
CAP: Communication Aware Programming
Jan Heisswolf�, Aurang Zaib�, Andreas Zwinkau�, Sebastian Kobbe�,

Andreas Weichslgartner†, Jürgen Teich†, Jörg Henkel�,
Gregor Snelting�, Andreas Herkersdorf�, Jürgen Becker�

�Karlsruhe Institute of Technology (KIT), Germany
�Technische Universität München (TUM), Germany

†Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

ABSTRACT
Networks on Chip (NoC) come along with increased com-
plexity from the implementation and management perspec-
tive. This leads to higher energy consumption and program-
ming complexity of NoC architectures.
This work introduces communication aware programming to
address communication resource management and efficient
programming of NoC architectures. A programming inter-
face is introduced to express communication requirements
at the language level. These requirements are evaluated by
an operating system component, which configures the com-
munication hardware accordingly. The proposed concept
enables an intuitive use of NoC features like end-to-end con-
nections and Direct Memory Access (DMA). The presented
results show that communication aware programming can
improve performance and energy consumption.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Distributed programming, Parallel programming

General Terms
Design, Language, Performance

Keywords
communication, network on chip, many-core, X10, invasive

1. INTRODUCTION
Physical limitations prevent designers from further in-

creasing the performance of single cores. Consequently, par-
allel architectures have emerged as a major choice for in-
creasing computational performance. From the communi-
cation perspective, such parallel architectures lead to new
challenges. At the architectural level, limitations of bus-
based communication need to be overcome. Networks on
Chip (NoC) [2] have been presented as a scalable commu-
nication infrastructure for many-core architectures. Com-
pared to bus-based interconnects, NoCs offer a better scal-
ability for two major reasons: (1) Distributed communica-
tion. (2) Wire length and clock frequency are independent
of the number of compute nodes. However, deploying such
complex communication systems in modern architectures,
comes with several drawbacks: (1) NoCs have a noticeable
share in the overall power consumption, as analyzed for In-
tel’s Single-chip Cloud Computer (SCC) [15]. (2) On-chip

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
DAC ’14, June 01 - 05 2014, San Francisco, CA, USA
Copyright 2014 ACM 978-1-4503-2730-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2593069.2593103

networks are required to be managed by the Operating Sys-
tem (OS) or applications because of their distributed na-
ture. (3) In contrast to buses, the distance between com-
municating nodes should be taken into account. It is es-
sential to address the above-mentioned drawbacks during
application development which may otherwise lead to semi-
optimal performance and higher power consumption. There-
fore, efficient mechanisms to manage and utilize NoC-based
communication infrastructures are required. However, such
strategies may also result in an increased software develop-
ment complexity. Thus, we introduce communication aware
programming as an approach for developing parallel appli-
cations for NoC-based architectures. An easy to use con-
straint system is introduced. It enables to express the com-
munication requirements of the application in an intuitive
way. These constraints are evaluated by the operating sys-
tem during run-time, taking the current utilization of the
communication infrastructure into account. The high level
constraints expressed by the programmer are broken down
into low level control routines for the communication hard-
ware. Afterward, the NoC hardware is configured according
to the requirements of the application. A feature-rich scal-
able NoC is introduced to enable efficient communication.
The presented architecture is realized as an FPGA proto-
type and used for the detailed investigations. For power
analysis, ASIC synthesis results are presented.

The rest of this work is organized as follows: Section 2
summarizes related work. The general concept of Commu-
nication Aware Programming (CAP) is introduced in sec-
tion 3. Section 4 introduces the language extensions and the
constraints system. In section 5 Compilation, OS support
and hardware management is discussed. Section 6 gives an
overview on the NoC hardware extensions and their imple-
mentation. The benefits of the proposed concept are inves-
tigated in section 7 with respect to performance and power
consumption. The work is concluded in section 8.

