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Zusammenfassung

Registerallokation ist eine wichtige Aufgabe wiahrend dem Kompilieren von Program-
men, um den Variablen Register zuzuteilen. Ein hdufig genutzter Ansatz fir die
Registerallokation ist die Ubertragung auf das Problem der Graphfirbung. Arbeitet
die Registerallokation auf einer Zwischenrepriasentation in SSA-Form, ergeben sich
Vereinfachungen fiir die genutzten Algorithmen.

Die SPARC-Architektur bietet die Moglichkeit, in einem Paar von benachbarten
32-Bit-Registern eine Gleitkommazahl doppelter Genauigkeit zu speichern, die 64 Bit
Speicherplatz benétigt. In dieser Arbeit wird die Auswirkung der Verwendung solcher
Doppelregister auf die Registerallokation in einem SSA-basierten Registerallokator an-
hand der Registerallokation in libFIRM untersucht. Die bestehende Implementierung
wird angepasst, um Doppelregister zu unterstiitzen. Die abschlieBende Bewertung
zeigt, dass die Laufzeit von mit libFIRM fiir die SPARC-Architektur iibersetzten
Programmen, die viele Gleitkommaberechnungen doppelter Genauigkeit durchfiihren,
dadurch erheblich reduziert wird.
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1. Einfiihrung

Zahlreiche moderne Prozessorarchitekturen nutzen eine Wortbreite von 64 Bit. Je
nach Anwendungsfeld sind aber nach wie vor Prozessoren mit 32-Bit-Architekturen
verbreitet. Eine solche Architektur ist die SPARC-Architektur (Scalable Processor
Architecture). Diese von dem Unternehmen Sun Microsystems entwickelte Architektur
wurde erstmals im Jahr 1986 vorgestellt. Aufgrund der Skalierbarkeit der Architek-
tur kommen SPARC-Prozessoren in unterschiedlichsten Anwendungsgebieten zum
Einsatz, beispielsweise in Supercomputern und in Systemen, die fiir den Einsatz im
Weltraum konzipiert sind [I]. Eine Gleitkommazahl einfacher Genauigkeit hat auf
der SPARC V8-Architektur eine Breite von 32 Bit. Dennoch ist es wiinschenswert,
auch auf einer 32-Bit-Architektur Berechnungen auf Daten von hoherer Genauigkeit,
insbesondere Gleitkommazahlen mit doppelter Genauigkeit, durchzufithren. Ein Da-
tenwort fiir eine Gleitkommazahl doppelter Genauigkeit umfasst 64 Bit. Prozessoren
der SPARC-Architektur bringen bereits die notigen Voraussetzungen mit, um mit
solchen Datenwortern umzugehen. Dazu gehort neben den nétigen Prozessorinstruk-
tionen auch der Ansatz, ein 64-Bit-Datenwort in zwei Registern abzuspeichern. Diese
Zusammenfassung zweier 32-Bit-Register zur Speicherung eines 64-Bit-Datenwortes
wird mit dem Begriff Doppelregister bezeichnet.

Die Programmierung von Anwendungen erfolgt meist in héheren Programmierspra-
chen und die Verwaltung der Register des Prozessors wird nicht vom Programmierer
iibernommen. Im Maschinencode, der auf dem Prozessor ausgefiihrt wird, muss
jedoch eine Zuteilung von Daten des Programms auf die Register enthalten sein. Die
Aufgabe, den Variablen im Programm Register zuzuteilen, die Registerallokation,
wird daher vom Compiler iibernommen.

Ein Compiler kann in mehrere Phasen unterteilt werden. Das Front-End ist zusténdig
fiir das Einlesen der Quellsprache und der semantischen und syntaktischen Analyse des
Codes. Das Ergebnis wird dem Middle-End iibergeben, das zahlreiche Optimierungen
vornimmt. Anschliefend iibernimmt das Back-End die Aufgabe, prozessorspezifischen
Maschinencode zu generieren, wobei auch weitere der Zielarchitektur angepasste
Optimierungen vorgenommen werden kénnen. Die Registerallokation ist Teil des
Back-Ends. Eine Zwischenreprasentation stellt das Austauschformat zwischen den
Phasen des Compilers dar. Durch Nutzung einer Zwischenreprasentation wird der
Einsatz verschiedener Back-Ends fiir verschiedene Architekturen unter Beibehaltung
der Funktionen des Front- und Middle-Ends vereinfacht.



libFIRM ist eine am Karlsruher Institut fiir Technologie entwickelte Bibliothek fiir
die graphbasierte Zwischenreprisentation FIRM. Eine besondere Eigenschaft von
FirMm ist die SSA-Form, die verschiedene Optimierungen und Algorithmen erheblich
vereinfacht und beschleunigt.

libFIRM beinhaltet bereits die Moglichkeit, aus der Zwischenreprasentation Maschi-
nencode fiir die SPARC-Prozessorarchitektur zu erzeugen. Es ist bisher jedoch kein
geeigneter Registerallokator enthalten, der mit Doppelregistern umgehen kann. Pro-
gramme, die fiir die SPARC-Architektur kompiliert werden sollen und 64 Bit breite
Gleitkommazahlen verwenden, miissen deshalb bisher auf langsamere, in Software
emulierte Gleitkommaarithmetik zurtickgreifen.

In der vorliegenden Arbeit wird eine Erweiterung der bestehenden Registerallokation
von libFIRM fiir die Allokation von Doppelregistern unter Ausnutzung der SSA-Form
der Zwischenreprasentation entwickelt und bewertet.

Die zum Verstindnis der Aufgabenstellung und gewéahlten Implementierung noti-
gen Grundlagen werden in eingefiihrt. erlautert die gewéhlte
Implementierung der Doppelregisterallokation. Anschliefiend wird in die
Implementierung hinsichtlich korrekter Funktionsweise und Laufzeitverhalten eva-
luiert. fasst die Ergebnisse dieser Arbeit kurz zusammen und gibt einen
Ausblick auf mogliche zukiinftige Verbesserungen.



2. Grundlagen und verwandte
Arbeiten

In diesem Kapitel werden einige Grundlagen erklart, die zum Verstdndnis der Imple-
mentierung notig sind. Zu Beginn wird auf Zwischenrepriasentationen in SSA-Form
eingegangen und eine kurze Einfithrung zu libF1RM gegeben. Anschliefend werden
die Eigenschaften und Anforderungen der SPARC-Architektur beziiglich der Verwen-
dung von Doppelregistern dargelegt. Nach einer Einfithrung in die Registerallokation
mittels Graphfirbung werden die Vorteile der SSA-Form auf die Registerallokation
erlautert. Abschliefend werden verwandte Arbeiten zur Doppelregisterallokation
genannt.

2.1. SSA-Form

Beim Ubersetzen eines Programms in Quellsprache wird der vom Programmierer
geschriebene Code iiblicherweise in verschiedenen Phasen in eine Zwischenreprasenta-
tion, genannt intermediate representation (IR) transformiert. Diese Abstraktionsebe-
ne dient dann als Basis fiir weitere Anpassungen und Optimierungen, die dadurch
unabhéngig von der Quellsprache durchgefiihrt werden kénnen. Zum Ende hin wird
aus der Zwischenrepriasentation der Code in der gewtlinschten Maschinensprache
generiert. Die Benutzung einer Zwischenreprasentation im Compiler erlaubt somit
eine einfache Trennung von Front-End und Back-End des Compilers. Dadurch kénnen
etwa Front-Ends fiir verschiedene Sprachen mit dem gleichen Back-End eines Compi-
lers kombiniert werden. Optimierungen kénnen einfach im gemeinsamen Middle-End
implementiert werden und stehen den verschiedenen Front- und Back-Ends zur
Verfligung.

Eine besondere Eigenschaft fiir Zwischenreprésentationen ist die SSA-Form. SSA
steht fiir Static Single Assignment und bezeichnet die Eigenschaft, dass jeder Variable
nur einmalig ein Wert zugewiesen wird. Jede weitere Zuweisung an eine Variable hat
zufolge, dass in der SSA-Form eine neue Instanz fir diese Variable eingefiihrt werden
muss. Jede Zuweisung an eine Variable wird als Definition eines neuen Wertes bezeich-
net. In SSA-Form représentiert eine Variable somit exakt einen Wert. Operationen



2.2. LIBFIRM

definieren diese Werte (def) und héngen von bereits definierten Werten ab. Dies
wird als use bezeichnet. Liegt die Zwischenreprésentation eines Programms in SSA-
Form vor, sind zahlreiche Optimierungen und Algorithmen, die auf der Zwischenre-
prisentation ausgefiihrt werden, einfacher zu realisieren [2, [3]. In wird
gesondert auf die Auswirkungen und Vorteile der SSA-Form fiir die Registerallokation
eingegangen.

Listing 2.1: Ein Codeausschnitt, Listing 2.2: Der gleiche Codeaus-
der sich nicht in SSA-Form befin- schnitt in SSA-Form.
det. a = some_input ();
a = some_input(); if (a < 20) {
if (a < 20) { bl = 1;
b = 1; } else {
} else { b2 = 0;
b = 0; }
} b3 = ¢(bl, b2)
do_stuff(b); do_stuff(b3);
b = 2; b4 = 2;

zeigt ein Programm, bei dem der Inhalt einer Variablen (b) vom Kontroll-
fluss des Programms abhéngt: Je nach Inhalt der Variable a wird b ein anderer Wert
zugewiesen. In SSA-Form miissen deshalb weitere Variablen eingefithrt werden, sodass
jeder Variable nur einmalig ein Wert zugewiesen wird. verdeutlicht dies.
Bei der Zusammenfithrung des Kontrollflusses nach der if-else- Anweisung muss fiir
weitere Zugriffe auf die Variable b eine ¢-Funktion eingefiigt werden. ¢-Funktionen
erhalten als Parameter die Variable aus jedem moglichen Kontrollflusspfad. Je nach
tatsdchlich eingeschlagenem Pfad gibt die ¢-Funktion den Wert der entsprechenden
Variablen zuriick [2, B]. Die ¢-Funktion ist keine reale Instruktion und wird nicht im
erzeugten Code in Maschinensprache ausgegeben.

Zahlreiche moderne Compiler, darunter GCC (GNU Compiler Collection) und LLVM
nutzen zumindest in Teilen interne Zwischenrepriasentationen in SSA-Form [4], [5].

