
Institut für Programmstrukturen
und Datenorganisation (IPD)

Lehrstuhl Prof. Dr.-Ing. Snelting

Compressing Type
Information in Modern C++

Programs using Type
Isolation

Masterarbeit von

Niklas Baumstark

an der Fakultät für Informatik

Erstgutachter: Prof. Dr.-Ing. Gregor Snelting
Zweitgutachter: Prof. Dr. rer. nat. Bernhard Beckert
Betreuende Mitarbeiter: Simon Bischof, M.Sc.

Andreas Fried, M.Sc.

Abgabedatum: 8. April 2019

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

Abstract
Modern memory corruption exploits targeting C++ programs often use the concept

of forging C++ objects on the heap, and injecting them into the program by fully or
partially corrupting pointers, or overwriting existing objects with the forged data.
This technique has been used in past exploits to construct increasingly powerful
primitives out of limited memory corruption bugs, to leak secret values used by
mitigations such as address space layout randomization as well as to bypass control
flow integrity mitigations. In order to make such exploits harder in practice, we
propose to store out-of-band type information about C++ object types allocated on
the heap. We compress this information and avoid performing expensive maintenance
operations by using type-isolated heaps with useful regularity properties. Pointers
into instrumented heap regions can be type-checked by performing at most two
memory accesses.
To show the practicality of our approach, we describe a semi-automated process

of adding our data structure to an existing code base with the help of a Clang
frontend plugin. We successfully applied this process to the WebCore library, the
main parsing and layout engine used by WebKit, which has been subject to various
publicly disclosed memory corruption vulnerabilities in the recent past. In addition,
we provide a plugin to automatically add type checks to a large portion of pointers
fetched from the heap and subsequently used by the program.
Our evaluation concludes that while further optimizations would be required

to reduce the performance overhead induced by our program transformation, a
large subset of exploitable issues reported in 2017 and 2018 in the WebCore library
is affected fundamentally by our instrumentation, in some cases rendering issues
for which public exploits exist fully unexploitable, and in other cases significantly
weakening the available exploit primitives.

Moderne Schadprogramme, die Sicherheitslücken im Zusammenhang mit Speicher-
behandlung in C++-Programmen ausnutzen – sogenannte Memory-Corruption-
Exploits – setzen häufig Techniken ein, welche darauf basieren, vom Angreifer
kontrollierte Daten auf dem Heap als andere Datenstrukturen zu interpretieren.
Dies kann gelingen, indem Zeiger manipuliert oder bestehende Zeiger, die noch auf
alte Speicherbereiche zeigen, fälschlicherweise wiederverwendet werden. Auf diese
Weise können komplexere, aufeinander aufbauende Primitiven wie relative und letzt-
endlich absolute Lese- und Schreiboperationen konstruiert werden. Diese sind unter
anderem notwendig, um explizit aus Sicherheitsgründen eingebaute Maßnahmen
wie Address Space Layout Randomization und Control Flow Integrity zu umgehen.
Um diese Technik der gezielten Typverwechslung deutlich schwieriger zu gestalten,
schlagen wir eine Datenstruktur vor, die Typinformationen für Heapobjekte verwal-
tet. Die Effizienz dieser Datenstruktur ergibt sich aus einer Kompressionstechnik
basierend auf typisolierten Heaps. Zeiger auf Objekte, welche von der Datenstruktur
verwaltet werden, können mit höchstens zwei Speicherzugriffen auf ihren Typ hin
geprüft werden.
Um die Praxistauglichkeit unseres Verfahrens zu zeigen, beschreiben wir einen

semi-automatisierten Prozess, der sich eines Clang Frontend-Plugins bedient und
sich auf ein beliebiges C++-Projekt anwenden lässt. Wir haben diesen Prozess
erfolgreich auf die WebCore-Bibliothek angewandt, die für Dokumentenparsing und
Layout in der WebKit-Browserengine zuständig ist und in der Vergangenheit vielen
Sicherheitsproblemen unterlag. Zusätzlich stellen wir eine Instrumentierung ebenfalls
auf Basis von Clang bereit, mit der Typchecks für vom Heap stammende Zeiger
automatisch im Programm eingefügt werden können.

Unsere experimentelle Auswertung zeigt, dass viele der ausnutzbaren Sicherheits-
lücken, die in 2017 und 2018 in WebCore gefunden wurden, durch unsere Instru-
mentierung entweder nicht mehr ausnutzbar oder zumindest deutlich schwieriger
in nützliche Exploitprimitiven umwandelbar sind. Im Gegenzug sind Performance-
Einbußen zu erwarten, denen in Zukunft mit weiterer Optimierungsarbeit und
statischer Analyse entgegengewirkt werden kann.

4

Contents
1. Introduction 7

2. Preliminaries and Related Work 9
2.1. Classifying memory safety . 9
2.2. A simplified model of C++ types, objects and allocations 10
2.3. Exploit mitigations . 11
2.4. Hypothesis . 13
2.5. Related work . 14

3. Design and Implementation 15
3.1. Attacker model and mitigation goal 15
3.2. Security policies . 15
3.3. Scope . 16
3.4. Type consistency data structure . 17
3.5. Program analysis and instrumentation 19
3.6. Pointer checking algorithm . 23
3.7. Case Study: Instrumenting the WebCore library 25
3.8. Optimizations . 28
3.9. Limitations of our implementation . 28

4. Evaluation 31
4.1. Static analysis results . 31
4.2. Dynamic evaluation . 32
4.3. Security evaluation . 37

5. Conclusions 47
5.1. Future work . 48

A. Appendix 53

5

1. Introduction
State-of-the-art exploits for C++ programs often employ a multi-stage approach: In
a first step, a limited memory corruption vulnerability such as a heap-based buffer
overflow, use-after-free or type confusion is used to corrupt a C++ object on the heap.
In one or multiple follow-up steps, the so far limited control over the target program’s
address space is increased by corrupting pointers, length fields, or indexes, thereby
causing type confusions and out-of-bounds accesses relative to other objects. The
result is full control over a pointer which is used to read and write attacker-controlled
data, in a repeatable fashion. From here an attacker has multiple options. She might
now try to

• exfiltrate private data already available in the process memory via their read
primitive;

• modify data structures inside the program to escalate privileges, such as by
disabling the same-origin policy in a web browser, or enabling deprecated
plugin mechanisms such as ActiveX or Silverlight;

• corrupt data that influences the program’s control flow directly, such as return
addresses located on the stack, or function/vtable pointers stored in the heap.

Memory corruption mitigations typically focus on preventing control flow hijacks,
but do not address the range of possible attacks that do not require arbitrary code
execution. Furthermore, control flow hijacks are hard to mitigate using software-
only defenses. As a practical example, Microsoft retired its Return Flow Guard
technology, which is a state-of-the-art software shadow stack, because it could be
broken completely by their own engineers in a scenario where the attacker can read
and write arbitrary memory at arbitrary times [1]. Without RFG – which is now
disabled in their products – their implementation of control-flow integrity (Control
Flow Guard) can be easily bypassed by overwriting return addresses on the stack
and using return-oriented programming. This will likely continue to be the case
until hardware support for return address protection (e.g. via Intel CET or pointer
authentication) is widely shipped to end users.
When comparing examples of recent exploits for web browsers and the Windows

operating system, we can notice that a common demoninator is the careful crafting
of counterfeit objects on the heap or kernel pool, which are then manipulated using
the provided programming interfaces such as JavaScript APIs or system calls. A
technique based on virtual function calls that makes heavy use of crafted objects was
published as counterfeit object-oriented programming (COOP) [2]. We conjecture

7

that verifying the types of objects at runtime, using information provided by the
heap allocator, can limit the usefulness of techniques based on crafted objects.

Our goal is to design a vulnerability-agnostic security mitigation that takes effect
early in the exploitation process. It assumes a heap-based memory corruption
vulnerability, and is supposed to make it considerably harder to escalate the available
control over the program’s memory and eventually, its control flow.

8

2. Preliminaries and Related Work

In this work we focus on modern, hardened software written in C++ such as web
browsers. Based on a brief analysis of public vulnerabilities in the WebKit library
– which we will elaborate on in chapter 4 – we are primarily concerned with heap
memory safety rather than stack or global memory, since these issues constitute the
vast majority of known vulnerabilities in the recent past.

2.1. Classifying memory safety

We can broadly categorize memory safety violations into the following categories:
Spatial memory safety The property that code operating on a complex heap

object – such as a data buffer or array of objects – only refers to this object by
performing memory accesses within the bounds of the corresponding heap allocation.
The precise nature of what it means to refer to an object is defined by programming
language semantics, which can become arbitrarily complex. A canonical example for
C++ would be addressing an array’s member via indexing or pointer arithmetics. A
violation of this property implies the existence of a so-called out-of-bounds access
vulnerability. These issues can be further categorized by whether the violating
memory access is a load or store, and whether it is directly adjacent to the buffer.
The case of a load or store directly after the heap object is referred to as a heap-based
buffer over-read/overflow.

Temporal memory safety The property that code only refers to live heap
objects, which are objects that have been allocated and not yet been deallocated. A
precise definition can be given as follows: Given a heap allocator which never reuses
memory and instead assigns a new address to each allocation, and also blacklists
every byte of deallocated memory, the code never performs a memory access to
blacklisted bytes. A violation of this property, which occurs as soon as a dangling
pointer to freed memory is re-used, implies the existence of so-called use-after-free
vulnerability. A common special case is a double free condition.

Type safety In a strongly typed setting, the property that a pointer of type
T at all times points to some object of type U , where U is a subtype of T . The
semantics of the low-level memory representations depend on the specific compiler
implementation. A violation of this property is usually referred to as a type confusion
vulnerability and can for example occur as the result of an unchecked downcast.

9

2.2. A SIMPLIFIED MODEL OF C++ TYPES, OBJECTS AND ALLOCATIONS

2.2. A simplified model of C++ types, objects and
allocations

In order to reason about C++ programs, we introduce a simplified model of C++

types. Let T be the set of C++ types present in a program, which includes both
primitive types and composite types defined via the class or struct keyword. We
ignore cv qualifiers (const, volatile, mutable etc.) in this consideration. For a
given pair of types t, s ∈ T , we define Offset(t, s) ⊆ {0, . . . , sizeof(t)−1} as follows:
Let x be the memory location of an object of type t. Then ∆ ∈ Offset(t, s) if and
only if the value x+ ∆ can be treated safely as a pointer to an object of type s. To
give an example, consider the C++ class hierarchy and byte-level layout depicted
below:

struct A {
int x1; // offset 0

};

struct B
: public A // base class at offset 0

{
A x2; // offset 4
int x3; // offset 8
union { // offset 12

A x4;
char x5;

} u;
};

Here we have:

• Offset(A, int) = {0}
• Offset(A,A) = {0}
• Offset(B, int) = {0, 4, 8, 12}
• Offset(B, char) = {12}
• Offset(B,A) = {0, 4, 12}

This yields a basic characterization of type composition. For t, s ∈ T with
Offset(t, s) 6= ∅ we call s a sub-record of t and t a super-record of s. The set
of sub-records and super-records of a type t are denoted as Sub(t) and Super(t),
respectively. Note that the precise C++ type aliasing rules are rather complex, which
is why in order to compute Offset in practice, we make use of certain heuristics
and approximations.
To reason about object lifetime, we introduce the process of object construction:

First, for some type t, sizeof(t) bytes of memory are allocated at some address
x, then the type constructor Ct is called with x as the first argument. The object

10

2.3. EXPLOIT MITIGATIONS

ceases to exist after the type destructor Dt is called with x as the first argument. In
between the calls Ct(x, . . .) and Dt(x, . . .), we say there is a live object of type t at
address x. After the call Dt(x, . . .), we say there is a zombie object of type t at x,
until another live object occupies at least one byte of memory in the address range
[x, x+ sizeof(t)).

Let p the value of be a pointer of type s∗. If there is a live object of type t at some
address x with p− x ∈ Offset(t, s), then we call p type safe. If there is a live or
zombie object with the same conditions, we call p type consistent. For convenience
in later arguments, we also consider p to be type safe and type consistent if it is the
Null pointer or if it points to zeroed memory of size sizeof(s). Note that type
safety implies type consistency and is a strictly stronger property.

An object allocation is a heap allocation of some type t, obtained via new t, where
t is not an array type. The actual use of the new operator is often deferred to a
wrapper function returning a smart pointer such as std::make_unique. The actual
memory allocation may be separated from the constructor call via the placement-
new language construct, so long as the allocation size is the same, such as in
new (malloc(sizeof(t))) t. If such an allocation can occur in a program, we
say that t is object-allocated. Note that the resulting allocation is called an object
allocation and will have a constant and statically known size. We call all other heap
allocations complex. Most notably, this includes all variable-size allocations such as
arrays or compound objects with a custom, dynamic memory layout.
Note that object allocations can contain arrays or data buffers as subobjects,

although these have an inherent size limit.

