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Abstract. Register allocation decides which parts of a variable’s live
range are held in registers and which in memory. The compiler inserts
spill code to move the values of variables between registers and memory.
Since fetching data from memory is much slower than reading directly
from a register, careful spill code insertion is critical for the performance
of the compiled program.
In this paper, we present a spilling algorithm for programs in SSA form.
Our algorithm generalizes the well-known furthest-first algorithm, which
is known to work well on straight-line code, to control-flow graphs.
We evaluate our technique by counting the executed spilling instructions
in the CINT2000 benchmark on an x86 machine. The number of executed
load (store) instructions was reduced by 54.5% (61.5%) compared to
a state-of-the-art linear scan allocator and reduced by 58.2% (41.9%)
compared to a standard graph-coloring allocator. The runtime of our
algorithm is competitive with standard linear-scan allocators.

1 Introduction

The register allocation phase of a compiler maps the variables of a program to
the registers of the processor. Usually, the register pressure (i.e. the number of
simultaneously live variables at an instruction) in a program is much higher than
the number of available registers. Thus, the compiler has to generate so-called
spill code that moves the contents of the variables between memory and registers.
Since accessing memory is much slower than accessing a register, the amount of
executed spill code has to be minimized.

The key to good spill-code generation lies in splitting the live-range of a
variable at the right places: Consider a loop with excessive register pressure and
a variable that is defined before the loop and used afterwards. Ideally, a compiler
would store (spill) the variable in front of the loop and load (reload) the variable
after the loop. If the variable was reloaded inside the loop, the reload would be
executed in each loop iteration. Another example is a variable that is used in a
loop but has already been spilled before the loop. Reloading this variable directly



before its use in the loop will cause memory traffic in each loop iteration. Thus,
it is preferable to put the reload in front of the loop.

Register allocation is often formulated as a NP-hard problem. In such a
setting, the actual register demand can exceed the maximum register of a pro-
gram and become NP-hard to determine. Therefore, compilers allocate registers
heuristically (e.g. using graph coloring [1, 2] or linear scan [3–5]). If this heuristic
runs out of registers, variables are spilled until enough registers have been freed
and the heuristic can resume its work. In such a situation, the generation of spill
code is driven by the failure of the allocation heuristic instead of the program’s
structure. In extreme cases [1, 4], such a failure results in spilling the whole live
range of a variable: Stores will be put after each definition and loads in front of
each use, regardless of their location in the program.

Recent results show that if the program is in SSA form, its register demand
equals its maximum register pressure (see [6–8]). This allows for decoupling spill
code generation and register assignment: Once the maximum register pressure
in the program is lowered to the number of available registers, registers can be
assigned optimally using a linear-time algorithm that provably does not cause
further spill code.

In this paper, we propose a program transformation that limits the maximum
register pressure of an SSA-form program by inserting efficient spill code. Its
main features are:

– It extends the well-known Min algorithm [9], which has proven to be very
successful [10] in straight-line code register allocation, to control-flow graphs.

– Our algorithm retains the SSA form. Hence, it is ideal for the use in SSA-
based register allocation.

– It is effective. Our algorithm meets the requirements described above. It
is sensitive to the structure of the program by splitting live-ranges around
loops. Our experiments show a reduction of executed reload instructions by
54.5% (executed spills by 61.5%) compared to one of the most sophisticated
live-range splitting algorithms available [5].

– It is efficient. Our algorithm consists of two passes: An enhanced liveness
analysis and a single sweep over the program. Required analysis informa-
tion is a loop tree and def-use chains; both are usually available during the
backend phase of a modern compiler. Furthermore, we do not build large or
complex data structures (such as an interference graph).

Structure of this paper. The next section recaps the Min algorithm and its use in
register allocation of straight-line code. In Section 3 we discuss, by way of exam-
ples, how the Min algorithm can be generalized to code with branches. Section 4
presents our algorithm in detail. We evaluate our algorithm experimentally in
Section 5. The last two sections discuss related work and conclude.

