

Implementierung eines Tauchcomputers für mobile Java-Geräte

4 D > 4 A > 4 B > 4 B >

San Salvador, Bahamas

Tauchcomputer

Hardware:

- druckfestes Gehäuse
- Quarzuhr
- Piezo-Druckmesser
- Prozessor
- LCD-Display, Bediensensoren
- evtl. Temperatursensor, Luftverbrauchsmessung

Tauchcomputer

Funktionen:

- Tiefe, Tauchzeit, Maximaltiefe
- Nullzeitberechnung
- Auftauchgeschwindigkeit
- Dekostufenberechnung, Aufstiegszeitberechnung
- Oberflächenintervalle, Entsättigungszeit, No-Flight-Time
- Logbuch, PC-Interface, ...

Basics

- Atmosphärendruck: p = 1 bar = $1 \frac{\text{kg}}{\text{cm}^2}$
- Atmosphärenzusammensetzung: 21% O₂, 78% N₂, 1% Rest
- Wasserdruck: $+1\frac{\text{bar}}{10 \text{ m}}$ auf 30m: p = 4 bar
- Partialdruck N₂: $p_{N2} = 0.78 \cdot p$
- Gewebedruck N₂ (Inertgasdruck): p_I Normalerweise ist $p_I = p_{N2}$

 p_I steigt beim Tauchen durch Diffusion ins Gewebe unter Wasserdruck an Dies geschieht mit Verzögerung gegenüber p (exponentielle Sättigung)

Bends

- Tauchprofil: Tiefe/Druck als Funktion der Zeit p(t)
- lacktriangle taucht man zu schnell auf, sinkt p schnell, während p_I noch groß ist
- Taucherkrankheit ("Bends"): N_2 perlt im Gewebe aus, wenn $p p_I$ zu groß (vgl. Öffnen einer Sprudelflasche)
- Nullzeit: Maximalzeit in einer bestimmten Tiefe, ohne dass $p-p_I$ bei Sofortaufstieg zu groß wird

Tiefe	Nullzeit ca.	
20 m	40 min	
30 m	20 min	
40 m	10 min	

 Dekostop: Pause unter Wasser zum Abatmen von N₂ nach Nullzeitüberschreitung

Tauchcomputer: Berechnung von Nullzeit / Dekostops anhand des Tauchprofils

Dekompressionstheorie

 zulässige Druckdifferenz zwischen Außendruck und Gewebe-Inertgasdruck (Bühlmann 1960):

$$p_I \le p/b + a$$

bzw

$$p \ge (p_I - a) \cdot b$$

a, b hängen von Gewebeart ab

Beispiel:

Haut
$$\implies a = 0.53, b = 0.87$$

Gelenke $\implies a = 0.27, b = 0.95$

Dekompressionstheorie

- Annahme: 30m Tiefe, $p_{N2} = p_I$ (volle Sättigung) ⇒ $p_I = 0.78 \cdot 4$ bar = 3.12 bar ⇒ $p \ge (3.12 - 0.53) \cdot 0.87 = 2.25$ bar und $p \ge (3.12 - 0.27) \cdot 0.95 = 2.71$ bar
- 2.25 bar ≜ 12.5 m Tiefe; 2.71 bar ≜ 17.1 m
- taucht man nach langem Aufenthalt auf 30m schnell auf 17.1m, gibt es Gasblasen im Gelenk; oberhalb 12.5m zusätzlich Hautsymptome

Druckausgleich im Gewebe

Druckänderung ∂p_I ist proportional zur Differenz von Gewebedruck und Außendruck (Haldane 1908):

$$\frac{\partial p_I}{\partial t} = c \cdot (p_{N2} - p_I)$$

Druckausgleich im Gewebe I

wichtige Fälle:

1. stationäre Tiefe:

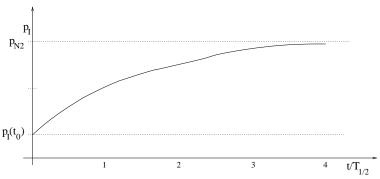
$$p = p(t) = const \implies p_{N2} = const$$

die homogene DGL hat allgemeine Lösung

$$p_I(t) = p_{N2} + (p_{N2} - p_I(t_0)) \cdot e^{-ct}$$

oder als Halbwertszeitprozess

$$p_I(t) = p_I(t_0) + (p_{N2} - p_I(t_0))(1 - 2^{-t/T_{1/2}})$$


Es ist
$$c = \frac{\ln 2}{T_{1/2}}$$
, $p_I(T_{1/2}) = 0.5 \cdot (p_{N2} - p_I(t_0))$

Druckausgleich im Gewebe II

Sättigungskurve:

Falls $p_I(t_0) > p_{N2}$ erfolgt *Entsättigung*

Druckausgleich im Gewebe III

2. Auf/Abstieg mit konstanter Geschwindigkeit

$$p_{N2}(t) = rt + p_0$$

(p₀ ist der initiale N2-Außen-Partialdruck)

$$\frac{\partial p_I}{\partial t} = c \cdot (p_0 + rt - p_I)$$

inhomogene DGL hat Lösung

$$p_I(t) = p_0 + r(t - 1/c) + (p_0 - p_I(t_0) - r/c) \cdot e^{-ct}$$

(für r = 0 geht sie in die homogene Lösung über)