2.3. Exploit mitigations
An exploit mitigation is a hardening measure provided by a compiler, library or
runtime environment designed to make exploitation of memory safety issues harder.
As such, it addresses security vulnerabilities in the time frame between their intro-
duction and their eventual discovery and fix. Most mitigations address a specific
class of issues which are known to have occurred commonly in the past. Important
examples of widely deployed generic exploit mitigations include:

Data Execution Prevention / No eXecute (DEP/NX), a hardware-assisted
mechanism to ensure that control flow never enters pages not marked as executable
using a designated hardware bit. Applications can ensure via operating system APIs
that none of their data pages have this bit set. This prevents attacks that redirect
control flow directly to crafted machine code placed on the stack or heap.

Address Space Layout Randomization (ASLR), the randomization of the
address space with the aim to force exploits to either learn the address space or
work without forging full pointers. This is a secret-based mitigation and is rendered
ineffective by exploits that leak information about the address space, or exhaust the
entropy enough to place data at a controlled location – for example by causing a
number of large heap allocations, a technique referred to as heap spray.

11

2.3. EXPLOIT MITIGATIONS

Stack cookies, a mitigation specifically designed to protect return addresses on
the stack from stack-based buffer overflows, by placing a secret canary value before
the return address, which is checked before returning.

Control Flow Integrity (CFI), an umbrella term for a variety of techniques
that aim to ensure that the target of indirect control transfer instructions is within
the set of targets that can occur during a valid program execution [3]. Different
implementations consider different approximations of the precise target set. We
categorize indirect control transfers into forward edges of the control flow graph,
manifested in machine code by indirect jump/calls, and backward edges of the call
graph, represented by return instructions. Notable forward edge software CFI
implementations include the Microsoft Control Flow Guard (CFG) and Clang’s
-fsanitize=cfi instrumentation. Hardware support for CFI variants has recently
been added to the AArch64 architecture with the introduction of ARM pointer
authentication (PAC) and has be announced for Intel processors as Control-flow
Enforcement Technology (CET), which is to appear in hardware in 2019 or 2020.
CFI addresses exploitation techniques rather than the root cause of vulnerabilities:
It thwarts exploits that are based on corrupting function pointers on the stack or
heap to redirect the control flow of the target program.

Memory tagging, an extension of the classic flat memory model [4]. Every run
of N bytes carries a short integer tag. A prominent example is the implementation to
be released with ARM v8.5, which according to various sources will support 16-byte
runs and 4-bit tags [5]. Pointers can optionally carry a tag in the unused high bits, in
which case memory dereferences can be checked for matching tags. With hardware,
compiler and standard library support, powerful and efficient mitigations for both
spatial and temporal memory issues can be designed. One simple scheme is to tag
every allocation with a random tag, possibly enforcing distinct tags for adjacent
allocations, and to reserve one specific tag value for freed memory. Note that in the
hardware-accelerated case, at least the CPU but possibly also the memory controller
need to support this paradigm. It is unclear how efficiently it can be implement in
software on commodity CPUs without hardware support.

Type-consistent memory reuse, a concept that was first introduced by [6] and
implemented more efficiently by [7]. The two implementations differ significantly,
however share the common insight that C programs developed according to modern
software engineering practices mostly deal with well-typed, structured data – a
property clearly also shared with modern C++ programs that have a much more
expressive type system at their disposal. [6, 7] propose type-aware allocators which
ensure that no two allocation requests for different types ever overlap. This breaks
exploitation techniques for temporal safety issues which are based on reclaiming freed
memory with objects of different types. While the fully generic solutions have not
found widespread adoption, simple variants based on placing certain groups of objects
on separate heaps are deployed in some security-critical software products such as
the Windows kernel (GDI object isolation), the Chromium browser (PartitionAlloc)
and WebKit (Gigacage, IsoHeaps).

Specific mitigations are often employed in large code bases to make known classes

12

2.4. HYPOTHESIS

of bugs outright unexploitable, or prevent known exploitation techniques. Sometimes,
special-purpose mitigations are implemented to work around issues outside of the
control of software vendors, such as timing side channels in CPUs.

2.3.1. Generic exploitation of temporal memory safety issues
To give an intuition on why type-consistent memory reuse is effective as a mitigation,
consider a classic use-after-free vulnerability and a potential exploit:

1. Cause “victim” object to be freed while a dangling pointer to it still exists.
This is often informally referred to as triggering the bug.

2. Allocate a lot of objects of the same size as the victim, but a different type,
hoping that one of them will reclaim the freed space and replace the victim.

3. Cause a type-unsafe reuse of the dangling pointer.

This yields a powerful type confusion situation, because the attacker can chose the
object type to confuse the victim with. The replacement object could even be fully
controlled, as is the case with string data or binary blobs. The further steps highly
depend on the victim object and the target program. Type-consistent memory reuse
prevents this generic exploitation technique by breaking step 2 above.

2.4. Hypothesis
We make a number of conjectures which we will carefully investigate in the following:

1. Type-consistent memory reuse and more generally, aggressive separation of heap
regions with different types of objects is a low-cost approach to address temporal
memory safety bugs. Even if dangling pointers are not detected or prevented,
generic exploit techniques are rendered ineffective. If pointer alignment is
enforced, exploiting temporal vulnerabilities often becomes impossible.

2. Modern exploits rely heavily on violating the type safety of heap pointers. Hence,
enforcing type safety on heap pointers makes exploiting certain vulnerabilities
considerably harder and sometimes impossible. Even partial type safety, for
example only for a subset of pointer types, is useful to thwart a large number of
potential exploits, if that subset includes types that are essential for exploitation,
or inherently dictated by the used vulnerability.

3. Grouping constant-size object allocations by type leads to a regular type
structure in each of the separate regions. Type-related meta-data can be
compressed easily because it repeats modulo the object size.

13

2.5. RELATED WORK

2.5. Related work
While most of the recent memory safety mitigation research is focused on control-flow
integrity, there exists prior work on the mitigation of specific classes of vulnerabilities,
including type confusion vulnerabilities in C++ programs. Examples of this include
CaVer [8] and TypeSan [9]. They provide a way to check object types at runtime,
using separately stored type information. Both mitigations add runtime type checks
to all explicit static and dynamic casts in the program. However, they do not address
the case of type confusions resulting from deliberately corrupted pointers on the
heap and can not defend against those.

The EffectiveSan sanitizer [10] addresses a superset of the vulnerabilities that we
are interested in mitigating: Its instrumentation is able to detect the kinds of pointer
misuses and bad casts that are essential for exploitation. However, it stores the
necessary meta-information in-band, alongside objects on the heap, and can thus not
be trusted in the presence of spatial or temporal memory corruption. Furthermore,
EffectiveSan is designed to detect certain kinds of memory safety errors such as
out-of-bounds accesses as soon as they occur, hence requiring much more complete
instrumentation of the program. For our purposes it is enough to instrument locations
where a corrupted pointer is about to be used.

Both TypeSan and EffectiveSan are more generic than our proposed scheme due
to the fact that they support stack and global memory as well as heap memory. We
focus on heap memory safety and optimize for the common case where few pointers
to the stack or to writable global memory are stored on the heap.

CFIXX [11] is a recently proposed approach which addresses the same core problem
we are trying to address, but in a less generic fashion: They introduce the concept
of Object Type Integrity, which in essence is a compiler mitigation that instruments
all virtual call sites to add dynamic type checks. This is done specifically to counter
COOP-like attacks, but does not address the more general issue of data-only attacks
and CFI bypasses based on arbitrary read/write primitives (which may be obtainable
without virtual method calls).

Mid-fat pointers [12] provide a way to encode the location of metadata such as
type information inside pointers itself. It is unclear how this approach could possibly
deal with sub-objects or inheritance, where the address of a sub-object is taken, and
thus if it is even applicable to C++ programs. Additionally, this approach restricts
the effective address space of the target program to 32 bits. In their related work
section, the authors outline the state of the art in dynamic pointer verification and
spatial memory safety quite exhaustively, including their older METAlloc metadata
management scheme [13].

14

3. Design and Implementation
In this section we introduce our attacker model and security policies that defend
against it. We proceed to describe a data structure necessary to enforce these policies.
Applying them to an existing code base requires analyzing and instrumenting the
program, which we solve by means of a plugin for the Clang compiler.

3.1. Attacker model and mitigation goal
Let D be a set of dangerous types chosen arbitrarily, for example based on empirical
observations about past exploits. Certain practical considerations restrict the choice
of this set, the details of which will be explained later. We consider an attacker with
the ability to forge or corrupt a dangerous pointer of type t∗ on the heap, where
t ∈ D. Common examples of software bugs that can lead to this ability include:
treating uninitialized memory as a pointer; fetching a pointer from an already freed
memory location via a dangling reference; fetching a pointer from outside a data
structure via an out-of-bounds read, or corrupting a pointer on the heap via an
out-of-bounds write.

Exploitation of this primitive is often possible by forging an object of type t inside
fully attacker-controlled data, or replacing the pointer with a potentially misaligned
pointer to an object of different type. This can in turn lead to more powerful
primitives such as writes to arbitrary addresses or direct control flow hijacks via
function or vtable pointers. Our goal is to ensure dangerous pointers are type safe
or at least type consistent.

3.2. Security policies
We introduce the concept of a safe heap region first, which is one that is separated
from other heap regions by unmapped memory, ensures type-consistent memory
reuse, and where no complex allocations are served from. We assume that safe
heap regions require less instrumentation than the rest of the heap, thus saving
instrumentation overhead. Some empirical observations can be made about safe
heaps:

• Due to type-consistent memory reuse, pointers in the safe heap are generally
type consistent, unless spatial memory corruption occurs;
• Because there are only constant-size data structures allocated in a safe heap,
it is unlikely that data structures in the heap itself are affected by spatial

15

3.3. SCOPE

memory safety issues – we will discuss this aspect in more detail as part of our
evaluation in subsection 4.3.2;
• An attacker would thus have to perform a near-arbitrary write to control a

dangerous pointer inside a safe heap, since the write would have to “skip” over a
region of unmapped memory between the safe heap and other mapped memory
regions.

A heap region that is not safe is considered wild. Examples of such heap regions
are such regions where objects of varying size are allocated, for example in a first or
best fit fashion, or where objects of the same size but different types are allocated.
Intuitively, type consistency of pointers into such a heap can easily be violated by
reclaiming freed memory, or by an out-of-bounds access to variable-sized objects
such as arrays. We propose the following security policies of decreasing strictness:

• Pointer type safety/consistency dictates that all dangerous pointers that are
fetched from the heap are checked for type safety/consistency before they are
dereferenced.
• Wild pointer type safety/consistency dictates that all dangerous pointers that
are fetched from wild heap regions are checked for type safety/consistency
before they are dereferenced. Pointers fetched from safe heap regions are not
considered dangerous.

Note that an implementation of wild or non-wild pointer type consistency can be
extended to wild or non-wild pointer type safety easily by zeroing out every object
after it has been freed. We will evaluate the performance overhead of this operation
in subsection 4.2.3.

3.3. Scope
We want to implement the security policies defined above in an existing C++ program.
Due to the complex semantics of C++, we do not expect this to be possible in a fully
generic way while still maintaining a reasonably low runtime performance overhead
within the scope of this work alone. Our goal is to develop a semi-automated
process which can be applied as a prototype to an existing code base that is too
large to manually audit or instrument as well as heavily optimized for performance:
This is precisely the type of code base most likely to contain memory corruption
vulnerabilities.

This restricts our design space to solutions based on very mature tooling based
on state-of-the-art C++ compilers. We chose to use the Clang compiler1 as a basic
building block due to its perceived higher flexibility and extensibility when compared
with the GNU Compiler Collection2.

1https://clang.llvm.org/
2https://gcc.gnu.org/

16

https://clang.llvm.org/
https://gcc.gnu.org/

3.4. TYPE CONSISTENCY DATA STRUCTURE

In the scope of this work, we will restrict ourselves to transformations and simple
analysis based on the Clang AST, which is a rather high-level construct, rather than
on a lower-level intermediate representation such as LLVM IR. While this limits
our options in terms of static analysis, it will allow us to describe and successfully
develop a working prototype for a large web browser library, and obtain data on
practical considerations like instrumentation completeness and runtime performance
overhead.

3.4. Type consistency data structure
Let T be the set of C++ types in a target program. We present a process that can
be applied to a codebase in order to support type consistency checks. The general
steps are as follows:

1. Accept a set D of types as input which are deemed dangerous by the user;
2. Determine the subset Checked ⊆ D of maximum size for which type consis-

tency can be checked efficiently using the proposed data structure;
3. Add library code to the target program to support the program instrumentation;
4. Compile the target program under a transformation pass which applies the

instrumentation.