2 The Min Algorithm and Local Register Allocation

The original Min algorithm was developed as a page replacement strategy in
operating systems. Its basic idea is: If a memory page has to be removed to



Algorithm 1 The Min algorithm

def limit(W, S, insn, m):
sort(W, insn)
for v ∈ W[m:−1]:

if v /∈ S ∧ nextUse(insn,v) 6=∞:
add a spill for v before insn

S ← S \ {v}
W ← W[0:m]

def minAlgorithm(block, W, S):
for insn ∈ block.insnuctions:

R ← insn.uses \ W
for use ∈ R:

W ← W ∪ {use}
S ← S ∪ {use}

limit(W, S, insn, k)
limit(W, S, insn.next,k−|insn.defs|)
W ← W ∪ {insn.defs}
add reloads for vars in R
in front of insn

swap in a new one, remove the page whose next use is farthest in the future. If
the Min algorithm knew the future and thus always knew whose page’s use is
farthest away, it would perform the minimum number of replacements (see van
Roy [11] for a proof). The Min algorithm has often been applied to straight-line
register allocation and has shown to be very effective [10] in this setting.

Let us now review the Min algorithm in the setting of register allocation
for a single basic block. For the rest of this paper, we assume that the program
is in SSA form. The next-use distance of a variable v at an instruction I is the
number of instructions between I and the next use of v in the block. Especially I
itself can be the next user, leading to distance 0. If there is no further use in the
block, the distance is ∞.

The content of the register file is reflected in a set W containing the variables
currently available in a register. Initially W is empty. We traverse the basic block
from entry to exit, updating W according to the effects of each instruction.
Assuming a conventional load/store architecture, each instruction

I : (y1, . . . , ym︸ ︷︷ ︸
defsI

)← τ(x1, . . . , xn︸ ︷︷ ︸
usesI

)

requires that its operands xi are available in registers and writes its results yi to
registers. At each program point, W must not contain more than k (the number
of available registers) variables. Hence, the effects of an instruction I on W are
as follows:

1. All variables in usesI \W have to be reloaded in front of I. Thus, they have
to be added to W . If W has not enough room, |W |+ |usesI \W |−k variables
in W have to be spilled.

2. None of the variables in defsI can be in W directly in front of I since all of
these variables are dead there. Hence, we need |defsI | free registers. If there
is not enough room in W to hold |defsI | variables, |W |+ |defsI |−k variables
have to evicted from W .

Algorithm 1 shows the Min algorithm for straight-line code. minAlgorithm per-
forms the steps 1 and 2 on each instruction of the block. limit takes the set W,



sorts it according to the next-use distance from instr, and evicts all variables but
the first m. Note carefully that for an instruction I we call limit twice. The first
time, to make room for the operands and the second time to provide registers
for the result variables of I. In the latter case, the next-use distance is measured
from the instruction behind I because the uses of I do no longer matter when I
writes its results.

Furthermore, minAlgorithm takes a subset S of W. Because the program is in
SSA form, each variable has only one definition and thus needs to be spilled at
most once. If a variable is evicted multiple times, a spill has to be placed only
at the place of the first eviction. The set S records all variables in W for which
a spill has already been inserted. Updating S is easy: Whenever a variable is
reloaded, it must have been spilled before. Hence, we add it to S. When evicting
variables from W, we only create spills for variables not in S whose next use is
not ∞.

3 Overview

Guo et al. [10] empirically showed that the Min algorithm gives very good re-
sults on straight-line code. The intuitive explanation for this is that evicting the
variable with the furthest next use frees a register for the longest possible time.
In this paper however, we are not only interested in spill-code generation for
single basic blocks but for a whole control-flow graph (CFG).

y← · · ·
x← · · ·

 1
...

S

 0
...

B

← x

 1
...
← x

L

← x
...

