,071
partial-sums.c (soft-float) 4 097 156,816 38,839 6,232
fbench.c (hard-float) 840 449,158 1,696 1,302
fbench.c (soft-float) 3 050 809,500 49,972 7,069

Tabelle 4.3.: Ergebnisse der Laufzeitmessungen. Angegeben sind das statistische
Mittel x̄, die empirische Varianz s2

x und die Standardabweichung sx

der Stichprobe. Alle Werte sind auf 3 Nachkommastellen gerundet.

Für jedes der Testprogramme konnte eine klare Laufzeitverkürzung der hard-float-
Variante gegenüber der soft-float-Variante erzielt werden, wie Tabelle 4.4 zeigt. Die
geringe Varianz der Messergebnisse unterstreicht dieses Ergebnis. Da in der hard-
float-Variante die Kopienminimierung ausgeschaltet ist, enthalten die Programme
in Maschinensprache eine sehr große Menge an Registerkopien. Dennoch überwiegt
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mittlere Laufzeit x̄ in µs
Benchmark hard-float soft-float Speedup
n-body.c 1 276 781,395 4 038 255,658 3,163
spectral-norm.c 1 364 589,395 16 269 401,342 11,923
partial-sums.c 1 018 823,421 4 097 156,816 4,021
fbench.c 840 449,158 3 050 809,500 3,630

Tabelle 4.4.: Direkter Vergleich der jeweiligen hard- und soft-float-Varianten. Die
Spalte Speedup gibt den Faktor an, um den die hard-float-Variante
gegenüber der soft-float-Variante schneller war.

die negative Auswirkung der Emulation der Gleitkommaarithmetik in der soft-float-
Variante auf die Laufzeit. Mit einer für Doppelregister angepassten Kopienminimerung
sollte der Laufzeitvorteil der hard-float-Variante weiter steigen.
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5. Fazit und Ausblick

5.1. Fazit

Die vorgestellte Implementierung einer Registerallokation mit Doppelregisterunter-
stützung ermöglicht es, für Programme, die Gleitkommazahlen doppelter Genauigkeit
verwenden, die Floating Point Unit von Prozessoren der SPARC V8-Architektur
voll auszunutzen. Dabei mussten keine neuen Algorithmen für die Registeralloka-
tion entwickelt werden, sondern es gelang, die in libFirm bereits bestehenden so
anzupassen, dass die Funktionalität erfüllt ist. Es ist somit nicht mehr nötig, auf
die Emulation der Gleitkommaarithmetik mittels der Compileroption −msoft−float
zurückzugreifen.

Wie die Untersuchungen in Kapitel 4 gezeigt haben, funktioniert die Registerallokation
für Doppelregister und liefert erhebliche Verringerungen der Laufzeit der untersuchten
Programme. Für diese konnte je nach Programm ein Laufzeitvorteil um den Faktor
≈ 3 bis 12 erreicht werden. Im nächsten Abschnitt wird auf zukünftige Verbesserungen
eingegangen, wodurch dieser Gewinn weiter steigen dürfte.

5.2. Ausblick

5.2.1. Verringerung der eingefügten Permutationsknoten

Während der Registerzuteilung werden vor Instruktionen, die Werte in Doppelregis-
tern definieren, Permutationsknoten eingefügt. Die Anzahl der Permutationsknoten
im Firm-Graphen kann daher besonders in Programmen, die viele Gleitkommabe-
rechnungen ausführen, sehr groß werden. Es ist allerdings nicht notwendig, vor jeder
solchen Instruktion einen Permutationsknoten einzufügen. Beträgt der Registerdruck
zum Zeitpunkt der Instruktion weniger als die Hälfte der gesamten Zahl an Registern,
kann auf jeden Fall eine Position für ein Doppelregister gefunden werden. Abbil-
dung 3.1 zeigt die ungünstigste Registerzuteilung bei einem Registerdruck, der exakt
der Hälfte der Gesamtregisterzahl entspricht. Sobald ein Register weniger belegt ist,
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sind mindestens drei aufeinanderfolgende Register unbelegt. In diesem Abschnitt
kann ein Doppelregister platziert werden. Die Anpassung, Permutationsknoten nur
einzufügen, wenn der Registerdruck mindestens die Hälfte der Gesamtregisterzahl
beträgt, stellt eine einfache Optimierung der Implementierung dar. Durch die daraus
resultierende geringere Anzahl an Registerkopien ist eine Verringerung der Laufzeit
der hard-float-Variante zu erwarten.