The resulting program has access to a data structure that can efficiently answer
type consistency queries: Given a pointer p of type s∗ with s ∈ Checked, it can
determine whether p is type consistent.
The fundamental primitive by which this is achieved is type isolation: For each

s ∈ Checked and for each of its object-allocated super-records t ∈ Super(s),
object allocations of type t are served from an isolated heap which is initially
zero-initialized and where only objects of type t are allocated, at regular offsets
0, sizeof(t), 2 · sizeof(t) and so forth. The set of types placed in isolated heaps
is called Iso. This leads to a repetitive type structure within each heap: Given a
pointer p into an isolated heap for some type t, it can be decomposed into three parts
p = Ht +k ·sizeof(t)+∆, where Ht is the start address of the isolated heap, k is the
index of the object which p points into, and 0 ≤ ∆ < sizeof(t) is the inner-object
offset to which p points. If p has type s∗, and ∆ ∈ Offset(t, s), then it is type
consistent. Note that isolated heaps are safe heaps according to our definition from
above, as long as they are allocated with unmapped memory surrounding them.
With access to a data structure that represents Offset, the program can now

check type consistency for pointers to Checked types. Note that type isolation
is an example of type-consistent memory reuse which was proposed by [6] and [7]
and is already implemented in various software products. Type-consistent memory
reuse has the property that type consistency of pointers is preserved over time, and
dangling pointers remain type consistent.

17

3.4. TYPE CONSISTENCY DATA STRUCTURE

3.4.1. Algorithm
Given a C++ program and the set of types D, we will now describe how to determine
Checked ⊆ D and the set of object-allocated types Iso which have to be placed
in isolated heaps in order for the proposed data structure to work. A number of
circumstances restricts our choice of these two sets, as described in the following.

Let Brown ⊆ Black ⊆ Allocated and Red be subsets of T defined as follows:
t ∈ Allocated if t is object-allocated. t ∈ Brown if t is object-allocated, but
cannot be put into an isolated heap due to implementation-specific restrictions. Our
suggested implementation, as described in subsection 3.5.1, entails the following
restrictions:

• t is not a type defined via class or struct;
• t is a local class, defined within a C++ function;
• t is a template class;
• sizeof(t) is too large;
• t has derived classes but no virtual destructor;
• There exists a helper function that allocates t manually and overloads

operator delete to be compatible with that allocation mechanism;

t ∈ Black if t is object-allocated, but cannot be put into a checked isolated heap,
because t ∈ Brown or because other implementation-specific restrictions prevent us
from building the Offset data structure on t (see subsection 3.6.1).
t ∈ Red if pointers to t cannot be checked for type consistency. This occurs in

one of the following cases:

• t is contained in a complex allocation;
• t ∈ Black;
• s ∈ Red for some super-record s of t.

The last case implies transitivity of Red with regard to type composition, i.e. if
some t ∈ Red then all sub-records of t are as well. These definitions let us formulate
the restrictions imposed on Checked and Iso:

• Checked ∩Red = ∅
• Super(Checked) ∩Allocated ⊆ Iso

The maximal choice of Checked is thus Checked = D \ Red. We are free
to choose isolated types in Allocated outside of Super(Checked), in order to
ensure type-consistent memory reuse in the corresponding heap region. Particularly
interesting candidates are those types in D \Brown.

18

3.5. PROGRAM ANALYSIS AND INSTRUMENTATION

3.5. Program analysis and instrumentation
In order to understand the types defined and used by a given target program and to
identify dangerous pointers, we require compiler-specific information. We developed
a Clang extension that hooks into a successful compilation process of the program
and extracts all relevant information from the final typed C++ AST, which includes:

• The memory layouts assigned to all class and struct definitions by the
compiler;
• Information about pointer members of classes and structures;
• Information about object allocation sites.

From this we can compute the Offset relation and the Checked and Iso sets
as described above. We also compute two additional sets for optimization purposes:
Wild contains all types that can occur inside a wild heap region. This set is
computed by considering all uninstrumented allocation sites and the object types
which those allocations can contain. WildPointers contains all types t for which
a pointer t∗ can occur inside a wild heap region.
We assign a unique identifier IDt ∈ N to every relevant type t ∈ T . All of this

information is stored in a simple text-based database. A second compilation pass
of the target program is performed which applies transformations to the AST in
order to add the necessary type isolation and pointer check instrumentation. The
instrumentation makes use of a small runtime and template library, as well as a
special-purpose allocator library to implement the isolated heaps. In the following
we will give a short overview over the AST changes performed to the target code
base.

3.5.1. Per-type metadata and allocators
The first transformation that the instrumenting compilation pass applies works on a
class/struct definition level, illustrated by example Figure 3.1. The static member
variable t::type_id corresponds to the value IDt defined above. In the case where
the new/delete operators for t are already overloaded, the existing overloads are
replaced. The decision to perform this instrumentation on an AST level induces
a number of restrictions: since the resulting AST must correspond to a legal C++

program, language semantics dictate that

• t must be a compound type defined via class or struct;
• t cannot be a local type, defined inside a function, since those cannot have

static members;
• t cannot be a template class or partial template specialization. It can however
be an explicit full template specialization. The problem with underspecified
(i.e. template argument-dependent) template definitions is that there is no

19

3.5. PROGRAM ANALYSIS AND INSTRUMENTATION

class t {
int x;
// ...

};

class t {
public :

static constexpr size_t type_id = 1337;
static IsoHeap <A> isoheap ;
void* operator new(size_t) {

return isoheap . allocate ();
}
void operator delete (void* o) {

return isoheap . deallocate (o);
}
// ... more operator overloads

private :
int x;
// ...

};

Figure 3.1.: This example illustrates the transformations applied to relevant type
definitions for type isolation and per-type metadata.

obvious way to specify a compile-time value for the type_id member, which
is a function of the final concrete type. To the best of our knowledge, this
would require applying AST transformations on a per-template-instantiation
basis, which is non-trivial given the Clang programming interface. There is
also no general way to forward declare t such that a type-level function can be
used instead of a static member. To keep our prototype somewhat simple, we
decided not to implement a more advanced solution.
• There can be no places where an object of type t is allocated in a custom
way, expecting the object to be deleted later using a specific delete operator.
As an example, assume the standard free function is used as the global
operator delete. A constructor function could allocate space for an object
via malloc instead of operator new, which will cause the program to break if
operator delete is overwritten to use anything other than free.
• If t does not have a virtual destructor, it cannot have object-allocated derived

classes, because the defined delete operator is invalid for pointers upcast from
a derived class to t∗.

The IsoHeap implementation might have additional restrictions such as a maximum
object size. These restrictions define the set Brown.

3.5.2. Instrumenting pointer fetches
Our goal is to implement the (wild) pointer type consistency policy, and as such
we have to instrument all locations where pointers are fetched from the heap. In

20

3.5. PROGRAM ANALYSIS AND INSTRUMENTATION

struct t;
struct A {

t* x;
unique_ptr <t> y;
void test () {

this ->x; // member access
*y; // smart pointer dereference

}
};
vector <t*> vec (10);
t** ary = new t *[10];
A a;
void test () {

vec [0]; // container access
*ary; // pointer to pointer
a = *new A{}; // copy

}

Figure 3.2.: Examples of pointer fetches which must be instrumented by our second
compilation pass.

C++ semantics this corresponds to dereferences of the form ∗p where p has type
t** for some t ∈ Checked, and p points into the heap. An overview of multiple
different manifestations of this pattern are illustrated by Figure 3.2. The last line
highlights a notable special case: If a pointer is copied from the heap to another
memory region, it must be checked during this operation according to our security
policy. We solve this approximately by using the C++ type system and applying
the transformations illustrated in Figure 3.3. The example shows the introduction
of a pointer-like wrapper class CheckedPtr<t> which replaces the usage of the raw
pointer type t*. It represents a pointer which can only be read after checking it
according to our security policy.

unwrapChecked and refChecked perform the task of checking the wrapped pointer
value and returning the value as an rvalue and lvalue, respectively. The decision
which wrapper function to use is based on whether the result is implicitly cast to
an rvalue in the AST, indicating that the pointer value is only read from rather
than written to. refChecked is unsafe by definition: Since it returns a reference to
a checked pointer rather than the pointer itself, if this reference is used to later read
the pointer value, there is window in time between the check and the use of the value
during which the value could have changed. Storing the reference and retrieving
the pointer value later, after it might have already changed, is unsafe. Hence our
instrumentation only introduces this function as a last resort, and prefers to rely on
operator overloads such as CheckedPtr::operator= and CheckedPtr::operator+=
where possible. As a standalone smart pointer type, CheckedPtr behaves according
to the usual pointer semantics. It has a copy constructor that performs the required
type consistency check.

21

3.5. PROGRAM ANALYSIS AND INSTRUMENTATION

struct A {
t* x;
t* get () {

return x;
}
void change () {

x += 10;
}

};
template <class T>
struct B {

T x;
T get () {

return x;
}

};
vector <t*> vec;
void test () {

t* x = vec [0];
}

template <typename t>
t* unwrapChecked (

const CheckedPtr <t>& x);
template <typename t>
t*& refChecked (CheckedPtr <t>& x);

struct A {
CheckedPtr <t> x;
t* get () {

return unwrapChecked (x);
}
void change () {

refChecked (x) += 10;
}

};
template <class T>
struct B {

MakeCheckedPtr_t <T> x;
T get () {

return refChecked (x);
}

};
vector <CheckedPtr <t>> vec;
void test () {

t* x = unwrapChecked (vec [0]);
}

Figure 3.3.: This examples illustrates the transformations applied to raw pointers to
types in Checked. MakeCheckedPtr_t is a type-level function the
declaration of which is left out for brevity. Its purpose and functionality
is explained in subsection 3.5.2.

22

3.6. POINTER CHECKING ALGORITHM

To instrument template class fields which can be pointers and non-pointers in
different instantiations, the MakeCheckedPtr_t<t> type-level function is used which
resolves to CheckedPtr<remove_pointer_t<t>> if t is a checked pointer type, or
just t otherwise. Both unwrapChecked and refChecked fall back to the identity
function in case the argument is not a CheckedPtr, so both can be used with an
argument of type MakeCheckedPtr_t<t>.
This conceptually simple approach allows for violations of the security policy

in certain scenarios. An example of this would be a function of type f(t*& x)
with t ∈ Checked and an instrumented call site f(refChecked(x)). Here, x is
checked at the call site. f however receives a reference to a potentially dangerous
pointer and there is no guarantee that it is not used at a later time without a check.
The obvious solution to this problem would be to turn every instance of t* into a
CheckedPtr<t> – in the given example it would mean to change f’s parameter type
to CheckedPtr<t>&. This is a highly invasive transformation and would likely require
additional compilation passes, as well as introduce a lot of unnecessary pointer checks.
We believe in order to employ this approach, at least comprehensive control and data
flow analysis would be required to identify pointers that provably cannot originate
from the heap, which is outside of the scope of this work.
For our prototype implementation, we used a different, less generic approach:

Where possible, we avoid the refChecked wrapper function completely, and instead
overload the assignment operators of the CheckedPtr smart pointer type. This
means that the problematic pattern where a check is performed but a reference is
passed on is not introduced. Instead, compilation errors are produced at the affected
locations, which need to be investigated manually as a result.

3.6. Pointer checking algorithm

Start address End address Heap contents
0x2000,0000,0000 0x3000,0000,0000 Unsorted isolated heaps
0x3000,0000,0000 0x3000,0000,0000 Fixed isolated heap for type t
+ IDt · 0x800,0000 + (IDt + 1) · 0x800,0000

0x3800,0000,0000 0x4000,0000,0000 Everything else (wild heap)

Figure 3.4.: Address space layout of the heap. For each t ∈ Iso with IDt < 216, a
128 MiB heap region is pre-allocated. The entire heap spans the ad-
dress space 0x2000,0000,0000–0x4000,0000,0000, which amounts
to a total of 32 TiB. This address interval does not collide with any
default OS mappings on Windows, macOS or Linux. In between the
regions, a configurable amount of pages is protected by setting the
page permissions to zero.

23

3.6. POINTER CHECKING ALGORITHM

Input: p, a value of type t ∗ ∗ with t ∈ Checked.
Output: The pointer value x = ∗p if it is type consistent, or else a program crash.

if t /∈WildPointers and only wild pointer consistency required,
then return x (this situation is known at compile time)

1: if p not on heap or x = Null then
2: // No need to check according to policy
3: return x
4: end if
5: if only wild pointer consistency required and and p not on wild heap then
6: // No need to check according to policy
7: return x
8: end if
9: startt := 0x3000,0000,0000 + IDt · 0x800,0000 (known at compile time)
10: if x ∈ [startt, startt + 0x800,0000) then
11: // Fast path, just ensure alignment
12: assert x− startt mod sizeof(t) = 0
13: return x
14: end if
15: if x points inside pre-allocated isoheap region of another type then
16: // Compute type of containing object
17: IDu := (x− 0x3000,0000,0000) div 0x800,0000
18: startu := 0x3000,0000,0000 + IDu · 0x800,0000
19: // Decompose x = startu + k · sizeof(u) + ∆
20: ∆ := (x− startu) mod sizeof(u)
21: assert ∆ ∈ Offset(u, t)
22: return x
23: end if
24: // Invalid pointer detected
25: Crash the program

Figure 3.5.: Algorithm checkAndFetch for (wild) pointer type consistency check.