H

← y
← x E

Fig. 1: Example CFG

To this end, let us first investigate how the
straight-line version would perform on single execu-
tion traces of a CFG. Consider the CFG in Figure 3.
The  n sign denotes regions with high register pres-
sure where at most n variables can live through in
registers. Consider the following the execution traces
of the CFG:
1. S,L,E: The register pressure is critical at the end

of S and either x or y have to be evicted from W .
The farthest next use is the one of y in block E.
Thus, y is evicted.

2. S,B,H,H,H,E: As in the previous example, y
is evicted in S. The register pressure in B is so
high that x has to be evicted from W . Thus, x is
reloaded upon its first use in the first execution
of H. The register pressure in H is uncritical.
Hence, x can remain in a register for the second
and third execution of the loop body H.

Let us go back to the static setting where we consider a CFG, not single
traces. To develop an effective spilling algorithm, we have to place the spill
and reload instructions in the CFG such that the straight-line Min algorithm
is emulated as good as possible for every possible trace. In principle, this can
be achieved by applying the Min algorithm to each block separately. However,
reviewing the trace examples above, we have to consider each block in its context:
– When reaching the end of S, we have to decide whether x or y is evicted. In

a naive per-block application of Algorithm 1 both, x and y have a next-use



distance ∞ at the end of S because they have no further use in S. However,
to choose y, as in example 1 above, we need a CFG-global next-use view:
The earliest possible next use of x is closer than the one of y (blocks L and B
in contrast to E).

– Algorithm 1 assumes that the register set W is empty at the entry of the
block. This implies that every live-in variable is reloaded on its first use in
the block.
Considering both trace examples above, we observe that x is in registers
at the end of L and H. Thus, it is also in registers at the entry of E.
Consequently, applying the Min algorithm to all predecessors of a block
before applying it to the block itself, makes the state of the register set at
their exits available. The initialization of W can then be chosen accordingly.

– Consider the second trace above: x was spilled in B. In the first execution
of H it was reloaded and used from a register in the following two executions.
However, we cannot have one version of H with the reload and one without!
Placing a reload in H is not a good solution since this reload would be
executed needlessly in every iteration except for the first. It is much better
to place the reload in front of the loop at the exit of B. Therefore, we need
to know that H is a loop head and initialize W with the variables used next
in the loop. This has the effect of hoisting the reloads out of the loop.

4 A Min Algorithm for CFGs

The following outline summarizes the presented algorithm:

1. Compute liveness and global next uses (Section 4.1):
We present a modification to the standard data-flow formulation of liveness analysis

to compute CFG-global next-use values for each variable.

2. For each block B in reverse post order of the CFG:

(a) Determine initialization W entry
B of register set (Section 4.2):

We compute a set of variables, which we assume to be in registers at the entry

of the block.

(b) Insert coupling code at the block entry (Section 4.3):
Depending on the state of the register file at the exit of the predecessor of B,

we add spill and/or reload code on B’s incoming control-flow edges to ensure

that all variables in W entry
B are indeed in registers at the entry of B.

(c) Perform Min algorithm on B (Section 2)

3. Reconstruct SSA (Section 4.4):
Inserting reloads for a variable creates multiple definitions for this variable. This

clearly violates the static single assignment property. We describe, how SSA is

reconstructed after spill/reload code insertion.



4.1 Global Next-Use Distances

The next-use distances beyond a single block are computed by augmenting a
standard liveness analysis. Instead of computing live-in and live-out sets, we
compute maps that associate variables with next-use distance; instead of unifying
live sets at control-flow splits, we merge the maps by taking the minimum next-
use distance per variable. This modelling actually entails liveness information:
If the next-use distance of a variable is smaller than ∞, the variable is live,
otherwise it is dead.

To reflect the dynamic behavior of the program, each control-flow edge (P,Q)
is assigned a length `P,Q. Edges leading out of loops are assigned a very high
length M3; all other edges have length 0. When computing the next-use dis-
tances, the length of the edges are added to the next-use distances of the vari-
ables that live over the edge. The effect is that the distances of uses behind loops
are larger than the distances of all uses inside the loop.