2. RELATED WORK
Automated generation of efficient parallel applications is

a huge research challenge. The MAPS framework [6] aims
at parallelizing C-application for MPSoCs. However, com-
munication demands are not addressed because MAPS con-
siders a transparent non-scalable bus-based crossbar archi-
tectures. SteamIt [23] is a language-based approach for de-
velopment of streaming applications. In contrast to CAP,
StreamIt only addresses streaming applications and does not
take into account the characteristics of the underlying com-
munication infrastructure. Another approach for the devel-
opment of parallel streaming applications is presented in [7].
It targets the IBM cell architecture and its scratchpad mem-
ories. None of the previous discussed work addresses the
demands of scalable NoCs and their features.
Resource aware programming is addressed by Lorincz et
al. [17] for sensor networks. The so-called resource bro-
kers are used to mediate between low-level physical resources
and higher-level application demands. Such sensor networks

have a fundamentally different architecture and thus differ-
ent communication requirements as compared to a general-
purpose tiled many-core NoC architecture, addressed by our
approach. Invasive computing [22] proposes a novel comput-
ing paradigm, which supports resource aware programming
from application [21] as well as architecture perspective [14].
Along with these ideas this work focuses on communication
resources in the context of resource aware programming and
also addresses its realization for a NoC-based architecture.

3. CONCEPT
The concept of communication aware programming ad-

dresses Non-UniformMemory Access (NUMA) architectures,
such as Intel’s SCC [15] or Tilera’s architectures [1]. A sche-
matic representation of a tiled NoC-based NUMA architec-
ture is shown in Figure 1(a). It consists of processing tiles
and memory tiles. The memory tiles enable access to off-
chip memory (e.g. DDR memory). The internal structure
of a processing tile is shown in Figure 1(b). Hardware man-
aged uniform caches with intra-tile coherency are used to
hide memory access latencies. An addressable single cycle
SRAM-based tile local memory or scratchpad enables com-
putation with a low memory latency for a limited data set
size. The Network Adapter (NA) connects the tile internal
bus via the L2-cache to the NoC. The NoC enables commu-
nication between tiles, access of external memories and pe-
ripherals. The memory is arranged as a Partitioned Global
Address Space (PGAS). PGAS is realized through address
look-ups performed by the network adapter. Each memory
within the architecture can be addressed from each node.
Therefore, L2-cache misses result in transparent cache-line
fetching supported by the NoC. However, the concept is not
restricted to the shown mesh topology.

CPU CPU

CPU CPU

MemoryNA

CPU CPU

CPU CPU

MemoryNA

CPU CPU

CPU CPU

MemoryNA

CPU CPU

CPU CPU

MemoryNA

CPU CPU

CPU CPU

MemoryNA

CPU CPU

CPU CPU

MemoryNA

CPU CPU

CPU CPU

MemoryNA

CPU CPU

CPU CPU

Memory

Memory

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NA

NA

(a) Architecture overview

NoC
Router

No
Rou

Core
0

L1

Core
2

L1 Core
3

L1

Core
1

L1

L2-Cache

NA
Tile Local
Memory

(b) Tile

Figure 1: (a) Tiled architecture with multi-core tiles
connected via a mesh-based NoC. (b) Each compute
tile has 4 cores, a local memory and caches.

3.1 Spatial data locality
For efficient programming of NoC-based NUMA architec-

tures, the programmer has to be aware of data locality and
access latencies. In general, the most frequently used pro-
gram data should be located as close as possible to the pro-
cessing element because of the following reasons: (1) The
application performance suffers from increased latency when
accessing distant data. (2) The utilization of a NoC-based
communication infrastructure increases linearly with the dis-
tance. (3) The dynamic power consumption for data access
is almost proportional to its distance. Caching can solve the
spatial data locality problem for small data sets which are

used exclusively. However, if a parallel program needs to
exchange data between tiles or if the data set is to large for
the cache, efficient inter-tile communication is required.
A tile local memory, as shown in Figure 1(b), can be used
to explicitly store data close to the processor. However, the
limited size of this memory demands its efficient utilization.
It could be used in an efficient manner, if its management is
handled by the application developer itself. He has the ex-
clusive knowledge about the most recently used data. How-
ever, user driven memory handling complicates the applica-
tion development. Therefore, a tradeoff between efficiency
at the language level and the communication awareness is
required. An efficient prefetching methodology at the lan-
guage level is applied to handle this trade-off (see section 4).
It enables to cache frequently used data in the tile, reducing
the number of tile external memory accesses.