24

3.7. CASE STUDY: INSTRUMENTING THE WEBCORE LIBRARY

To provide an efficient method for the pointer-checking code to distinguish between
different heap regions, we lay out the address space as depicted in Figure 3.4. Checking
whether an address is on the heap at all, or within any of the specific heap regions,
amounts to a simple bit-masking operation and comparison. Figure 3.5 shows the
algorithm used for checking and fetching a pointer from the heap, given the address
where it is located.

3.6.1. Type metadata data structure
For pairs of types t ∈ Iso ∩ Super(Checked) and s ∈ Checked, we need a data
structure representing Offset(t, s). Let n be the number of types covered by our
analysis pass. The data structure we chose is a matrix M of dimension n× n where
each element is a bitmap of size m. For a := IDs and b := IDt, the i-th bit in Ma,b is
set to 1 if and only if 8 · i ∈ Offset(t, s). As such, Ma,b compactly represents the
set Offset(t, s). Due to the constant size of each bitmap, we can place each matrix
entry at a memory location solely dependent on the values of a and b. Thus, given
the type identifiers of s and t as well as an offset ∆, only a single memory access is
required to establish whether ∆ ∈ Offset(t, s), which is precisely the information
required by our pointer check algorithm introduced above.

This data structure has two inherent restrictions: It can only handle types t ∈ Iso
of size at most m · 8, and it can only handle sub-objects whose offset from the
beginning of the containing allocation is aligned to 8 bytes. In our implementation
we choose m = 1024, which covers objects of up to size 8192 bytes. Object types
above this size, or those with checked sub-objects aligned to 4 bytes or less fall into
the Black set of types.
The memory footprint of this data structure is reasonable due to the fact that

almost all entries of the matrix are zero and can be mapped in memory without
reserving physical pages. We will measure the precise resident set in our evaluation
section subsection 4.2.4.

3.7. Case Study: Instrumenting the WebCore library
To evaluate the viability of our proposed data structure and compiler instrumentation,
we were considering open-source projects with the following properties:

• Large and modern enough to contain many examples of rare uses of C++

language features and standard library – we want to make sure that we can
handle all kinds of special cases;
• Supports compilation with current Clang, under the newest C++ standard
(C++17);
• Highly security-critical, ideally with remote attack vectors;
• Actively developed and audited for security issues;

25

3.7. CASE STUDY: INSTRUMENTING THE WEBCORE LIBRARY

• Recent data about public vulnerabilities and well-established vulnerability
triaging processes.

The most obvious choices are the open-source web engines Blink, Gecko and WebKit
that are part of the major web browsers by Google, Mozilla and Apple, respectively.
Out of those, Blink and WebKit already have implementations of isolated heaps, and
WebKit has an opt-in per-class isolation mechanism called IsoHeap which is ideal
as starting point for our prototype. At the time of writing, the WebKit code base
contains approximately 3.3 million lines of C++ code, including 1 million lines inside
header files.

What makes WebKit particulary appealing as a case study is the fact that in 2017
and 2018, more than 40 security bugs were reported in WebKit by Ivan Fratric and
Jung-hoon ‘lokihardt’ Lee, who run browser fuzzing projects at Google, and other
examples of security-critical bugs are publicly documented. All of these issues are
caused by memory corruption. This gives us insights into the nature of common
security vulnerabilities in this code base. We have to be careful to interpolate from
one code base to others however, as well as from one security researcher to others,
but this is currently the best we can do with public information.
The list of recent public security bugs in WebKit can be grouped into three

categories: Bugs inside the JavaScript engine (JavaScriptCore, JSC), bugs inside
the main HTML/DOM engine (WebCore), and bugs in third-party libraries such as
libwebrtc. JSC vulnerabilities tend to be caused by logic flaws that are exploited
very differently on a case-by-case basis. Objects in JSC are managed by a garbage
collector, store dynamic type information and often contain a dynamic amount of
inline data. As such their characteristics are very different from the traditional, fixed-
size C++ objects that we are focusing on in this work. We believe this component
deserves and requires its own special-purpose mitigations. For our case study, we
focus on the WebCore library instead: The set D of dangerous types is chosen as all
the types in the WebCore namespace.

3.7.1. Isolated heap allocator

For our prototype, we used the bmalloc allocator implementation included in the
WebKit library. It allocates isolated heap memory in pages of size 16 KiB. Chunks
are allocated right next to each other from bottom to top within a page, using a
simple bump allocator. A bitmap located at the beginning of each page keeps track
of chunk liveness. Once the most recently allocated page fills up completely, the
bitmap is used to build up a singly linked free list of unused slots. The forward
linked list pointers are stored inside the free chunks, XOR-ed with a random value,
which is a slight violation of our definition of type safety and consistency, which
would require a zero instead of a random value in this location.

26

3.7. CASE STUDY: INSTRUMENTING THE WEBCORE LIBRARY

3.7.2. WebKit containers and allocators
WebKit bundles its own support library called WTF – presumably an abbreviation
for WebKit Template Framework. It provides various container types, the most
common of which are Vector, RefPtr, Ref, HashMap and HashSet. RefPtr and
Ref implement reference-counted NULL-able and non-NULL-able smart pointers,
respectively, which are used instead of std::shared_ptr.
WebKit uses the allocator provided by the C++ standard library in some places,

but also bundles its own allocator bmalloc. bmalloc is used to implement the
FastMalloc, Gigacage and IsoHeap mechanisms: FastMalloc supports simple malloc-
style allocations of arbitrary size. Chunks of similar size are placed in the same heap
pages. The WTF_MAKE_FAST_ALLOCATED macro can be used in a class definition to
generate new/delete operator overloads backed by FastMalloc.

Gigacage groups together allocations of certain types in a large heap regions of size
more than 232 bytes. At the time of writing, all JavaScript array buffers are allocated
in one such region. Gigacage was most likely introduced as a mitigation against
timing side channel attacks: array accesses with 32-bit indexes can not point outside
of the corresponding heap regions and leak data from there by design. Currently
it is not used by WebCore. IsoHeap is an implementation of a type-isolated heap
which is described in subsection 3.7.1. It is enabled for a specific class or structure
type using the WTF_MAKE_ISO_ALLOCATED macro. At the time of writing, 362 types
in the WebCore namespace carry this annotation.

3.7.3. Instrumentation and library code
We implemented the instrumentation described in section 3.5 with the WebKit
codebase in mind and added the necessary library support code to the WTF library.
During development of the Clang compiler plugin we encountered a bug in the
source location functionality of the Clang AST which prevented us from apply-
ing the MakeCheckedPtr_t transformation to some very generic template classes
such as RefPtr and std::unique_ptr. We worked around these issues by in-
strumenting these classes using manual source code changes. Also, we manually
added instrumentation to Vector<t*> where t ∈ Checked, so that it behaves
like Vector<CheckedPtr<t>> in client code, but without requiring checks whenever
copying a pointer from one heap location to another, for example during resize
operations. This is valid due to the fact that the destination of such copies is always
a wild heap location, and the pointer is not dereferenced in the process.
Other library changes include a drop-in replacement for the memory manager

VMAllocate, to implement the address space layout depicted by section 3.6, as well as
the addition of the pointer checking implementation itself. In some places we manually
fixed compiler errors that resulted from our second compiler pass. For example, due to
the way we instrument Vector<t*>, loops of the form for (auto* it : <vector>)
had to be changed to for (auto it : <vector>) with the type of it changing
from t* to CheckedPtr<t>.

27

3.8. OPTIMIZATIONS

As a simple optimization if only wild pointer type consistency is required, we can
use the information represented by the set Wild (see section 3.5) to avoid some
instrumentation: Pointer fields contained in class or structure definitions which are
not contained in this set require no instrumentation, since such a pointer can never
occur on the heap.

3.8. Optimizations
In order to achieve a reasonable performance of our instrumentation, we put some
optimization effort into the pointer check algorithm due to its omnipresence in
the program. In particular, we replaced the costly division operation to compute
inner-object offsets by cheaper multiplication operations followed by a right shift,
a transformation also commonly employed by mainstream compilers to optimize
division by constants.

Furthermore, for some types of pointers we implemented special cases specifically
optimized for WebCore to avoid the usage of our generic CheckedPtr type. This
includes WTF::RefPtr, std::unique_ptr as well as WTF::Vector<T*>. A good
example of how special cases can lead to fewer checks is a WTF::Vector containing
pointers: A strict implementation of pointer type consistency requires checking all
pointers whenever the backing buffer of the vector is resized and all elements are
copied to the new allocation. By special casing this operation, we can avoid the
checks since it is clear that the pointers are not dereferenced, and they are copied
from one wild heap location to another one, so they will be checked before their next
use.

3.9. Limitations of our implementation
There are two major limitations of our current prototype implementation that we
are aware of: One is the absence of pointer checks for raw references – i.e. T& and
const T& in C++, where T ∈ Checked, due to technical reasons related to the
way we process the Clang AST. The second limitation is explicit black listing of
some classes from being included in the Checked set, due to what we believe is a
bug in Clang when fetching the source location corresponding to certain expressions.
Specifically, in the Clang AST we are looking for clang::MemberExpr nodes that
access pointer fields of a class or struct. However, for some template classes it
seems that Clang returns the wrong source location for these expressions, preventing
the rewriting required by our instrumentation. We worked around this issue by
detecting the affected instances with a heuristic and excluding the corresponding
types from the Checked set. Unfortunately this affects some types high up in the
type hierarchy such as WebCore::Node. Reducing this problem to a manageable
subset of the source code – for purposes of root causing the issue and reporting it
to the LLVM maintainers – has so far eluded us, since it appears to occur mostly

28

3.9. LIMITATIONS OF OUR IMPLEMENTATION

within template classes that are instantiated with multiple very commonly used
types. However, our security evaluation in subsection 4.3.1 shows that both of these
limitations do not seem to effect any of the real-world vulnerabilities we analyzed.

29

4. Evaluation
In the previous chapter, we described a prototype implementation of our proposed
pointer type safety and consistency policies. To reiterate, this entailed changes to
the target program, applied at compile time: As a fundamental building block, we
put many extra types into isolated heaps according to the result of an algorithm
run on the C++ type structure of the program. Besides increasing type-safe memory
reuse in the program in and by itself, this has the added advantage of allowing us
to perform efficient type checks within these regions. A second instrumentation is
performed at compile time to add such pointer type checks.

In the following we will evaluate the result of our WebCore instrumentation for wild
pointer type safety and consistency with a focus on performance, memory efficiency
and effectiveness as a security mitigation. To evaluate the latter, we will analyze
recently patched security vulnerabilities in WebCore and compare exploitation options
with and without our instrumentation. We will also analyze attacker models under
which our approach breaks fundamentally, and propose theoretical solutions to some
of these problems. All experiments were performed using our instrumented WebKit
codebase, which is based on commit 736db5b1f5 from July 17th, 2018 in the Git
mirror repository.1.

4.1. Static analysis results
To interpret the performance data, we will first lay out basic information about
the extent of the instrumentation. Our static analysis pass identified about 2.8
million relevant C++ types across the entire WebKit codebase. Amongst all types, we
identified 12511 types that are object-allocated, and 16791 for which there exists some
other type that points to it. There are 1456 types which cannot be put in checked
isolated heaps using our implementation for various reasons – this corresponds to
the set Black described in subsection 3.4.1. Furthermore, the size of Red, the
set of types which cannot be checked – the reasons for which are also laid out
in subsection 3.4.1 – is 5520. As a result, we identified 2089 types which we can
automatically place in isolated heaps, constituting the set Iso. Out of these, 1994
have full type information available for pointer checks. To put this into perspective,
the original WebKit codebase only uses isolated heaps for 362 or 17.3% of these by
default.
The set of dangerous types D was chosen to include all types in the WebCore

namespace, which amounts to 1465 types. The type information available for the
1https://github.com/WebKit/webkit/commit/736db5b1f5

31

https://github.com/WebKit/webkit/commit/736db5b1f5

4.2. DYNAMIC EVALUATION

majority of the isolated heaps allows us to check pointers for |Checked| = 1190
types. This includes many types which have been subject to memory corruption bugs,
or which have been used as part of memory corruption exploits against WebCore in
the past, as we lay out in subsection 4.3.1. For 439 out of the 1190 checked types
t, pointers of type t∗ can only occur inside safe heap regions, which allows us to
optimize pointer checks away if only wild pointer safety/consistency is desired.
The total size of our offset data structure amounts to 222 KB, however since it

is initialized lazily and due to its non-local structure the actual virtual memory
footprint differs in practice. We measured it dynamically in our different performance
benchmarks.