Formalism. Let us now briefly discuss the next-use analysis formally. For an
introduction to data-flow analysis, we refer to Nielson et al. [12]. Our domain is
the set

D = Var→ N ∪ {∞}

of maps from variables to natural numbers (augmented by a value ∞). The join
of two maps a, b ∈ D is defined by taking the minimum of the variables’ next-use
distances:

a t b := λv.min{a(v), b(v)}

〈D,t〉 is a join semi-lattice that satisfies the ascending chain condition4.
The transfer function fB for a block B takes the next-use distances at the

exit of the block and computes the next-use distance at the entry of the block.
(Just like liveness analysis takes the set of live variables at the exit and computes
the set of live variables at the entry.) There are two cases:

1. If a variable v has at least one use in B that is not preceded by the definition
of v, the distance to v’s next use is the length of the block `B

5 plus the
distance νB(v) from the entry of the block to the first use of v in B that is
not preceded by the definition of v.

2. If v has no such use in B, the distance from B’s entry to v’s next use is the
sum of `B , the length |B| of B, and the distance from B’s exit to the next
use of v.

3 M has to be larger than the number of instructions on the longest path through the
loop. Hence, in practice, a value like 100000 works nicely.

4 The proof is straightforward and is omitted here for the sake of brevity.
5 Using the standard formalization of data-flow analyses (see also [12]), we cannot

incorporate information on control-flow edges in the transfer function. As we assume
critical edges to be split, the length of an edge can be uniquely attributed to some
block.



This yields

fB(a) = λv. `B +

{
νB(v) if νB(v) 6=∞
|B|+ a(v) otherwise

Finally, the initial value ı of each block maps each variable to the distance of its
first local use:

ıB := λv.∞

We chose t as the minimum in order to ensure the convergence of the data-
flow analysis. A more appropriate choice for the spilling problem would be to
compute the next-use distance as a weighted sum of the successor’s distances,
using execution frequencies as weights. However this would violate the laws for a
proper lattice join operation and the theoretical framework of data-flow analysis
could no longer be used soundly. The practitioner however may just iterate the
analysis long enough to obtain sufficiently precise information.

4.2 Initialization of the Register Set

For each block B we compute the set W entry
B of variables, which we require to

be in registers at the entry of B. As discussed in Section 3, the choice of W entry
B

is essential for the effectiveness of the algorithm. According to the examples of
Section 3, W entry is computed differently for loop headers and normal blocks.

Normal blocks. Let B be a non-loop-header block. As we process the nodes in
reverse postorder, every predecessor of B has already been processed. Let W exit

P

denote the set W after the Min algorithm has been applied to block P . Further-
more, let

allB =
⋂

P∈pred(B)

W exit
P someB =

⋃
P∈pred(B)

W exit
P

The variables in allB are in registers on every incoming edge at B. Thus, we can
assume them to be in registers at the entry of B. The variables in someB \ allB

are available in registers at some of the predecessors. They are sorted according
to their next-use distance and put into the remaining slots of W entry

B . initUsual
in Algorithm 2 shows the pseudocode for computing W entry of normal blocks.

Loop headers. Now, let B be a loop header. Consider some variable v that is
live-in at and used in B. Furthermore, assume that v has been spilled in some
block P outside B’s loop, like variable x in Figure 2a. In this example, x 6∈W exit

P .
If we determined W entry

B by looking at the contents of W exit
P (as we would do

for normal blocks), x would not be contained in W entry
B . This would cause the

insertion of a reload of x inside the loop; something that has to be avoided at
all costs. It is much better, to allocate x to W entry

B so that the reload is put on
the edge from P to B, as shown in Figure 2b.

But there are also variables that should not be put in W entry
B : Consider

Figure 2c. Variable x lives throughout the loop but is not used inside. Inside the
loop, the register pressure is critical such that x cannot “survive” the loop in
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Fig. 2: Reloads in loops

a register. By allocating x to W entry
B we definitely require x to be in a register

at the entry of B. Hence, a reload has to be put on the loop backedge (see
Figure 2d). When determining W entry

S , we already processed H. As the register
pressure in H is uncritical, x is in W exit

S . Thus, x is also included in W entry
S and

x can be used from a register. This reload is executed in every loop iteration.
However, only in the last iteration that exits the loop, the reloaded value will be
actually used (in block E). In this case, the reload should clearly be put at the
entry of E.