2.2. libFirm

libF1rM ist eine C-Bibliothek, welche die am Karlsruher Institut fiir Technologie
entwickelte Zwischenreprasentation FIRM realisiert. Bei FIRM handelt es sich um
eine vollstandig graphbasierte Zwischenreprasentation, die sich wahrend des ge-
samten Ubersetzungsvorgangs bis zur Codegenerierung in SSA-Form befindet. Die
Zwischenrepriasentation in Form eines gerichteten Graphen beinhaltet dabei sowohl

10
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compute

Start Block 115

Start 118
Proj T T_args 120

Proj D Ar’g 1 123 Proj D Ar’g 0 122
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1 0
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ProjM M 121

End Block 113

Abbildung 2.1.: Beispielhafte Visualisierung eines FIRM-Graphen fiir eine Funktion
compute, die zwei Gleitkommazahlen doppelter Genauigkeit als
Parameter erhalt und die Summe dieser zurlickgibt.

Datenabhéngigkeiten als auch den Steuerfluss des Programms. Die Knoten des FIRM-
Graphen reprasentieren Operationen. Datenabhangigkeiten werden als Kanten zu
den Operationen modelliert, die die benotigten Werte definieren. Anhand der Daten-
abhangigkeiten kann das Scheduling spater die Schedule-Reihenfolge festlegen, in der
die Operationen ausgefiithrt werden. Jede Operation ist zudem Teil eines Grundblocks,
in dieser Arbeit kurz als Block bezeichnet [0 [7]. [Abbildung 2.1| zeigt ein einfaches
Beispiel fiir einen Ausschnitt eines FIRM-Graphen.

Es existieren verschiedene Front-Ends, welche die libF1RM-Bibliothek nutzen, unter
anderem fur die Sprachen Java und C [7]. Das C-Front-End (cparser) diente in dieser
Arbeit als Grundlage um die entwickelte Funktionalitit zu testen.

11
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2.3. SPARC-Architektur

2.3.1. Uberblick

Die SPARC-Architektur (SPARC: Scalable Processor Architecture) ist eine ab dem
Jahr 1985 von dem Unternehmen Sun Microsystems entwickelte Architektur fiir
Mikroprozessoren. Die im Zusammenhang dieser Arbeit betrachtete Version 8 der
Architektur wurde 1990 veroffentlicht. Im Folgenden wird mit der SPARC-Architektur
implizit Version 8 der Architektur bezeichnet.

Die SPARC-Architektur ist eine 32-Bit-Architektur und gehort zu den RISC-Ar-
chitekturen. RISC steht fiir Reduced Instruction Set Computer und bedeutet, dass
der Befehlssatz der Architektur aus wenigen, einfachen Instruktionen besteht. Des
Weiteren handelt es sich bei der SPARC-Architektur um eine Load-Store-Architektur,
das heifit die Instruktionen arbeiten ausschlieflich mit Operanden, die in den Regis-
tern des Prozessors vorliegen. Zum Lesen aus und Schreiben in den Hauptspeicher
existieren zusétzlich eigene Lade- und Speicherinstruktionen. Aufgrund dieses Designs
verfiigen SPARC-Prozessoren, wie fiir RISC-Architekturen iiblich, {iber eine grofle
Anzahl an Registern im Vergleich zu Architekturen, die komplexere Instruktionen
realisieren, sogenannten CISC-Architekturen (Complex Instruction Set Computer).

Prozessoren, die die SPARC-Architektur implementieren, verfiigen tiber eine Integer
Unit (IU) fur Ganzzahlberechnungen und iiber eine Floating Point Unit (FPU)
fir Gleitkommaberechnungen. Je nach Implementierung werden diese noch durch
einen Coprozessor (CP) erganzt. Dementsprechend existieren die Registerklassen
der General-Purpose-Register und der Floating-Point-Register, zusétzlich sind einige
Statusregister vorhanden. Eine Besonderheit der SPARC-Architektur ist das soge-
nannte Register Window, das aus der groflen Menge der General-Purpose-Register
jeder Funktion auf Assemblerebene einen Ausschnitt (32 Register) zur Verfligung
stellt [8].

2.3.2. Floating-Point-Register

Die Floating Point Unit (FPU) der SPARC-Architektur verfiigt tiber 32 Floating-
Point-Register, die von allen Floating-Point-Instruktionen verwendet werden kénnen.
Im Gegensatz zu den General-Purpose-Registern wird hier kein Register Window
verwendet, alle Funktionen greifen auf die gleichen Register zu. Die Floating-Point-
Register miissen daher vom Aufrufer einer Funktion gesichert und danach wiederher-
gestellt werden (caller save). Die Floating-Point-Register tragen Indizes von Null bis
31 und werden dementsprechend mit f0 — f31 bezeichnet [§].

12
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Eine weitere Besonderheit der SPARC-Architektur ist die Handhabung von Gleit-
kommazahlen héherer Genauigkeit. Neben den 32 Bit breiten single precision Worten
bietet SPARC auch double precision (64 Bit Breite) und quad precision (128 Bit Brei-
te) Worte fiir Gleitkommazahlen doppelter und vierfacher Genauigkeit. Diese werden
ebenfalls in den Floating-Point-Registern gespeichert. Dabei belegt ein Wort mehrere
Register: ein Wort doppelter Genauigkeit zwei, ein Wort vierfacher Genauigkeit vier
Register [g].

Definition 1. Ein Doppelregister bezeichnet ein Paar aus unmittelbar aufeinan-
derfolgenden Registern, in dem ein Wert gespeichert ist, der die Kapazitditen der
beiden FEinzelregister benotigt. In diesem Zusammenhang wird hier auch von der
Registerbreite gesprochen. Diese betrigt fir Doppelregister zwei.

64 Bit breite Gleitkommazahlen werden in Doppelregistern gespeichert. Es konnen
somit bis zu 16 Worte doppelter Genauigkeit und bis zu acht Worte vierfacher
Genauigkeit in den Floating-Point-Registern gespeichert werden. Insbesondere ist
auch eine gemischte Belegung der Register aus Worten einfacher, doppelter und
vierfacher Genauigkeit erlaubt [§]. Aus diesem Grund ist die SPARC-Architektur
zentral fiir diese Arbeit, da sie die Moglichkeit der Doppelregister bereitstellt. Die
Codegenerierung fiir SPARC-Prozessoren von Code, der 64 Bit breite Gleitkomma-
zahlen nutzt, musste bisher auf eine softwareseitige Emulation der Floating Point
Unit zurtickgreifen.

Die Registerallokation von Vierfachregistern fiir Worte vierfacher Genauigkeit wurde
im Zusammenhang dieser Arbeit nicht implementiert. Aktuell sind keine SPARC-
Prozessoren verfiighar, die diese Funktionalitiat in Hardware bereitstellen. In [AD]
wird auf diesen Punkt naher eingegangen.

Register Registerinhalt Ausrichtung an Registerindex
Registerindex

FD-0 s:exp[10:0]:fraction[51:32] 0 mod 2 r

FD-1 fraction[31:0] 1 mod 2 r+1

FQ-0 s:exp[14:0]:fraction[111:96] 0 mod 4 r

FQ-1 fraction[95:64] 1 mod 4 r+1

FQ-2 fraction|[63:32] 2 mod 4 r+2

FQ-3 fraction[31:0] 3 mod 4 r+3

Tabelle 2.1.: Platzierung von Gleitkommazahlen doppelter und vierfacher Genauig-
keit in der SPARC V8-Architektur [8].

13
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Um ein Doppelregister zu verwenden, gentigt es, der jeweiligen Instruktion eines der
Floating-Point-Register zuzuteilen. Die Instruktion geht davon aus, dass in diesem
angegebenen und dem unmittelbar darauffolgenden Register der Wert vorliegt. Dabei
wird gefordert, dass ein Doppelregister immer aus einem Register mit geradem
Index und dem direkt darauffolgenden Register besteht [S]. gibt fiir
Doppelregister und Vierfachregister an, wie diese in den Floating-Point-Registern
der SPARC-Architektur platziert werden diirfen.

2.4. Registerallokation

Einer der Schritte, die vom Back-End eines Compilers vorgenommen werden, ist
die Registerallokation. Diese ist fiir die Zuteilung von Registern des Prozessors an
einzelne Werte in der Zwischenreprasentation verantwortlich. Da im Allgemeinen
die Menge der Variablen und damit der Werte innerhalb eines Programms grofler
ist als die zur Verfiigung stehenden Register des Prozessors, miissen einige Werte in
den Hauptspeicher ausgelagert werden. Die Registerallokation versucht eine giiltige
Zuteilung von Registern an eine Teilmenge der Werte vorzunehmen. Da der Zugriff
auf Werte im Hauptspeicher erheblich langsamer ist als der Registerzugriff, ist eine
gute Zuteilung von besonderem Interesse.

Ein verbreiteter Ansatz um die Registerallokation durchzufiihren ist die Ubertragung
auf das Problem der Graphfarbung. Diese Transformation wurde bereits 1981 von
Chaitin gezeigt [9]. Bei der Graphfarbung wird jedem Knoten in einem Graph eine
Farbe zugeteilt. Zwei adjazente Knoten diirfen dabei nicht dieselbe Farbe haben. Die
minimale Anzahl Farben die zum korrekten Farben eines Graphen G bendtigt wird,
heifit chromatische Zahl x(G). Kann ein Graph mit & Farben korrekt gefirbt werden,
heifit er k-farbbar [10].

Setzt man bei der Registerallokation Graphfiarbung ein, wird ein sogenannter Inter-
ferenzgraph genutzt. Jeder Wert im Programm entspricht einem Knoten in diesem
ungerichteten Graphen. Konnen zwei Werte nicht das gleiche Register nutzen, wird
eine Kante zwischen diesen im Interferenzgraphen eingefiigt. Diese Interferenz tritt
immer dann auf, wenn zwei Werte gleichzeitig lebendig sind. Ein Wert wird an einem
Punkt im Programm als lebendig bezeichnet, wenn er bereits definiert wurde und zu
einem spéteren Zeitpunkt auf diesen Wert zugegriffen wird. Die chromatische Zahl
des Interferenzgraphen gibt somit an, wie viele Register benotigt werden, um alle
gleichzeitig lebendigen Werte abzuspeichern. Die Anzahl an benétigten Registern
zu einem Zeitpunkt wird als Registerdruck bezeichnet. Ist dieser grofler als die zur
Verfligung stehenden Register, miissen einige Werte in den Hauptspeicher geschrieben
werden. Dies wird als Spilling bezeichnet [9, [11].