4.2. Dynamic evaluation
In this section we describe the dynamic experiments performed using the WebKit-
GTK+ Minibrowser, the open-source browser which is shipped as part of the WebKit
codebase. By running our instrumented build on several benchmarks, we collected
dynamic data about the pointer instrumentation such as the number of checked
pointer fetches, categorized by the different types of pointers, and by the different
paths taken in the pointer fetch algorithm. By comparing the runtime performance,
memory usage and code size against an uninstrumented build, we gathered insights
into the overhead of the two essential parts of our instrumentation, which are the
automatic type isolation and the pointer type consistency checks.
All experiments were performed using a builds which implement one of the wild

pointer safety or consistency policies section 3.2, which we think provide the best
trade-off between performance and security.

4.2.1. Experimental setup
We selected three different benchmarks that reflect modern usage of the DOM and
other WebCore features:

• The gmail experiment is performed as follows: We log into our own Google
Mail account, then open a new tab and browse to the inbox page.2 We measure
the time from pressing ENTER until the load indicator in the tab bar stops
spinning, i.e. the time to load the page fully. Lower page load times indicate
better performance.

• The dromaeo experiment consists of a full pass through the DOM-related
benchmarks in the Dromaeo browser benchmark suite.3 The benchmark reports
the number of tests performed per second, hence higher numbers indicate better
performance. Since some of the individual benchmarks cause a large amount of

2https://mail.google.com/
3http://dromaeo.com/?dom|jslib|cssquery

32

https://mail.google.com/
http://dromaeo.com/?dom|jslib|cssquery

4.2. DYNAMIC EVALUATION

allocations which crash the Minibrowser due to the renderer process running
out of memory, we removed the “DOM Events (jQuery)” and the “DOM
Modification” tests for our experiments.

• The speedometer experiment consists of a full pass on the Speedometer 2.0
benchmark.4 This benchmark is designed to capture the interactions of modern
web frontend frameworks with the DOM and other web features and was
recommended to us by a lead Apple engineer as a meaningful real-world
benchmark for overall WebKit performance.5 The benchmark runs 480 different
experiments one after each other, and reports the number of experiments
completed per second. Hence, higher numbers indicate better performance.

All benchmarks were conducted using three differently configured versions of the
same WebKit codebase, based on commit 736db5b1f5 from July 17th, 2018 in the
Git mirror repository.6. The builds were performed using our modified Clang version,
built from HEAD on Ubuntu 18.04.1. The configurations are as follows:

• vanilla is a regular WebKitGTK+ release build.

• instrument is a WebKitGTK+ release builds with instrumentations to imple-
ment our wild type pointer consistency policy.

• instrument-clobber is identical except for additional code which clobbers all
objects in isolated heaps using memset upon free. Thus it implements the
stronger wild pointer type safety policy.

• unchecked is a WebKitGTK+ release build with our automatic type isolation
instrumentation active, but without object clobbering and without the pointer
fetch instrumentation. Specifically, the difference to instrument is the lack of
pointer checking. We added this target to isolate the performance costs of type
isolation against object clobbering and our pointer checking algorithm.

• unchecked-clobber is the same build but with the above-mentioned clobbering
enabled.

We also used a debug build of the instrument target, extended by a mechanism to
collect statistics about memory usage of the offset data structure, as well as detailed
statistics about the pointer fetch algorithm. For obvious reasons it is not used in the
performance benchmarks.

The experiments were conducted inside a Ubuntu 18.04.1 virtual machine running
in VMware Workstation 15.0.2 on a Windows 10 host. The VM was configured to
use all eight cores (and 16 hyper-threads) of the AMD Ryzen 7 1800X CPU available
to the host, as well as 24 GB of DDR4 RAM. We performed each experiment at
least 5 times on each target. In between runs we restarted the browser process to
return to a clean process state.

4https://browserbench.org/Speedometer2.0
5https://twitter.com/filpizlo/status/1049723484857806848
6https://github.com/WebKit/webkit/commit/736db5b1f5

33

https://browserbench.org/Speedometer2.0
https://twitter.com/filpizlo/status/1049723484857806848
https://github.com/WebKit/webkit/commit/736db5b1f5

4.2. DYNAMIC EVALUATION

4.2.2. Instrumentation results
In the speedometer benchmark, 452 of the isolated types were allocated at least once
by the program. The distribution of classes of pointers fetched via the pointer check al-
gorithm is as follows: raw pointers (55.0%), WTF::RefPtr (34.4%), std::unique_ptr
(10.3%) and WTF::Vector<T*> backing buffers (0.3%). In total, the pointer fetch
algorithm fetchAndCheck is called 1.1 billion times. In 24.6% of cases, the pointer
is identified to not be located on the heap and thus does not need to be checked.
In another 67.4% of cases, the pointer is not located on a wild heap, and since we
implement the wild pointer type safety policy, does not need to be checked either.
These two situations occur when our static analysis cannot prove that the given
pointer field is always located on the stack or non-wild heap, respectively. The
remaining 8.0% of cases actually require checking the value of the requested pointer,
and the different cases of the checking algorithm are distributed as follows: Null
pointer (6.1%), fast path (77.6%), slow path with ∆ = 0 (16.2%), as well as slow
path with ∆ 6= 0 (0.1%).
In the dromaeo benchmark, only 358 isolated types are allocated during the

entirety of the experiment, and fetchAndCheck is invoked 6.9 billion times. The
distribution of checked pointer types is: raw pointers (96.9%), WTF::RefPtr (2.4%),
and std::unique_ptr (0.6%). 98.9% of pointers are not located on the wild heap and
hence are not checked, which is an even higher percentage than in the speedometer
case. Of the remaining pointer checks, 8.7% return Null, 77.3% are resolved via
the fast path, and 13.2% are resolved via the slow path for ∆ = 0.

In the gmail benchmark, to the best of our knowledge, the precise numbers differ
slightly from the speedometer benchmark, however the overall patterns are the
same. Unfortunately our debug build of WebKit – which collects all of the above
information – crashes in the middle of loading the Google Mail inbox page due to
some unexpected timing gap introduced by the slow maintenance of the pointer logs;
hence we were not able to collect the full trace of an entire page load.

One interesting observation here is that it appears as if better static analysis could
help eliminate the large portion of calls to fetchAndCheck that can successfully
return early without even considering the actual value of the pointer, for example
because a pointer is not located on the heap.

4.2.3. Wall clock results
The detailed timing results for each combination of target and benchmark can be
found in Table 4.1. In the gmail benchmark, we can observe a 3.7% timing increase
induced by our automatic type isolation, while the pointer checks induce another
6.3% increase, yielding a combined 10.3% wall clock time increase of the instrument
build compared to the vanilla build. The insights into the overhead of object
clobbering on free are not conclusive given our data, since they range from 5.0% to
8.3% between the instrumented and unchecked build.
In the dromaeo benchmark, we measure throughput instead of time, so larger

34

4.2. DYNAMIC EVALUATION

numbers are better. We observed a 2.4% increase in throughput in the unchecked
compared to vanilla, which can likely be attributed to better cache locality and
the simpler allocator used for IsoHeaps. The pointer checks in the instrumented
however reduced the throughput back to the level of the vanilla target. Object
clobbering causes a 1% throughput decrease in this experiment.
In the speedometer benchmark, which also measures throughput, we observe a

2.0% decrease in throughput from type isolation, and an additional 10.7% decrease
from pointer checks, which amounts to a total throughput decrease of 12.7%. Object
clobbering accounts for a further 0.5–1% decrease in throughput.
One other metric we can extract from the benchmarks is the average wall clock

time per pointer check. For the speedometer benchmark, we computed an average
difference of 8.5 seconds in total execution time between the instrument build and
the vanilla build. This extra run time is mostly the result of the added pointer
fetches as we have observed above. As a lower bound, we can estimate a pointer
check rate of 1.1 billion per 8.5 seconds, which corresponds to 7.7 nano-seconds per
check, or about 27.8 clock cycles per check. By rough estimation, this indicates that
most invocations of fetchAndCheck can be served from a CPU cache without a slow
DRAM memory access, for example due to one of the the fast paths of the algorithm
being applicable.
We attribute the drastic difference between the outcome of the dromaeo and

speedometer benchmarks to their drastically different object usage patterns. While
in dromaeo, the same or very similar operations involving similar objects are iterated
many times in a loop, speedometer emulates the behavior of modern, complex
JavaScript applications interfacing with the DOM in a realistic way. It appears that
the latter usage pattern is affected more by the cache locality and code caching issues
that come with type isolation as well as our pointer fetch instrumentation.

4.2.4. Memory usage results
In all benchmarks, we observed from 450-600 distinct types being allocated on
IsoHeaps, and 1000-1200 physical pages of memory (around 4 MiB) being occupied by
our Offset data structure. Note that this memory region is common to each content
process and could be located in shared memory, without requiring re-initialization
by every new process.
Additionally, in order to measure the memory overhead of the automatic type

isolation instrumentation, we polled the VmRSS entry of the /proc/<PID>/status
Linux file to collect the maximum residual memory size of the renderer process across
an entire benchmark run. The results of this measurement are not quite conclusive:
For speedometer benchmark, we measured RSS maxima of 370, 366 and 405 MiB
in 3 different runs with the vanilla build. For the unchecked build on the same
benchmark, we measured RSS maxima of 384, 430 and 389 MiB across three runs.
Our best guess is that non-deterministic garbage collection behavior is causing the
high variance. The best conclusion that we can draw from this is that while slightly
more memory is used by the build with automatic type isolation enabled, it likely

35

4.2. DYNAMIC EVALUATION

benchmark target n µ σ min max
gmail vanilla 5 5.03 0.19 4.88 5.14
gmail unchecked 5 5.22 0.35 5.08 5.46
gmail unchecked-clobber 5 5.48 0.33 5.35 5.76
gmail intrumented 5 5.55 0.43 5.28 5.77
gmail intrumented-clobber 5 6.01 0.37 5.83 6.32
dromaeo vanilla 5 12752.4 82.81 12709 12808
dromaeo unchecked 5 13064.0 109.22 13013 13125
dromaeo unchecked-clobber 5 12979.6 37.62 12963 13007
dromaeo intrumented 5 12783.4 41.41 12756 12804
dromaeo intrumented-clobber 5 12631.6 309.99 12413 12841
speedometer vanilla 40 69.89 7.01 66.28 71.86
speedometer unchecked 40 68.40 8.01 65.18 70.69
speedometer unchecked-clobber 40 68.09 9.01 64.98 71.14
speedometer instrument 40 61.02 5.03 59.52 63.21
speedometer instrument-clobber 40 60.31 7.37 56.54 62.61

Table 4.1.: Summary of timing results for the different benchmarks. Numbers repre-
sent the metrics defined above in subsection 4.2.1. Note that the gmail
benchmark measures total time, while dromaeo and speedometer mea-
sure throughput. Hence lower numbers are better in the former case,
and higher numbers are better in the latter. n is the number of runs,
µ is the mean result, σ is the standard derivation. The “min” and
“max” columns represent the minimum and maximum result for each
benchmark/target combination.

36

4.3. SECURITY EVALUATION

target .text (in MiB) .data + .bss (in MiB)
vanilla 67.69 3.12
unchecked 96.96 4.39
unchecked-clobber 97.22 4.39
instrument 110.36 4.42
instrument-clobber 110.62 4.42

Table 4.2.: Summary of code and data size of WebKit libraries.

stays within a 10-30% margin of the uninstrumented build. However, this is not a
statistically significant statement. Rigorously proving this would probably require a
much more deterministic benchmark.

4.2.5. Binary size results
While we did not optimize for code size or binary size in general during our implemen-
tation, it is still an interesting metric to understand, especially due to its indirect effect
on cache efficiency. For each of the target builds, we stripped libwebkit2gtk-4.0.so
of debug symbols and compared the size of the .text segment, which contains the
source code, as well as the combined of the .data and .bss segments containing
read-only and writable data. This file contains the entire WebKit library, which
consists mostly of WebCore code but also some UI and GTK rendering logic.

From the results in Table 4.2 it is obvious that both type isolation as well as our
pointer fetch instrumentation add a considerable amount of code. Code size went
up by 43.2% due to type isolation, and an additional 19.8% of the original vanilla
code size due to the added pointer checks. This is most likely the result of extensive
use of compile-time constructs such as templates and function inlining, which can
potentially be improved by careful refactoring without sacrificing performance –
perhaps even improving performance as a side effect. The additional memset calls
required for clobbering have an almost negligible impact of less than 0.4% on code
size.