So which variables should be put into W entry
B ? Following the discussion above

and in Section 3, we ignore the predecessors of B. Let IB be the set of variables
that are live-in at B as well as defined by φ-functions in B. The candidates
for W entry

B are all variables in IB used within B’s loop L. The variables are sorted
according to their next-use distance and the first k are allocated to W entry

B .
If there is room left in W entry

B , we consider the set TB ⊆ IB of variables that
are not used in L. The example Figure 2c shows that such a variable should
only be assigned to W entry

B if we are sure that the variable will survive the loop
without being evicted. We determine how many variables of TB can be kept
in registers throughout L heuristically: Consider the maximum register pressure
pL of the loop. The difference pL − |TB | =: t gives an estimate on the register
pressure caused by variables used inside the loop6. If t is smaller than k, we
conclude that k − t variables can survive the loop in registers. In this case, the
remaining slots in W entry

B are filled with at most k − t variables from TB .

6 If L is a single-exit loop or TB only consists of variables defined outside L this
estimation is exact, else it might be an under-approximation.



The maximum loop register pressure pL can easily be computed during the
liveness analysis presented in the last subsection. As we have to traverse the
instructions of each block anyways, we can also keep track of the maximal register
pressure inside each block. pL is then simply computed by taking the maximum
over the maximum register pressures of the blocks of L.

Algorithm 2 Initialization of W

def initLoopHeader(block):
entry ← block.firstInstruction
loop ← loopOf(block)
alive ← block.phis ∪ block.liveIn
cand ← usedInLoop(loop, alive)
liveThrough ← alive \ cand
if |cand| < k:

freeLoop ← k − loop.maxPressure
+ |liveThrough|

sort(liveThrough, entry)
add ← liveThrough[0:freeLoop]

else:
sort(cand, entry)
cand ← cand[0:k]
add ← ∅

return cand ∪ add

def initUsual(block):
freq ← map()
take ← ∅
cand ← ∅
for pred in block.preds:

for var in pred.Wend:
freq[var] ← freq[var] + 1
cand ← cand ∪ {var}

if freq[var] = |block.preds|:
cand ← cand \ {var}
take ← take ∪ {var}

entry ← block.firstInstruction
sort(cand, entry)
return take ∪ cand[0:k−|take|]

4.3 Connecting a block to its predecessors

W exit
P = {w, x, y}
Sexit

P = {x, y}

P

W exit
Q = {w, x, z}
Sexit

Q = {z}

Q

W entry
B = {w, x, z}
Sentry

B = {x, z}B

reload z spill x

Fig. 3: Coupling code at block borders

When applying the Min algorithm to
a block B, we need to insert cou-
pling code at B’s borders. For exam-
ple, a variable that we require to be
in W entry

B might not be in W exit
P of

some predecessor P . For this variable,
a reload on the way from P to B has
to be inserted.

Additionally, we have to provide
a sensible initialization Sentry

B for the
set S that records which variables
in W have already been spilled. The
invariant for S is: v is in S at instruc-
tion I iff v was spilled on all paths from
the CFG root to I. To avoid redundant
spills, Sentry

B is set to all variables in
W entry

B that are spilled on some path to B:

Sentry
B :=

 ⋃
P∈pred(B)

Sexit
P

 ∩W entry
B

The coupling code for a predecessor P of B has to be inserted as follows:



– All variables in W entry
B \W exit

P need to be reloaded on the edge from P to B.
– All variables in (Sentry

B \ Sexit
P ) ∩W exit

P need to be spilled from P to B.

The example in Figure 4.3 shows a block B, its predecessors P and Q which
have already been processed, and the inserted code for W entry

B = {w, x, z}.
In the preceding paragraphs of this subsection, we assumed that all prede-

cessors have already been processed. Let us now consider a loop header B and a
predecessor P of B that has not yet been processed. Thus, Sexit

P and W exit
P are

not available. When processing B, we simply ignore P and add the corresponding
spills and reloads as soon as P has been processed.