14



2.4. REGISTERALLOKATION

Die Registerallokation mittels Graphfarbung kann im Allgemeinen in mehrere Phasen
eingeteilt werden. Nach dem Aufbau des Interferenzgraphen wird eine Coalescing-
Phase durchgefiihrt. Diese versucht unnétige Kopien von Registern zu entfernen und
somit den Registerdruck zu senken. Darauthin wird die eigentliche Graphfarbung
vorgenommen, welche den Werten Register zuweist. In dieser Arbeit wird dieser Schritt
als Registerzuteilung bezeichnet, wohingegen mit dem Begriff Registerallokation der
gesamte mehrschrittige Prozess bezeichnet wird. Stellt sich bei der Farbung heraus,
dass die Anzahl an Registern nicht ausreicht, der Graph also nicht k-farbbar ist
mit k& der Registeranzahl, muss die Spilling-Phase ausgefiihrt werden. Danach kann
wieder mit dem Erstellen des Interferenzgraphen begonnen werden. Dieser Ablauf ist
in [Abbildung 2.2 schematisch dargestellt.

spill

nicht k-farbbar

— build coalesce color ———

Abbildung 2.2.: Klassischer iterativer Ablauf von Registerallokation unter Anwen-
dung von Graphfarbung [11].

Ist die Zwischenreprasentation in SSA-Form, hat der Interferenzgraph niitzliche Eigen-
schaften, welche die Registerallokation vereinfachen. Ein solcher Interferenzgraph ist
chordal. Ein Graph G heifit chordal, wenn die Lénge jedes Kreises in G maximal drei
betragt. Chordale Graphen besitzen ein sogenanntes Perfektes Eliminationsschema
(PES). Durch ein perfektes Eliminationsschema wird eine Reihenfolge vorgegeben, in
der Knoten aus dem Graph entfernt werden miissen, sodass gilt: fiir jeden entfernten
Knoten bilden die Nachbarn des Knoten eine Clique. Des Weiteren ist in chordalen
Graphen die Grofie der grofiten Clique gleich der chromatischen Zahl x(G). Werte im
Programm, die gleichzeitig lebendig sind, entsprechen Cliquen im Interferenzgraphen.
Die Anzahl an zur Verfiigung stehenden Registern n ist bekannt und durch Spilling
kann sichergestellt werden, dass an jedem Punkt im Programm maximal n Werte
gleichzeitig lebendig sind. Ist dies gegeben, ist die chromatische Zahl des Interferenz-
graphen G beschrénkt: x(G) < n. Der Graph ist somit n-farbbar. Nach dem Farben
ist daher kein weiteres Spilling nétig und es gentigt, das Spilling einmalig durchzufiih-
ren [I1]. Coalescing zur Entfernung tiberfliissiger Kopien kann durch Neufarbung des
Graphen so ausgefiithrt werden, dass die chordale Eigenschaft des Graphen erhalten
bleibt und kein weiteres Spilling vonnéten ist [12]. Die Registerallokation lasst sich
daher zu dem in [Abbildung 2.3| gezeigten Ablauf vereinfachen [11].
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spill color coalesce —

Abbildung 2.3.: Ablauf von Registerallokation unter Anwendung von Graphfarbung
fir Zwischenreprasentationen in SSA-Form. Der Interferenzgraph
ist hierbei chordal [11].

2.5. Verwandte Arbeiten

Die Arbeit von Sebastian Hack, Daniel Grund und Gerhard Goos [I1] zeigt die hier
beschriebenen Eigenschaften fiir Interferenzgraphen von Zwischenreprésentationen in
SSA-Form und fiihrt den in [Abbildung 2.3| gezeigten Ablauf der Registerallokation
ein.

Der Schritt der Kopienminimierung, der einen Teil der Coalescing-Phase bildet, wird
in [I2] von Sebastian Hack und Gerhard Goos eingefiihrt und die Algorithmen, die
dazu in libFIRM zum Tragen kommen, vorgestellt.

Andere Autoren untersuchten bereits die Registerallokation fiir Architekturen, die
besondere Strukturen wie Doppelregister bereitstellen. So stellen Briggs, Cooper
und Torczon den Ansatz vor, mehrere Kanten im Interferenzgraphen einzufiigen, um
Doppelregister und dartiber hinausgehende Bedingungen zu modellieren [13]. Auch
Brian Nickerson behandelt Anpassungen an die Interferenz zwischen Variablen um
Bedingungen wie Doppelregister im Interferenzgraph modellieren zu kénnen [14]. Ein
weiterer Ansatz besteht darin, die Knoten im Interferenzgraphen je nach Breite des
benotigten Registers unterschiedlich zu gewichten, wie von Michael Smith und Glenn
Holloway untersucht wurde [15].

Allen diesen Ansétzen ist gemein, dass sie auf dem nicht-SSA-basierten, iterativen
Modell wie in [Abbildung 2.2| gezeigt aufsetzen. Die im letzten Abschnitt genann-
ten Vorteile der SSA-basierten Registerallokation entfallen somit, insbesondere die
Moéglichkeit, das Spilling einmalig durchzufiithren und anschliefend die Farbung
vorzunehmen. Dies stellt fiir die vorliegende Arbeit eine Grundvoraussetzung dar.
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3. Entwurf und Implementierung

In diesem Kapitel werden anhand der bestehenden Implementierung in libFIRM die
Anpassungen erklart, die eine Verwendung von Doppelregistern in der Registeral-
lokation ermoglichen. Zunachst wird auf die Représentation von Doppelregistern
eingegangen, anschliefend werden die Implementierungen in den einzelnen Schritten
der Registerallokation beschrieben. Sowohl das Spilling als auch die Registerzuteilung
erfordern Anpassungen fiir Doppelregister. Der an die Registerzuteilung anschlieffen-
de Schritt der Kopienminimierung wurde in dieser Arbeit nicht bearbeitet. Da die
Kopienminimierung in libF1RM optional ist und eine Optimierung darstellt, liefert die
Registerallokation auch ohne diesen Schritt korrekte Ergebnisse. In [Abschnitt 5.2.2]
wird dieser Umstand nédher betrachtet. Zuletzt wird darauf eingegangen, welche
Anpassungen an die Auflésung von Permutationsknoten nétig waren. Diese Aufl-
sung ist notig, da Permutationsknoten keine Instruktionen der Prozessorarchitektur
darstellen.

3.1. Ausgangssituation in libFIRM

Das libF1rM-Back-End verfiigt bereits iiber eine funktionsfahige Registerallokation.
Da libFIRM wie bereits erwdhnt eine Zwischenrepriasentation in SSA-Form nutzt,

folgt die Registerallokation dem in beschriebenen Ablauf.

Auch enthalt libF1RM ein Back-End fiir die SPARC-Architektur. Die Codegenerierung
fiir SPARC ist darin vollsténdig implementiert. Das schliet auch die Funktionali-
tdat der Doppelregister mit ein: SPARC-Instruktionen, die auf Gleitkommazahlen
doppelter Genauigkeit operieren, beispielsweise faddd zur Addition zweier 64-Bit-
Gleitkommazahlen, konnen vom Back-End in Maschinensprache ausgegeben wer-
den.

Die Funktionalitat der Registerallokation und die Implementierungen der zugehorigen
Algorithmen sind bisher jedoch nicht fihig, mit Doppelregistern umzugehen. Im
Folgenden wird erldutert, welche Anpassungen und Erweiterungen implementiert
werden mussten, um die Registerallokation auch fiir Doppelregister zu ermoglichen.
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3.2. REPRASENTATION VON DOPPELREGISTERN

3.2. Reprasentation von Doppelregistern

In libFIRM existieren verschiedene Datentypen, um Register und spezielle Anforde-
rungen an Register einer Operation abzubilden.

Der Datentyp struct arch_register_t représentiert ein einzelnes Register der
Prozessorarchitektur. In diesem Datentyp ist unter anderem die Registerklasse und
der Index des Registers innerhalb der Registerklasse gespeichert. Neben den Registern
gibt es auch Registeranforderungen. Diese werden durch den Datentyp struct
arch_register_req_t modelliert. zeigt die Definition dieses Datentyps.
Eine Registeranforderung umfasst ebenfalls die Registerklasse und kann beispielsweise
eine Einschrankung auf bestimmte Register beschreiben. Dies ist zum Beispiel fiir
Prozessorinstruktionen notig, welche die Operanden immer in bestimmten Registern
erwarten oder das Ergebnis der Operation immer in ein festgelegtes Register schreiben.
In der Registeranforderung wird auch die benétigte Breite des Registers gespeichert.
Fiir Doppelregister muss dieser Wert auf zwei gesetzt werden. Die Codegenerierung des
SPARC-Back-Ends unterscheidet anhand dieses Parameters, ob Gleitkommazahlen
einfacher oder doppelter Genauigkeit verwendet werden sollen und wahlt auf diese
Weise die korrekten Prozessorinstruktionen aus. Eine Instanz des Knoten-Datentyps
(struct ir_node) fiir Knoten im FIRM-Graphen enthélt Registeranforderungen aller
Werte, die aus den Registern gelesen oder in Register geschrieben werden. Fiir Werte,
die von einem Knoten definiert und demzufolge in Register geschrieben werden,
werden zusétzlich die zugewiesenen Register im Knoten gespeichert.

Im Normalfall wird bereits bei der Erstellung des Knotens die Registeranforderung
gesetzt, die Information iiber die bendtigte Registerbreite ist also vor der Registerallo-
kation im Knoten gegeben. Es bietet sich daher an, diese bestehende Représentation
auch bei der Implementierung der Registerallokation fiir Doppelregister einzusetzen.
Die Registerallokation von libF1RM wurde deshalb dahingehend angepasst, anhand
dieser bestehenden Reprasentation Doppelregister zu identifizieren. Einem Wert wird
dazu nach wie vor eine einzelne Instanz des Register-Datentyps zugeteilt. Durch die
in der Registeranforderung angegebene Breite wird fiir Doppelregister implizit auch
die zweite Halfte an den Wert zugewiesen.