3.2 Hints and constraints
For communication aware programming, the application

developer provides his knowledge about the communication
of the application to the OS. The OS in turn manages the un-
derlying architecture to fulfill the application requirements
by taking into account the current architecture utilization.
The hints provided by the application developer can be used
by the OS for task mapping and for allocating communi-
cation resources. Therefore, the hardware is required to
support the resource allocation at the granularity of appli-
cations. The definition, run-time evaluation and hardware
configuration based on communication constraints are de-
tailed later.

4. PROGRAMING LANGUAGE
X10 [19] is a programming language which brings mod-

ern features to the field of scientific computing by address-
ing parallelization from the start of the application develop-
ment. This includes well-known advantages like type safety,
system modularity, partitioned global address space, generic
programming, and integrated concurrency. In addition, X10
also includes promising new features like dependent types
and transactional memory (via atomic and when). Since
this feature set is not available in other languages, e.g. C++,
we have used X10 as a programming language to realize re-
source aware applications in our framework. The concur-
rency and parallelism semantics of X10 are defined in terms
of activities, which are lightweight threads. The activities
can run in parallel on different processing cores and can not
be preempted by the OS.

4.1 Invade, Infect, Retreat & Claims
Invasive computing [21] addresses resource awareness with

respect to computation resources. The idea of invasive pro-
gramming is taken as a basis to realize CAP. A simple inva-
sive program is shown in Figure 2. The concept of allocat-
ing, utilizing and releasing resources is known from memory
allocation. Invasive computing generalizes the concept to in-
vade, infect and retreat under specific resource constraints.

Constraints for invasion form a hierarchy [25], which are
applied to realize complex applications [5]. Communication-
specific constraints are an extension to the existing set of
constraints. Applications can specify a need for through-
put or latency with respect to global shared memory, peer
activities, or parent activity, as detailed later.

4.2 Prefetching
For execution of applications like matrix multiplication or

image processing, where the data is too big for the tile local
memory, blocks of data should be cached instead. Those
blocks should be prefetched in parallel to the execution. This
can be done efficiently by using a DMA unit (see section 6.2).

1 val ilet = (id:IncarnationID) => {
2 do_something(id);
3 };
4 claim = Claim.invade(constraints)
5 claim.infect(ilet)
6 claim.retreat()

Figure 2: The basic idea of invasive programming:
The ilet function provides an action to perform in
parallel on all allocated processing elements; Invade
allocates resources under specific constraints keep-
ing in view with other concurrent applications; In-
fect uses those resources by letting ilets (basically
compute kernels) run; Retreat releases allocated re-
sources.

First, the amount of tile local memory must be specified
using the LocalMemory constraint. While memory in X10
is managed by a garbage collector, there are explicit alloc
and free methods for tile local memory to provide the ap-
plication full freedom for cache management. An example
is given in Figure 3.

1 val loc = TileLocalMemory.alloc[int](cs);
2 val offset = id.ordinal * cs;
3 val future = data.fetch(offset, loc);
4 ... // do something else, while the data is

copied into tile local memory
5 val loc2 = future.force();
6 assert loc == loc2;
7 ... // use the tile local data in ‘loc‘

Figure 3: The code example is showing the
prefetching in X10. For the programmer, the future
concept is used to model the background activity of
the DMA transfer. The force call synchronizes and
waits for the transfer to finish.

4.3 Example
As an example, we have considered a Picture in Picture

(PIP) task graph [3] as shown in Figure 4. The communi-
cation bandwidth requirements in this example are known.
Invasion of one edge and one node of such a graph is shown in
Figure 5 for C0. In this way, arbitrary tree-form task graphs
with arbitrary bandwidth requirements can be constructed.

inp
mem

hs

inp
mem jug2

vs jug1

mem op
disp

C0(128)

C4(64)

C1(64)

C5(64)

C2(64)

C6(64)

C3(64)

C7(64)

Figure 4: Picture in Picture (PIP) task graph with
varying bandwidth requirements.

In order to describe all forms of task-graphs, a more flex-
ible representation in the programming language is needed.
A very intuitive way to describe such a graph is to create a
Node object for every task with constraints concerning the
processing element (e.g. PEType, PEQuantity) and define
the communication connections to its successors with the
corresponding bandwidth requirements. A task graph of the
PIP application is shown in Figure 6 as a constrained X10
representation. We have used PIP and other more complex
applications for our evaluations which are presented later in
this paper.