4.4 Retaining the SSA Form

In this section, we briefly discuss the interdependency of spill-code generation
and the SSA form. Due to space limitations, we only give a brief overview; a more
in-depth discussion can be found in [13]. Let us first consider the requirements
on the input program and then sketch how SSA is retained during the algorithm.

Requirements on the input program. In a non-SSA-form program, each variable
is assigned one spill slot (i.e. the memory location where the spilled values of
that variables are written to and read from). In SSA form, we need to assign
all variables of a φ-congruence class (cf. Sreedhar et al. [14]) the same spill slot.
Else, spilled φ-functions result in memory copy instructions. To this end, we
demand that each φ-congruence class is free of interference, i.e. the CFG is in
conventional SSA form [14].

Producing SSA output. Inserting a reload for an SSA variable creates a second
definition of that variable. Consider the example in Figure 4a. There are two
definitions for x0; the original one and the reload. Creating a new variable x1 for
the reload and renaming the following use, re-establishes the single assignment
property. However, the use of x0 at the lower block is then no longer correct:
Coming from the left block, x0 holds the right value, while coming from the
right, the variable to use is x1. Hence, we have to place a φ-function in the lower
block that selects over x0 and x1 and defines a new variable x2. Thus, spilling a
variable can cause new φ-functions to be inserted.

All in all, we need to record all inserted reload operations per variable and
reconstruct SSA for those variables. This can be achieved with an efficient algo-
rithm by Sastry and Ju [15].

In short, the algorithm takes the original definition of a variable v, a set
of new definitions of v (in our case the inserted reloads) and the list of uses
of v. Then, for each use, the dominance tree is walked upwards. The first found
definition is responsible for that use. When passing an iterated dominance fron-
tier (see Cytron et al. [16]), the algorithm lazily inserts φ-functions and wires
their operands to suitable definitions. As a side effect, dead definitions are never
reached by this search process and can thus be eliminated.



x0 ←

← spill x0

...
x0 ← reload

← x0

← x0

(a) Original program

x0 ←

← spill x0

...
x1 ← reload

← x1

← x0

(b) SSA reconstructed

x0 ←

← spill x0

...
x1 ← reload

← x1

x2 ← φ(x0, x1)
· · · ← x2

(c) Second definition of x0,
φ-function inserted

Fig. 4: Adding a reload causes a φ-function to be created

5 Evaluation

Our experimental evaluation consists of two parts: First, we briefly discuss the
compile-time behavior of our algorithm. Second, we assess the quality of the
produced code.

Setup. We implemented the presented spilling algorithm in the libFirm [17]
compiler. This compiler produces code for the x86 architecture and features a
completely SSA-based register allocator as presented in [13]. All measurements
were conducted on the integer part CINT2000 of the CPU2000 benchmark [18].
The program 252.eon was not compiled because the used compiler is not able
to process C++. The compile-time measurements were taken on a Core 2 Duo
2GHz PC with 2GB RAM running Linux with kernel version 2.6.22. All presented
data only considers the 7 general-purpose registers of the x86. The low number
of available registers emphasizes the importance of spill-code generation.

5.1 Runtime of the Algorithm

Figure 5 shows the time spent in the spilling phase in relation to the size of the
compiled function. The granularity limit of the time values is 1ms resulting in
discrete looking values. The linear regression is also drawn in the diagram to
indicate that the time spent on spilling scales roughly linear with the number of
instructions. The average throughput is 430 instructions per millisecond.