Listing 3.1: Der Datentyp fiir Registeranforderungen im libFIRM-Quellcode [16].
Uber den Parameter width kann die Breite des erforderlichen Registers
gesetzt werden.

typedef struct arch_register_req_t arch_register_req_t;
struct arch_register_req_t {
/+% The register class this constraint belongs to. x/
const arch_register_class_t =xcls;
/xx allowed register bitset
x (in case of wide—values this is only about the first
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3.3. SPILLING

x register ). NULL if all registers are allowed. x/

const unsigned xlimited;

/% Bitmask of ins which should use the same register. x/
unsigned should be_ same;

/xx Bitmask of ins which shall use a different register x/
unsigned must be different;

/xx Specifies how many sequential registers are required x/
unsigned char width ;

/xx dgnore this input/output while allocating registers x/
bool ignore : 1;

/xx The instructions modifies the wvalue in the register in
x an unknown way, the wvalue has to be copied if

x it is needed afterwards. x/

bool kills value : 1;

b

Eine Prozessorarchitektur verfiigt meist iiber mehrere Registerklassen. Bei der
SPARC-Architektur sind dies hauptsachlich die Klasse der General-Purpose-Register
und die Klasse der Floating-Point-Register. Um zu bestimmen ob eine Registerklasse
Doppelregister unterstiitzt wurde der Datentyp arch_register_class_t, der im
libF1rRM-Back-End eine Registerklasse reprasentiert, erweitert. Der Datentyp wurde
dazu um das Feld bool double_registers_allowed erginzt. Dieses Feld kann dann
in der Definition der jeweiligen Zielarchitektur gesetzt werden.

3.3. Spilling

Der erste Schritt des in libFIRM implementierten SSA-basierten Registerallokators
ist das Spilling. Ziel dieser Phase ist es, wie in kurz beschrieben, dafiir
zu sorgen, dass zu jedem Zeitpunkt in einem Programm die Menge der gleichzeitig
lebendigen Werte maximal der in einer Registerklasse vorhandenen Registeranzahl
entspricht. Dies wird durch Einfiigen von spills und reloads erreicht, wodurch Werte
in den Speicher geschrieben werden und zu einem spéteren Zeitpunkt wieder aus
dem Speicher geladen werden. Dadurch kann der Registerdruck verkleinert werden,
da weniger Werte gleichzeitig lebendig sind.

Die Implementierung in libF1RM nutzt hierfiir den Algorithmus von Bélady. Sind
mehr Werte lebendig als Register vorhanden sind, muss entschieden werden, welche
der Werte in den Speicher ausgelagert werden. Béladys Algorithmus wéhlt hierzu die
Werte, deren nachste Benutzung am weitesten von der aktuellen Position entfernt
ist. Die Entfernung wird von der Anzahl Instruktionen zwischen den beiden Punkten
im Programm bestimmt.
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3.3. SPILLING

3.3.1. Workset

Der Datentyp struct workset_t bildet eine zentrale Datenstruktur im Spilling-Algo-
rithmus. |[Listing 3.2| enthalt die Definition des Datentyps. Innerhalb eines Worksets
wird eine Liste von Knoten mit dem Zeitpunkt der ndchsten Benutzung des von
ihnen definierten Wertes mithilfe des Datentyps struct loc_t gespeichert. Diese Liste
reprasentiert die Menge der zu einem Zeitpunkt lebendigen Werte.

Listing 3.2: Fir Worksets genutzte Datentypen [16].

typedef struct loc_t {
ir_node =*node;
/xx A use time (see beuses.h). x/
unsigned time;
/xx value was already spilled on this path */
bool spilled ;
} loc_t;

typedef struct workset t {
/x% current length x/
unsigned len;
/xx array of the wvalues/distances in this working set x/
loc_t vals [];
} workset_t;

Um gemif dem Algorithmus von Bélady die Werte, deren Distanz zur nachsten
Benutzung am grofiten ist, einfach zu erhalten, konnen die Knoten in einem Workset
mittels workset_sort(workset) nach dieser Distanz sortiert werden.

3.3.2. Ablauf

Der Spilling-Algorithmus in libFIRM geht blockweise vor. Fiir jeden Block im Graph
wird dazu die Funktion process_block aufgerufen, die das Spilling fiir diesen Block
durchfiithrt. Dabei erfolgt die Traversierung des Kontrollflussgraphen in reverse post-
order. Wenn ein Block besucht wird, ist dadurch sichergestellt, dass die Blocke, welche
im Kontrollfluss vor dem aktuell betrachteten Block liegen, bereits besucht wurden.
Zu einem Block werden dartiiber hinaus je ein Workset fiir den Anfang des Blocks
(Start-Workset) und das Ende des Blocks (Ende-Workset) abgespeichert. Hat ein
Block keine Vorgénger, wird als Start-Workset ein leeres Workset gewahlt. Hat ein
Block exakt einen Vorgangerblock, wird dessen Ende-Workset als Start-Workset des
aktuellen Blocks gesetzt. Wenn ein Block mehrere Vorgéanger besitzt, wird versucht,
aus den Ende-Worksets der Vorgéngerblocke geméfl Bélady die besten Werte in das
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Start-Workset zu iibernehmen. Fiir Schleifen wird zusétzlich bestimmt, welche Werte
im Schleifenrumpf benotigt werden. Wird ein Wert innerhalb einer Schleife aus dem
Hauptspeicher geladen, muss dies im schlechtesten Falle in jedem Durchlauf erfolgen.
Dies verschlechtert die Performanz des Programms erheblich, daher wird an dieser
Stelle versucht, innerhalb der Schleife moglichst wenige Werte zu laden.

Nachdem das Start-Workset festgelegt wurde, wird anhand der bereits vor dem
Spilling festgelegten Schedule-Reihenfolge tiber die Knoten im Block iteriert. Jeder
Zugriff auf einen Wert (use) durch den Knoten und jeder Wert, welchen der Knoten
definiert, wird gespeichert. Zum Ausfithrungszeitpunkt der Instruktion, die durch
diesen Knoten reprasentiert wird, miissen die Operanden der Instruktion in Registern
vorliegen. Werte, die von der Instruktion definiert werden, diirfen keine anderen,
noch lebendigen Werte in den Registern iiberschreiben.

Das Spilling stellt zum einen sicher, dass Werte, die von einer Instruktion gelesen
werden, vor der Ausfithrung der Instruktion in den Registern vorliegen. Ist dies
nicht der Fall und Werte wurden zuvor ausgelagert, miissen entsprechende reload-
Knoten eingefiigt werden, wodurch die Werte aus dem Speicher wieder in die Register
geschrieben werden. Da im Allgemeinen nicht genug Register frei sind, um die
geladenen Werte aufzunehmen, miissen gegebenenfalls andere Werte zuvor ausgelagert
werden. Schreibt die Instruktion Werte in Register und es sind nicht ausreichend
Register unbelegt, miissen zudem weitere Werte vor Ausfiihrung der Instruktion
ausgelagert werden. Dadurch wird verhindert, dass Werte ungewollt iiberschrieben
werden, die lebendig sind, das heifft zu einem spéteren Zeitpunkt noch bendétigt
werden.

Nachdem das Spilling innerhalb eines Blocks beendet wurde, wird das letzte Workset
als Ende-Workset des Blocks abgespeichert, um fiir im Kontrollfluss nachfolgende
Blocke bei der Erstellung des Start-Worksets zur Verfiigung zu stehen.

Nachdem alle Blocke auf diese Weise abgearbeitet wurden, miissen in einem letzten
Schritt noch die Blockgrenzen zwischen Blocken angepasst werden, da durch die
blockweise Durchfithrung des Spilling nicht immer das Start- und Ende-Workset
korrekt zueinander passen und weitere Auslagerungen oder reload-Vorgénge eingefiigt
werden miissen.

3.3.3. Anpassung fiir Doppelregister

Der beschriebene Algorithmus muss angepasst werden, um Doppelregisterallokation
korrekt zu implementieren. Zentrale Anpassung hierfiir ist die Entkopplung der Anzahl
Knoten in einem Workset und der von diesen Knoten benétigten Registeranzahl. In
der bisherigen Implementierung wurde die Anzahl der Knoten in einem Workset mit
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der durch die Registerklasse zur Verfiigung gestellten Registeranzahl verglichen, um
die Anzahl an benétigten Auslagerungen zu bestimmen. Von dieser bereits definierten
Lange eines Worksets wird nun die genutzte Linge unterschieden, welche sich durch
Summieren aller benotigten Registerbreiten der im Workset enthaltenen Knoten
ergibt. Erlaubt eine Registerklasse sowohl Einzel- als auch Doppelregister, entspricht
nicht die Anzahl der gleichzeitig lebendigen Werte, sondern die genutzte Lange eines
Worksets dem Registerdruck. Fiir Registerklassen, die nur Einzelregister unterstiitzen,
entspricht die genutzte Lange immer der Lange des Worksets.

Wenn Operanden einer Instruktion ausgelagert wurden und vor der Instruktion wieder
in die Register geladen werden, miissen, sofern keine Register unbelegt sind, an deren
Stelle andere Werte ausgelagert werden. Werden alle Register als Einzelregister
genutzt, bedingt das Laden eines Wertes aus dem Speicher somit hochstens das
Auslagern eines anderen Wertes in den Speicher. Wenn eine Registerklasse Register
mit einer maximalen Breite von w erlaubt, konnen durch das Laden eines Wertes,
der eine Registerbreite von w benotigt, bis zu w Auslagerungen anderer Werte notig
sein. Die tatsdchliche Anzahl héngt im Einzelnen davon ab, welche Registerbreiten
diejenigen Werte bendtigen, die zuerst ausgelagert werden. Nach dem Algorithmus
von Bélady sind dies die Werte, deren néchste Benutzung am weitesten entfernt
liegt. Um Werte in Doppelregister (w = 2) zu laden miissen somit bis zu zwei Werte
ausgelagert werden.

Beispiel 1. Ein Workset liege sortiert vor, das heifit die Knoten, deren Werte die
grof$te Distanz zur ndchsten Benutzung besitzen, befinden sich am Ende der Liste.
Alle aktuell lebendigen Werte, also genau diejenigen, welche im Workset enthalten
sind, belegen Finzelregister. Das Workset enthalte auflerdem die mazimal magliche
Anzahl Knoten, alle Register sind somit belegt. Die aktuell betrachtete Instruktion
lrest zwei Werte aus je einem Doppelregister. Beide Werte sind aktuell nicht lebendig
und missen daher aus dem Speicher geladen werden.

Da keine Register frei sind, missen andere Werte ausgelagert werden. Dazu werden
aus dem Workset solange Knoten entfernt, bis der Platz ausreicht, um die zu ladenden
Werte aufzunehmen. Im diesem Beispiel miissen also vier Werte ausgelagert werden,
bevor die zwei angeforderten Werte in die Register geschrieben werden konnen.

Die Anpassungen am Quelltext des Spilling unterstiitzen generell Register, die aus
mehreren einzelnen Registern bestehen. Die Register sind nicht auf Einzel- und Dop-
pelregister beschrankt, das Spilling funktioniert fiir beliebige Registerbreiten. Durch
das Spilling wird lediglich sichergestellt, dass zu jedem Zeitpunkt alle momentan
lebendigen Werte in den Registern Platz finden. Die zuséitzliche Bedingung fiir Dop-
pelregister, das Ausrichten an geraden Indizes, wird hier nicht beachtet sondern muss
von der nachfolgenden Registerzuteilung vorgenommen werden. In [Abschnitt 3.4.1]
wird auf diesen Umstand néher eingegangen.