1 val claim = Claim.invade(
2 new PEQuantity(1) &&
3 new Type(PEType.RISC) &&
4 new ThroughputToMaster(128)
5)

Figure 5: The code example shows the invasion of
RISC processing element with a throughput of 128
Mb/s to its master, which triggered the invasion.

1 val inp_mem = new Node("inp_mem")
2 val hs = new Node("vs");
3 val vs = new Node("vs");
4 val jug1 = new Node("jug1");
5 val inp_mem2 = new Node("inp_mem2")
6 val jug2 = new Node("jug2");
7 val mem = new Node("mem");
8 val op_disp = new Node("op_disp");
9 inp_mem.connect(hs, 128);

10 hs.connect(vs, 64);
11 vs.connect(jug1, 64);
12 jug1.connect(mem, 64);
13 inp_mem.connect(inp_mem2, 64);
14 inp_mem2.connect(jug2, 64);
15 jug2.connect(mem, 64);
16 mem.connect(op_disp, 64);

Figure 6: The code representing the task graph of
Figure 4 in X10. It can be converted to a series of
invade calls like in Figure 5.

5. RUN-TIME AND OPERATING SYSTEM
The adaptations of the language and the hardware, re-

quire support from the intermediate layers as well. We have
added an additional backend [4] to the X10 compiler and
adapted the run-time system according to language require-
ments and operating system capabilities. In the context of
CAP, the compiler and run-time system pass on the con-
straints from the application to the OS. The X10 at con-
struct is the standard communication primitive and is im-
plemented via OS mechanisms which exploit NoC features.

Inside the operating system, an agent-based resource man-
agement is introduced. Each application is represented by
an agent. This approach distributes the resource manage-
ment overhead over the entire system to achieve the scal-
ability required for future many-core architectures, as in-
vestigated in [16]. Basic OS functionality is provided by
OctoPOS [18]. The application uses the afore-mentioned
language features (i.e. constraints, local memory allocation
and the invade function call) to inform its agents about its
resource requirements. The agent is then responsible for al-
locating resources, i.e. assembling a hardware claim that
fulfills the constraints specified by the application. The al-
location of resources and the mapping of tasks to resources
themselves are complex operations, which are performed it-
eratively. However, the agents consider characteristic prop-
erties of the applications while allocating resources. The
agents pessimistically aim at allocating more resources than
necessary for successful mapping of the task graph. This
strategy avoids multiple iterations. The required communi-
cation bandwidth are considered and can be obtained from
the constraints provided by the application developer at the
language level. The agents use locally available resource
status information to perform the resource allocation. This
information consists of the available resources obtained from
other agents (e.g. resources that are currently allocated by
another application but not used or actually idle resources)
and the suitability of resources obtained from monitoring
information (e.g. NoC link monitoring) to evaluate the use-

fulness of resources for the invading application, as detailed
in [13]. Once enough resources have been allocated, an ac-
tual mapping of the task graph (obtained from the con-
straints) to the allocated resources is performed using the
heuristics presented in [20]. In this step, the guaranteed ser-
vice connections of the NoC (see section 6.1) are set up for
the application to be mapped and the detailed communica-
tion constraints are realized. If it is not possible to map the
tasks to the allocated resources, the agent has to allocate
additional resources. Once the task graph has been success-
fully mapped, the idle cores among the allocated resources
are released and the claim is returned to the application.
Figure 7 summarizes the OS flow.

invade

(Re-)allocate resources

Map tasks

infeasible

Release unused resources

success

Return Claim

Figure 7: Flowchart representing the iterative allo-
cation and mapping process

The agents use the system messages provided by the NoC
to communicate and collect information (see section 6.3).
The individual actions of the agents are executed in the in-
terrupt handler which is triggered on arrival of such a system
message by the NoC. This mechanism allows the agents to
virtually execute in parallel to the application running on
the computational resources and reduces the latency intro-
duced by the distributed architecture.

6. COMMUNICATION HARDWARE
A wormhole packet switching meshed network with vir-

tual channels (VC) [8] is used as a basis. Each physical link
is shared between a predefined number of virtual channels.
Distributed XY routing is used to ensure scalability. A simi-
lar NoC is realized in Intel’s Single-chip Cloud Computer [15]
for inter-tile and main memory communication. It is used
later as a reference. However, different features have to be
introduced in the NoC to support CAP as detailed now.

