Theorem 2
If live = LVE(
)

(i) if (S,01) — (S,01) and 01 ~N(imit(s)) @2 then there exists
o) such that (S, 02) — (S’,04) and o] ~N(mits')) 05, and

21
) (with S being label consistent) then:

(ii) if (S,01) — o} and o1 ~pN(init(s)) 02 then there exists oy
such that (S,02) — o} and 6] ~x(init(s)) 02

I _ N

Proof The proof is by induction on the shape of the inference tree used to establish
(S,01) — (8',01) and (S,01) — o1, respectively.

The case [ass]. Then {[z := a]’,01) — 1]z — Ala]e1] and from the specification
of the constraint system we have

N(£) = liveentry(£) 2 (liveert()\{z}) U FV(a) = (X(O\{z}) U FV{a)
and thus
g1 ~ney o2 implies Afajo1 = Ala]o2

because the value of a is only affected by the variables occurring in it. Therefore,
taking
o5 = oafz — Ala]os]

we have that o} (z) = oj(x) and thus o] ~x (¢ 02 as required.

The case [skip]. Then {[skip]’,o1) — o1 and from the specification of the constraint
system

N(E) = liveentry (€) D (liveasis (E)\B) U @ = livee:(€) = X(£)

and we take o5 to be o3.

The case [seq;]. Then (S1;Sz,01) — (Si;S2,01) because (S1,01) — (S1,01). By
construction we have flow(S1;S2) 2 flow(S1) and also blocks(S1;S52) 2 blocks(S1).
Thus by Lemma 2.16, live is a solution to LV(;(SI) and thus by the induction
hypothesis there exists o5 such that

(81,02) — (S1,05) and o} ~ N{(init(5])) oy

and the result follows.

64 ‘ 2 Data Flow Analysis

The case [seg,]. Then {(S1;S2,01) — (S2,01) because {S1,01) — o]. Once again
by Lemma 2.16, live is a solution to LV (S1) and thus by the induction hypothesis
there exists ¢4 such that:

(S1,02) — 05 and 01 ~x(init(s,)) Oa
Now
{(E,iﬂit(Sg)) | { e ﬁnaI(Sl)} - ﬂOW(S1; Sg)
and by Lemma 2.14, final(S1) = {init(51)}. Thus by Lemma 2.20

Ui ™~ N(init(Sg)) Cfé
and the result follows.

The case [if,]. Then (if [b]° then S; else S2,01) — (Si,01) because B[b]on =
true. Since o1 ~yng 02 and N{{) = livecny (€) O FV(b), we also have that
Bb]oz = true (the value of b is only affected by the variables occurring in it) and
thus:

(if [b]° then S; else Sa,02) ~ (S1,02)

From the specification of the constraint system, N(€) = liveentr, (£) 2 liveesi (£) =
X(£) and hence o1 ~x(2. Since (£, init(S1)) € flow(S), Lemma 2.20 gives
01 ~ N(init(S,)) O2 as required.

The case [if,] is similar to the previous case.
The case [whi]. Then (while [b]‘ do S,c1)— (S;while [b]° do S, 1) because B[b]oy
= true. Since o1 ~n (g o2 and N{{) O FV(b), we also have that B[bjoz = true and

thus
(while [B)* do S,02) — {S;while [b]’ do S, 02)

and again, since N(f) = liveenir, (£) 2 livees: (£) = X(£) we have 01 ~x (s o2 and
then
01 ™~ N{init(5)) 72
follows from Lemma 2.20 because (£, init(S)) € flow(while [b]° do S).
The case [wh2]. Then (while [b|° do S,01) — o1 because B[b]o1 = false. Since
o1 ~ney 02 and N(£) D FV(b), we also have that B[bjos = false and thus:
(while [b]® do S, 02) — o2

From the specification of LVS(S), we have N(£) = liveeniry(£) 2 livees: (£) = X (£)
and thus o ~Xx(£) O2.

This completes the proof. [

MOP versus MFP solutions. We shall shortly prove that the MFP
solution safely approximates the MOP solution (informally, MFP J MOP).
In the case of a (], —, 1) or ([, <, T) analysis, the MFP solution is a subset of
the MOP solution (3 is C); in the case of a (I}, —,]) or (I, <, |) analysis,
the MFP solution is a superset of the MOP solution. We can also show
that, in the case of Distributive Frameworks, the MOP and MFP solutions
coincide.

Lemma 2.32 Consider the MFP and MOP solutions to an instance (L, F,
F,B,., f.) of a Monotone Framework; then:

MFP, 1 MOP, and MFP, J MOP,
If the framework is distributive and if path,(¢) # @ for all £ in F and F then:

MFP, = MOP, and MFP, = MOP,

Proof It is straightforward to show that:

Ve : MOP.(£) T fo{ MOP,(£))
Ve : MFP,(£) = fo(MFP,(£))

For the first part of the lemma it therefore suffices to prove that:
V€ : MOP,(¢) C MFP,(¢)

Note that MFP; is the least fixed point of the functional F defined by:

F(A) (@) = (|_|{fer(As@)) | (€,6) e FHu i

Next let us restrict the length of the paths used to compute MOP,; for n > 0
define:

MOP: (€) = | |{f) | £ € path,(¢),1€] < n}

Clearly, MOP,(¢) = |_|n MOP? (£) and to prove MFP, O MOP, is therefore suffices
to prove
Vn : MFP, 3 MOP”

and we do so by numerical induction. The basis, MFP, MOP?, is trivial. The
inductive step proceeds as follows:

MFP,(¢) = F(MFP,)(¢)

2.4 Equation Solving 81

= (| jfo(MFP.(€) | (¢,0) e FY) U
3 (| [{fe(MOPL(£)) | (€,6) € F})uip
= (| J{fo(K4 | £€ path,(£),18] < n}) | (£,8) € F}) Ui
2 (| {fe (40 | €€ path,(¢),1€] <n} | (¢,6) € F}) Uik

= | Jdfdv) | 7€ pathy(€),1 < |€] <n}y U
= MOP;*'(#)

where we have used the induction hypothesis to get the first inequality. This com-
pletes the proof of MFP, J MOP, and MFP, 3 MOP,.

To prove the second part of the lemma we now assume that the framework is
distributive. Consider ¢ in E or F. By assumption f¢ is distributive, that is
fe(liUl2) = fe(l) U fe(l2), and from Lemma A.9 of Appendix A it follows that

f vy =| Jtrew1teyy

whenever Y is non-empty. By assumption we also have path,(¢) # 0 and it follows
that

fol[{F0) | T € path (0)}) = | [{fe(f(0)) | € € pathy(6)}
= | J{f#o) | £ € path,(£)}

and this shows that:
Ve : fo(MOP,(£)) = MOP,.(?)

Next we calculate:
MOPs(¢) = | [{fe) | £€ path,(£)}
= | |aw 1 7| Jipath,(¢) | (¢, 0) e F}u{[]| € E}}
= | |({fe (FA)) | € € path,(£), (¢,) € FYU{c| £ € E})
= (L tre {40 | T€ pathy(¢)} | (¢,0) € F}) up
= (| [{fe(MOP(£)) | (¢,6) € F}) Ui

Together this shows that (MOP,, MOP,) is a solution to the data flow equations.
Using Proposition A.10 of Appendix A and the fact that (MFP., MFP,) is the least
solution we get MOP, 2 MFP, and MOP, J MFP,. Together with the results of
the first part of the lemma we get MOP, = MFP, and MOP, = MFP,. n