22



3.4. REGISTERZUTEILUNG

3.4. Registerzuteilung

Das vorangegangene Spilling hat an den erforderlichen Stellen einen Teil der Werte
ausgelagert. Dadurch wurde sichergestellt, dass an jedem Punkt im Programm alle
zu diesem Zeitpunkt lebendigen Werte in die Register passen. Im néchsten Schritt
konnen nun die Register an die Knoten zugeteilt werden. Dabei wird der Graph
der Zwischenreprésentation in mehreren Iterationen traversiert und die nachfolgend
beschriebenen Schritte jeweils fiir jeden Block durchgefiihrt.

3.4.1. Registereinschrankungen verarbeiten

Zunachst miissen fiir Knoten, die Einschrankungen an die Register stellen, Vorar-
beiten durchgefiihrt werden. Solche Einschrankungen sind beispielsweise ein festes
Ausgaberegister einer Instruktion. Im betrachteten Block wird entsprechend der
Schedule-Reihenfolge fiir jeden Knoten gepriift, ob dieser Einschréankungen an die
Register stellt. Ist dies nicht der Fall, kann der nachste Knoten betrachtet werden.

Andernfalls wird vor dem betrachteten Knoten ein sogenannter Permutationsknoten
eingefiigt. Durch den Permutationsknoten kénnen die Register aller zu diesem Zeit-
punkt lebendigen Werte getauscht werden. Eine Instruktion, die Einschrdankungen
auf bestimmte Register trifft, kann die bendtigten Register somit auf jeden Fall
nutzen. Sollten beispielsweise Register, in die eine solche Instruktion schreibt, bereits
durch andere Werte belegt sein, konnen mithilfe des Permutationsknotens die bereits
enthaltenen Werte in andere Register verschoben werden.

Neben Instruktionen, die bestimmte Ein- oder Ausgaberegister erwarten, wird jede
Instruktion, die in Doppelregister schreibt, als Instruktion mit Einschrankungen an-
gesehen. Dies ist notig, da ab einem bestimmten Registerdruck Situationen auftreten
konnen, die eine Permutation erforderlich machen. Sobald der Registerdruck mehr
als die Halfte der insgesamt zur Verfiigung stehenden Register betragt, besteht die
Moglichkeit, dass fiir eine Instruktion, die in ein Doppelregister schreibt, kein solches
mehr zur Verfiigung steht. Das vorangegangene Spilling hat lediglich dafiir gesorgt,
dass die Anzahl an unbelegten Registern ausreicht, um den zu schreibenden Wert
unterzubringen. Die unbelegten Register konnen jedoch so angeordnet sein, dass
keine giiltige Position fiir ein Doppelregister vorhanden ist.

Beispiel 2. Betrachtet wird eine Instruktion, die einen Wert in ein Doppelregister
schreibt. In der zugehorigen Registerklasse seien n Einzelregister enthalten. Wihrend
der Instruktion seien exakt 5 weitere Werte einfacher Genauigkeit lebendig, die bereits
Register zugeteilt bekommen haben. Dabei sei jedem Wert ein Register mit geradem
Index zugeordnet. Fiir den neuen von der Instruktion definierten Wert kann kein
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Register gefunden werden, da nur Register mit ungeradem Index unbelegt sind, wie

verdeutlicht.

fo f1 2 3 4 B 6 (7

8 19 f10 f11 f12 f13 {14 {15

f16 f17 f18 {19 f20 {21 {22 {23

f24 f25 26 f27 28 {29 {30 {31

Abbildung 3.1.: Situation ohne Permutationsknoten. Die zum Zeitpunkt der Instruk-
tion belegten Register sind grau hinterlegt. Fiir eine Instruktion,
die einen weiteren Wert in einem Doppelregister definiert, ist hier
kein passendes Register verfiigbar, obwohl der Registerdruck nur
die Halfte der Registeranzahl betragt.

Durch FEinfiigen eines Permutationsknotens besitzen die wdhrend der Instruktion
lebendigen Werte zundchst wieder kein zugeteiltes Register. |[Abbildung 5.2 zeigt fiir
diese Werte zusammen mit dem von der Instruktion definierten Wert eine neu
bestimmte Registerzuteilung.

Nun kénnen auch den zu schreibenden Werten der Instruktion Register zugeteilt
werden. Alle anderen wéhrend der Instruktion lebendigen Werte werden durch
den Permutationsknoten definiert. Auch diesen Werten wird jeweils ein Register
zugewiesen. Fir die Zuteilung der Register wird an dieser Stelle ein bipartites
Matching verwendet. Als bipartites Matching wird eine Menge von Kanten eines
ungerichteten Graphen, dessen Knoten in zwei Partitionen eingeteilt sind, bezeichnet.
Dabei besitzen keine zwei Kanten des Matchings einen gemeinsamen Endknoten [10].
Eine der beiden Partitionen wird durch die erwédhnten Werte gebildet, denen Register
zugeteilt werden sollen. Die einzelnen Register der Registerklasse stellen die zweite
Partition dar. Eine Kante zwischen zwei Knoten wird genau dann in den Graphen
eingefiigt, wenn der entsprechende Wert in dem entsprechenden Register stehen
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fo f1 2 3 f4 5 {6 {7
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Abbildung 3.2.: Nach Einfligen eines Permutationsknotens vor der betroffenen
Instruktion ist der Registerdruck zum Ausfiihrungszeitpunkt der
Instruktion weiterhin gleich, durch die Neuzuteilung der ersten 16
Register an die Werte kann aber fiir den neuen Wert ein Doppelre-
gister (hier f16) gefunden werden.

darf. Schreibt die Instruktion den Wert immer in ein festgelegtes Register, wird
dementsprechend nur eine Kante zwischen diesem Wert und den Registern eingefiigt.
Werte, die in beliebigen Registern stehen diirfen, beispielsweise die Ausgaben des
Permutationsknotens, sind Endknoten mehrerer Kanten zu Registern. Das gefundene
Matching ist dann eine korrekte Registerzuteilung an die Werte.

Benotigt ein Wert ein Doppelregister, diirfen nur zu Registern mit geradem Index
Kanten im Graph eingefiigt werden. Dies missachtet aber die Eigenschaft des Dop-
pelregisters als Paar von aufeinanderfolgenden Einzelregistern. Ein giiltiges Matching
kann so gewéahlt sein, dass ein eigentlich als obere Hélfte eines Doppelregisters ge-
wahltes Register mit ungeradem Index einem anderen Wert zugeteilt wird, wie in
[Abbildung 3.3| gezeigt.

Fiir Registerklassen, die Doppelregister erlauben, wird deshalb kein bipartites Mat-
ching genutzt. Stattdessen werden den Werten die Register zugeteilt indem das
erste unbelegte Register per linearer Suche iiber die Liste der Register gesucht wird.
Benotigt ein Wert ein Doppelregister, wird entsprechend das erste unbelegte Register
mit geradem Index gesucht, dessen unmittelbar darauffolgendes Register ebenfalls
unbelegt ist. Da auf diese Weise die Register von vorn gefiillt werden und allen
lebendigen Werten durch den Permutationsknoten ebenfalls an dieser Stelle Register
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Abbildung 3.3.: Den vier Werten sollen Register zugeordnet werden. Die Werte eins
und zwei bendtigen Doppelregister. Die dicker hervorgehobenen
Kanten bilden ein giiltiges Matching. Register fI wird jedoch
implizit sowohl Wert eins als auch Wert vier zugeteilt, da Wert eins
als Doppelregister fO und f1 erhalt. Das Matching bildet daher
keine gililtige Registerzuteilung.

zugewiesen werden, wird immer eine Moglichkeit fir ein Doppelregister gefunden.

Die Klasse der Floating-Point-Register der SPARC-Architektur ist die einzige Regis-
terklasse in libF1RM, die Doppelregister in der hier behandelten Form unterstiitzt.
Die Instruktionen der SPARC-Architektur, die in Floating-Point-Register schreiben,
stellen in den meisten Féllen keine besonderen Anforderungen an die Register. We-
nige Ausnahmen bilden einzelne Instruktionen, die Werte auf bestimmte Register
einschranken. Da diesen vor den anderen durch den Permutationsknoten lebendigen
Werten Register zugewiesen werden ist die Zuteilung auf diese Weise durchfiihrbar.

26



3.4. REGISTERZUTEILUNG

3.4.2. Schreib- und Lesezugriffe speichern

Vor dem eigentlichen Zuteilen von Registern an diejenigen Werte, die nicht bereits
durch den vorherigen Schritt abgedeckt wurden, werden zunéchst Informationen tiber
die Definitionen und Benutzungen der Werte innerhalb eines Blocks erstellt.

Nach dem Betrachten der am Ende des Blocks lebendigen Werte wird die Schedule-
Reihenfolge im Block riickwérts abgelaufen. In einer doppelt verketteten Liste wird je-
der Schreib- und Lesezugriff auf einen Wert als Instanz des Datentyps struct border_t
gespeichert. Zuletzt werden noch die zu Beginn des Blocks lebendigen Werte hinzu-
gefiigt. Aufgrund der SSA-Form existiert fiir jeden Wert genau eine Definition und
somit genau ein Schreibzugriff. Fiir Werte, die iiber die Blockgrenze hinweg in den
Block hinein lebendig sind, wird ebenfalls eine Definition in die Liste eingefiigt.

3.4.3. Farben

Im abschlieenden Schritt der Registerzuteilung kénnen nun Register an die verblei-
benden Werte zugeteilt werden, was dem Farben der einzelnen Knoten im Interfe-
renzgraphen entspricht. Dies wird blockweise durchgefiihrt, wobei die im vorigen
Schritt fiir jeden Block bestimmte Liste an Definitionen und Benutzungen der Werte
genutzt wird.

Indirekt enthélt diese Liste die Intervalle in denen Werte lebendig sind. Diese werden
durch die Positionen der Definitionen und Benutzungen gebildet. Die Liste gibt
gleichzeitig eine Reihenfolge vor, in welcher den Werten die Register zugeteilt werden
kénnen. Die Liste wird dazu in umgekehrter Reihenfolge als bei der Erstellung
durchlaufen. Somit werden die Definitionen und Benutzungen der Werte von vorne
nach hinten abgelaufen. Dies entspricht der umgekehrten Reihenfolge eines perfekten
Eliminationsschemas des Interferenzgraphen. Somit wird eine korrekte Farbung
erzeugt [11].