Nullzeitbestimmung

- Szenario: Abtauchen in Tiefe mit Druck p (Partial-Außendruck p_{N2}) und Anfangs-Gewebepartialdruck $p_I(t_0) < p_{N2}$
- $p_I(t \ge t_0)$ steigt monoton, konvergiert gegen p_{N2}
- taucht man zur Zeit t plötzlich auf, ist p = 1 bar und $p_I(t)$ könnte im Vergleich zu p zu groß werden
- Nullzeit = Zeit, bis $p_I(t)$ die zulässige Druckdifferenz zum Oberflächen-Partialdruck überschreitet
- mit Nullzeit t_N , kritischer Partialdruck p_K ist $p_I(t_N) \ge p_K = 1$ bar/b + a Einsetzen in Halbwertszeitgleichung ergibt

$$\frac{p_K - p_{N2}}{p_{N2} - p_I(t_0)} = -2^{-t/T_{1/2}}$$

oder

$$t_N = -T_{1/2} \cdot \log_2 \frac{p_{N2} - p_K}{p_{N2} - p_I(t_0)}$$

Nullzeitbestimmung

Beispiel: 30 m Tiefe, $p_{N2} = 3.12$ bar

- $T_{1/2} = 54.3$ min (Haut) $\implies a = 0.53, b = 0.87, p_K = 1/b + a = 1.68$ bar
- Es sei $p_I(t_0) = 0.78$ (Oberflächendruck). Ab $p_I(t) \ge 1.68$ kritisch
- dies ist nach

$$t_N = -54.3 \cdot \log_2 \frac{3.12 - 1.68}{3.12 - 0.78} = -54.3 \cdot \log_2 0.62 = 38.03 \text{ min}$$

der Fall

■ Achtung: Argument des $\log \text{ kann} \le 0$ werden, wenn $p_{N2} < p_K$ (sehr geringe Tiefe); dann ist $t_N = \infty$. Nur wenn gleichzeitig $p_{N2} < p_I(t_0)$ (hohe Restbelastung aus vorangegangenem Tauchgang), erhält man wieder "normale" Nullzeiten

New Providence, Bahamas

Kompartimente

- Tauchcomputer berechnen $p_I(t)$ in Abhängigkeit von p(t) für 8-16 verschiedene Gewebe \implies 8-16 verschiedene $T^i_{1/2}$ nebst a^i, b^i
- die verschiedenen aⁱ, bⁱ-Werte wurden von Bühlmann in umfangreichen Experimenten bestimmt
- **E**s werden grundsätzlich alle $p_I^i(t)$ berechnet und alle Nullzeiten t_N^i bestimmt
- angezeigt wird das Minimum dieser Nullzeiten

Kompartimente

Theoretisch ist
$$a=\frac{2.0}{\sqrt[3]{T_{1/2}}}, b=1.0005-\frac{1}{\sqrt{T_{1/2}}}$$
 Einige Kompartimente der ZH-L16 Tabelle:

Gewebe	$T_{1/2}$	b	a
Nieren	4.0 min	0.5050	1.2599
Bauch, Darm,	12.5 min	0.7222	0.8618
Leber, Nerven			
Haut	54.3 min	0.8693	0.5282
Muskeln	140.0 min	0.9222	0.3798
Knochen, Ge-	390.0 min	0.9544	0.2737
lenke, Fett			

Achtung: die Kompartimente entsprechen hypothetischen Geweben, von denen angenommen wird, dass es interferenzfreie Halbwertszeitprozesse sind. Dies ist nur näherungsweise der Fall!

Dekostops, Fliegen

- Falls $t_N \le 0$, müssen Dekostops eingelegt werden
- Berechnung der *Ceiling*, also der Tiefe bzw des Drucks, in der gerade noch $p \ge (p_I(t) a) \cdot b$
- Dekostops werden unterhalb der Ceiling eingelegt, und zwar so lange, bis die Nullzeit wieder positiv ist dabei müssen Aufstiegszeiten berücksichtigt werden
 verwende Lösung der nichthomogenen DGL

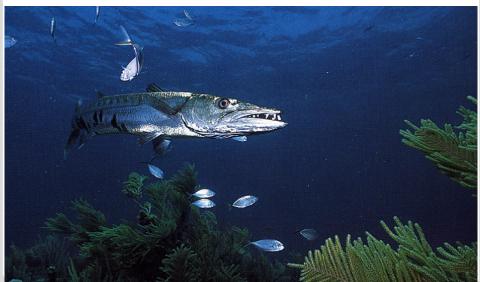
Dekostops, Fliegen

- Fliegen nach dem Tauchen: in der Kabine herrscht Druck wie in 3000m = 0.8 bar
 - \implies berechne Zeit, bis $p_I(t) \le 0.8/b + a$ löse dazu Halbwertszeitgleichung nach t auf (analog Nullzeitberechnung)
- vollständige Entsättigung: nach $6 \cdot T_{1/2}$ ist $|p_{N2} p_I(t)| < 0.02 \cdot |p_{N2} p_I(t_0)|$ t_0 ist in diesem Fall *Auftauchzeitpunkt*

Softwaretechnische Aspekte

- Berechnung von $p_I(t)$ gemäß nichthomogener DGL, sodann t_N . Dies alle paar Sekunden für alle Kompartimente
- Berechnung von $p_I(t)$, t_N ist anfällig für Auslöschung \implies doppelte Genauigkeit Alternative: direkte numerische Lösung der DGL mit Runge-Kutta, iterative Berechnung von t_N (?)
- Tauchcomputer sind sicherheitskritische eingebettete Systeme! ⇒ formale Spezifikation, strikte Trennung Sicherheitskern / GUI, Verifikation zentraler Berechnungen, intensive Qualitätssicherung, stochastische Zuverlässigkeitsvorhersage

Ausblick: PSE



Tauchcomputersimulation in zwei Fenstern:

- 1. Tauchprofil ("Ozean", Tauchersteuerung per Maus, Fische, explodierende Taucher, …)
- 2. Tauchcomputer (GUI wie echt) als mobile Applikation ("Handy")
- 3. Kommunikation über Bluetooth

Abacos, Bahamas

