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Compiler Optimisation

T he classical use of program analysis is to facilitate the construction of
compilers generating “optimal’ code.

We begin by outlining the structure of optimising compilers.

We then prepare the setting for a worked example where we “optimise”
a naive implementation of Algol-like arrays in a C-like language by per-
forming a series of analyses and transformations.



The structure of a simple compiler
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Characteristics of a simple compiler:
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e the compiler is fast — but the code is not very efficient
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The structure of an optimising compiler
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Characteristics of the optimising compiler:

e high-level optimisations: easy to adapt to new architectures

e low-level optimisations: less likely to port to new architectures



T he structure of the optimisation phase

program
1 optimiser

program transfor-
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Avoid redundant computations: reuse available results, move loop in-
variant computations out of loops, ...

Avoid superfluous computations: results known not to be needed, results
known already at compile time, ...



Example: Array Optimisation
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Array representation: Algol vs. C

A: array [0:n, O:m] of integer

Accessing the (i,j)'th element of A:

Base (A)
01 m
0 [\ in Algol:
1 i Ali,j]
B L
n in C:

L Cont(Base(A) + i *x (m+1) + j)



An example program and its naive realisation

Algol-like arrays: C-like arrays:
i := 0; i := 0;
while i <= n do while i <= n do
j = 0; j = 0;
while j <= m do while j <= m do
Afi,j] := BI[i,jl + C[i,j]; temp := Base(A) + i * (m+1) + j;
j = j+1 Cont (temp) := Cont(Base(B) + i * (m+1) + j)
od; + Cont(Base(C) + i * (m+1) + j);
i := i+1 j = j+1
od od;
i = i+1
od



Available Expressions analysis
and Common Subexpression Elimination

i := 0;
while i <= n do
j = 03

first computation

while j <= m do

temp
Cont (temp)

:= Base(A) + i*x(m+1) + j;
:= Cont(Base(B) + i*x(m+1) + j)

+ Cont (Base(C) t/i*(q&l) + 3);

j = j+1
od;
i := i+l
od

re-computations

tl =1 *x (m+1) + j;

temp := Base(A) + t1,

Cont (temp) := Cont (Base(B)+t1l)
+ Cont(Base(C)+tl):



Detection of Loop Invariants and Invariant Code Motion

i := 0;
while i <= n do _ _
j := 0; loop invariant t2 := i * (m+1);
while j <= m do~ while j <= m do
tl =i *x (m+1) + j; tl = t2 + j;
temp := Base(A) + ti; temp := ...
Cont (temp) := Cont(Base(B) + t1) Cont (temp) := ...
+ Cont(Base(C) + t1); Jj o= ..
j = j+1 od
od;
i := i+l
od




Detection of Induction Variables and

i := 0;

wvhile i <= ndo . .
j i= 0; induction variable
t2 := 1 *x (m+1);
while j <= m do
tl = t2 + j;
temp := Base(A) + t1;
Cont (temp) := Cont(Base(B) + t1)
+ Cont(Base(C) + t1);
j =g
od;
i = 1i+1

Reduction of Strength

i := 0;
t3 := 0;
while i <= n do
j = 0,
t2 := t3;
while j <= m do ...

od

i :=
t3 :=
od

i+ 1;
t3 + (m+1)



Equivalent Expressions analysis and Copy Propagation

i := 0;
t3 := 0;
while i <= n do while j <= m do
J = 0; = t1 := t3 + j;
£2 := t3; ’
while j <= m do temp := ...;
tl = t2 + 35 Cont (temp) := ...;
temp := Base(A) + t1; .
Cont (temp) := Cont(Base(B) + t1) J = ...
+ Cont(Base(C) + t1); od
j o= j+1
od;
1 := i+1;

t3 := t3 + (m+1)
od



Live Variables analysis and Dead Code Elimination

i := 0;
t3 := 0 | i = 0;
while i <= n do de€ad variable t3 := 0;
j = 0; while i <= n do
t2 = t3; j 1= 0;
while j <= m do while j <= m do
t1 := t3 + j; tl = t3 + j;
temp := Base(A) + ti; temp := Base(A) + ti;
Cont (temp) := Cont(Base(B) + t1) Cont (temp) := Cont(Base(B) + t1)
+ Cont(Base(C) + t1); + Cont(Base(C) + t1);
j = j+1 j = j*1
od; od;
i o= i+1; i = i+1,
t3 := t3 + (m+1) t3 := t3 + (m+1)
od od



Summary of analyses and transformations

Analysis Transformation
Available expressions analysis Common subexpression elimination
Detection of loop invariants Invariant code motion

Detection of induction variables Strength reduction
Equivalent expression analysis Copy propagation

Live variables analysis Dead code elimination



T he Essence of Program Analysis

Program analysis offers techniques for predicting

statically at compile-time
safe & efficient approximations exact answers!

to the set of configurations or behaviours arising
dynamically at run-time

we cannot expect

Safe: faithful to the semantics

Efficient: implementation with
— good time performance and
— low space consumption



The Nature of Approximation

The exact world

universe

exact set of
configurations

or behaviours

Over-approximation Under-approximation

over=
approximation uhders
approximation

Slogans: Err on the safe sidel
Trade precision for efficiency!