5.2 Code Quality

We compare our algorithm to the spill code generated by a standard Chait-
in/Briggs [1, 2] allocator (IFG) and the Wimmer & Mössenböck [5] variant of
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Fig. 5: Time spent on spilling

Bench. IFG Spilling Linear Scan

Spills Rel. Spills Rel.

gzip 2.39 3.39 1.63 2.91
vpr 1.78 2.83 0.79 1.34
gcc 2.06 2.54 1.69 2.86
mcf 2.01 3.29 15.62 5.87
crafty 1.43 2.04 1.23 1.61
parser 1.54 1.92 1.17 1.38
perlbmk 0.93 1.28 0.77 1.22
gap 1.71 2.78 1.04 1.79
vortex 1.58 2.15 1.62 1.93
bzip2 2.01 2.21 1.83 2.05
twolf 1.53 1.85 1.21 1.25

Average 1.72 2.39 2.60 2.20

Table 6: Ratio of spill and reload in-
structions compared to SSA spilling

Benchmark SSA Spilling (this paper) IFG Spilling [1, 2] Linear Scan [5, 19]

Insns. Spills(%) Rel.(%) Insns. Spills(%) Rel.(%) Insns. Spills(%) Rel.(%)

164.gzip 329 4.2 5.9 374 9.0 17.5 347 6.6 16.2
175.vpr 196 5.2 9.4 223 8.2 23.5 176 4.6 14.1
176.gcc 158 3.9 5.5 171 7.4 12.9 172 6.1 14.5
181.mcf 51 0.5 3.1 53 1.0 9.7 60 7.0 15.3
186.crafty 208 6.7 7.4 219 9.1 14.2 198 8.7 12.5
197.parser 322 4.6 7.6 339 6.8 13.9 304 5.7 11.1
253.perlbmk 397 11.1 9.8 392 10.5 12.7 357 9.6 13.3
254.gap 252 3.7 4.2 263 6.1 11.1 215 4.5 8.7
255.vortex 321 5.0 5.3 341 7.4 10.6 340 7.6 9.6
256.bzip2 287 4.2 6.8 313 7.7 13.8 320 6.9 12.5
300.twolf 297 3.8 5.7 306 5.7 10.2 293 4.7 7.2

Average 256 4.82 6.41 272 7.16 13.65 253 6.53 12.27

Table 7: Executed instructions (billions), percentage of spills and reloads

linear-scan implemented in LLVM version 2.3 [19]. Instead of re-implementing
the linear-scan allocator in our framework, we decided to directly compare to
the fine-tuned implementation within LLVM. Of course, comparing two differ-
ent compilers is always problematic. However, the backend passes in LLVM and
libFirm are quite similar and LLVM’s middle-end is usually more powerful than
libFirm’s. We verified this by manual inspection of the code generated for some
important inner loops.

To assess the quality of the produced code as general as possible, we count
the executed spill and reload instructions of the benchmark programs. We de-
liberately do not compare runtimes of the produced code as they are biased by
all sorts of microarchitectural effects like caching, out-of-order execution and the
like. Those influences can greatly vary among different processor architectures
and even different implementations of the same architecture. To count the reload



and spill instructions, we modified the code generators of libFirm and LLVM to
add a special NOP instructions in front of each spill and reload. We then exe-
cuted all benchmarks with the Valgrind [20] machine-code instrumentation tool
and used a home-made plugin to count the marked spill and reload instructions.

The dynamic instruction counts (in billions) are shown in Table 7 along with
the percentage of executed spill and reload instructions. Our algorithm is labeled
“SSA Spilling”. “IFG Spilling” is the graph-coloring spilling and “Linear Scan”
shows the results of the code generated by LLVM. Table 7 shows that 3.5% to
20% of the executed instructions are spill and reload instructions. Hence, the
spilling heuristic has a significant impact on code quality.

Table 6 shows the ratio of executed spill instructions compared to the results
of our algorithm. Our algorithm produces better code than the IFG and the
linear-scan algorithm in almost all of the cases. We constantly produce less
executed reloads, sometimes even less than the half. On average, the linear-scan
(IFG) approach performs 2.60 (1.72) times as many spills and 2.20 (2.39) times
as many reloads.