Fiir jede Definition, die betrachtet wird, muss dem Wert ein Register zugeteilt werden.
In einigen Fallen wurde dem Wert bereits ein Register zugeteilt. Dies ist zum einen
dann der Fall, wenn die eigentliche Definition des Wertes in einem Vorgangerblock
stattfand und der Wert tiber die Blockgrenze hinweg in den aktuell betrachteten Block
hinein lebendig ist. Des Weiteren wurden fiir Instruktionen, die Registereinschrén-
kungen haben, bereits die Register zugeteilt (siche |[Abschnitt 3.4.1)). Insbesondere
wurden dabei auch solche Instruktionen eingeschlossen, die Werte in Doppelregis-
tern definieren. Dennoch erfordert auch dieser Schritt der Registerzuteilung eine
Anpassung an Doppelregister, da nicht alle Knoten aus der Zwischenreprasentati-
on abgedeckt wurden. Knoten, welche die Anwendung einer ¢-Funktion darstellen,
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wurden bei der Verarbeitung der Registereinschrankungen nicht mit einbezogen.
Diesen miissen hier noch Register zugeteilt werden. Unabhéngig davon, ob bereits
ein Register in einem fritheren Schritt zugeteilt wurde oder dies erst jetzt stattfindet,
wird das entsprechende Register als belegt markiert. Fiir Doppelregister werden beide
Einzelregisterbestandteile markiert.

Jede Benutzung eines Wertes in der Liste entspricht dem Ende des Intervalls, in
welchem dieser Wert lebendig ist. Da anschliefend der Wert das Register nicht mehr
belegt, wird es an dieser Stelle wieder freigegeben, indem es als verfiighar markiert
wird. Analog werden auch hier beide Einzelregister eines Doppelregisters als verfiigbar
markiert. Werte, die zu einem spateren Zeitpunkt im Block definiert werden, kénnen
die Register dann wieder nutzen.

Bei der Zuteilung eines Registers an einen Wert muss ein passendes unbelegtes
Register gesucht werden. Hierfiir wird eine einfache lineare Suche tiber die Register
durchgefiihrt, bis ein unbelegtes Register gefunden wird. Dabei beginnt die Suche
immer am Register mit Index Null. Wahrend fiir Einzelregister immer das erste freie
Register genutzt werden kann, muss fiir Doppelregister zum einen beachtet werden,
dass das nachfolgende Register, welches den hinteren Teil des Registerpaares bildet,
ebenfalls unbelegt ist. Auflerdem darf fiir Doppelregister nur ein Register mit geradem
Index gewéahlt werden. Diese Suche wird von der Funktion int get next_free reg iiber-
nommen, die als Parameter die Liste der Register sowie die Breite eines angeforderten
Registers erhalt.

fo f1 2 3 {4 £ 6 (7

8 19 f10 f11 f12 f13 f14 f15

f16 f17 f18 {19 f20 f21 {22 {23

f24 £25 26 27 {28 {29 {30 {31

Abbildung 3.4.: Ausgangssituation fir |Beispiel 3| Von lebendigen Werten belegte
Register sind grau eingefarbt.

Beispiel 3. Fin Teil der verfiigbaren Register der 32 Register umfassenden Register-
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klasse sei wie in |Abbildung 3./| belegt. Die Suche nach einem freien Finzelregister
liefert die Position fiinf zurick, da dies das erste unbelegte Register ist.

Wird ein Doppelregister bendtigt, muss ein geeignetes Paar an Finzelregistern ge-
funden werden und der Index des unteren Registers zurickgegeben werden. Im in
dargestellten Zustand ist die erste Position an der zwei aufeinanderfol-
gende Register unbelegt sind, Position elf. Da aber fiir das Doppelregister ein gerader
Index bendtigt wird, ist das Ergebnis der Suche Position 14. Anschlieffend stellt sich

die Registerbelequng wie in[Abbildung 3.5 dar.

fo f1 2 3 4 £ 6 {7

f8 19 f10 f11 f12 f13 {14 f15

f16  f17 {18 f19 {20 {21 {22 {23

f24 125 26 27 {28 {29 {30 {31

Abbildung 3.5.: Die belegten Register, nachdem zunachst ein Einzel- und anschlie-
Bend ein Doppelregister zugewiesen wurden.

Im Normalfall ist die Registerbelegung allerdings nicht so verteilt, wie [Abbildung 3.4
vermuten lasst. Durch das Einfiigen der Permutationsknoten zuvor fiir Instruktionen,
die Werte in Doppelregistern definieren, werden allen zu diesem Zeitpunkt lebendigen
Werten aus der gleichen Registerklasse die Register neu zugewiesen. Dabei werden
diese von vorne der Reihe nach ausgewahlt und es kommen nicht mehrere Liicken
zustande, sondern die Belegung stellt sich wie in [Abbildung 3.2| dar. Somit kann
auch in diesem Schritt eine Position fiir ein Doppelregister gefunden werden, wenn
der Registerdruck hoch ist.
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3.5. Auflosung von Permutationsknoten

3.5.1. Permutationsknoten

Permutationsknoten sind ein Konstrukt in der graphbasierten Zwischenrepréasenta-
tion, um die Register einer Menge von Werten neu zuzuordnen. Sie werden unter

anderem im in [Abschnitt 3.4.1| geschilderten Verarbeiten von Registereinschrankun-

gen eingefiigt. Da ein Permutationsknoten keiner existierenden Instruktion einer
Prozessorarchitektur entspricht, muss dieser in eine Folge von Kopien umgewandelt
werden. Mit welchen Prozessorinstruktionen die Registerkopien realisiert werden,
hangt von der Zielarchitektur ab.

|[Abbildung 3.6 zeigt ein Beispiel eines Permutationsknotens.

fo

sparc_Or 1355 tz ?3
3

0 *‘0123

be_Perm 2350
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o 0 0

Proj F 2 2353 Proj F 1 2352 Proj D 0 2351 Proj D 3 2354

:

Abbildung 3.6.:
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Ein Permutationsknoten, welcher die Register fiir vier Werte tauscht.
Die Proj-Knoten dienen dazu, auf einen einzelnen Wert aus dem
Ergebnistupel eines Knotens zuzugreifen. Die Buchstaben F und
D hinter dem Knotentyp geben an, ob es sich um einen Wert
einfacher (float) oder doppelter Genauigkeit (double) handelt.
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3.5.2. Umwandlung in Kopien

Um die Permutationsknoten zu entfernen wird der Graph der Zwischenreprasentation
einmal komplett abgelaufen und die Transformation fiir jeden Permutationsknoten
durchgefithrt. Im Folgenden wird zunéchst die Auflésung fiir Permutationsknoten
ohne Berticksichtigung von Doppelregistern erklart. AnschlieBend wird begriindet,
warum fiir Doppelregister eine Anpassung nétig ist und diese vorgestellt.

Zu Beginn werden die Ein- und Ausgaberegister des Permutationsknotens betrachtet
und daraus eine Liste der Registerpaare erstellt. Ein Registerpaar bezeichnet in
diesem Kontext nicht ein Doppelregister, sondern ein Paar aus dem Ein- und dem
Ausgaberegister fiir einen Wert am Permutationsknoten. Da bei der Erstellung der
Permutationsknoten nicht darauf geachtet wurde, welche Register als Ausgaberegister
gewahlt werden, besteht ein Teil dieser Registerpaare unter Umstédnden aus demselben
Ein- und Ausgaberegister. Solche Paare erfordern keine Kopie des Wertes und werden
daher im weiteren Verlauf der Transformation nicht mehr beachtet. Fiir den speziellen
Fall, dass dies fiir alle Registerpaare eines Permutationsknotens zutrifft, wird der
gesamte Permutationsknoten aus dem Graphen entfernt. Um im néachsten Schritt
die Paare in der richtigen Reihenfolge bearbeiten zu kénnen, werden auflerdem alle
Eingaberegister in einer Liste abgelegt und eine Zuordnung von Ausgaberegister zu
dem jeweiligen Registerpaar mit diesem Ausgaberegister abgespeichert.

Um die Permutationsknoten korrekt auflésen zu kénnen miissen die Abhéngigkeiten
zwischen den Registerpaaren beachtet werden. Wird ein Register sowohl als Eingabe-
register fiir einen Wert, als auch Ausgaberegister fiir einen anderen Wert genutzt,
muss zuerst fiir das Registerpaar mit dem betroffenen Register als Eingaberegister
eine Kopie erstellt werden. Anschliefend kann die Kopie fiir das andere Registerpaar
eingefiigt werden. Die Abhéngigkeiten zwischen den Registerpaaren bedingen also
eine Reihenfolge der Kopien. [Abbildung 3.7] zeigt eine Visualisierung der Abhéngig-
keiten fiir einen Permutationsknoten in Form eines gerichteten Graphen. Ein Knoten
reprasentiert eine Kopie, eine Kante von Knoten v zu Knoten u bedeutet, dass die
Kopie v von u abhédngt, und u somit vor v ausgefithrt werden muss. Jedes Register
kann Teil von maximal zwei Kopien sein: einmal als Quell- und einmal als Zielregister.
Eine Kopie kann daher nur Teil von hochstens zwei Abhéngigkeiten sein. Der Abhén-
gigkeitsgraph hat also maximal Eingangsgrad eins und maximalen Ausgangsgrad eins.
Der Graph kann somit nur aus einfachen Ketten und Zyklen bestehen. Bilden die
Abhéngigkeiten innerhalb eines Permutationsknotens mehrere Ketten oder Kreise,
liegen diese in unterschiedlichen schwachen Zusammenhangskomponenten.

Bei der in libFIRM implementierten Aufldsung in Kopien werden zunédchst die Ketten
in Kopien transformiert. Anhand der anfangs erstellten Listen wird das Ende der
Kette identifiziert und fiir jedes Registerpaar in der Kette eine Kopie eingefiigt. Um
einen Zyklus aufzul6sen, muss erst ein beliebiges Register, welches als Eingaberegister
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Abbildung 3.7.: Abhangigkeiten innerhalb eines Permutationsknotens, der die Re-
gister fiir zwolf Werte tauscht. Die Abhangigkeiten zwischen den
Kopien bilden zwei Zyklen und zwei Ketten. In den Knoten ist das
Quell- und Zielregister der Kopie angegeben.

im Zyklus enthalten ist, temporér in ein weiteres, freies Register kopiert werden.
Anschlieffend kénnen die verbleibenden Elemente des Zyklus analog zu den Ketten
in Kopien umgewandelt werden. Im letzten Schritt kann dann der in ein temporéres
Register kopierte Wert in das eigentliche Zielregister kopiert werden. Wurde vor dem
Zyklus bereits eine Kette abgearbeitet, kann das erste Eingaberegister der Kette
direkt als freies Register bei der Zyklusauflosung genutzt werden. Andernfalls muss
ein freies Register in der Registerklasse gesucht werden. Ist kein Register frei, kann der
Zyklus nicht in Kopien aufgelost werden. In diesem Fall wird der Permutationsknoten
in mehrere kleine Permutationsknoten umgewandelt, die jeweils Transpositionen
zweier Register darstellen. Solche Transpositionen werden fir die SPARC-Architektur
dann tber ein reserviertes Register umgesetzt.