6.1 Resource allocation
One major principle of CAP is the exclusive communica-

tion resource allocation for an application. This resource
allocation can be enabled by end-to-end connections which
allocate virtual channels exclusively. These connections en-
able hard guarantees and are thus called Guaranteed Service
(GS) connections. In the past, GS connections have been
mainly used to enable hard guarantees for real-time or safety
critical applications. In the context of CAP, such end-to-end
connections are used to improve performance and reduce
communication overhead on behalf of the application pro-
grammer. The proposed NoC realizes a fully decentralized
and scalable resource allocation scheme as detailed in [11].
All virtual channels can be either used by Best Effort (BE)
communication or GS end-to-end connections. Best effort
communication is done in form of packets, each containing
a header, (several) body and a tail flit. To establish end-to-
end connections, a header flit is injected in the start which
allocates a virtual channel at each link. After connection
setup, body flits are used for communication. A tail flit
is used to release the resources allocated by the end-to-end

connections. OS triggers an end-to-end connection setup
by configuring the memory mapped registers inside the net-
work adapter. If a connection between two tiles exist, it is
used transparently by the NA (e.g. access of tile-external
memories in case of cache misses). More details about this
communication concept are given in [10] and [11].

Figure 8 illustrates a data transmission example. Trans-
mission 1 shows an end-to-end connection setup using a
header flit. An established connection between two tiles
is shown by transmission 2. Due to the flexible and dis-
tributed virtual channel allocation scheme, different VCs are
allocated at different links for transmission 2. Transmission
3 represents a BE packet. BE transmissions allocate com-
munication resources (virtual channels) only for a short time
duration.

Processing
Tile

Processing
Tile

Processing
Tile

essing
ile Memory

NoC
Router

NoC
Router

NoC
Router

essing
le

Processing
Tile

NoC
Router

Memory

VC 1
VC 2
VC 3

V
C
1

V
C
2

V
C
3

V
C
1

V
C
2

V
C
3

V
C
1

V
C
2

V
C
3

VC 1
VC 2
VC 3

NoC
Router

NoC
Router

H
T

H

1: Setup of GS-Connection
2: Established GS-Connection
3: BE-Packet

: Head Flit
: Tail Flit

H

T

NA NA NA

NANA NA

Figure 8: Example of BE- and GS data transmis-
sions within the NoC.

6.2 Data prefetching
Besides communication resource allocation, the CAP con-

cept exploits spatial data locality controlled at the language
level by an advanced data prefetching methodology. It en-
ables explicit control of the fast tile local memory by appli-
cations.

To move data between different memories of the architec-
ture, hardware support is incorporated. Therefore, a DMA
unit is realized in the network adapter of each tile. It can be
configured via memory mapped registers. The DMA sup-
port improves the performance by offloading the processing
elements from the data transfer overhead. A DMA unit is
restricted to only push data from the local memory of the
tile to a remote memory location. Pull DMAs are emulated
by the OS using push DMA. The benefits of hardware sup-
ported DMA transfers are investigated in section 7.2.

6.3 Additional hardware features
Two additional extensions of the NoC hardware are re-

alized to support CAP. System messages are implemented
for fast OS-internal communication. A system message is
initiated by writing to memory mapped registers of the net-
work adapter. At the receiving tile an interrupt is triggered
on arrival of a system message payload. This enables low
latency OS communication.

The second extension of the NoC for system software are
hardware communication monitors. These monitors observe
the communication for a given time period. The current im-
plementation comprises monitors for the link utilization and
the virtual channel utilization, as detailed in [13]. The data
can be accessed and collected efficiently using NoC hardware
support [12]. The OS takes these monitoring information
into account during resource allocation and mapping phase.

h264 mms mpeg mwd pip vopd

0.7

0.8

0.9

1

R
el
a
ti
v
e
B
a
n
d
w
id
th

R
eq
u
ir
em

en
ts

[
1

r
e
f
e
r
e
n
c
e
]

Reference

CAP

(a) Communication bandwidth

0 200 400 600 800 1,000

0.3

0.4

0.5

0.6

0.7

BE Injection Rate (Flits/Cycle/Node)*1/1000

R
el
a
ti
v
e
L
a
te
n
cy

[
1

r
e
f
e
r
e
n
c
e
]

h264 mms mpeg

mwd pip vopd

(b) Communication latency

h264 mms mpeg mwd pip vopd

10

20

30

40

24.21

21.16

30.23

41.72

20.64

29.02

11.68 11.25

19.02 19.82

9.8

15.84

C
o
m
m
u
n
ic
a
ti
o
n
P
ow

er
[P

d
a
ta

in
m
W

]

Reference

CAP

(c) Power consumption

Figure 9: Communication bandwidth, latency and power consumption for six parallel multimedia applications
with CAP and without (Reference).