4.3. Security evaluation
Our conjecture is that the proposed instrumentation provides meaningful security
benefits against memory corruption exploits. To investigate this hypothesis, we
analyzed it manually as a security mitigation from both a practical and theoretical
angle: First, we looked at past, known vulnerabilities in WebCore and categorized
them by their underlying vulnerability class. As far as this was viable on a case-by-
case basis, we tried to imagine and test how our modifications would have affected
the practical exploitability of these vulnerabilities in hindsight.
As a result, we identified general bug patterns and vulnerability classes against

37

4.3. SECURITY EVALUATION

which the proposed approach of automatic type isolation and pointer type checking
is particularly effective, and which classes of bugs are generally powerful enough to
bypass it. We also considered the mitigation from a theoretical viewpoint, identi-
fying generic weaknesses, some of which are inherent to the approach and some of
which could be addressed using additional implementation work, static analysis or
instrumentation.

4.3.1. Empirical analysis based on patched vulnerabilities
For our empirical evaluation, we collected all reports of security issues in WebCore
published in 2017 and 2018 that were available publicly with at least a very brief
analysis such as a reproducing test case and an AddressSanitizer stack trace [14].
A detailed overview can be found in Table A.1. This includes 36 issues reported
by the Google Project Zero team which affect WebKit on macOS in the default
configuration, 35 of which have an assigned CVE number and for one of which a
public exploit is available. Furthermore, we analyzed CVE-2018-4199, exploited
and reported by MWR Labs at the Pwn2Own Vancouver competition in March
2018 for which an detailed write-up is available [15], as well as a variant of this bug
which fixed in March 2019. MWR Labs was nice enough to also provide us with
details of a different WebCore vulnerability, CVE-2019-6233, which they exploited at
Pwn2Own Tokyo in November 2018. To complement our data set, we also consider
CVE-2018-4121, which is a vulnerability in JavaScriptCore rather than WebCore,
but affects the FastMalloc heap which is used by both libraries [16]. It will serve as
an example of a very powerful spatial memory corruption vulnerability.
All vulnerabilities are heap-based – affecting objects on the IsoHeap, FastMalloc

heap and the heap provided by the C++ standard library – and can be categorized
into one of the following classes:

• uaf-iso: Use-after-free inside an allocation on an IsoHeap; (17)
• uaf-object-wild: Use-after-free inside an allocation on a wild heap; (8)
• uaf-complex-wild: Use-after-free inside a complex allocation on a wild heap; (4)
• oob: Out-of-bounds read or write on a wild heap; (7)
• downcast: Type confusion due to an invalid pointer downcast. (4)

Here, by wild heaps we mean the C++ standard heap and FastMalloc. It has to be
pointed out that this distribution is biased for multiple reasons: Most of these issues
were discovered using a fuzzer called DOMato [17], which is specifically designed to
find DOM-related memory management issues. Furthermore, many of these issues
are variants of each other. For example, the above-mentioned bug fixed in March
2019 is an issue closely related to CVE-2018-4199. It is not surprising that it was
eventually found due to its similarity. Similarly, CVE-2017-2362, CVE-2017-2460
and CVE-2017-13791 are all issues related to the very same array data structure.

38

4.3. SECURITY EVALUATION

For easier reasoning about exploitability, we assume our attacker has knowledge of
the address space of a process. She can achieve this by either exploiting the issue at
hand itself as an information leak, or by employing a separate vulnerability such as
a pure out-of-bounds read to leak addresses, which we will not discuss in detail here.
Essentially, we consider ASLR to be broken as a mitigation beforehand. We will now
give some background into how these vulnerability types can often be exploited in
practice, and show how in many ways, mistyped pointers or type confusions are an
important intermediate goal of the exploit process. This intuition is what drove our
core idea of leveraging type information for mitigation purposes in the first place.

Exploitation of uaf-object-wild and uaf-complex-wild bugs

A total of 11 issues in our data set are use-after-frees of objects or array buffers on a
wild heap. A generic way to exploit these types of bugs is to replace the freed object
with crafted data. This involves the following steps:

1. Via the vulnerability, cause the affected object or array to be freed while a
dangling pointer to it persists in memory;

2. Reclaim the freed space with well-controlled data such as a binary blob or a
UTF-16-encoded string;

3. Cause the dangling pointer to be reused to potentially perform a sequence of
pointer dereferences and then perform a virtual call.

The second step will effectively turn the vulnerability into a type confusion situation,
where the dangling pointer is directed to an object of an unrelated type. In fact a
similar situation occurs with downcast bugs as described above, however in a strictly
less flexible setting: While in the use-after-free case, reclaiming can occur with an
arbitrary object type – possibly with certain restrictions such as a fixed object size
– in the invalid downcast case the set of target types is restricted at least to other
sub-classes of the original pointer type.

In step 3, the attacker fully controls the pointer used to perform the virtual call on.
Hence, she can freely forge a virtual table of her liking, which lets her fully control
the destination of the virtual call. This yields a primitive where an arbitrary function
can be called with an arbitrary argument, which is enough for a full compromise in
the vast amount of real-world programs.

This attack has two preconditions: The attacker must be able to perform powerful
enough heap manipulations (such as multiple allocations of controlled data) in
between the free of an object and the re-use of a dangling pointer to it. Additionally,
there must be a virtual call performed on an object reached via references from the
reclaimed object which can be initiated by the attacker. In C++, the latter is often
trivially true due to the fact that every virtual class has a virtual destructor and
hence merely causing an object to get freed results in a virtual call. From a cursory
analysis based on the test cases provided by the bug reports as well as those added
to the WebKit repository as regression tests, we estimate that at least 10 of the

39

4.3. SECURITY EVALUATION

11 issues in our data set fulfill the second precondition, and at least 9 fulfill both
preconditions for this generic attack.
Let us consider the case where a modern mitigation such as fine-grained control

flow integrity [3] or CFIXX is employed [11]. In this scenario the third step cannot
be used due to explicit instrumentation of virtual call sites, or in other words, the
second precondition is not fulfilled. One possibility the attacker still has is to analyze
the specific vulnerability at hand and try to mount a so-called data-only attack,
where instead of hijacking control flow directly, she tries to obtain powerful memory
write primitives. This is often possible by forging pointers to other data structures
and eventually controlling pointers to which controlled values are written, often in
a multi-step process. Since this is a highly non-trivial manual process, we did not
analyze the feasibility of this approach for the vulnerabilities in our data set.

We know based on available write-ups and exploits, as well as personal discussion
with exploit developers, that at least two of the use-after-free issues in our data set
were exploitable using this vtable hijacking approach, and in both cases the same
vulnerability was powerful enough to also derive an ASLR-breaking information
leak. In at least one case (CVE-2018-4314, discussed in section 4.3.1), this leak was
obtained via a data-only memory corruption attack [18]. It is likely that the same
holds true for some of the other issues even though we have not analyzed this aspect
in depth.

Exploitation of oob bugs

In general, exploitation of buffer overflows and over-reads on the heap depends
heavily on the environment in which the bug occurs and on its side conditions, such
as what data is read or written, at what offset outside of an allocation, and how
much control the attacker has over the heap layout and the order of objects on the
heap.
A common approach to exploiting buffer overflows is to corrupt live objects on

the heap, leading to a situation analogous to the previous section about uaf-wild
exploitation. Out-of-bounds reads can also lead to memory corruption if structured
data such as pointers, indexes or offsets are fetched from attacker-controlled data
outside the affected allocation. In this case, exploitation depends heavily on the
precise issue at hand. An example is discussed in the case study of CVE-2018-4199.
Overall this vulnerability class is very versatile and powerful buffer overflows are
generally hard to defend against using memory safety mitigations. Memory tagging
is a potential candidate for a hardware-assisted mechanism addressing the root cause
of overflows itself, rather than just the symptoms [4].
In our data set we identified two pure buffer overflows, three pure out-of-bounds

reads, and two issues where data is fetched as well as written outside allocation
boundaries. We estimate that two of the three pure out-of-bounds reads cannot
by themselves lead to memory corruption since only string data is read from out-
of-bounds, and one of the buffer overflows would be very hard to exploit since the
overflow is an unbounded memmove operation which will eventually and inevitably

40

4.3. SECURITY EVALUATION

crash the process. This leaves CVE-2018-4199 from Pwn2Own Vancouver 2018 and
its variant fixed in March 2019, the JavaScriptCore bug CVE-2018-4121, as well as
CVE-2017-13784. For the former two issues detailed write-ups exist published [15, 16].

Exploitability of uaf-iso bugs

With the introduction of type isolation using the IsoHeap mechanism for certain
object types, primarily DOM nodes, WebKit introduced this limited form of use-after-
free. For details of the mechanism please refer to subsection 3.7.1. In the context of
memory safety mitigations, we introduced the underlying idea as type-safe memory
reuse. It enforces that dangling pointer into such isolated regions will never point to
an object of a different type at a later time, since the freed space will never be reused
for any other object type. This fully mitigates the vtable hijack attack described
above. We see at least two inherent shortcomings of the specific implementation
employed in WebKit.
One shortcoming is that in the original WebKit implementation, only type con-

sistency of dangling pointers is enforced, not type safety. Specifically, a dangling
pointer can point to a freed object which might still be partially initialized and
could still contain dangling pointers to other objects outside the IsoHeap. As an
example, consider an object of type T on the IsoHeap which stores a pointer to
an array of pointers of type U∗. The destructor of T deallocates the array, but
legitimately leaves the pointer to the array dangling, since language semantics do
not guarantee anything about the state of the object past its existence. Usage of a
dangling T∗ pointer can now lead to usage of a dangling pointer U∗ that points to a
memory location outside the IsoHeap, without any type consistency guarantees. In
this case, an uaf-iso bug can plausibly turn into a more powerful uaf-object-wild or
uaf-complex-wild issue. We have not analyzed our data set in detail to identify issues
of this nature, however since only a small percentage of WebCore types is actually
placed in IsoHeaps in the original WebKit codebase – less than 400 out of 14257 to be
exact – we consider it highly likely that such problematic chains of dereferences exist.
Our proposed solution is the clobbering of objects via a simple memset after they
are freed, and we investigated the performance impact of this additional operation
using our unchecked-clobber WebKit build in subsection 4.2.3.
Another shortcoming that we identified is that multiple pointers to the same

allocation can co-exist and be treated as pointers to different objects. The implications
of this situation are highly object-specific and conceivable issues that can occur as a
result include the violation of the object state invariants leading to memory corruption
issues and race conditions in the case of multi-threaded usage.
We are not aware of any examples of WebCore use-after-free issues involving

IsoHeap objects that have been publicly demonstrated to be exploitable. It appears
that public researchers have mostly accepted IsoHeap as a strong mitigation and are
considering issues in these regions unlikely to be exploitable a priori. This observation
is what led us to investigate the actual performance of IsoHeaps in more detail and
employ it to a larger extent automatically as part of our instrumentation.

41

4.3. SECURITY EVALUATION

We believe however that at least the information leak part of the published exploit
for CVE-2018-4314, a uaf-object-wild type issue in detail further below, is powerful
enough to be exploitable even if the affected object is moved to an IsoHeap.

Impact of our instrumentation

For purposes of estimating the practical impact of our instrumentation as a memory
safety mitigation, we focused on the bug classes other than downcast. This decision is
based on the fact that eliminating the possibility of these types of errors is very easily
achievable by using readily available compiler technologies such as a combination
of RTTI7 and C++ dynamic_cast, which are deliberately avoided by the WebKit
codebase in the given instances. This easy to employ, universal fix is in our opinion
the best solution to the problem, even though we could probably also implement
similar checks using our type data structure.

Out of the remaining 36 issues, we deem three as highly unlikely to be exploitable
due to being pure out of bounds reads of string data or unbounded buffer overflows.
We categorized 17 issues as use-after-frees purely on the IsoHeap, exploitability of
which would be mostly unaffected by our instrumentation. One of the reported out-of-
bounds reads (CVE-2017-13784) was too intricate for us to understand from the bug
report and patch alone and to draw any conclusions regarding its exploitability within
a reasonable time frame. This leaves 14 issues for which we believe exploitability to
be highly likely, for three of which exploits has even be demonstrated in detail by
security researchers. The results of our study into how our instrumentation impacts
exploitability are as follows:

• For 7 out of the 8 uaf-object-wild issues, the affected objects were automatically
put into an IsoHeap, which is the best possible outcome we could hope to
achieve with our approach. In the case of the remaining one, CVE-2018-4314,
the situation is less clear, and we address this case specifically in the following.
• Three of the four uaf-complex-wild issues affect an array data structure which

contains only pointers of type WebCore::FormAssociatedElement*, which is
a type automatically placed in the Checked set of types, and thus type safety
is ensured for pointers fetched using the dangling reference to the array. The
fourth issue (CVE-2018-4089) affects an array of T values, where T is the
template parameter of WebCore::SVGPropertyTearOff<T>. According to our
analysis of the code base, the only non-primitive types used to instantiate
this template are WTF::String and RefPtr<WebCore::SVGPathSeg>, where
the string is only ever read from after object initialization. Since SVGPathSeg
is in Checked, our instrumentation ensures pointer type safety and eliminates
at least the exploitation path via the generic vtable hijack method.
• CVE-2018-4199, exploited at Pwn2Own Vancouver 2018 by MWR Labs, as
well as a variant of it fixed in March 2019, is an out-of-bounds read of a pointer

7Run-time type identification

42

4.3. SECURITY EVALUATION

followed by an out-of-bounds write to the same location. The conditions of
this vulnerability are quite complex and our analysis of exploitability under
our instrumentation is inconclusive, even though the affected pointer is in
the Checked set. The instrumentation does however deny the avenue of
exploitation that MWR Labs took. We will discuss this case in more detail
below.
• The only JavaScriptCore vulnerability in our data set, CVE-2018-4121, a
well-controlled heap buffer overflow which was exploited by MWR Labs, is
completely unaffected by our instrumentation.