Werden Werte doppelter Genauigkeit genutzt, konnen zum einen Permutationsknoten
entstehen, deren Register alle Doppelregister sind. In diesem Fall kann die beste-
hende Implementierung genutzt werden. Zum anderen kénnen Permutationsknoten
auftreten, die sowohl Werte in Einzelregistern, als auch Werte in Doppelregistern
tauschen. Dabei ist es moglich, dass sich die Menge der Einzel- und die der Doppelre-
gister tiberschneiden: Da bei der Erstellung des Permutationsknotens den betroffenen
Werten komplett neue Register zugeteilt werden, konnen Register, die vor dem
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Permutationsknoten Bestandteil eines Doppelregisters waren, nach der Ausfiihrung
als Einzelregister fungieren und umgekehrt. Dadurch ergeben sich komplexere Ab-
héangigkeiten fiir die Reihenfolge der Kopien. Ein einzelnes Register ist zwar nach
wie vor Teil maximal zweier Kopien, da aber Kopien von Doppelregistern zwei Ein-
zelregister kopieren, kann eine Kopie Teil von bis zu vier Abhéngigkeiten sein. Fir
den Abhéngigkeitsgraphen ergeben sich so komplexere Moglichkeiten, wie
veranschaulicht. Die Auflosung mit dem bisherigen Algorithmus funktioniert
in solchen Féllen nicht mehr.

£10:2 — £2:2
Y

f2:2 — 16:2

Abbildung 3.8.: Abhangigkeiten innerhalb eines Permutationsknotens, der sowohl
Werte in Einzel- als auch in Doppelregistern tauscht. Der Ein- und
Ausgangsgrad der Knoten kann hier je maximal zwei betragen. So
sind auch komplexere Abhangigkeitsgraphen moglich.

Um fiir Permutationsknoten mit gemischten Registerbreiten eine korrekte Auflosung
in Kopien zu erzielen, wurde der im folgenden Abschnitt beschriebene Ansatz der
Aufteilung von Doppelregistern in Einzelregister umgesetzt.

3.5.3. Aufteilung in Einzelregister

Ein Permutationsknoten, welcher sowohl Doppel- als auch Einzelregister enthalt,
wird zunéachst durch einen neuen Permutationsknoten ersetzt, der nur Werte in
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Einzelregistern permutiert. Zu jedem Wert in einem Doppelregister erhélt der neue
Knoten zwei getrennte Werte mit den entsprechenden Ein- und Ausgaberegistern
als Einzelregister. Fiir die beiden Hélften des Doppelregisters ist je ein Registerpaar
im neuen Permutationsknoten enthalten. Jedes der beiden Einzelregister kann nur
Teil von maximal zwei Abhéngigkeiten zwischen den Kopien sein. Dadurch besteht
der Abhéngigkeitsgraph nur aus einfachen Ketten und Zyklen und die Auflésung des
Permutationsknotens erfolgt wie oben beschrieben.

Fiir jeden Wert, der eigentlich in einem Doppelregister gespeichert ist, werden zwei
Kopien eingefiigt. Die zwei Hélften werden getrennt kopiert. Moglich ist dies, da eine
Kopie eines Doppelregisters zu einem spéateren Zeitpunkt ohnehin als zwei Kopien der
beteiligten Einzelregister realisiert wird. Der Grund hierfiir ist, dass auf der SPARC-
Architektur die Kopie eines Doppelregisters durch zwei fmovs-Maschinenbefehle
realisiert werden muss, wodurch die beiden Halften eines Doppelregisters getrennt
kopiert werden [g].

3.5.4. RegSplit- und Regloin-Knoten

Um die Aufteilung eines Doppelregisters in zwei Einzelregister im Kontext eines
Permutationsknotens zu modellieren und gleichzeitig vor und nach dem Permu-
tationsknoten die Werte korrekt in Doppelregistern zu halten, werden die neuen
Knotentypen RegSplit und RegJoin eingefiihrt. Da sie erst zum Zeitpunkt der Auflo-
sung des Permutationsknotens in den FIRM-Graphen eingefiigt werden, stehen die
aufzuteilenden Register bereits fest. Der RegSplit-Knoten wird unmittelbar vor dem
Permutationsknoten eingefiigt. Er erhélt als Eingabe einen Wert in einem Doppelre-
gister und generiert als Ausgabe zwei Werte in den Hélften dieses Doppelregisters.
Diese dienen dann als Werte, die durch den Permutationsknoten neue Register er-
halten. Unmittelbar nach dem Permutationsknoten wird entsprechend ein RegJoin-
Knoten eingefiigt, der diese beiden Werte als Eingabe erhélt und wieder als einen
Wert im entsprechenden Doppelregister bereitstellt. [Abbildung 3.9| zeigt RegSplit-
und RegJoin-Knoten anhand eines Beispiels im F1rM-Graphen.

Da die RegSplit- und RegJoin-Knoten nur dazu dienen, die korrekte Transformation
der Permutationsknoten in Kopien zu erméglichen, werden diese bei der spateren
Codegenerierung der Maschinensprache nicht berticksichtigt.
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Abbildung 3.9.: Der hier gezeigte Permutationsknoten wurde fiir den in
dung 3.6| abgebildeten Permutationsknoten eingesetzt, durch wel-
chen urspriinglich die Register von vier Werten getauscht wer-
den. Zwei der Werte benétigen Doppelregister, fiir diese wurden
RegSplit- und RegJoin-Knoten eingefiigt. Der neue Permutations-
knoten tauscht so die Register von sechs Werten in Einzelregistern.
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4. Evaluation

4.1. Testumgebung

Wiéhrend und nach der Entwicklung der vorgestellten Implementierung wurde diese
durch Testen auf korrekte Funktionsweise hin evaluiert. Um die Funktionalitiat der
Doppelregister zu testen, miissen Programme fiir die SPARC V8-Architektur kompi-
liert werden. Kompiliert wurden zu diesem Zweck verschiedene C-Programme mit
cparser, dem C-Front-End von libFIRM. Anschliefend kénnen die Programme mit
dem Emulator QEMU ausgefiihrt werden, ohne einen physischen SPARC-Prozessor
zu benotigen.

Da die Kopienminimerung nicht fiir Doppelregister angepasst wurde, muss diese
ausgeschaltet werden, wenn Programme fiir SPARC kompiliert werden sollen und
diese Variablen doppelter Genauigkeit (Variablen des Typs double in C) enthalten.
Ein beispielhafter Aufruf von cparser fiir das Programm test. c sieht damit wie folgt
aus:

Listing 4.1: Beispielhafter Aufruf von cparser um das Programm test.c fiir
SPARC zu kompilieren
cparser —target=sparc—leon—linux—gnu —m32 \
—mra—chordal—co—algo=none —static test.c

Betriebssystem Ubuntu 17.10
Linux-Kernel 4.13
cparser 1.22.1

QEMU 2.10.1

Tabelle 4.1.: Umgebung unter der Testprogramme kompiliert und ausgefiihrt wurden
um die Funktionalitat zu testen.

Um die Performanz der Implementierung zu testen wurde fiir mehrere Programme
jeweils die Laufzeit unter Benutzung von Doppelregistern (hard-float) mit der Laufzeit
einer Emulation der Gleitkommaarithmetik in Ganzzahlarithmetik (soft-float) vergli-
chen. Da Laufzeitmessungen in Emulationslosungen wie QEMU keine belastbaren
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Ergebnisse liefern, wurde fiir diesen Teil der Evaluation eine Hardware-Implementie-
rung der SPARC-Architektur genutzt. Eingesetzt wurde dazu ein LEON3-Prozessor,
der auf einem Virtex-7 FPGA implementiert ist. LEON3 ist ein Prozessor der LEON-
Familie, die urspringlich von der Européischen Weltraumorganisation ESA und
spater von Gaisler Research entwickelt wurde und die SPARC-Architektur in Version
8 implementiert [I].

FPGA ProDesign FM-XC7V2000T-R2 (Virtex-7)
Prozessor LEON3
Taktrate 100 MHz

Betriebssystem  OctoPOS

Tabelle 4.2.: Eckdaten der Testumgebung fiir die Performanztests.

4.2. Korrektheit

Die firm-testsuite ist eine Sammlung von zahlreichen, meist kleinen Testprogrammen
fiir das libFIRM-Projekt. Diese wurde genutzt, um die Funktionsweise der Imple-
mentierung zu testen. Der Grof3teil der Testfalle lieferte das erwartete, eine geringe
Anzahl von zwolf Testprogrammen jedoch ein abweichendes Ergebnis. Die Hélfte
der Falle mit abweichendem Ergebnis ist auf die Verwendung der Emulation mit
QEMU zurtickzufiihren. Wenn das entsprechende Testprogramm in der soft-float-
Variante kompiliert wurde, trat das gleiche Fehlerbild auf. Die verbleibenden von
der Erwartung abweichenden Fille lieferten leicht falschdl] Werte fiir die Ergebnisse
der in den Programmen durchgefiihrten Gleitkommaberechnungen. Hier konnte die
Fehlerursache nicht geklart werden. In libF1RM wird nach verschiedenen Phasen im
Back-End ein verify-Schritt ausgefithrt, um Fehler zu erkennen. In keinem Fall wies
dieser Schritt auf Fehler in der Registerallokation hin. Eine Fehlerursache wurde
aufgrund der komplexen FIRM-Graphen nicht gefunden.