5.2.2. Kopienminimierung

Die Kopienminimierung ist ein Schritt, der zum Ende der SSA-basierten Registeral-
lokation ausgeführt wird und die Anzahl an Kopien von Werten in andere Register
reduziert. Im Gegensatz zum klassischen Ablauf der Registerallokation (siehe Abbil-
dung 2.2), bei dem durch diesen Schritt potentiell weitere Auslagerungen von Werten
nötig werden, stellt die Kopienminimierung in dem in libFirm angewandten Ansatz
(Abbildung 2.3) eher eine optionale Optimierung dar. Auch ohne diese liefert die
Registerallokation korrekte Ergebnisse. In [12] wird die in libFirm implementierte
Kopienminimierung vorgestellt.

Aus Zeitgründen konnte die Kopienminimierung nicht für Doppelregister angepasst
werden und muss deshalb beim Kompilieren mit SPARC als Zielarchitektur mit der
Option −mra−chordal−co−algo=none deaktiviert werden, sofern Variablen doppelter
Genauigkeit im Programm verwendet werden. Die Kopienminimierung könnte die
Anzahl der durch einen Permutationsknoten erzeugten Registerkopien verringern,
indem Ein- und Ausgaberegister wenn möglich gleichgesetzt werden. Dadurch ließe
sich eine weitere Verbesserung der Laufzeit gegenüber der soft-float-Variante von
Programmen erzielen.

5.2.3. Gleitkommazahlen vierfacher Genauigkeit

In Abschnitt 2.3.2 wurden neben den Doppelregistern für Werte doppelter Genauig-
keit auch Vierfachregister erwähnt, in denen Werte vierfacher Genauigkeit abgelegt
werden können. Auch diese Vierfachregister sind Teil der SPARC V8-Architektur.
Dennoch beschränkte sich diese Arbeit auf die Betrachtung und Implementierung der
Doppelregister. Dies hat den einfachen Grund, dass aktuell keine SPARC-Prozessoren
existieren, in deren Floating Point Unit die nötige Hardware für Gleitkommaarithme-
tik auf Gleitkommazahlen vierfacher Genauigkeit (128 Bit) implementiert ist. Daher
muss diese Arithmetik softwareseitig umgesetzt werden und es gibt keinen Bedarf
für Vierfachregister.

Einige Teile der im Rahmen dieser Arbeit entwickelten Implementierung sind dennoch
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darauf ausgelegt, nicht nur Doppelregister, sondern beliebige Registerbreiten zu
unterstützen. Insbesondere das in Abschnitt 3.3 beschriebene Spilling funktioniert
für beliebige Registerbreiten. Sollten in Zukunft SPARC-Prozessoren erscheinen,
deren Floating Point Unit Gleitkommazahlen vierfacher Genauigkeit unterstützt,
oder allgemein Prozessoren, die Register mit größeren Registerbreiten bereitstellen,
halten sich die nötigen Anpassungen an die Implementierung der Registerallokation
von libFirm in Grenzen.
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A. Anhang

Listing A.1: Testprogramm um hohen Registerdruck zu erzeugen.
#include <s t d l i b . h>
#include <s td i o . h>

int main ( int argc , char ∗argv [ ] ) {
unsigned int max = 3 ;
double r e s u l t = 0 ;

for (double a = 0 ; a < max ; a++) {
for ( f loat b = 0 ; b < max ; b++) {

for (double c = 0 ; c < max ; c++) {
for ( f loat d = 0 ; d < max ; d++) {

for (double e = 0 ; e < max ; e++) {
for ( f loat f = 0 ; f < max ; f++) {

for (double g = 0 ; g < max ; g++) {
for ( f loat h = 0 ; h < max ; h++) {

for (double i = 0 ; i < max ; i++) {
for ( f loat j = 0 ; j < max ; j++) {

for (double k = 0 ; k < max ; k++) {
for ( f loat l = 0 ; l < max ; l++) {

for (double m = 0 ; m < max ; m++) {
for ( f loat n = 0 ; n < max ; n++) {

r e s u l t = (n+m−l+k−j+i−h+g+f−e+d∗c−b∗a ) ;
}

}
}

}
}

}
}

}
}

}
}

}
}

}
p r i n t f ( " r e s u l t : ␣%f \n " , r e s u l t ) ;

}
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