Case study CVE-2018-4199

CVE-2018-4199 is an issue reported, documented, and exploited by MWR Labs [15].
A related issue was fixed in March 2019.8 The root cause for both bugs is that
the element at index -1 is removed from a WTF::Vector<RefPtr<SVGPathSeg>>. In
pseudocode, this operation amounts to the following steps:

// Fetch WTF :: Vector backing buffer
RefPtr <SVGPathSeg >* buffer = vector . buffer ()
// Call RefPtr destructor (decrementing ref count and if necessary
// deleting the object)
~RefPtr <SVGPathSeg >(buffer [-1])
// Shift elements to the left
memmove (buffer - 1, buffer , vector .size () - 1)

First, a RefPtr is fetched from index -1 of the vector, which is then passed to the
RefPtr destructor. Afterwards all elements are shifted to the left by one position,
overwriting the element at index -1 with that at index 0. MWR Labs exploited
this vulnerability in two steps, both of which are based on placing a forged pointer
at offset -1 of the vector: First they construct an ASLR-breaking information leak
by abusing the RefPtr destructor’s value decrement semantics to corrupt a vtable
pointer and call a virtual function of an unrelated class with a SVGPathSeg object as
the this argument. Afterwards they hijack control flow by forging a SVGPathSeg
object with reference count one and causing its virtual destructor to be invoked.
Both steps are not possible in our instrumented build due to the pointer type

safety property, since SVGPathSeg is in the Checked set of types. To verify that
this is the case, we took the regression test case provided in the above-mentioned
WebKit patch and put a break point on the affected call to removeItemFromList:

8https://github.com/WebKit/webkit/commit/c6936191317d

43

https://github.com/WebKit/webkit/commit/c6936191317d

4.3. SECURITY EVALUATION

(gdb) br SVGAnimatedPathSegListPropertyTearOff :: removeItemFromList
Breakpoint 4 at 0 x7f003c029e10 (2 locations)
(gdb) c
Continuing .

Thread 1 " WebKitWebProces " hit Breakpoint 4, 0 x00007f003c029e10 in
WebCore :: SVGAnimatedPathSegListPropertyTearOff ::

removeItemFromList (unsigned long , bool)@plt ()
from /home/ niklas / typeiso / webkit / WebKitBuild [...]

(gdb) i r rdi rsi
rdi 0 x304490010070 53071031894128
rsi 0 xffffffffffffffff -1
(gdb) p ((WebCore :: SVGAnimatedPathSegListPropertyTearOff *)

$rdi)-> m_values . m_buffer
$5 = (WTF :: RefPtr <

WebCore :: SVGPathSeg ,
WTF :: DumbPtrTraits < WebCore :: SVGPathSeg > > *)0 x381c0014cd80

(gdb) x/6gx 0 x381c0014cd80 -8
0 x381c0014cd78 : 0 x0000381c077f2090 0 x00003047c8020120
0 x381c0014cd88 : 0 x00003047580200c0 0 x0000000000000000
(gdb) c
Continuing .

Thread 1 " WebKitWebProces " received signal SIGILL ,
Illegal instruction .

bmalloc :: fetchCheckedImpl <2277ul , 1ul > (p=0 x381c0014cd78) at
../../ Source / bmalloc / bmalloc / VMAllocateInlines .h:267

267 BAD ();
(gdb) x/1i $rip
=> 0 x7f003ecf1ad0 <WTF :: Vector <WTF :: RefPtr < WebCore :: SVGPathSeg ,

WTF :: DumbPtrTraits < WebCore :: SVGPathSeg > >,
0ul , WTF :: CrashOnOverflow ,
16ul >:: remove (unsigned long)+288 >: ud2

In this case we can see that there is a valid address (0x0000381c077f2090) at index
-1, however it is not consistent with the type SVGPathSeg, hence the pointer checking
algorithm stops the program. One way to try and exploit this issue while avoiding
pointer type unsafety is to focus on the out-of-bounds write which is following the
out-of-bounds read in the form of a memmove operation. Surviving the call to the
RefPtr destructor is easy, we can just place a zero value in front of the array. It
will then get overwritten by the pointer which was previously the first entry in the
array. This leads to the following primitive: Overwrite a zero value located at the
end of an allocation with a pointer to a SVGPathSeg. Another possible approach is
to place a pointer to a live SVGPathSeg object at index -1 and to free it by using the
vulnerability. This leads to a situation analogous to uaf-iso. It is unclear if a full
exploit can be constructed from these primitives alone.

44

4.3. SECURITY EVALUATION

Case study CVE-2018-4314

A detailed write-up of this uaf-object-wild vulnerability and its exploitation was
published by the discoverer [18]. The exploit has two phases: In the first phase,
a SVGAnimatedTypeAnimator object is freed but not reclaimed, and a dangling
pointer to the still intact object is used to violate the object state invariants of a
SVGAnimateElementBase object, leading to a powerful type confusion situation. A
mistyped pointer is then used to write a controlled address, leading to a disclosure of
heap memory at that address. This phase is used to obtain a pointer into the code
segment of the Safari binary and break ASLR.
In a second phase, the generic vtable hijack exploitation technique described

in section 4.3.1 is used to redirect control flow and achieve code execution. We
observe that due to the fact that all subclasses of SVGAnimatedTypeAnimator are
allocated on IsoHeaps in our instrumented build, this control flow hijack is not
viable. However, since the first phase of the exploit does not violate type safety, our
instrumentation does not affect it, except for the fact that with object clobbering
upon free, a new object of the same type needs to be allocated to reclaim the space
of the old one – a trivial adaption.
One might be inclined to call this a positive outcome. Nevertheless, we cannot

neglect the possibility that the same type confusion used for the information leak
part of the exploit could also be used for more powerful memory corruption if the
conditions are right. From out analysis it does not appear as if any dangerous
memory corruption result in controlled writes can occur given the type confusion
primitive. However, since this bug is complex and multi-faceted, this can not be
excluded with full certainty.

4.3.2. Challenging the implementation
In this section we will discuss weaknesses of our specific implementation of pointer
type safety and how they could potentially be addressed in the future using additional
implementation work or hardware support.

As already discussed in section 4.3.1, currently we do not instrument pointer casts
and thus we cannot detect invalid casts leading to pointer type confusions. We do not
think out-of-band type information is the correct way to address this issue. However,
our type data structure could in theory be used instead of in-band type information
such as RTTI, which is based on virtual tables. This would require detecting and
instrumenting sites where a pointer is cast to a type in Checked.
Another weakness of our specific implementation results from the usage of the

original WebKit IsoHeap implementation, which uses bmalloc as the allocator algo-
rithm. bmalloc maintains a bitmap tracking the allocated slots inside an IsoPage,
a 16 KiB heap arena in which objects are allocated. Since this bitmap is also part
of the same heap region, it is conceivable that an attacker with very good control
over the allocation pattern of a specific object type could forge near-arbitrary data
inside this bitmap. While this would be a very hard to achieve deterministically, it

45

4.3. SECURITY EVALUATION

is worth considering to move these bitmaps to a separate memory region. This could
however induce a performance penalty from decreased cache locality.
In section 3.2 we introduced a relaxed version of type pointer safety which we

called wild pointer type safety. In early experiments we learned that this is an
important optimization to keep the performance overhead within reasonable limits.
The intuition that it follows is that oob bugs are unlikely to occur if only constant-size
objects are involved, an assumption which was confirmed by our data set. However,
there is at least one rather common coding pattern that allows for the occurrence of
out-of-bounds issues even in this settings: Small buffer optimization is a technique
where array-like data structures are stored inline of a constant-size type only if
they are smaller than a certain threshold. For example, in the WebKit code base,
WTF::Vector has a template parameter that defaults to 0 and describes the number
of elements that can be stored inside the object without allocating out-of-line heap
memory. If the number of elements is small enough, the pointer stored inside the
vector object which would normally point to a different heap allocation, in fact points
inside the vector itself. An out-of-bounds write in this scenario could be used to
corrupt the vector object and surrounding data. In fact, memory tagging when used
as a generic mitigation is affected by the same problem, unless the implementation
of the small buffer optimization code specifically provides additional information to
the allocator. We could use the same information to mark regions as wild where
fixed-size inline arrays can occur, however we need it to be available at compile time
in order to perform the proper static analysis.

46

5. Conclusions
We presented an out-of-band type metadata data structure for C++ programs, based
on the concept of type isolation. Our prototype implementation makes use of a two-
phase Clang compiler instrumentation and was successfully applied to the WebKit
code base as a case study.
Our analysis of real-world vulnerabilities has demonstrated that our instrumen-

tation can be used as a security mitigation and that it prevents or considerably
increases the difficulty of exploitation of memory corruption issues in many instances.
Both automatic type isolation as well as our newly introduced pointer type safety
has meaningful impact on real-world vulnerabilities in the primary subject of our
research, the WebCore library. There are multiple examples of easily exploitable
bugs, for which the obvious exploitation routes were rendered ineffective. In par-
ticular, in multiple cases classic use-after-free scenarios on a mixed-type heap and
arbitrary pointer dereferences were respectively turned into much more restricted
use-after-frees on the IsoHeap and type-safe pointer dereferences.
In some more complex cases we analyzed the underlying vulnerabilities in detail

and elaborated on the exact memory corruption primitives obtained with and without
our instrumentation, showing that the primitives are considerably weaker with than
without the pointer type safety policy employed. However, disproving exploitability
is generally a very hard task. We firmly believe that in some of the considered cases
exploitation is still possible.

We observe that type isolation and type safe pointers can be especially effective to
mitigate various kinds of use-after-free bugs as well as out-of-bounds reads on the
heap. It is unlikely to be effective against powerful heap buffer overflow vulnerabilities,
due to the fact that with this primitive at hand, an attacker has a lot of freedom to
corrupt uninstrumented pointers or non-pointer control data such as length or index
fields, which allows for the construction of increasingly powerful primitives, often
leading to near-arbitrary memory reads and writes.

However, it is obvious from our experiments that the performance impact induced
by the extent to which we applied our instrumentation could be prohibitive in the
context of software with high performance requirements such as a web browser. After
all, performance is often the main reason why a memory unsafe language such as C++

is chosen in the first place. In this regard, it appears that automatic type isolation
using static analysis, potentially with object clobbering upon free, has a much more
favorable trade-off between the performance overhead and security benefits compared
to our implementation of pointer type safety. There is no inherent reason why type
isolation per se should add considerable overhead – even though we could measure a
slight difference in performance in our experiments – while adding type checks in

47

5.1. FUTURE WORK

many places is clearly an expensive instrumentation. Out of the 16 issues in our
data set which are proven to be, or which we consider likely to be exploitable, only 5
were mainly impacted by pointer type safety rather than by the type isolation part
of our instrumentation.

5.1. Future work
We have learned from our case study that out-of-bounds writes are often powerful
enough to bypass the security features of our instrumentation entirely, for example
by corrupting uninstrumented pointers in the same heap region. In our current
implementation, exactly one wild heap is used where all non-IsoHeap allocations
occur. One heuristic we propose is to separate the wild heap into two regions:
In one region, we make sure that no allocations contain uninstrumented pointers.
Out-of-bounds writes in this region would be harder to exploit because no pointers
can be corrupted without pointer type safety being violated. All other types are
placed in a different heap region. However, it seems likely that in complex programs,
even the former heap can contain critical control data structures such as offset or
length values which could lead to more powerful, near-arbitrary memory writes.

The most obvious disadvantage of our proposal is the heavy performance penalty
which the instrumentation of pointer fetches introduces. One possible solution here is
to investigate the usage of hardware features such as ARM v8.3 pointer authentication
codes [19]. Since our allocator ensures type-safe memory reuse, a pointer signed to
be valid for a specific type will remain safe to use in the future in conformance with
our pointer type safety policy. Our pointer fetch algorithm would just be a hardware
pointer authentication operation. This shifts most of the instrumentation overhead
from the pointer fetch sites to the pointer store sites, where pointers potentially have
to be authenticated and then re-signed for a different type during type casts.

48

Bibliography
[1] J. Bialek, “The Evolution of CFI Attacks and Defensess.” https:

//github.com/Microsoft/MSRC-Security-Research/blob/master/
presentations/2018_02_OffensiveCon/The%20Evolution%20of%20CFI%
20Attacks%20and%20Defenses.pdf, 2018.