7. RESULTS
The goal of communication aware programming is to in-

crease the performance and efficiency of parallel applications
by improving their communication. Therefore, the impact
of communication resource allocation and data prefetching
is investigated in the following.

7.1 Simulation
A cycle accurate SystemC model of the NoC, presented

in section 6 is used. The instantiated meshed NoC has a
size of 10x10 nodes and uses distributed XY routing. The
routers have a four stage pipeline. Header flits traverse all
of the stages, whereas body and tail flits take only two of
the stages. This behavior reflects the real hardware im-
plementation used for our FPGA prototype. Abstracted
behavioral models of processing cores and applications are
used for traffic generation. The communication constraints,
discussed in section 4, and the constraint evaluation and
mapping performed by the OS (see section 5) are modeled
abstract in the SystemC simulation framework. The used
task graphs are constrained according to their communica-
tion behavior. The mapping decisions and resource allo-
cation are based on the constraints using nearest neighbor
mapping [20]. For the following investigations communica-
tion graphs of different multimedia applications are used:
Video Object Plan Decoding (VOPD, 12 cores), MPEG4
video decoding (14 cores), Picture-In-Picture (PIP, 8 cores),
and Multi-Windows Display (MWD, 14 cores), presented
in [3], as well as a H.264 CAVLC encoder (H.264, 16 cores)
and a Multimedia System (MMS, 25 cores), provided by
NoCTweak [24]. The reference used in the following is a
BE packet switching NoC with VCs, very similar to the one
realized in the Intel Single-chip Cloud Computer [15].

Figure 9(a) shows the bandwidth required for communi-
cation while executing the different applications. All results
are relative to the reference. Compared to this reference,
the communication bandwidth can be reduced between 9.8%
for the MPEG decoder and 15.4% for the H.264 encoder.
This reduction is due to a reduced gross data rate resulting
from end-to-end connections. Figure 9(b) shows the com-
munication latency of the applications under different load
situations. To generate additional load, uniform random
traffic is injected by the nodes of the architecture that are
not used by the investigated application. The results show
that CAP can reduce the data transmission latency by 29%
to 64%. On average delay can be reduced by 47% com-
pared to the reference. The reason for this significant im-
provement is the pre-allocation of communication resources.
This pre-allocation enables low latency communication since
routing and VC allocation is performed in advance to data
transmission (two router pipeline stages are skipped). The
SystemVerilog hardware implementation used for the FPGA
prototype is now taken to estimate the power consumption.

An ASIC synthesis of the NoC was performed using a TSMC
45 nm general purpose standard cell library (tcbn45gsbwpwc)
with worst case operating conditions. For power estimation,
the toggle rates were derived from netlist simulation under
application specific NoC load. The power consumption of
an idle router (Pidle) is 7.94mW. Pdata = Ptotal − Pidle is
used in the following. Figure 9(c) shows the estimated power
consumption for data transmission over the NoC while exe-
cuting the investigated applications. The results show that
communication aware programming can reduce the power
consumption for communication significantly. For the H.264
encoder, PIP and MWD more than 50% of the power which
is directly related to data transmissions (Pdata) can be saved.
This significant reduction of the power consumption has two
reasons: (1) Due to the previous resource allocation, enabled
by end-to-end connections, data transmission is simplified
because routing and virtual channel allocation are only per-
formed once while connection setup. (2) The protocol over-
head of end-to-end connections is reduced and thus the gross
data rate is decreased.

7.2 Prototype
In addition to the simulation results, an FPGA-prototype

of the architecture presented in section 3 was realized. The
prototype has four processing tiles with one Leon3 RISC
core [9] per tile due to the limited amount of resources avail-
able on the used ML605 FPGA board. The tiles memory
hierarchy is same as shown in Figure 1(b). Each tile has a
tile local memory of 256 kB, 512 byte L1 data- and instruc-
tion cache and a 4 kB L2 cache. One of the four tiles has
a DDR3 memory attached to its internal bus. The DDR
memory is accessible from the other tiles via the NoC.