Damit die korrekte Funktionsweise der Registerallokation auch unter hohem Re-
gisterdruck tberprift werden kann, wurde ein sehr einfaches Testprogramm (siche
Listing A.1]) geschrieben. Das Programm verwendet eine hohe Zahl an geschachtelten
Schleifen, wobei die Schleifenvariablen im innersten Schleifenrumpf verwendet werden.
Die Berechnung im innersten Schleifenrumpf erfordert das Vorliegen aller Schleifen-
variablen in den Registern. Zusatzlich wird durch die Mischung der Datentypen float
und double fiir die Schleifenvariablen die Erstellung von Permutationsknoten mit

Tm Falle des fbench-Programms beispielsweise ergibt sich im schlechtesten Falle eine Abweichung
an der vierten Nachkommastelle.
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gemischten Registerbreiten provoziert. Dadurch konnte die korrekte Auflosung der
Permutationsknoten wie in [Abschnitt 3.5 erlautert iiberpriift werden.

4.3. Performanz

Fir vier Programme wurden Laufzeitmessungen auf der in beschriebe-
nen SPARC-Plattform durchgefiihrt. Alle Testprogramme wurden zunéchst als hard-
float-Variante und anschlielend in der soft-float-Variante kompiliert und ausgefiihrt.
Die soft-float-Variante wurde dabei mit aktivierter Kopienminimerung kompiliert.
Dabei wurde jedes Programm in beiden Varianten 20 mal ausgefithrt und jeweils die
Laufzeit gemessen. Die erste Messung wurde jeweils nicht mit in die Auswertung
einbezogen um den Einfluss von ,kalten“ Caches zu Beginn zu verringern.

Drei der Testprogramme (n-body.c, spectral-norm.c und partial-sums.c) sind aus
dem Computer Language Benchmarks Game [I7]. Als vierten Benchmark wurde das
Programm fbench.c ausgewéahlt [18]. Alle diese Programme sind auch Bestandteil
der firm-testsuite und fithren zum Grofiteil Gleitkommaberechnungen durch. Die
Programme wurden leicht angepasst, indem etwaige Ausgaben auf die Konsole entfernt
wurden, da diese die Laufzeit aufgrund der langsamen FPGA-Konsole verfilschen.
zeigt eine statistische Auswertung der Messergebnisse.

Benchmark T [us] s2 [us?] sy [us]
n-body.c (hard-float) 1276781,395 46344,794 215,278
n-body.c (soft-float) 4038 255,658 222,446 14,915
spectral-norm.c (hard-float) 1364 589,395 0,322 0,567
spectral-norm.c (soft-float) 16269 401,342 75,113 8,667
partial-sums.c (hard-float) 1018823.,421 1,146 1,071
partial-sums.c (soft-float) 4097 156,816 38,839 6,232
fbench.c (hard-float) 840449,158 1,696 1,302
fbench.c (soft-float) 3050 809,500 49,972 7,069

Tabelle 4.3.: Ergebnisse der Laufzeitmessungen. Angegeben sind das statistische
Mittel x, die empirische Varianz sfc und die Standardabweichung s,
der Stichprobe. Alle Werte sind auf 3 Nachkommastellen gerundet.

Fiir jedes der Testprogramme konnte eine klare Laufzeitverkiirzung der hard-float-
Variante gegeniiber der soft-float-Variante erzielt werden, wie zeigt. Die
geringe Varianz der Messergebnisse unterstreicht dieses Ergebnis. Da in der hard-
float-Variante die Kopienminimierung ausgeschaltet ist, enthalten die Programme
in Maschinensprache eine sehr groffe Menge an Registerkopien. Dennoch iiberwiegt

39



4.3. PERFORMANZ

mittlere Laufzeit x in us
Benchmark hard-float soft-float Speedup

n-body.c 1276781,395 4038 255,658 3,163
spectral-norm.c 1364 589,395 16269401,342 11,923
partial-sums.c 1018823,421 4097 156,816 4,021
fbench.c 840449,158  3050809,500 3,630

Tabelle 4.4.: Direkter Vergleich der jeweiligen hard- und soft-float-Varianten. Die
Spalte Speedup gibt den Faktor an, um den die hard-float-Variante
gegenlber der soft-float-Variante schneller war.

die negative Auswirkung der Emulation der Gleitkommaarithmetik in der soft-float-
Variante auf die Laufzeit. Mit einer fiir Doppelregister angepassten Kopienminimerung
sollte der Laufzeitvorteil der hard-float-Variante weiter steigen.
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5. Fazit und Ausblick

5.1. Fazit

Die vorgestellte Implementierung einer Registerallokation mit Doppelregisterunter-
stiitzung ermoglicht es, fiir Programme, die Gleitkommazahlen doppelter Genauigkeit
verwenden, die Floating Point Unit von Prozessoren der SPARC V8-Architektur
voll auszunutzen. Dabei mussten keine neuen Algorithmen fiir die Registeralloka-
tion entwickelt werden, sondern es gelang, die in libFIRM bereits bestehenden so
anzupassen, dass die Funktionalitat erfiillt ist. Es ist somit nicht mehr nétig, auf
die Emulation der Gleitkommaarithmetik mittels der Compileroption —msoft—float
zuriickzugreifen.

Wie die Untersuchungen in gezeigt haben, funktioniert die Registerallokation
fiir Doppelregister und liefert erhebliche Verringerungen der Laufzeit der untersuchten
Programme. Fiir diese konnte je nach Programm ein Laufzeitvorteil um den Faktor
~ 3 bis 12 erreicht werden. Im néchsten Abschnitt wird auf zukiinftige Verbesserungen
eingegangen, wodurch dieser Gewinn weiter steigen diirfte.

5.2. Ausblick

5.2.1. Verringerung der eingefiigten Permutationsknoten

Waiéhrend der Registerzuteilung werden vor Instruktionen, die Werte in Doppelregis-
tern definieren, Permutationsknoten eingefiigt. Die Anzahl der Permutationsknoten
im FIRM-Graphen kann daher besonders in Programmen, die viele Gleitkommabe-
rechnungen ausfithren, sehr grofl werden. Es ist allerdings nicht notwendig, vor jeder
solchen Instruktion einen Permutationsknoten einzufiigen. Betrigt der Registerdruck
zum Zeitpunkt der Instruktion weniger als die Halfte der gesamten Zahl an Registern,
kann auf jeden Fall eine Position fiir ein Doppelregister gefunden werden.
dung 3.1| zeigt die ungiinstigste Registerzuteilung bei einem Registerdruck, der exakt
der Hélfte der Gesamtregisterzahl entspricht. Sobald ein Register weniger belegt ist,
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sind mindestens drei aufeinanderfolgende Register unbelegt. In diesem Abschnitt
kann ein Doppelregister platziert werden. Die Anpassung, Permutationsknoten nur
einzufiigen, wenn der Registerdruck mindestens die Hélfte der Gesamtregisterzahl
betréagt, stellt eine einfache Optimierung der Implementierung dar. Durch die daraus
resultierende geringere Anzahl an Registerkopien ist eine Verringerung der Laufzeit
der hard-float-Variante zu erwarten.

5.2.2. Kopienminimierung

Die Kopienminimierung ist ein Schritt, der zum Ende der SSA-basierten Registeral-
lokation ausgefithrt wird und die Anzahl an Kopien von Werten in andere Register
reduziert. Im Gegensatz zum klassischen Ablauf der Registerallokation (siche
[dung 2.2)), bei dem durch diesen Schritt potentiell weitere Auslagerungen von Werten
notig werden, stellt die Kopienminimierung in dem in libFIRM angewandten Ansatz
(Abbildung 2.3) eher eine optionale Optimierung dar. Auch ohne diese liefert die
Registerallokation korrekte Ergebnisse. In [12] wird die in libFIRM implementierte
Kopienminimierung vorgestellt.

Aus Zeitgriinden konnte die Kopienminimierung nicht fiir Doppelregister angepasst
werden und muss deshalb beim Kompilieren mit SPARC als Zielarchitektur mit der
Option —mra—chordal—co—algo=none deaktiviert werden, sofern Variablen doppelter
Genauigkeit im Programm verwendet werden. Die Kopienminimierung koénnte die
Anzahl der durch einen Permutationsknoten erzeugten Registerkopien verringern,
indem Ein- und Ausgaberegister wenn moglich gleichgesetzt werden. Dadurch liefle
sich eine weitere Verbesserung der Laufzeit gegeniiber der soft-float-Variante von
Programmen erzielen.

5.2.3. Gleitkommazahlen vierfacher Genauigkeit

In [Abschnitt 2.3.2) wurden neben den Doppelregistern fiir Werte doppelter Genauig-
keit auch Vierfachregister erwahnt, in denen Werte vierfacher Genauigkeit abgelegt
werden konnen. Auch diese Vierfachregister sind Teil der SPARC V8-Architektur.
Dennoch beschriankte sich diese Arbeit auf die Betrachtung und Implementierung der
Doppelregister. Dies hat den einfachen Grund, dass aktuell keine SPARC-Prozessoren
existieren, in deren Floating Point Unit die notige Hardware fiir Gleitkommaarithme-
tik auf Gleitkommazahlen vierfacher Genauigkeit (128 Bit) implementiert ist. Daher
muss diese Arithmetik softwareseitig umgesetzt werden und es gibt keinen Bedarf
fiir Vierfachregister.

Einige Teile der im Rahmen dieser Arbeit entwickelten Implementierung sind dennoch
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darauf ausgelegt, nicht nur Doppelregister, sondern beliebige Registerbreiten zu

unterstiitzen. Insbesondere das in [Abschnitt 3.3] beschriebene Spilling funktioniert
fiir beliebige Registerbreiten. Sollten in Zukunft SPARC-Prozessoren erscheinen,

deren Floating Point Unit Gleitkommazahlen vierfacher Genauigkeit unterstiitzt,
oder allgemein Prozessoren, die Register mit grofleren Registerbreiten bereitstellen,
halten sich die notigen Anpassungen an die Implementierung der Registerallokation

von libFIRM in Grenzen.
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A. Anhang

Listing A.1: Testprogramm um hohen Registerdruck zu erzeugen.

#include <stdlib .h>
#include <stdio.h>

int main (int argc, char xargv|[]) {
unsigned int max = 3;
double result = 0;

for (double a = 0; a < max; a++) {
for (float b = 0; b < max; b++) {
for (double ¢ = 0; ¢ < max; c++) {
for (float d = 0; d < max; d++) {
for (double e = 0; e < max; e++) {
for (float f = 0; f < max; f++) {
for (double g = 0; g < max; g++) {
for (float h = 0; h < max; h++) {
for (double i = 0; i < max; i++) {
for (float j = 0; j < max; j++) {
for (double k = 0; k < max; k++) {
for (float 1 = 0; 1 < max; 1+4) {
for (double m = 0; m < max; mt+) {
for (float n = 0; n < max; n++) {

result = (ntm14k—j+i—h+gt+f—et+dxc—bx*a);

printf("result: %f\n", result);

}
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