[2] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A. R. Sadeghi, and T. Holz,
“Counterfeit Object-oriented Programming: On the Difficulty of Preventing Code
Reuse Attacks in C++ Applications,” in 2015 IEEE Symposium on Security
and Privacy, pp. 745–762, May 2015.

[3] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow Integrity
Principles, Implementations, and Applications,” ACM Trans. Inf. Syst. Secur.,
vol. 13, pp. 4:1–4:40, Nov. 2009.

[4] K. Serebryany, E. Stepanov, A. Shlyapnikov, V. Tsyrklevich, and D. Vyukov,
“Memory tagging and how it improves C/C++ memory safety,” CoRR,
vol. abs/1802.09517, 2018.

[5] https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/

arm-a-profile-architecture-2018-developments-armv85a .

[6] V. A. Dinakar Dhurjati, Sumant Kowshik and C. Lattner, “Memory Safety
Without Runtime Checks or Garbage Collection,” in Proc. Languages Compilers
and Tools for Embedded Systems 2003, (San Diego, CA), June 2003.

[7] P. Akritidis, “Cling: A Memory Allocator to Mitigate Dangling Pointers,” in
Proceedings of the 19th USENIX Conference on Security, USENIX Security’10,
(Berkeley, CA, USA), pp. 12–12, USENIX Association, 2010.

[8] B. Lee, C. Song, T. Kim, and W. Lee, “Type Casting Verification: Stopping an
Emerging Attack Vector,” in USENIX Security Symposium, pp. 81–96, USENIX
Association, 2015.

[9] I. Haller, Y. Jeon, H. Peng, M. Payer, C. Giuffrida, H. Bos, and E. van der
Kouwe, “TypeSan: Practical Type Confusion Detection,” in Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’16, (New York, NY, USA), pp. 517–528, ACM, 2016.

49

https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2018_02_OffensiveCon/The%20Evolution%20of%20CFI%20Attacks%20and%20Defenses.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2018_02_OffensiveCon/The%20Evolution%20of%20CFI%20Attacks%20and%20Defenses.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2018_02_OffensiveCon/The%20Evolution%20of%20CFI%20Attacks%20and%20Defenses.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2018_02_OffensiveCon/The%20Evolution%20of%20CFI%20Attacks%20and%20Defenses.pdf
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-a-profile-architecture-2018-developments-armv85a
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-a-profile-architecture-2018-developments-armv85a

Bibliography

[10] G. J. Duck and R. H. C. Yap, “Effectivesan: Type and memory error detection
using dynamically typed c/c++,” in Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2018,
(New York, NY, USA), pp. 181–195, ACM, 2018.

[11] N. Burow, D. McKee, S. A. Carr, and M. Payer, “Cfixx: Object type integrity
for c++ virtual dispatch,” in Prof. of ISOC Network & Distributed System
Security Symposium (NDSS), 2018.

[12] T. Kroes, K. Koning, C. Giuffrida, H. Bos, and E. van der Kouwe, “Fast and
Generic Metadata Management with Mid-Fat Pointers,” in Proceedings of the
10th European Workshop on Systems Security, EuroSec’17, (New York, NY,
USA), pp. 9:1–9:6, ACM, 2017.

[13] I. Haller, E. van der Kouwe, C. Giuffrida, and H. Bos, “METAlloc: Efficient
and Comprehensive Metadata Management for Software Security Hardening,”
in Proceedings of the 9th European Workshop on System Security, EuroSec ’16,
(New York, NY, USA), pp. 5:1–5:6, ACM, 2016.

[14] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Addresssanitizer: A
fast address sanity checker,” in Proceedings of the 2012 USENIX Conference on
Annual Technical Conference, USENIX ATC’12, (Berkeley, CA, USA), pp. 28–28,
USENIX Association, 2012.

[15] MWR Labs. https://labs.mwrinfosecurity.com/assets/BlogFiles/
apple-safari-pwn2own-vuln-write-up-2018-10-29-final.pdf.

[16] MWR Labs. https://labs.mwrinfosecurity.com/assets/BlogFiles/
apple-safari-wasm-section-vuln-write-up-2018-04-16.pdf.

[17] I. Fratric. https://googleprojectzero.blogspot.com/2017/09/
the-great-dom-fuzz-off-of-2017.html.

[18] I. Fratric. https://googleprojectzero.blogspot.com/2018/10/
365-days-later-finding-and-exploiting.html.

[19] https://events.static.linuxfound.org/sites/events/files/slides/
slides_23.pdf.

50

https://labs.mwrinfosecurity.com/assets/BlogFiles/apple-safari-pwn2own-vuln-write-up-2018-10-29-final.pdf
https://labs.mwrinfosecurity.com/assets/BlogFiles/apple-safari-pwn2own-vuln-write-up-2018-10-29-final.pdf
https://labs.mwrinfosecurity.com/assets/BlogFiles/apple-safari-wasm-section-vuln-write-up-2018-04-16.pdf
https://labs.mwrinfosecurity.com/assets/BlogFiles/apple-safari-wasm-section-vuln-write-up-2018-04-16.pdf
https://googleprojectzero.blogspot.com/2017/09/the-great-dom-fuzz-off-of-2017.html
https://googleprojectzero.blogspot.com/2017/09/the-great-dom-fuzz-off-of-2017.html
https://googleprojectzero.blogspot.com/2018/10/365-days-later-finding-and-exploiting.html
https://googleprojectzero.blogspot.com/2018/10/365-days-later-finding-and-exploiting.html
https://events.static.linuxfound.org/sites/events/files/slides/slides_23.pdf
https://events.static.linuxfound.org/sites/events/files/slides/slides_23.pdf

Erklärung

Hiermit erkläre ich, Niklas Baumstark, dass ich die vorliegende Masterarbeit selbst-
ständig verfasst habe und keine anderen als die angegebenen Quellen und Hilfsmittel
benutzt habe, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich
gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis
beachtet habe.

Ort, Datum Unterschrift

51

A. Appendix
See next page.

53

B
ug

class
C
V
E
Identifier

B
ug

ID
D
etails

F
ix

E
xploitability

Im
pact

T
I

Im
pact

T
I
+

P
C

uaf-complex-wild
2017-2362

165959
P

0
1044

be3dfa8f931
likely

no
yes

uaf-complex-wild
2017-2460

167200
P

0
1090

ec8df6820d1
likely

no
yes

uaf-complex-wild
2017-13791

176368
P

0
1355

d0ac97f994f
likely

no
yes

uaf-complex-wild
2018-4089

180745
P

0
1477

unknow
n

likely
no

no
uaf-object-wild

2018-4314
186658

P
0

1596
2b1eab35917

proven
yes

yes
uaf-object-wild

2018-6233
or

6234
191661

M
W

R
P

w
n2O

w
n

5648ddc1c72
proven

yes
yes

uaf-object-wild
2017-2476

167885
P

0
1114

bc488af86aa
likely

yes
yes

uaf-object-wild
2017-7042

171376
P

0
1244

c03c585e658
likely

yes
yes

uaf-object-wild
2017-13792

176160
P

0
1345

a178814f417
likely

yes
yes

uaf-object-wild
2017-13794

176364
P

0
1353

01be685af14
likely

yes
yes

uaf-object-wild
2017-13802

176224
P

0
1351

98ae9624c45
unknow

n
yes

yes
uaf-object-wild

2018-4317
186657

P
0

1595
20e325c1445

unknow
n

yes
yes

oob
(read+write)

2018-4199
unknow

n
w

riteup
a

unknow
n

proven
no

partial
oob

(read+write)
unknow

n
195333

variant
ofabove

c6936191317
proven

no
partial

oob
(write)

2018-4121
unknow

n
w

riteup
b

c6deeea41e5
proven

no
no

oob
(read)

2017-13784
176220

P
0

1349
6a6af9b1466

unknow
n

unknow
n

unknow
n

oob
(write)

2017-2459
167162

P
0

1087
74777ae4dc4

unlikely
unknow

n
unknow

n
oob

(read)
2017-13785

176219
P

0
1348

6cad78f472c
unlikely

unknow
n

unknow
n

oob
(read)

2018-4328
187251

P
0

1610
280ebf6e98a

unlikely
unknow

n
unknow

n
uaf-iso

2017-2454
167092

P
0

1080
e52df7b1bae

unknow
n

no
no

uaf-iso
2017-2455

167117
P

0
1082

68a59060090
unknow

n
no

no
uaf-iso

2017-2466
167310

P
0

1097
8efa0b43e62

unknow
n

no
no

uaf-iso
2017-2471

167502
P

0
1105

b516c1596c0
unknow

n
no

no
uaf-iso

2017-7039
171373

P
0

1241
436b7228d37

unknow
n

no
no

uaf-iso
2017-7040

171374
P

0
1242

0163afe53d2
unknow

n
no

no
uaf-iso

2017-7041
171375

P
0

1243
90a7b239e51

unknow
n

no
no

uaf-iso
2017-13796

176159
P

0
1344

cb76b01b59d
unknow

n
no

no
uaf-iso

2017-13797
176161

P
0

1346
unknow

n
unknow

n
no

no
uaf-iso

2017-13798
176367

P
0

1354
2a298098ee8

unknow
n

no
no

uaf-iso
no

C
V

E
180525

P
0

1465
bd5b1f97007

unknow
n

no
no

uaf-iso
2018-4200

182383
P

0
1525

8b37be52e6e
unknow

n
no

no
uaf-iso

2018-4197
186655

P
0

1593
65d4dbca722

unknow
n

no
no

uaf-iso
2018-4318

186656
P

0
1594

b475f64aab9
unknow

n
no

no
uaf-iso

2018-4306
186917

P
0

1602
unknow

n
unknow

n
no

no
uaf-iso

2018-4315
186925

P
0

1604
98dd2fb0e64

unknow
n

no
no

uaf-iso
2018-4323

187249
P

0
1609

b10f9026aa7
unknow

n
no

no
downcast

2017-2373
184032

P
0

1038
36b0eaec6f9

unknow
n

no
no

downcast
2017-2369

165145
P

0
999

aaced4cec6a
unknow

n
no

no
downcast

2017-7049
171547

P
0

1250
8b54864637a

unknow
n

no
no

downcast
2017-13783

176221
P

0
1350

0231e8adc46
unknow

n
no

no

Table
A
.1.:

Sum
m
ary

ofallconsidered
W
ebCore

and
JavaScriptCore

bugs.
T
he

bug
ID
s
refer

to
the

public
W
ebK

it
bug

tracker
at

https://bugs.webkit.org/.
B
ugs

m
arked

as
P0

<
X

X
X

X
>

refer
to

the
Project

Zero
bug

tracker
at

https://bugs.chromium.org/p/project-zero/issues/detail?id=XXXX.
T
he

"Fix"
colum

n
refers

to
the

G
it
com

m
it
in

the
https://github.com/WebKit/webkit/

m
irrorrepository

that
fixes

the
given

issue.
In

som
e
cases

it
w
as

not
possible

to
determ

ine
the

CV
E
identifier,bug

ID
or

fixing
com

m
it
ofan

issue,w
hich

is
indicated

by
an

"unknow
n"

note.
T
he

colum
n
“Im

pact
T
I”

describes
w
hether

autom
atic

type
isolation

has
an

im
pact

on
exploitability

ofthe
corresponding

issue,w
hile

“Im
pact

T
I+

PC”
describes

the
im

pact
oftype

isolation
com

bined
w
ith

the
introduced

pointer
type

safety
checks.

ahttps://labs.mwrinfosecurity.com/assets/BlogFiles/apple-safari-pwn2own-vuln-write-up-2018-10-29-final.pdf
bhttps://labs.mwrinfosecurity.com/assets/BlogFiles/apple-safari-wasm-section-vuln-write-up-2018-04-16.pdf

54

https://bugs.webkit.org/
https://bugs.chromium.org/p/project-zero/issues/detail?id=XXXX
https://github.com/WebKit/webkit/
https://labs.mwrinfosecurity.com/assets/BlogFiles/apple-safari-pwn2own-vuln-write-up-2018-10-29-final.pdf
https://labs.mwrinfosecurity.com/assets/BlogFiles/apple-safari-wasm-section-vuln-write-up-2018-04-16.pdf

	Introduction
	Preliminaries and Related Work
	Classifying memory safety
	A simplified model of C++ types, objects and allocations
	Exploit mitigations
	Hypothesis
	Related work

	Design and Implementation
	Attacker model and mitigation goal
	Security policies
	Scope
	Type consistency data structure
	Program analysis and instrumentation
	Pointer checking algorithm
	Case Study: Instrumenting the WebCore library
	Optimizations
	Limitations of our implementation

	Evaluation
	Static analysis results
	Dynamic evaluation
	Security evaluation

	Conclusions
	Future work

	Appendix