A parallel version of an integer matrix multiplication was
used to investigate the impact of CAP mechanisms on the
hardware prototype with respect to execution time of the
application, NoC-utilization and NoC power consumption.
The results are given in Figure 10. Five different variants of
the matrix multiplication were investigated: Two versions
use BE communication, the other three versions use com-
munication resource allocation by GS end-to-end connec-
tions. Each communication variant is investigated as DDR,
where the source matrices are located in the main memory
and PF, where the required parts of the source matrices are
prefetched from the DDR to the tile local memory according
to CAP principles. The GS DMA variant performs prefetch-
ing by the use of the hardware DMA unit located inside the
NA. The use of DMA is only investigated in combination
with end-to-end connections due to hardware requirements.
The BE DDR variant is used as a reference. It does not use
any CAP mechanism and could be realized on other archi-
tectures, such as the Intel SCC [15].

Figure 10(a) compares the speedup of the different vari-
ants relative to a single core variant. The results show that

32x32 64x64 96x96 128x128

1

2

3

4

5

E
x
ec
u
ti
o
n
S
p
ee
d
u
p
[s

e
q
u
e
n
ti
a
l

x
]

BE DDR BE PF GS DDR

GS PF GS DMA

(a) Application speedup
32x32 64x64 96x96 128x128

104

105

106

107

N
o
C

u
ti
li
za
ti
o
n
[F

li
ts
(3
2
bi
t)
]

BE DDR BE PF

GS DDR GS PF

GS DMA

(b) NoC utilization
32x32 64x64 96x96 128x128

0

5 · 10−2

0.1

0.15

0.2

0.25

C
o
m
m
u
n
ic
a
ti
o
n
P
ow

er
[P

d
a
ta

in
m
W

]

BE DDR BE PF

GS DDR GS PF

GS DMA

(c) NoC power consumption

Figure 10: Parallel matrix multiplication executed with different settings on a 4 tile architecture prototype.
CAP mechanisms (prefetching and end-to-end connections) are compared against a reference (BE DDR).

prefetching has no benefit with respect to execution time
for small matrix sizes due to the fact that all data fit into
the L2-cache. A matrix with 64x64 elements even reaches
speedups higher than four. The reason is the increased over-
all cache size if four cores are used instead of one. If the ma-
trix sizes become bigger, prefetching improves performance
significantly. For a matrix of 128x128 elements, prefetching
introduced by CAP improves performance by 26% compared
to the reference (BE DDR). Figure 10(b) shows the NoC uti-
lization caused by executing the five variants of the matrix
multiplication. To obtain these numbers, the NoC link mon-
itors (see section 6.3) available on the prototype have been
used. As expected, the amount of communication increases
with the matrix size. For larger matrix sizes, the amount of
flits can be reduced by 26% if resource allocation is used
(GS DDR). DMA prefetching (GS DMA) can reduce the
amount of communication by up to 96% compared to the
reference. The reason is the reduced main memory com-
munication resulting from the use of the tile local memory.
Finally, the power consumption which is directly related to
data transmissions is analyzed for the ASIC implementa-
tion of the NoC, as detailed in section 7.1. Figure 10(c)
summarizes the results. The benefit of prefetching with re-
spect to the power consumption increases with the size of
the matrix. The GS DMA variant, which applies all of the
proposed CAP mechanisms, can reduce Pdata by up to 95%.
If no prefetching is used the allocation of communication re-
sources (GS) can help to reduce the power consumption for
communication by up to 20% depending on the matrix size.

8. CONCLUSION
This paper presented a hardware architecture that en-

ables efficient communication for future scalable NoC ar-
chitectures. The NoC enables end-to-end connections and
DMA transfers. These hardware mechanisms are used by
the system software and at the language level to facilitate
communication aware programming. CAP enables intuitive
and efficient parallel programming of NoC architectures.