6 Related Work

This paper’s approach of separating register allocation from register assignment
is in line with Proebsting and Fischer [21]. Their algorithm also globally allocates
on top of local information. However, Proebsting and Fischer calculate for each
use a probability that this use can be made from a register. This probability needs
to be propagated through all possible paths to that use. Finally, whenever their
algorithm decides to allocate a global variable to a register, the probabilities of all
remaining variables need to be updated, which renders the algorithm quadratic
in the number of (global) variables where we visit each variable only once.

Morgan [22] proposes to handle some of the spilling before main register
allocation in order to improve spill code placement. He describes an algorithm
that identifies variables that live throughout a loop but are not used inside
it. These variables are spilled in front of and reloaded behind the loop. This
improves the situation for a common class of variables but still leaves most
spilling decisions to the register allocator. Our algorithm yields a program for
which an SSA-based register allocator does not need to insert additional spill
code. In our technique the complex analysis of Morgan is replaced by the CFG-
global modelling of next-use distances, especially the length assignment loop-
exiting edges.

Guo et. al. [10] apply the Min algorithm as described in Section 2 to long
basic blocks. They are able to considerably improve the runtime of their bench-
marks compared to a standard MIPSPro or GCC compiler. However, their im-
provements are mostly visible in basic blocks with long live ranges resulting from
extensive loop unrolling. Their good results lead us to investigate the applica-
bility of the Min algorithm in global register allocation.

Farach and Liberatore [23] prove that the spill-problem is NP-hard for ba-
sic blocks. They also prove that the Min algorithm algorithm gives a 2C-
approximation to the local spilling problem. This supports the good experimental
results by Guo et al.



The main motivation for this work were recent results in SSA-based register
allocation (see [6–8]). If the maximum register pressure in the program is low-
ered to the number of available registers, a linear-time algorithm can assign the
registers optimally without adding further spill code. Up to now, a good and fast
heuristic to lower the register pressure was missing in this context.

Wimmer and Mössenböck [5] perform live-range splitting while allocating
registers in a linear-scan allocator. In the tradition of linear-scan allocators, the
CFG is flattend to linear code. In this setting, a list of use-points is constructed
per variable. For points with high register pressure the variables with the furthest
next-use (in the flattened code!) are spilled first. They present a technique for
moving the split positions for spills and reloads to earlier points to move spills
and reloads in front of loops. The linear order of the basic blocks however is
too restrictive: At control-flow splits, blocks are forced into an arbitrary order
which often unnecessarily prohibits hoisting spills or reloads. The original linear-
scan allocator (Poletto & Sarkar [4]) introduced CFG flattening to deliver the
best possible compile-time performance by avoiding any expensive analysis and
additional passes.

To improve code quality, several extensions like Wimmer and Mössenböck [5],
Traub et al.[3], and Sarkar & Barik [24] were developed over the years. They suc-
cessively left the rapid linear-scan paradigm by adding liveness analysis, various
other analyses, and fix-up passes. Many of these extensions implicitly rely on
the CFG although all algorithms still use the flattened view. We demonstrated
that flattening the CFG is not necessary for efficient high-quality spill-code gen-
eration.

7 Conclusions

We presented an efficient and effective approach to spill-code generation and
live-range splitting. Unlike most existing techniques, our approach is not entan-
gled with a register allocator: It is a program transformation that limits the
register pressure of an arbitrary SSA-form program to a given number. While
this is useful as a pre-spill phase in any compiler, our technique is predestined
for the use in SSA-form register allocation: If a SSA-form program has a maxi-
mum register pressure of k, a SSA-based allocator can find an optimal register
allocation without introducing further spills in linear time.

Our algorithm is most sensitive to the structure of the program: It care-
fully splits live ranges around loops to avoid reload instructions in loops where
possible. Our evaluation on the CINT2000 benchmark suite shows that our ap-
proach reduced the number of executed reload instructions by 54.5% compared
to the state-of-the-art linear-scan allocator and by 58.2% compared to a stan-
dard graph-coloring allocator. At the same time, the compile-time overhead is
competitive with popular linear-scan allocators: We perform liveness analysis
and one sweep over the program’s CFG.
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