Principles of Program Analysis:

A Sampler of Approaches

Transparencies based on Chapter 1 of the book: Flemming Nielson,
Hanne Riis Nielson and Chris Hankin: Principles of Program Analysis.

Springer Verlag 2005. ©Flemming Nielson & Hanne Riis Nielson & Chris
Hankin.



Compiler Optimisation

T he classical use of program analysis is to facilitate the construction of
compilers generating “optimal’ code.

We begin by outlining the structure of optimising compilers.

We then prepare the setting for a worked example where we “optimise”
a naive implementation of Algol-like arrays in a C-like language by per-
forming a series of analyses and transformations.



The structure of a simple compiler

lexical
analysis

string of
characters

syntactic
analysis

string of
tokens

static
semantic
checking

symbol table

syntax tree

Characteristics of a simple compiler:

e Mmany phases — one or more passes

syntax
tree

code

generation

e the compiler is fast — but the code is not very efficient

machine
code



The structure of an optimising compiler

lexical syntactic seSr%%tri]%ic
analysis analysis checking
~ machine d machine
independent enceora%ion dependent —
optimisations 9 optimisations

Characteristics of the optimising compiler:

e high-level optimisations: easy to adapt to new architectures

e low-level optimisations: less likely to port to new architectures



T he structure of the optimisation phase

program
1 optimiser

program transfor-
analysis mation

Avoid redundant computations: reuse available results, move loop in-
variant computations out of loops, ...

Avoid superfluous computations: results known not to be needed, results
known already at compile time, ...



Example: Array Optimisation

program with program with
Algol-like arrays C-like arrays

sequence of analysis and
transformation steps optimised

program with
C-like arrays




Array representation: Algol vs. C

A: array [0:n, O:m] of integer

Accessing the (i,j)'th element of A:

Base (A)
01 m
0 [\ in Algol:
1 i Ali,j]
B L
n in C:

L Cont(Base(A) + i *x (m+1) + j)



An example program and its naive realisation

Algol-like arrays: C-like arrays:
i := 0; i := 0;
while i <= n do while i <= n do
j = 0; j = 0;
while j <= m do while j <= m do
Afi,j] := BI[i,jl + C[i,j]; temp := Base(A) + i * (m+1) + j;
j = j+1 Cont (temp) := Cont(Base(B) + i * (m+1) + j)
od; + Cont(Base(C) + i * (m+1) + j);
i := i+1 j = j+1
od od;
i = i+1
od



Available Expressions analysis
and Common Subexpression Elimination

i := 0;
while i <= n do
j = 03

first computation

while j <= m do

temp
Cont (temp)

:= Base(A) + i*x(m+1) + j;
:= Cont(Base(B) + i*x(m+1) + j)

+ Cont (Base(C) t/i*(q&l) + 3);

j = j+1
od;
i := i+l
od

re-computations

tl =1 *x (m+1) + j;

temp := Base(A) + t1,

Cont (temp) := Cont (Base(B)+t1l)
+ Cont(Base(C)+tl):



Detection of Loop Invariants and Invariant Code Motion

i := 0;
while i <= n do _ _
j := 0; loop invariant t2 := i * (m+1);
while j <= m do~ while j <= m do
tl =i *x (m+1) + j; tl = t2 + j;
temp := Base(A) + ti; temp := ...
Cont (temp) := Cont(Base(B) + t1) Cont (temp) := ...
+ Cont(Base(C) + t1); Jj o= ..
j = j+1 od
od;
i := i+l
od




Detection of Induction Variables and

i := 0;

wvhile i <= ndo . .
j i= 0; induction variable
t2 := 1 *x (m+1);
while j <= m do
tl = t2 + j;
temp := Base(A) + t1;
Cont (temp) := Cont(Base(B) + t1)
+ Cont(Base(C) + t1);
j =g
od;
i = 1i+1

Reduction of Strength

i := 0;
t3 := 0;
while i <= n do
j = 0,
t2 := t3;
while j <= m do ...

od

i :=
t3 :=
od

i+ 1;
t3 + (m+1)



Equivalent Expressions analysis and Copy Propagation

i := 0;
t3 := 0;
while i <= n do while j <= m do
J = 0; = t1 := t3 + j;
£2 := t3; ’
while j <= m do temp := ...;
tl = t2 + 35 Cont (temp) := ...;
temp := Base(A) + t1; .
Cont (temp) := Cont(Base(B) + t1) J = ...
+ Cont(Base(C) + t1); od
j o= j+1
od;
1 := i+1;

t3 := t3 + (m+1)
od



Live Variables analysis and Dead Code Elimination

i := 0;
t3 := 0 | i = 0;
while i <= n do de€ad variable t3 := 0;
j = 0; while i <= n do
t2 = t3; j 1= 0;
while j <= m do while j <= m do
t1 := t3 + j; tl = t3 + j;
temp := Base(A) + ti; temp := Base(A) + ti;
Cont (temp) := Cont(Base(B) + t1) Cont (temp) := Cont(Base(B) + t1)
+ Cont(Base(C) + t1); + Cont(Base(C) + t1);
j = j+1 j = j*1
od; od;
i o= i+1; i = i+1,
t3 := t3 + (m+1) t3 := t3 + (m+1)
od od



Summary of analyses and transformations

Analysis Transformation
Available expressions analysis Common subexpression elimination
Detection of loop invariants Invariant code motion

Detection of induction variables Strength reduction
Equivalent expression analysis Copy propagation

Live variables analysis Dead code elimination



T he Essence of Program Analysis

Program analysis offers techniques for predicting

statically at compile-time
safe & efficient approximations exact answers!

to the set of configurations or behaviours arising
dynamically at run-time

we cannot expect

Safe: faithful to the semantics

Efficient: implementation with
— good time performance and
— low space consumption



The Nature of Approximation

The exact world

universe

exact set of
configurations

or behaviours

Over-approximation Under-approximation

over=
approximation uhders
approximation

Slogans: Err on the safe sidel
Trade precision for efficiency!