Cycle accurate NoC simulations using multimedia appli-
cation models show reductions of up to 15% for the required
communication bandwidth, latency reductions of 47% on av-
erage, and saving of more than 50% of the data transmis-
sion power. An FPGA-prototype executing a parallel ma-
trix multiplication, shows up to 96% less communication and
95% less transmission power due to CAP. A speedup of up
to 26% for the matrix multiplication benchmark is another
strong motivation for communication aware programming.

Acknowledgment
This work was supported by the German Research Founda-
tion (DFG) as part of the Transregional Collaborative Re-
search Center “Invasive Computing” (SFB/TR 89).

9. REFERENCES
[1] S. Bell, B. Edwards, J. Amann, et al. Tile64 - processor: A

64-core soc with mesh interconnect. In ISSCC, 2008.
[2] L. Benini and G. D. Micheli. Networks on chips: a new SoC

paradigm. Computer, 2002.
[3] D. Bertozzi, A. Jalabert, et al. Noc synthesis flow for

customized domain specific multiprocessor systems-on-chip.
IEEE TPDS, 2005.

[4] M. Braun, S. Buchwald, M. Mohr, et al. An x10 compiler for
invasive architectures. Technical Report 9, KIT, 2012.

[5] H.-J. Bungartz, C. Riesinger, et al. Invasive computing in hpc
with x10. In ACM SIGPLAN X10 Workshop, 2013.

[6] J. Ceng, J. Castrillon, W. Sheng, H. Scharwächter, R. Leupers,
et al. MAPS: an integrated framework for MPSoC application
parallelization. In DAC, 2008.

[7] W. Che, A. Panda, and K. S. Chatha. Compilation of stream
programs for multicore processors that incorporate scratchpad
memories. In DATE, 2010.

[8] W. Dally. Virtual-channel flow control. Parallel and
Distributed Systems, IEEE Transactions on, 1992.

[9] J. Gaiesler. The leon processor user’s manual, 2001.
[10] J. Heisswolf, R. Konig, and J. Becker. A scalable noc router

design providing qos support using weighted round robin
scheduling. In ISPA, 2012.

[11] J. Heisswolf, R. König, et al. Providing multiple hard latency
and throughput guarantees for packet switching networks on
chip. Computers & Electrical Engineering, 2013.

[12] J. Heisswolf, A. Weichslgartner, A. Zaib, R. Konig, T. Wild,
A. Herkersdorf, et al. Hardware supported adaptive data
collection for networks on chip. In IPDPSW, 2013.

[13] J. Heisswolf, A. Zaib, Weichslgartner, et al. The invasive
network on chip - a multi-objective many-core communication
infrastructure. In ARCS, 2014.

[14] J. Henkel, A. Herkersdorf, L. Bauer, T. Wild, et al. Invasive
manycore architectures. In ASP-DAC, 2012.

[15] J. Howard, S. Dighe, et al. A 48-core ia-32 processor in 45 nm
cmos using on-die message-passing and dvfs for performance
and power scaling. Solid-State Circuits, IEEE, 2011.

[16] S. Kobbe, L. Bauer, D. Lohmann, et al. Distrm: distributed
resource management for on-chip many-core systems. In
CODES+ISSS, 2011.

[17] K. Lorincz, B.-r. Chen, J. Waterman, et al. Resource aware
programming in the pixie os. In SenSys, 2008.

[18] B. Oechslein et al. OctoPOS: A Parallel Operating System for
Invasive Computing. In SFMA, 2011.

[19] V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, and
D. Grove. X10 Language Specification v2.3, 2012.

[20] A. K. Singh, T. Srikanthan, et al. Communication-aware
heuristics for run-time task mapping on noc-based MPSoC
platforms. JSA, 2010.

[21] J. Teich. Invasive Algorithms and Architectures. it -
Information Technology, 2008.

[22] J. Teich, J. Henkel, A. Herkersdorf, et al. Invasive Computing:
An Overview. In M. Hübner and J. Becker, editors,
Multiprocessor System-on-Chip: Hardware Design and Tool
Integration. Springer, 2011.

[23] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: a
language for streaming applications. In Compiler
Construction, Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2002.

[24] A. T. Tran and B. Baas. Noctweak: a highly parameterizable
simulator for early exploration of performance and energy of
networks on-chip. Technical report, VCL, University of
California, 2012.

[25] A. Zwinkau, S. Buchwald, and G. Snelting. Invadex10
documentation v0.5. Technical Report 7, KIT, 2013.

